JP2015001206A - FAILURE DETERMINATION DEVICE AND FAILURE DETERMINATION METHOD FOR NOx SENSOR - Google Patents

FAILURE DETERMINATION DEVICE AND FAILURE DETERMINATION METHOD FOR NOx SENSOR Download PDF

Info

Publication number
JP2015001206A
JP2015001206A JP2013126773A JP2013126773A JP2015001206A JP 2015001206 A JP2015001206 A JP 2015001206A JP 2013126773 A JP2013126773 A JP 2013126773A JP 2013126773 A JP2013126773 A JP 2013126773A JP 2015001206 A JP2015001206 A JP 2015001206A
Authority
JP
Japan
Prior art keywords
nox sensor
upstream
downstream
value
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013126773A
Other languages
Japanese (ja)
Other versions
JP6175292B2 (en
Inventor
俊哉 秋吉
Toshiya Akiyoshi
俊哉 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013126773A priority Critical patent/JP6175292B2/en
Publication of JP2015001206A publication Critical patent/JP2015001206A/en
Application granted granted Critical
Publication of JP6175292B2 publication Critical patent/JP6175292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a failure determination device and a failure determination method for a NOx sensor capable of shortening the period, for which the supply of a reducer is stopped.SOLUTION: An ECU 44 decides it on the basis of a DPF temperature input from a DPF temperature sensor 26 whether or not a DPF 24 is in a regeneration processing. The ECU 44 outputs a stop signal to an injector 30 during the reproduction of the DPF 24 thereby to stop the supply of urea water. The ECU 44 decides the presence or absence of the trouble of a downstream NOx sensor 42 on the basis of the detection value of an upstream NOx sensor 28 and the detection value of the downstream NOx sensor 42, if it decides that a predetermined quantity of NOx has flown after the output of the stop signal to a selective reduction type catalyst 36.

Description

本開示の技術は、選択還元型触媒の下流に配設されるNOxセンサーの故障の有無を判定するNOxセンサーの故障判定装置及び故障判定方法に関する。   The technology of the present disclosure relates to a failure determination device and failure determination method for a NOx sensor that determines whether or not there is a failure in a NOx sensor disposed downstream of a selective reduction catalyst.

排気中の窒素酸化物(以下、NOxと示す)を浄化する排気浄化装置は、尿素水を排気に供給する尿素水供給部と、尿素水による排気の還元を促す選択還元型触媒とを備えている。尿素水供給部の供給する尿素水の供給量は、選択還元型触媒の下流に取り付けられた下流NOxセンサーの検出値に基づいて定められる。   An exhaust gas purification device that purifies nitrogen oxides (hereinafter referred to as NOx) in exhaust gas includes a urea water supply unit that supplies urea water to exhaust gas, and a selective reduction catalyst that promotes reduction of exhaust gas by urea water. Yes. The supply amount of urea water supplied by the urea water supply unit is determined based on the detection value of the downstream NOx sensor attached downstream of the selective catalytic reduction catalyst.

下流NOxセンサーの故障の判定は、尿素水の供給量に誤差が生じることを抑えるうえで重要である。特許文献1に記載される技術では、還元剤の供給が停止してから所定時間が経過した後に、下流NOxセンサーの検出値が検出されて、下流NOxセンサーの応答性が判定されている。また、選択還元型触媒の上流と下流とにNOxセンサーが取り付けられた構成では、下流NOxセンサーの検出値と上流NOxセンサーの検出値との乖離に基づいて、下流NOxセンサーが正常であるか否かが判定されている。   The determination of the failure of the downstream NOx sensor is important for suppressing the occurrence of an error in the urea water supply amount. In the technique described in Patent Document 1, the detection value of the downstream NOx sensor is detected after a predetermined time has elapsed since the supply of the reducing agent is stopped, and the responsiveness of the downstream NOx sensor is determined. Further, in the configuration in which NOx sensors are attached upstream and downstream of the selective catalytic reduction catalyst, whether or not the downstream NOx sensor is normal based on the difference between the detected value of the downstream NOx sensor and the detected value of the upstream NOx sensor. Has been determined.

特開2010−174695号公報JP 2010-174695 A

ところで、選択還元型触媒にアンモニアが吸着しているとき、下流NOxセンサーの検出値と上流NOxセンサーの検出値との乖離は、吸着しているアンモニアの量に応じてばらつく。そのため、下流NOxセンサーの検出値と上流NOxセンサーの検出値との乖離に基づく下流NOxセンサーの故障判定は、通常、尿素水の供給が停止した後に、所定量のNOxが流れてから実施される。   By the way, when ammonia is adsorbed on the selective catalytic reduction catalyst, the difference between the detected value of the downstream NOx sensor and the detected value of the upstream NOx sensor varies depending on the amount of adsorbed ammonia. Therefore, the failure determination of the downstream NOx sensor based on the difference between the detection value of the downstream NOx sensor and the detection value of the upstream NOx sensor is usually performed after a predetermined amount of NOx flows after the urea water supply is stopped. .

一方で、選択還元型触媒にアンモニアが吸着していない状態では、排気に含まれるNOxの大部分が大気中に排出されてしまう。そこで、上流NOxセンサーの検出値と下流NOxセンサーの検出値との乖離に基づく下流NOxセンサーの故障判定では、還元剤の供給が停止される期間を短くすることが望まれる。   On the other hand, in a state where ammonia is not adsorbed on the selective catalytic reduction catalyst, most of NOx contained in the exhaust gas is discharged into the atmosphere. Therefore, in the failure determination of the downstream NOx sensor based on the difference between the detection value of the upstream NOx sensor and the detection value of the downstream NOx sensor, it is desirable to shorten the period during which the supply of the reducing agent is stopped.

本開示の技術は、還元剤の供給が停止される期間を短くすることが可能なNOxセンサーの故障判定装置及び故障判定方法を提供することを目的とする。   An object of the technology of the present disclosure is to provide a NOx sensor failure determination apparatus and failure determination method capable of shortening the period during which the supply of the reducing agent is stopped.

上記課題を解決するNOxセンサーの故障判定装置は、選択還元型触媒の上流から前記選択還元型触媒に還元剤を供給する供給部と、前記選択還元型触媒の上流に位置する上流NOxセンサーの検出値を基準値として、前記選択還元型触媒の下流に位置する下流NOxセンサーの検出値と前記基準値との乖離が所定範囲よりも大きい故障があるか否かを判定する判定部と、を備え、前記判定部は、前記上流NOxセンサーの上流に位置するフィルターに対して、前記フィルターに流入する排気を昇温して前記フィルターを再生しているときに、前記還元剤の供給を前記供給部に停止させ、前記選択還元型触媒に流入したNOx量が、前記供給の停止から所定量に到達したときに、前記上流NOxセンサーの検出値、および、前記下流NOxセンサーの検出値を取得する。   A NOx sensor failure determination apparatus that solves the above problems includes a supply unit that supplies a reducing agent to the selective catalytic reduction catalyst from upstream of the selective catalytic reduction catalyst, and an upstream NOx sensor that is positioned upstream of the selective catalytic reduction catalyst. A determination unit that determines whether there is a failure in which a difference between a detected value of a downstream NOx sensor located downstream of the selective catalytic reduction catalyst and the reference value is larger than a predetermined range using the value as a reference value The determination unit supplies the reducing agent to the supply unit when the exhaust gas flowing into the filter is heated to regenerate the filter located upstream of the upstream NOx sensor. When the amount of NOx flowing into the selective catalytic reduction catalyst reaches a predetermined amount after the supply is stopped, the detected value of the upstream NOx sensor and the downstream NOx concentration are reduced. To get the detected value of the service.

上記課題を解決するNOxセンサーの故障判定方法は、選択還元型触媒の上流に位置する上流NOxセンサーと前記選択還元型触媒の下流に位置する下流NOxセンサーとを備える排気浄化装置に適用され、前記下流NOxセンサーの故障の有無を判定するNOxセンサーの故障判定方法であって、前記上流NOxセンサーの上流に位置するフィルターに対して、前記フィルターに流入する排気の昇温によって前記フィルターを再生しているときに、前記フィルターの下流に位置する前記選択還元型触媒に対して、還元剤の供給を停止する工程と、前記選択還元型触媒に流入したNOx量が、前記還元剤の供給の停止から所定量に到達したときに、前記上流NOxセンサーの検出値、および、前記下流NOxセンサーの検出値を取得する工程と、前記上流NOxセンサーの検出値を基準値として、前記下流NOxセンサーの検出値と前記基準値との乖離が所定範囲よりも大きい故障があるか否かを判定する工程と、を備える。   A NOx sensor failure determination method that solves the above problem is applied to an exhaust purification device that includes an upstream NOx sensor positioned upstream of a selective catalytic reduction catalyst and a downstream NOx sensor positioned downstream of the selective catalytic reduction catalyst, A NOx sensor failure determination method for determining whether or not a downstream NOx sensor has failed, wherein a filter located upstream of the upstream NOx sensor is regenerated by increasing the temperature of exhaust gas flowing into the filter. And the step of stopping the supply of the reducing agent to the selective catalytic reduction catalyst located downstream of the filter, and the amount of NOx that has flowed into the selective catalytic reduction catalyst from the stop of the supply of the reducing agent. Acquiring the detection value of the upstream NOx sensor and the detection value of the downstream NOx sensor when a predetermined amount is reached. , As a reference value to the detected value of the upstream NOx sensor, and a step of determining whether there is a greater failure than deviation is a predetermined range between the detection value and the reference value of the downstream NOx sensor.

上記構成によれば、センサーの検出値の取得に必要とされる累積のNOx量は、フィルターの再生時から計測され始める。フィルターの再生時におけるNOx量は、通常、フィルターの再生時以外と比べて高い。そのため、フィルターの再生時からNOx量が計測される構成であれば、累積のNOx量が所定量に到達する時間も、自ずと短くなる。結果として、下流NOxセンサーの故障判定に要する時間が短縮される。   According to the above configuration, the cumulative amount of NOx required for acquiring the detection value of the sensor starts to be measured from the time of filter regeneration. The amount of NOx during filter regeneration is usually higher than when the filter is not regenerated. Therefore, if the NOx amount is measured from the regeneration of the filter, the time for the accumulated NOx amount to reach the predetermined amount is naturally shortened. As a result, the time required for determining the failure of the downstream NOx sensor is shortened.

上記NOxセンサーの故障判定装置において、前記判定部は、前記排気の流量である排気流量と、前記上流NOxセンサーの検出値とに基づいて、前記選択還元型触媒に流入したNOx量を演算することが好ましい。   In the NOx sensor failure determination apparatus, the determination unit calculates the amount of NOx flowing into the selective reduction catalyst based on an exhaust flow rate that is the flow rate of the exhaust gas and a detection value of the upstream NOx sensor. Is preferred.

上記構成によれば、選択還元型触媒に流入するNOx量が、例えば、エンジンの運転状態を示す複数のパラメータから推定される構成と比べて、NOx量が簡易な方法で、かつ、高い精度で求められる。   According to the above configuration, the amount of NOx flowing into the selective catalytic reduction catalyst is, for example, a simple method and high accuracy in the amount of NOx compared to a configuration estimated from a plurality of parameters indicating the operating state of the engine. Desired.

上記NOxセンサーの故障判定装置において、前記上流NOxセンサーの検出値は、互いに異なる複数のタイミングの各々で出力された前記上流NOxセンサーからの複数の出力値の平均値であり、前記下流NOxセンサーの検出値は、前記互いに異なる複数のタイミングの各々で出力された前記下流NOxセンサーからの複数の出力値の平均値であることが好ましい。   In the NOx sensor failure determination device, the detected value of the upstream NOx sensor is an average value of a plurality of output values from the upstream NOx sensor output at each of a plurality of different timings, and the downstream NOx sensor The detection value is preferably an average value of a plurality of output values from the downstream NOx sensor output at each of the plurality of different timings.

上記構成によれば、上流NOxセンサーの検出値が、上流NOxセンサーから出力される複数の出力値を反映した値であり、下流NOxセンサーの検出値が、下流NOxセンサーから出力される複数の出力値を反映した値である。それゆえに、上流NOxセンサーの出力値、および、下流NOxセンサーの出力値に、突発的な外因による誤差が含まれるときでも、判定結果の信頼度が、こうした誤差に起因して失われることが抑えられる。   According to the above configuration, the detection value of the upstream NOx sensor is a value reflecting a plurality of output values output from the upstream NOx sensor, and the detection value of the downstream NOx sensor is a plurality of outputs output from the downstream NOx sensor. The value reflects the value. Therefore, even when the output value of the upstream NOx sensor and the output value of the downstream NOx sensor include an error due to a sudden external cause, the reliability of the determination result is prevented from being lost due to such an error. It is done.

上記NOxセンサーの故障判定装置では、前記判定部は、前記フィルターの温度を検出する温度センサーの検出値が、前記フィルターの再生が進行中であることを示す所定値以上になったことを条件に前記還元剤の供給を前記供給部に停止させることが好ましい。   In the NOx sensor failure determination apparatus, the determination unit is configured on the condition that a detection value of a temperature sensor for detecting the temperature of the filter is equal to or greater than a predetermined value indicating that regeneration of the filter is in progress. It is preferable to stop the supply of the reducing agent to the supply unit.

上記構成によれば、還元剤の供給の停止するタイミングが、フィルターそのものの状態に基づいて定められる。そのため、例えば、昇温された排気がフィルターに供給された直後に、還元剤の供給が停止する構成と比べて、還元剤の供給の停止するタイミングが、より適切なタイミングに設定される。   According to the above configuration, the timing for stopping the supply of the reducing agent is determined based on the state of the filter itself. Therefore, for example, the timing at which the supply of the reducing agent is stopped is set to a more appropriate timing as compared with the configuration in which the supply of the reducing agent is stopped immediately after the heated exhaust gas is supplied to the filter.

本開示の技術におけるNOxセンサーの故障判定装置の一実施形態を具備した排気浄化装置の概略構成を示す概略構成図。The schematic block diagram which shows schematic structure of the exhaust gas purification apparatus which comprised one Embodiment of the failure determination apparatus of the NOx sensor in the technique of this indication. 判定処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of a determination process.

以下、図1及び図2を参照して、本開示におけるNOxセンサーの故障判定装置及び故障判定方法の一実施形態について説明する。
図1に示されるように、ディーゼルエンジン10の排気通路12には、排気を浄化する排気浄化装置20が配設されている。排気浄化装置20に流入した排気は、前段酸化触媒22(DOC:Diesel Oxidation Catalyst)に流入する。
Hereinafter, with reference to FIG.1 and FIG.2, one Embodiment of the failure determination apparatus and failure determination method of a NOx sensor in this indication is described.
As shown in FIG. 1, an exhaust gas purification device 20 that purifies exhaust gas is disposed in the exhaust passage 12 of the diesel engine 10. The exhaust gas flowing into the exhaust gas purification device 20 flows into a pre-stage oxidation catalyst 22 (DOC: Diesel Oxidation Catalyst).

前段酸化触媒22は、例えばアルミナ、シリカ、ゼオライト等からなる担体に、白金やパラジウム等の金属や、金属酸化物等を担持させたものである。前段酸化触媒22は、排気に含まれる炭化水素(HC)、一酸化炭素(CO)、一酸化窒素(NO)を酸化して、水、二酸化炭素、二酸化窒素等に変換する。   The pre-stage oxidation catalyst 22 is obtained by supporting a metal such as platinum or palladium, a metal oxide, or the like on a support made of alumina, silica, zeolite, or the like. The pre-stage oxidation catalyst 22 oxidizes hydrocarbons (HC), carbon monoxide (CO), and nitrogen monoxide (NO) contained in the exhaust, and converts them into water, carbon dioxide, nitrogen dioxide, and the like.

前段酸化触媒22を通過した排気は、DPF24(DPF:Diesel particulate filter)に流入する。DPF24は、セラミックスや金属多孔体から構成され、排気中の粒子性物質(PM:Particulate Matter)を捕集する。DPF24の再生処理では、DPF24に流入する排気を昇温させるべく、例えば、前段酸化触媒22よりも上流の排気通路12に対し、図示されないバーナーから燃焼ガスが供給されたり、図示されない燃料噴射弁から燃料が噴射されたりする。   The exhaust gas that has passed through the front-stage oxidation catalyst 22 flows into a DPF 24 (DPF: Diesel particulate filter). The DPF 24 is composed of ceramics or a metal porous body, and collects particulate matter (PM) in the exhaust gas. In the regeneration process of the DPF 24, in order to raise the temperature of the exhaust gas flowing into the DPF 24, for example, combustion gas is supplied from a burner (not shown) to the exhaust passage 12 upstream of the upstream oxidation catalyst 22 or from a fuel injection valve (not shown). Fuel is injected.

DPF24には、DPF温度センサー26が配設されている。DPF温度センサー26は、DPF24の温度であるDPF温度Tdを所定の制御周期で検出し、その検出したDPF温度Tdを示す信号をECU44に出力する。   A DPF temperature sensor 26 is disposed in the DPF 24. The DPF temperature sensor 26 detects the DPF temperature Td that is the temperature of the DPF 24 at a predetermined control cycle, and outputs a signal indicating the detected DPF temperature Td to the ECU 44.

DPF24の下流であり且つ後述する選択還元型触媒36の下流には、上流NOxセンサー28が配設されている。上流NOxセンサー28は、DPF24を通過した排気のNOx濃度Cnx1を所定の制御周期で検出し、その検出したNOx濃度Cnx1を示す信号をECU44に出力する。   An upstream NOx sensor 28 is disposed downstream of the DPF 24 and downstream of the selective reduction catalyst 36 described later. The upstream NOx sensor 28 detects the NOx concentration Cnx1 of the exhaust gas that has passed through the DPF 24 at a predetermined control cycle, and outputs a signal indicating the detected NOx concentration Cnx1 to the ECU 44.

上流NOxセンサー28の下流には、排気通路12に対して還元剤である尿素水を供給する電子制御式のインジェクター30が配設されている。インジェクター30には、タンク32に貯留された所定濃度の尿素水が圧送ポンプ34により圧送される。圧送ポンプ34は、図示されないリリーフ弁を内蔵しており、タンク32内の尿素水を所定の圧力でインジェクター30に圧送する。インジェクター30は、ECU44によって開閉制御される。排気に供給された尿素水は、排気の熱によってアンモニアに加水分解される。インジェクター30、タンク32、圧送ポンプ34、及び尿素水は、供給部に含まれる。   An electronically controlled injector 30 that supplies urea water as a reducing agent to the exhaust passage 12 is disposed downstream of the upstream NOx sensor 28. A predetermined concentration of urea water stored in a tank 32 is pumped to the injector 30 by a pump pump 34. The pressure pump 34 incorporates a relief valve (not shown), and pumps urea water in the tank 32 to the injector 30 at a predetermined pressure. The injector 30 is controlled to open and close by the ECU 44. The urea water supplied to the exhaust is hydrolyzed into ammonia by the heat of the exhaust. The injector 30, the tank 32, the pressure feed pump 34, and the urea water are included in the supply unit.

インジェクター30の下流には、選択還元型触媒36が配設されている。選択還元型触媒36は、NOxをアンモニアで還元する選択的触媒還元(Selective Catalytic Reduction)を行う。選択還元型触媒36は、例えばハニカム状のセラミックからなる担体に吸着性の高いゼオライト又はジルコニアを担持させたものである。排気中のNOxは、選択還元型触媒36の触媒作用によってアンモニアと反応し、窒素と水とに還元される。   A selective reduction catalyst 36 is disposed downstream of the injector 30. The selective reduction catalyst 36 performs selective catalytic reduction that reduces NOx with ammonia. The selective reduction catalyst 36 is obtained by, for example, supporting zeolite or zirconia having high adsorptivity on a support made of a honeycomb-shaped ceramic. NOx in the exhaust gas reacts with ammonia by the catalytic action of the selective reduction catalyst 36 and is reduced to nitrogen and water.

選択還元型触媒36には、触媒温度センサー38が配設されている。触媒温度センサー38は、選択還元型触媒36の温度である触媒温度Tsを所定の制御周期で検出し、その検出した触媒温度Tsを示す信号をECU44に出力する。   The selective reduction catalyst 36 is provided with a catalyst temperature sensor 38. The catalyst temperature sensor 38 detects the catalyst temperature Ts, which is the temperature of the selective reduction catalyst 36, in a predetermined control cycle, and outputs a signal indicating the detected catalyst temperature Ts to the ECU 44.

選択還元型触媒36を通過した排気は、後段酸化触媒40(ASC:Ammonia Slip Catalyst)に流入する。後段酸化触媒40は、例えばアルミナ、シリカ、ゼオライト等からなる担体に、白金やパラジウム等の金属や、金属酸化物等を担持させたものである。後段酸化触媒40は、選択還元型触媒36における還元反応で消費されなかったアンモニアを分解する。   Exhaust gas that has passed through the selective catalytic reduction catalyst 36 flows into a post-stage oxidation catalyst 40 (ASC: Ammonia Slip Catalyst). The post-stage oxidation catalyst 40 is obtained by, for example, supporting a metal such as platinum or palladium, a metal oxide, or the like on a carrier made of alumina, silica, zeolite, or the like. The post-stage oxidation catalyst 40 decomposes ammonia that has not been consumed in the reduction reaction in the selective reduction catalyst 36.

後段酸化触媒40の下流には、下流NOxセンサー42が配設されている。下流NOxセンサー42は、後段酸化触媒40を通過した排気のNOx濃度Cnx2を所定の制御周期で検出し、その検出したNOx濃度Cnx2を示す信号をECU44に出力する。   A downstream NOx sensor 42 is disposed downstream of the post-stage oxidation catalyst 40. The downstream NOx sensor 42 detects the NOx concentration Cnx2 of the exhaust gas that has passed through the post-stage oxidation catalyst 40 at a predetermined control cycle, and outputs a signal indicating the detected NOx concentration Cnx2 to the ECU 44.

ECU44は、CPU、RAM、ROM等を備えたマイクロコンピューターである。ECU44は、各種センサーの出力値である上記DPF温度Td、触媒温度Ts、NOx濃度Cnx1、NOx濃度Cnx2を取得する。また、EGRには、エアフローメーター46から吸入空気量Gaを示す信号が所定の制御周期で入力される。ECU44は、吸入空気量Gaを排気通路12を流れる排気の流量である排気流量としても取り扱う。すなわち、ECU44は、DPF温度Td、触媒温度Ts、NOx濃度Cnx1、NOx濃度Cnx2、吸入空気量Gaを取得する取得部として機能する。   The ECU 44 is a microcomputer that includes a CPU, a RAM, a ROM, and the like. The ECU 44 acquires the DPF temperature Td, the catalyst temperature Ts, the NOx concentration Cnx1, and the NOx concentration Cnx2 that are output values of various sensors. In addition, a signal indicating the intake air amount Ga is input from the air flow meter 46 to the EGR at a predetermined control cycle. The ECU 44 also handles the intake air amount Ga as an exhaust flow rate that is the flow rate of the exhaust gas flowing through the exhaust passage 12. That is, the ECU 44 functions as an acquisition unit that acquires the DPF temperature Td, the catalyst temperature Ts, the NOx concentration Cnx1, the NOx concentration Cnx2, and the intake air amount Ga.

ECU44は、上記各種センサーから入力される情報、ROMに予め記憶された制御プログラムや各種データ、これらに基づいて各種の演算及び処理を実行する。ECU44は、インジェクター30の開閉制御を通じた尿素水の供給処理を実行する。また判定部としてのECU44は、下流NOxセンサー42の故障の有無を判定する判定処理を実行する。ECU44は、判定処理において下流NOxセンサー42が「異常」と判定された場合、警報装置50を作動させることでその判定結果を運転者に通知する。   The ECU 44 executes various calculations and processes based on information input from the various sensors, control programs and various data stored in advance in the ROM, and these. The ECU 44 executes urea water supply processing through opening / closing control of the injector 30. The ECU 44 as a determination unit executes a determination process for determining whether or not the downstream NOx sensor 42 has a failure. When the downstream NOx sensor 42 is determined to be “abnormal” in the determination process, the ECU 44 operates the alarm device 50 to notify the determination result to the driver.

供給処理において、ECU44は、所定の制御周期毎に尿素水の供給量を演算する。ECU44は、尿素水の濃度が所望濃度(例えば32.5%wt)であることを前提として尿素水の供給量を演算する。ECU44は、吸入空気量Ga、NOx濃度Cnx1、触媒温度Tsに基づいて排気中のNOxを浄化するために必要な尿素水の基本供給量を演算する。ECU44は、下流NOxセンサー42が正常のときには、NOx濃度Cnx1とNOx濃度Cnx2とに基づくNOx浄化率η(=Cnx1/Cnx2)に基づいて基本供給量を補正することにより尿素水の供給量を演算する。一方、ECU44は、下流NOxセンサー42が異常のときには、基本供給量を補正せずに該基本供給量を供給量として演算する。そして、ECU44は、演算された供給量の分の尿素水が排気に供給されるようにインジェクター30に対して制御信号を出力する。   In the supply process, the ECU 44 calculates the supply amount of urea water every predetermined control cycle. The ECU 44 calculates the supply amount of urea water on the assumption that the concentration of urea water is a desired concentration (for example, 32.5% wt). The ECU 44 calculates a basic supply amount of urea water necessary for purifying NOx in the exhaust based on the intake air amount Ga, the NOx concentration Cnx1, and the catalyst temperature Ts. When the downstream NOx sensor 42 is normal, the ECU 44 calculates the supply amount of urea water by correcting the basic supply amount based on the NOx purification rate η (= Cnx1 / Cnx2) based on the NOx concentration Cnx1 and the NOx concentration Cnx2. To do. On the other hand, when the downstream NOx sensor 42 is abnormal, the ECU 44 calculates the basic supply amount as the supply amount without correcting the basic supply amount. Then, the ECU 44 outputs a control signal to the injector 30 so that urea water corresponding to the calculated supply amount is supplied to the exhaust gas.

図2を参照して、ECU44の実行する判定処理の処理手順について説明する。判定処理は繰り返し実行される。また、上流NOxセンサー28は、別の判定処理によって正常であると判定されているものとする。   With reference to FIG. 2, the process procedure of the determination process which ECU44 performs is demonstrated. The determination process is repeatedly executed. Further, it is assumed that the upstream NOx sensor 28 is determined to be normal by another determination process.

図2に示されるように、ECU44は、最初のステップS11にてDPF温度センサー26からDPF温度Tdを取得し、次のステップS12にてDPF温度Tdが再生温度Tt以上であるか否かを判断する。再生温度Ttは、上記各種データに予め規定された値であって、DPF24の再生処理が実行されると必ず到達する温度である。本実施形態の再生温度Ttは、再生処理時におけるDPF温度Tdの目標温度である。DPF温度Tdが再生温度Tt未満であった場合(ステップS12:NO)、ECU44は、判定処理を一旦終了する。   As shown in FIG. 2, the ECU 44 acquires the DPF temperature Td from the DPF temperature sensor 26 in the first step S11, and determines whether or not the DPF temperature Td is equal to or higher than the regeneration temperature Tt in the next step S12. To do. The regeneration temperature Tt is a value defined in advance in the various data, and is a temperature that is always reached when the regeneration process of the DPF 24 is executed. The regeneration temperature Tt of the present embodiment is a target temperature of the DPF temperature Td during the regeneration process. When the DPF temperature Td is lower than the regeneration temperature Tt (step S12: NO), the ECU 44 once ends the determination process.

一方、DPF温度Tdが再生温度Tt以上であった場合(ステップS12:YES)、ECU44は、供給処理を中断するべく、尿素水の供給を停止させる停止信号をインジェクター30に出力する。(ステップS13)。   On the other hand, when the DPF temperature Td is equal to or higher than the regeneration temperature Tt (step S12: YES), the ECU 44 outputs a stop signal for stopping the supply of urea water to the injector 30 in order to interrupt the supply process. (Step S13).

次のステップS14において、ECU44は、新たに取得する吸入空気量Ga及びNOx濃度Cnx1に基づくNOx量を演算し、その演算したNOx量を用いて、停止信号の出力後に選択還元型触媒36に流入したNOx量の積算である積算値Snxを演算する。ECU44は、積算値Snxと閾値Stとを比較して、積算値Snxが閾値Stを超えるまでステップS14の処理を繰り返す。すなわちECU44は、積算値Snxが閾値Stを超えることを条件として次のステップS15の処理に移行する。閾値Stは、上記各種データに予め規定された値であって、停止信号の出力時、すなわちDPF24の温度が再生温度Ttに到達したときに選択還元型触媒36に吸着していたアンモニアが消費されたと想定される値である。   In the next step S14, the ECU 44 calculates the NOx amount based on the newly acquired intake air amount Ga and NOx concentration Cnx1, and uses the calculated NOx amount to flow into the selective catalytic reduction catalyst 36 after outputting the stop signal. An integrated value Snx, which is the integrated NOx amount, is calculated. The ECU 44 compares the integrated value Snx and the threshold value St, and repeats the process of step S14 until the integrated value Snx exceeds the threshold value St. That is, the ECU 44 proceeds to the next step S15 on condition that the integrated value Snx exceeds the threshold value St. The threshold value St is a value defined in advance in the various data described above, and ammonia adsorbed on the selective catalytic reduction catalyst 36 when the stop signal is output, that is, when the temperature of the DPF 24 reaches the regeneration temperature Tt is consumed. It is assumed that

次のステップS15において、ECU44は、所定のサンプリング数だけ新たに吸入空気量Ga、NOx濃度Cnx1、及びNOx濃度Cnx2の各々を取得する。ECU44は、吸入空気量GaとNOx濃度Cnx1とに基づいて各制御周期におけるNOx量を演算し、そのNOx量の平均値である基準値Gnx1を演算する。またECU44は、吸入空気量GaとNOx濃度Cnx2とに基づいて各制御周期におけるNOx量を演算し、そのNOx量の平均値である比較値Gnx2を演算する。   In the next step S15, the ECU 44 newly acquires each of the intake air amount Ga, the NOx concentration Cnx1, and the NOx concentration Cnx2 by a predetermined sampling number. The ECU 44 calculates the NOx amount in each control cycle based on the intake air amount Ga and the NOx concentration Cnx1, and calculates a reference value Gnx1 that is an average value of the NOx amount. Further, the ECU 44 calculates the NOx amount in each control cycle based on the intake air amount Ga and the NOx concentration Cnx2, and calculates a comparison value Gnx2 that is an average value of the NOx amounts.

次のステップS16において、ECU44は、基準値Gnx1に対する比較値Gnx2の比率である乖離Rを演算し、その乖離Rが上記各種データに予め規定された正常範囲である下限正常値Rmin以上且つ上限正常値Rmax以下の範囲に含まれているか否かを判定する。乖離Rが正常範囲に含まれている場合(ステップS16:YES)、ECU44は、下流NOxセンサー42を「正常」と判定して(ステップS17)判定処理を一旦終了する。一方、乖離Rが正常範囲に含まれていなかった場合(ステップS16:NO)、ECU44は、下流NOxセンサー42を「異常」と判定して(ステップS18)判定処理を一旦終了する。判定処理の終了後、ECU44は、その判定結果に応じた供給処理を行うとともに、下流NOxセンサー42が「異常」と判定された場合には警報装置50を作動させる。   In the next step S16, the ECU 44 calculates a deviation R that is a ratio of the comparison value Gnx2 to the reference value Gnx1, and the deviation R is equal to or higher than a lower limit normal value Rmin that is a normal range defined in advance in the various data and is an upper limit normal. It is determined whether or not it is included in the range of the value Rmax or less. When the deviation R is included in the normal range (step S16: YES), the ECU 44 determines that the downstream NOx sensor 42 is “normal” (step S17) and once ends the determination process. On the other hand, when the deviation R is not included in the normal range (step S16: NO), the ECU 44 determines that the downstream NOx sensor 42 is “abnormal” (step S18) and once ends the determination process. After completion of the determination process, the ECU 44 performs a supply process according to the determination result, and activates the alarm device 50 when the downstream NOx sensor 42 is determined to be “abnormal”.

次に、上述した判定処理の作用について説明する。
DPF24の再生処理中にDPF24から流出する排気には、DPF24を再生させるための燃料の燃焼や粒子性物質そのものの燃焼によって、DPF24の再生時以外よりも多くのNOxが含まれている。そのため、DPF24の再生処理中に尿素水の供給を停止させることで、上流NOxセンサー28の検出するNOx濃度Cnx1が高くなり、ステップS14にて積算値Snxが閾値Stに到達するまでの時間が短くなる。その結果、判定処理に要する時間、すなわち尿素水の供給が停止される期間が短くなる。
Next, the effect | action of the determination process mentioned above is demonstrated.
The exhaust gas flowing out from the DPF 24 during the regeneration process of the DPF 24 contains more NOx than during the regeneration of the DPF 24 due to combustion of fuel for regenerating the DPF 24 or combustion of particulate matter itself. Therefore, by stopping the supply of urea water during the regeneration process of the DPF 24, the NOx concentration Cnx1 detected by the upstream NOx sensor 28 is increased, and the time until the integrated value Snx reaches the threshold value St in step S14 is shortened. Become. As a result, the time required for the determination process, that is, the period during which the supply of urea water is stopped is shortened.

また、選択還元型触媒36は、触媒温度Tsが高いほどアンモニアの吸着量が少なくなる特性を有している。DPF24の再生処理中は、DPF24から流出する排気の温度が高くなることで触媒温度Tsも高くなる。そのため、上記判定処理においては、選択還元型触媒36におけるアンモニアの吸着量が少ない状態で尿素水の供給が停止されるとともに、排気に含まれるNOxが増えることで選択還元型触媒36に吸着しているアンモニアも消費されやすい。そのため、DPF24の再生処理が行われていないときに判定処理が行われる場合に比べて、積算値Snxの閾値Stを低い値に設定することも可能である。   The selective reduction catalyst 36 has a characteristic that the amount of adsorption of ammonia decreases as the catalyst temperature Ts increases. During the regeneration process of the DPF 24, the temperature of the exhaust gas flowing out from the DPF 24 increases, so that the catalyst temperature Ts also increases. Therefore, in the above determination process, the supply of urea water is stopped in a state where the amount of adsorption of ammonia in the selective catalytic reduction catalyst 36 is small, and the NOx contained in the exhaust gas is increased and adsorbed on the selective catalytic reduction catalyst 36. Ammonia is also easily consumed. For this reason, it is possible to set the threshold value St of the integrated value Snx to a lower value than when the determination process is performed when the regeneration process of the DPF 24 is not performed.

以上説明したように、上記実施形態のNOxセンサーの適否判定装置及び適否判定方法によれば、以下に列挙する効果を得ることができる。
(1)DPF24の再生処理中に尿素水の供給を停止することで、積算値Snxが閾値Stに到達するまでの時間が短くなる。その結果、判定処理に要する時間、すなわち尿素水の供給が停止される期間が短くなる。また、閾値Stに関する自由度も拡大する。
As described above, according to the suitability determination device and suitability determination method of the NOx sensor of the above embodiment, the effects listed below can be obtained.
(1) By stopping the supply of urea water during the regeneration process of the DPF 24, the time until the integrated value Snx reaches the threshold value St is shortened. As a result, the time required for the determination process, that is, the period during which the supply of urea water is stopped is shortened. In addition, the degree of freedom regarding the threshold value St is expanded.

(2)選択還元型触媒36に流入したNOx量である積算値Snxは、吸入空気量Ga及びNOx濃度Cnx1に基づくNOx量を演算値である。そのため、選択還元型触媒36に流入したNOx量が例えばエンジン10の運転状態に基づき演算される場合に比べて、該NOx量が簡易な方法で且つ高い精度で求められる。   (2) The integrated value Snx, which is the amount of NOx flowing into the selective catalytic reduction catalyst 36, is the calculated value of the amount of NOx based on the intake air amount Ga and the NOx concentration Cnx1. Therefore, compared with the case where the amount of NOx flowing into the selective catalytic reduction catalyst 36 is calculated based on, for example, the operating state of the engine 10, the amount of NOx is obtained by a simple method and with high accuracy.

(3)複数のNOx濃度Cnx1に基づく基準値Gnx1と複数のNOx濃度Cnx2に基づく比較値Gnx2とに基づいて、下流NOxセンサー42の故障の有無が判定される。そのため、1つのNOx濃度Cnx1と1つのNOx濃度Cnx2とに基づいて下流NOxセンサー42の異常の有無が判定される場合に比べて、判定結果に対する信頼度が高められる。また、NOx濃度に突発的な外因による誤差が生じたとしても、そうした誤差に起因して判定結果の信頼度が失われることが抑えられる。   (3) Based on the reference value Gnx1 based on the plurality of NOx concentrations Cnx1 and the comparison value Gnx2 based on the plurality of NOx concentrations Cnx2, whether or not the downstream NOx sensor 42 has failed is determined. Therefore, the reliability of the determination result is increased as compared with the case where the presence or absence of abnormality of the downstream NOx sensor 42 is determined based on one NOx concentration Cnx1 and one NOx concentration Cnx2. Further, even if an error due to a sudden external cause occurs in the NOx concentration, it is possible to suppress the reliability of the determination result from being lost due to such an error.

(4)DPF温度Tdに基づいてDPF24が再生処理中であるか否かが判断されるため、停止信号の出力が適切なタイミング、すなわちDPF24の再生処理中に行われる。   (4) Since it is determined whether the DPF 24 is in the regeneration process based on the DPF temperature Td, the stop signal is output at an appropriate timing, that is, during the regeneration process of the DPF 24.

(5)再生温度TtがDPF24の再生処理時の目標温度に設定されている。すなわち、再生温度Ttは、DPF24の再生処理時に必ず到達するDPF温度Tdの中で最も高い温度である。そのため、再生温度Ttが上記目標温度よりも低い場合に比べて、選択還元型触媒36におけるアンモニアの吸着量が少ない状態で尿素水の供給が停止される。その結果、積算値Snxの閾値Stに関する自由度も向上する。   (5) The regeneration temperature Tt is set to the target temperature for the regeneration process of the DPF 24. That is, the regeneration temperature Tt is the highest temperature among the DPF temperatures Td that are always reached during the regeneration process of the DPF 24. Therefore, the supply of urea water is stopped in a state where the adsorption amount of ammonia in the selective catalytic reduction catalyst 36 is small as compared with the case where the regeneration temperature Tt is lower than the target temperature. As a result, the degree of freedom regarding the threshold value St of the integrated value Snx is also improved.

なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・ECU44は、DPF24が再生処理中であるか否かについて、例えば排気流量やDPF24の上流と下流との圧力差等、DPF24の再生処理を実行するための条件が成立したか否かに応じて判断してもよい。また例えば、ECU44は、DPF24が再生処理中であるか否かについて、DPF24の再生処理を実行する実行部からの通知を受けることで判断してもよい。
In addition, the said embodiment can also be suitably changed and implemented as follows.
The ECU 44 determines whether or not the DPF 24 is in the regeneration process, for example, depending on whether or not the conditions for executing the regeneration process of the DPF 24 such as the exhaust flow rate and the pressure difference between the upstream and downstream of the DPF 24 are satisfied. You may judge. Further, for example, the ECU 44 may determine whether or not the DPF 24 is in the regeneration process by receiving a notification from the execution unit that executes the regeneration process of the DPF 24.

・ECU44は、複数のNOx濃度Cnx1と複数のNOx濃度Cnx2とに基づいて下流NOxセンサー42の故障の有無を判定すればよい。例えば、ECU44は、同一の制御周期にて取得したNOx濃度Cnx1とNOx濃度Cnx2とを比較して各制御周期についての適否を判定し、正常と判定された割合に応じて下流NOxセンサー42の故障の有無を判定してもよい。   The ECU 44 may determine whether or not the downstream NOx sensor 42 has failed based on the plurality of NOx concentrations Cnx1 and the plurality of NOx concentrations Cnx2. For example, the ECU 44 compares the NOx concentration Cnx1 and NOx concentration Cnx2 acquired in the same control cycle to determine suitability for each control cycle, and the downstream NOx sensor 42 fails according to the ratio determined to be normal. You may determine the presence or absence of.

・基準値Gnx1及び比較値Gnx2を求めるためのサンプリング数が互いに異なっていてもよい。
・下限正常値Rmin及び上限正常値Rmaxの各々は、例えば基準値Gnx1及び比較値Gnx2の演算期間におけるエンジン10の運転状態に応じて変動する値であってもよい。この際、ECU44には、運転状態毎に下限正常値Rminと上限正常値Rmaxとが規定されたマップが記憶される。
The number of samplings for obtaining the reference value Gnx1 and the comparison value Gnx2 may be different from each other.
Each of the lower limit normal value Rmin and the upper limit normal value Rmax may be a value that varies depending on the operating state of the engine 10 during the calculation period of the reference value Gnx1 and the comparison value Gnx2, for example. At this time, the ECU 44 stores a map in which the lower limit normal value Rmin and the upper limit normal value Rmax are defined for each driving state.

・排気流量は、エアフローメーター46の吸入空気量Gaに限らず、例えば排気通路12に配設される排気流量計の計測値であってもよいし、各種演算によって演算される値であってもよい。   The exhaust flow rate is not limited to the intake air amount Ga of the air flow meter 46, and may be a measured value of an exhaust flow meter disposed in the exhaust passage 12, for example, or a value calculated by various calculations Good.

・乖離Rは、基準値Gnx1に対する比較値Gnx2の比率に限らず、例えば基準値Gnx1に対する比較値Gnx2の差であってよい。
・積算値Snxは、吸入空気量GaとNOx濃度Cnx1とに基づくNOx量を積算した値に限らず、例えば燃焼噴射量、エンジン回転速度、アクセル開度等、ディーゼルエンジン10の運転状態に応じて推定される値であってもよい。
The deviation R is not limited to the ratio of the comparison value Gnx2 to the reference value Gnx1, but may be, for example, the difference between the comparison value Gnx2 and the reference value Gnx1.
The integrated value Snx is not limited to a value obtained by integrating the NOx amount based on the intake air amount Ga and the NOx concentration Cnx1, but depends on the operation state of the diesel engine 10 such as the combustion injection amount, the engine rotational speed, the accelerator opening, etc. It may be an estimated value.

・ECU44は、過去の判定処理における乖離Rを記憶しておいてもよい。こうした構成によれば、下流NOxセンサーの劣化に関する程度や傾向を把握することができる。また、ECU44は、判定処理終了後に検出されるNOx濃度Cnx2を乖離Rに基づいて補正することにより、還元剤の供給量に関する精度を高めることもできる。   The ECU 44 may store the deviation R in the past determination process. According to such a configuration, it is possible to grasp the degree and tendency regarding the deterioration of the downstream NOx sensor. In addition, the ECU 44 can improve the accuracy related to the supply amount of the reducing agent by correcting the NOx concentration Cnx2 detected after the end of the determination process based on the deviation R.

・還元剤は、排気中のNOxを選択還元型触媒36にて還元するものであればよく、尿素水に限らず、例えば尿素水を改質したアンモニアガスであってもよいし、アンモニアガスそのものであってもよいし、その他の物質であってもよい。   The reducing agent is not limited to urea water as long as NOx in the exhaust is reduced by the selective reduction catalyst 36, and may be, for example, ammonia gas obtained by reforming urea water, or the ammonia gas itself. Or other substances.

・エンジンには、排気の一部を吸気に供給するEGR装置が搭載されていてもよい。
・エンジンは、粒子性物質を捕集するフィルターを備えていれば、ディーゼルエンジンに限らずガソリンエンジンであってもよい。
The engine may be equipped with an EGR device that supplies a part of the exhaust to the intake air.
The engine is not limited to a diesel engine and may be a gasoline engine as long as it has a filter that collects particulate matter.

10…エンジン、12…排気通路、20…排気浄化装置、22…前段酸化触媒、24…DPF、26…DPF温度センサー、28…上流NOxセンサー、30…インジェクター、32…タンク、34…圧送ポンプ、36…選択還元型触媒、38…触媒温度センサー、40…後段酸化触媒、42…下流NOxセンサー、44…ECU、46…エアフローメーター、50…警報装置。   DESCRIPTION OF SYMBOLS 10 ... Engine, 12 ... Exhaust passage, 20 ... Exhaust gas purification device, 22 ... Pre-stage oxidation catalyst, 24 ... DPF, 26 ... DPF temperature sensor, 28 ... Upstream NOx sensor, 30 ... Injector, 32 ... Tank, 34 ... Pressure feed pump, 36: selective reduction type catalyst, 38 ... catalyst temperature sensor, 40 ... post-stage oxidation catalyst, 42 ... downstream NOx sensor, 44 ... ECU, 46 ... air flow meter, 50 ... alarm device.

Claims (5)

選択還元型触媒の上流から前記選択還元型触媒に還元剤を供給する供給部と、
前記選択還元型触媒の上流に位置する上流NOxセンサーの検出値を基準値として、前記選択還元型触媒の下流に位置する下流NOxセンサーの検出値と前記基準値との乖離が所定範囲よりも大きい故障があるか否かを判定する判定部と、を備え、
前記判定部は、
前記上流NOxセンサーの上流に位置するフィルターに対して、前記フィルターに流入する排気を昇温して前記フィルターを再生しているときに、前記還元剤の供給を前記供給部に停止させ、前記選択還元型触媒に流入したNOx量が、前記供給の停止から所定量に到達したときに、前記上流NOxセンサーの検出値、および、前記下流NOxセンサーの検出値を取得する
NOxセンサーの故障判定装置。
A supply unit for supplying a reducing agent to the selective catalytic reduction catalyst from upstream of the selective catalytic reduction catalyst;
Using the detection value of the upstream NOx sensor located upstream of the selective catalytic reduction catalyst as a reference value, the difference between the detection value of the downstream NOx sensor located downstream of the selective catalytic reduction catalyst and the reference value is larger than a predetermined range A determination unit for determining whether or not there is a failure,
The determination unit
For the filter located upstream of the upstream NOx sensor, when the exhaust gas flowing into the filter is heated to regenerate the filter, the supply of the reducing agent is stopped at the supply unit, and the selection is performed. A NOx sensor failure determination device that acquires a detection value of the upstream NOx sensor and a detection value of the downstream NOx sensor when the amount of NOx flowing into the reduction catalyst reaches a predetermined amount after the supply is stopped.
前記判定部は、
前記排気の流量である排気流量と、前記上流NOxセンサーの検出値とに基づいて、前記選択還元型触媒に流入したNOx量を演算する
請求項1に記載のNOxセンサーの故障判定装置。
The determination unit
2. The NOx sensor failure determination device according to claim 1, wherein an NOx amount that has flowed into the selective catalytic reduction catalyst is calculated based on an exhaust flow rate that is the flow rate of the exhaust gas and a detection value of the upstream NOx sensor.
前記上流NOxセンサーの検出値は、互いに異なる複数のタイミングの各々で出力された前記上流NOxセンサーからの複数の出力値の平均値であり、
前記下流NOxセンサーの検出値は、前記互いに異なる複数のタイミングの各々で出力された前記下流NOxセンサーからの複数の出力値の平均値である
請求項1または2に記載のNOxセンサーの故障判定装置。
The detection value of the upstream NOx sensor is an average value of a plurality of output values from the upstream NOx sensor output at each of a plurality of different timings.
3. The NOx sensor failure determination device according to claim 1, wherein the detection value of the downstream NOx sensor is an average value of a plurality of output values from the downstream NOx sensor output at each of the plurality of different timings. .
前記判定部は、
前記フィルターの温度を検出する温度センサーの検出値が、前記フィルターの再生が進行中であることを示す所定値以上になったことを条件に前記還元剤の供給を前記供給部に停止させる
請求項1〜3のいずれか一項に記載のNOxセンサーの故障判定装置。
The determination unit
The supply of the reducing agent is stopped by the supply unit on the condition that a detection value of a temperature sensor for detecting the temperature of the filter is equal to or greater than a predetermined value indicating that regeneration of the filter is in progress. The NOx sensor failure determination device according to any one of claims 1 to 3.
選択還元型触媒の上流に位置する上流NOxセンサーと前記選択還元型触媒の下流に位置する下流NOxセンサーとを備える排気浄化装置に適用され、前記下流NOxセンサーの故障の有無を判定するNOxセンサーの故障判定方法であって、
前記上流NOxセンサーの上流に位置するフィルターに対して、前記フィルターに流入する排気の昇温によって前記フィルターを再生しているときに、前記フィルターの下流に位置する前記選択還元型触媒に対して、還元剤の供給を停止する工程と、
前記選択還元型触媒に流入したNOx量が、前記還元剤の供給の停止から所定量に到達したときに、前記上流NOxセンサーの検出値、および、前記下流NOxセンサーの検出値を取得する工程と、
前記上流NOxセンサーの検出値を基準値として、前記下流NOxセンサーの検出値と前記基準値との乖離が所定範囲よりも大きい故障があるか否かを判定する工程と、
を備えるNOxセンサーの故障判定方法。
A NOx sensor that is applied to an exhaust gas purification device that includes an upstream NOx sensor positioned upstream of a selective catalytic reduction catalyst and a downstream NOx sensor positioned downstream of the selective catalytic reduction catalyst, and that determines whether the downstream NOx sensor is faulty. A failure determination method,
For the filter located upstream of the upstream NOx sensor, when the filter is regenerated by raising the temperature of the exhaust gas flowing into the filter, the selective reduction catalyst located downstream of the filter, A step of stopping the supply of the reducing agent;
Obtaining a detection value of the upstream NOx sensor and a detection value of the downstream NOx sensor when the amount of NOx flowing into the selective reduction catalyst reaches a predetermined amount after the supply of the reducing agent is stopped; ,
Determining whether there is a failure in which the difference between the detected value of the downstream NOx sensor and the reference value is larger than a predetermined range using the detected value of the upstream NOx sensor as a reference value;
NOx sensor failure determination method comprising:
JP2013126773A 2013-06-17 2013-06-17 NOx sensor failure determination device and failure determination method Active JP6175292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126773A JP6175292B2 (en) 2013-06-17 2013-06-17 NOx sensor failure determination device and failure determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126773A JP6175292B2 (en) 2013-06-17 2013-06-17 NOx sensor failure determination device and failure determination method

Publications (2)

Publication Number Publication Date
JP2015001206A true JP2015001206A (en) 2015-01-05
JP6175292B2 JP6175292B2 (en) 2017-08-02

Family

ID=52295875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126773A Active JP6175292B2 (en) 2013-06-17 2013-06-17 NOx sensor failure determination device and failure determination method

Country Status (1)

Country Link
JP (1) JP6175292B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190279A1 (en) * 2015-05-28 2016-12-01 いすゞ自動車株式会社 NOx SENSOR INSPECTION PROGRAM, VEHICLE INSPECTION EQUIPMENT, NOx SENSOR INSPECTION METHOD, AND RECORDING MEDIUM
DE102016204324A1 (en) * 2016-03-16 2017-09-21 Continental Automotive Gmbh Method for adjusting the characteristic of a nitrogen oxide sensor in an internal combustion engine
EP3372800A1 (en) 2017-03-09 2018-09-12 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus and diagnosis method for nox sensor
EP3382173A1 (en) 2017-03-27 2018-10-03 Toyota Jidosha Kabushiki Kaisha Nox sensor abnormality detector
DE102019210739A1 (en) * 2019-07-19 2020-08-13 Vitesco Technologies GmbH Exhaust gas treatment system and method for operating an exhaust gas treatment system
CN114718706A (en) * 2021-01-05 2022-07-08 北京福田康明斯发动机有限公司 Sensor detection method, sensor detection device and readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2009156206A (en) * 2007-12-27 2009-07-16 Denso Corp NOx SENSOR ABNORMALITY DETECTION DEVICE AND EXHAUST EMISSION CONTROL SYSTEM USING IT
JP2010261331A (en) * 2009-04-30 2010-11-18 Hino Motors Ltd Exhaust purification device
JP2012002063A (en) * 2010-05-17 2012-01-05 Isuzu Motors Ltd Scr system
JP2012036835A (en) * 2010-08-06 2012-02-23 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133780A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Device and method for diagnosing abnormality of nox sensor
JP2009156206A (en) * 2007-12-27 2009-07-16 Denso Corp NOx SENSOR ABNORMALITY DETECTION DEVICE AND EXHAUST EMISSION CONTROL SYSTEM USING IT
JP2010261331A (en) * 2009-04-30 2010-11-18 Hino Motors Ltd Exhaust purification device
JP2012002063A (en) * 2010-05-17 2012-01-05 Isuzu Motors Ltd Scr system
JP2012036835A (en) * 2010-08-06 2012-02-23 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190279A1 (en) * 2015-05-28 2016-12-01 いすゞ自動車株式会社 NOx SENSOR INSPECTION PROGRAM, VEHICLE INSPECTION EQUIPMENT, NOx SENSOR INSPECTION METHOD, AND RECORDING MEDIUM
US10724463B2 (en) 2015-05-28 2020-07-28 Isuzu Motors Limited NOx sensor inspection program, vehicle inspection equipment, NOx sensor inspection method, and recording medium
DE102016204324A1 (en) * 2016-03-16 2017-09-21 Continental Automotive Gmbh Method for adjusting the characteristic of a nitrogen oxide sensor in an internal combustion engine
DE102016204324B4 (en) * 2016-03-16 2018-02-08 Continental Automotive Gmbh Method for adjusting the characteristic of a nitrogen oxide sensor in an internal combustion engine
EP3430248B1 (en) * 2016-03-16 2020-01-22 Vitesco Technologies GmbH Method for adapting characteristic curve of nitrogen oxides sensor in combustion engine
US10598112B2 (en) 2016-03-16 2020-03-24 Continental Automotive Gmbh Method for adapting the characteristic curve of the nitrogen oxide sensor in an internal combustion engine
EP3372800A1 (en) 2017-03-09 2018-09-12 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus and diagnosis method for nox sensor
JP2018150812A (en) * 2017-03-09 2018-09-27 トヨタ自動車株式会社 Diagnostic system and diagnostic method for nox sensor
US10619547B2 (en) 2017-03-09 2020-04-14 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus and diagnosis method for NOx sensor
EP3382173A1 (en) 2017-03-27 2018-10-03 Toyota Jidosha Kabushiki Kaisha Nox sensor abnormality detector
DE102019210739A1 (en) * 2019-07-19 2020-08-13 Vitesco Technologies GmbH Exhaust gas treatment system and method for operating an exhaust gas treatment system
CN114718706A (en) * 2021-01-05 2022-07-08 北京福田康明斯发动机有限公司 Sensor detection method, sensor detection device and readable storage medium

Also Published As

Publication number Publication date
JP6175292B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6105403B2 (en) Diagnosis device for urea water supply system
US9194268B2 (en) Exhaust gas treatment system including an enhanced SCR diagnostic unit
JP6175292B2 (en) NOx sensor failure determination device and failure determination method
US9476341B2 (en) Exhaust treatment system that generates debounce duration for NOx sensor offset
JP5170689B2 (en) Exhaust gas purification device for internal combustion engine
US9169766B2 (en) System to monitor regeneration frequency of particulate filter
US10450933B2 (en) Downstream oxygen sensor performance for selective catalytic reduction
JP5837197B2 (en) Abnormality diagnosis device and exhaust gas purification device for internal combustion engine
US20160108791A1 (en) Aftertreatment Control for Detection of Fuel Contaminant Concentration
JP6220572B2 (en) Appropriateness determination device for urea water
CN109751105B (en) Down-flow selective catalytic reduction steady state ammonia slip detection with positive perturbations
US9562452B2 (en) System and method for controlling regeneration within an after-treatment component of a compression-ignition engine
JPWO2010079621A1 (en) Catalyst passage component determination device and exhaust purification device for internal combustion engine
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
US10344654B2 (en) Selective catalytic reduction steady state ammonia slip detection with positive perturbation
JP6344259B2 (en) Urea addition control device, learning device
US8617495B1 (en) Exhaust gas aftertreatment desulfurization control
US20180328252A1 (en) Exhaust Gas Control System for Internal Combustion Engine and Method of Controlling Exhaust Gas Control System for Internal Combustion Engine
JP2014206150A (en) Exhaust gas purification control device and program
US9797286B2 (en) SCR filter washcoat thickness efficiency compensation system
JP2020106002A (en) Diagnostic device and exhaust emission control device for internal combustion engine
JP2005194927A (en) Emission control method and exhaust emission control system
JP6149686B2 (en) HC catalyst poisoning detection system for SCR catalyst and HC catalyst poisoning detection method for SCR catalyst
JP6360358B2 (en) Deterioration detection / recovery method for exhaust gas oxidation catalyst in heat engine, exhaust gas purification device for heat engine that implements the method, and mechanical device equipped with the exhaust gas purification device
JP5375462B2 (en) NO oxidation catalyst deterioration detection apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250