JP2015000920A - Filler for encapsulant and encapsulant using the same - Google Patents

Filler for encapsulant and encapsulant using the same Download PDF

Info

Publication number
JP2015000920A
JP2015000920A JP2013125886A JP2013125886A JP2015000920A JP 2015000920 A JP2015000920 A JP 2015000920A JP 2013125886 A JP2013125886 A JP 2013125886A JP 2013125886 A JP2013125886 A JP 2013125886A JP 2015000920 A JP2015000920 A JP 2015000920A
Authority
JP
Japan
Prior art keywords
filler
test example
sealing material
sealing
encapsulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013125886A
Other languages
Japanese (ja)
Other versions
JP6122350B2 (en
Inventor
守 山西
Mamoru Yamanishi
守 山西
加藤 義明
Yoshiaki Kato
義明 加藤
幸恵 永野
Yukie Nagano
幸恵 永野
武 楊原
Takeshi Yanagihara
武 楊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2013125886A priority Critical patent/JP6122350B2/en
Publication of JP2015000920A publication Critical patent/JP2015000920A/en
Application granted granted Critical
Publication of JP6122350B2 publication Critical patent/JP6122350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filler for an encapsulant, which can realize an encapsulant capable of exhibiting high performance.SOLUTION: Provided is a particulate material which comprises an inorganic material and charges positively, and is used contained in an encapsulant for encapsulating a part where dissimilar metals join or contact. When dissimilar metals join or contact, due to a difference in ionization tendencies, one metal having a higher ionization tendency becomes dissolved and the dissimilar metals as a whole charge negatively. Therefore, when a material which charges positively is employed as a particulate material contained in an encapsulant, it is attracted by a negative charge on the dissimilar metal surface, enabling distribution thereof in a neighborhood of the dissimilar metal surface. On the contrary, when a negatively charged material is employed, it repels the charge on the dissimilar metal surface, and there have been cases where density of the particulate material on the dissimilar metal surface becomes smaller.

Description

本発明は、封止材及び封止材を構成する封止材用フィラーに関する。   The present invention relates to a sealing material and a filler for sealing material constituting the sealing material.

従来より集積回路は外部からの影響を少なくするために封止材にて封止することが行われている。封止材にて封止することにより環境中などに存在する水分や酸素などからの影響を小さくすることができると共に、外部から加わる応力からも保護される。また内部より発生する熱を外部へ伝達する目的にも封止剤は重要である。   Conventionally, an integrated circuit has been sealed with a sealing material in order to reduce external influences. By sealing with a sealing material, the influence from moisture, oxygen, etc. existing in the environment can be reduced, and protection from external stress is also provided. The sealant is also important for the purpose of transferring the heat generated from the inside to the outside.

そのため、封止材は機械的な高い性能のみならず化学的にも安定していることが望まれる。そのため、シリカやアルミナなどの無機物を樹脂組成物中に分散したものが汎用されている。無機物は機械的強度に優れると共に化学的な安定性も高く封止材に含有させると高い性能が発現できる(特許文献1参照)。   Therefore, it is desired that the sealing material is chemically stable as well as high mechanical performance. Therefore, what dispersed inorganic substances, such as a silica and an alumina, in the resin composition is used widely. An inorganic material is excellent in mechanical strength and has high chemical stability, and when it is contained in a sealing material, high performance can be expressed (see Patent Document 1).

近年、集積回路において微細化が進められており、従来とは比較にならないほど外部からの影響を受けやすくなっている。そのため、従来よりも高い性能を発現できる封止材の提供が求められている。   In recent years, miniaturization is progressing in integrated circuits, and it is more susceptible to external influences than in the past. Therefore, provision of the sealing material which can express performance higher than before is calculated | required.

特開2012−206870号公報JP 2012-206870 A

本発明は上記実情に鑑み完成したものであり従来よりも高い性能を発揮できる封止材、並びに、そのような封止材を実現できる封止材用フィラーを提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and a problem to be solved to provide a sealing material capable of exhibiting higher performance than before, and a sealing material filler capable of realizing such a sealing material. To do.

(1)上記課題を解決する封止材用フィラーは、無機物から構成され正に帯電する粒子材料であり、異種金属が接合乃至接触する部位を封止する封止材に含有させて用いるものである。 (1) A filler for a sealing material that solves the above problems is a positively charged particle material made of an inorganic material, and is used by being included in a sealing material that seals a portion where a dissimilar metal is bonded or contacted. is there.

異種金属が接合乃至接触すると、そのイオン化傾向の違いからイオン化傾向の高い一方の金属が溶け出し、異種金属全体として負に帯電することになる。そこで、封止材に含まれる粒子材料として正に帯電するものを採用すると、異種金属表面の負の電荷に引かれることになって、異種金属の表面近傍にも分布することが可能になる。反対に負に帯電した粒子材料を採用すると、異種金属表面の電荷と反発することになり異種金属表面における粒子材料の密度が小さくなることがあった。   When dissimilar metals are joined or contacted, one metal having a high ionization tendency is melted due to the difference in ionization tendency, and the entire dissimilar metal is negatively charged. Therefore, when a positively charged particle material is used as the particle material included in the sealing material, it is attracted by the negative charge on the surface of the dissimilar metal and can be distributed near the surface of the dissimilar metal. On the other hand, when a negatively charged particle material is employed, the charge on the surface of the dissimilar metal is repelled, and the density of the particle material on the surface of the dissimilar metal may be reduced.

上述の(1)の構成を採用する場合に、以下の(2)〜(4)、(7)、及び(8)の構成のうちの1つ以上を加えて採用することができる。そして、(4)の構成を採用する場合には(5)の構成が採用できる。また、(3)〜(5)の構成を採用する場合には(6)の構成を採用できる。
(2)前記粒子材料の表面電位は30mV以上である。(3)アミン、フォスフィン、アンモニウム、及びフォスフォニウムから選択される残基を表面にもつ。(4)前記無機物は金属酸化物であり、前記粒子材料は正に帯電する残基をもつ表面処理剤にて処理されている。(5)前記表面処理剤は、アミン、フォスフィン、アンモニウム、及びフォスフォニウムから選択される前記残基をもつシランカップリング剤である。(6)前記残基は三級アミン又は三級フォスフィンである。(7)前記粒子材料は粒径が3μm以下である。(8)前記封止材は前記粒子材料を分散するエポキシ樹脂を含有する。
(9)上記課題を解決する封止材は、上述の封止材用フィラーと、前記封止材用フィラーを分散する樹脂組成物とを有する。
When adopting the above-described configuration (1), one or more of the following configurations (2) to (4), (7), and (8) can be added. When the configuration (4) is employed, the configuration (5) can be employed. Moreover, when employ | adopting the structure of (3)-(5), the structure of (6) is employable.
(2) The surface potential of the particulate material is 30 mV or more. (3) It has a residue selected from amine, phosphine, ammonium, and phosphonium on the surface. (4) The inorganic substance is a metal oxide, and the particle material is treated with a surface treatment agent having a positively charged residue. (5) The surface treatment agent is a silane coupling agent having the residue selected from amine, phosphine, ammonium, and phosphonium. (6) The residue is a tertiary amine or a tertiary phosphine. (7) The particle material has a particle size of 3 μm or less. (8) The sealing material contains an epoxy resin in which the particulate material is dispersed.
(9) The sealing material which solves the said subject has the above-mentioned filler for sealing materials, and the resin composition which disperse | distributes the said filler for sealing materials.

本発明の封止材用フィラーは封止材に用いるとフィラーが、より均等に分散されるようになって高い性能をもつ封止材を提供できる。   When the filler for a sealing material of the present invention is used for a sealing material, the filler is more evenly dispersed and can provide a sealing material having high performance.

試験例9a〜9hの試験試料の表面電位を示すグラフである。It is a graph which shows the surface potential of the test sample of Test Examples 9a-9h. 試験例10a〜10gの試験試料の表面電位を示すグラフである。It is a graph which shows the surface potential of the test sample of Test Examples 10a-10g. 試験例11a〜11gの試験試料の表面電位を示すグラフである。It is a graph which shows the surface potential of the test sample of Test Examples 11a-11g.

本発明の封止材用フィラー及び封止材について以下の実施形態に基づいて詳細に説明を行う。本実施形態の封止材は封止材用フィラーとその封止材用フィラーを分散する樹脂組成物とその他の必要に応じて選択される材料からなる。封止材用フィラーと樹脂組成物との混合比は特に限定されず、必要な性能が発揮できるように混合比を設定できる。封止材用フィラーの量が多いほど、線膨張係数を下げることが可能になり、シリコンウエハの機械的特性へのあわせ込みが容易となる。またフィラー量が多いほど耐熱性などの物理的特性が向上する傾向になり、樹脂組成物の量が多いほど柔軟性が向上する傾向になる。例えば封止材用フィラーの含有量を全体の質量を基準として50%以上にすることができる。   The filler for sealing material and the sealing material of this invention are demonstrated in detail based on the following embodiment. The sealing material of this embodiment is composed of a filler for sealing material, a resin composition in which the filler for sealing material is dispersed, and other materials selected as necessary. The mixing ratio of the filler for sealing material and the resin composition is not particularly limited, and the mixing ratio can be set so that necessary performance can be exhibited. The greater the amount of filler for sealing material, the lower the linear expansion coefficient, and the easier it is to adjust to the mechanical properties of the silicon wafer. Moreover, physical properties such as heat resistance tend to improve as the amount of filler increases, and flexibility tends to improve as the amount of the resin composition increases. For example, the content of the filler for sealing material can be 50% or more based on the total mass.

本封止材は異種金属が接触乃至接合する部位を封止する材料である。異種金属としてはイオン化傾向が異なる金属である。例えば銅とスズの組み合わせが挙げられる。銅や銅合金は配線やビアを構成する材料として汎用されており、スズ及びスズ合金はそれらの配線やビアの間を接合するハンダとして汎用されている。ここで、「異種金属が接触乃至接合している」とは異種金属が少なくとも隣接していれば充分であり、両金属の間がどのような状態にあるかは問わないことを意味する。異種金属が接触乃至接合(以下、「接合等」と適宜省略して記載する)することによりイオン化傾向の大きな方の金属が溶出し異種金属が接合等したものは負に帯電することになる。
・封止材用フィラー
封止材用フィラーは無機材料から構成され、正に帯電する粒子材料である。
This sealing material is a material that seals a portion where a different metal contacts or joins. Different metals have different ionization tendency. For example, a combination of copper and tin can be mentioned. Copper and copper alloys are widely used as materials constituting wirings and vias, and tin and tin alloys are widely used as solder for joining the wirings and vias. Here, “the dissimilar metals are in contact with or joined to each other” means that it is sufficient that the dissimilar metals are adjacent to each other, and it does not matter what state the two metals are in. When a different kind of metal contacts or joins (hereinafter abbreviated as “joining” as appropriate), the metal with the higher ionization tendency elutes and the different kind of metal is joined negatively.
-Filler for encapsulant The filler for encapsulant is a particle material that is composed of an inorganic material and is positively charged.

無機材料としては特に限定されず、無機酸化物、無機窒化物、無機炭化物などが例示される。無機材料としてはシリカ、アルミナ、チタニア、ジルコニア、酸化スズ、酸化亜鉛、五酸化アンチモン、酸化インジウム、およびこれらの複合酸化物が例示できる。特にシリカ、アルミナが望ましい。粒子材料の形態は特に限定しないが、球形度が高いことが望ましい。球形度が高いと樹脂組成物中に分散さて封止材を調製した際に流動性が向上すると共に、封止材用フィラーの封止材中での充填率を向上できる。球形度としては0.8以上が望ましく、0.9以上が更に望ましく、0.95以上がより望ましい。球形度はSEMで写真を撮り、その観察される粒子の面積と周囲長から、(球形度)={4π×(面積)÷(周囲長)}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置(スペクトリス株式会社:FPIA−3000)を用いて100個の粒子について測定した平均値を採用する。 It does not specifically limit as an inorganic material, An inorganic oxide, an inorganic nitride, an inorganic carbide etc. are illustrated. Examples of the inorganic material include silica, alumina, titania, zirconia, tin oxide, zinc oxide, antimony pentoxide, indium oxide, and composite oxides thereof. Silica and alumina are particularly desirable. The form of the particulate material is not particularly limited, but it is desirable that the sphericity is high. When the sphericity is high, the fluidity is improved when the encapsulant is prepared by being dispersed in the resin composition, and the filling rate of the encapsulant filler in the encapsulant can be improved. The sphericity is preferably 0.8 or more, more preferably 0.9 or more, and more preferably 0.95 or more. The sphericity is taken as a value calculated by (Sphericality) = {4π × (Area) ÷ (Ambient length) 2 } from the observed area and circumference of the particle by SEM. The closer to 1, the closer to a true sphere. Specifically, an average value measured for 100 particles using an image processing apparatus (Spectris Co., Ltd .: FPIA-3000) is employed.

粒子材料の製造方法は特に限定しない。例えば粒子材料を構成する無機材料を粉砕し、必要な粒径にする方法、更に得られた粒子材料をその粒子材料を構成する無機材料の融点以上の温度をもつ火炎中に投入して溶融させた後に冷却することにより球形度が高い粒子材料を得る方法、金属あるいは金属アルコキシド、金属ハロゲン化物等を原料とし加水分解等の化学反応を利用する方法が挙げられる。更に無機材料として無機酸化物を採用する場合にはその無機酸化物を構成する酸化前の材料(無機酸化物が金属酸化物である場合にはその金属単体、例えばシリカであれば金属ケイ素、アルミナであればアルミニウム、ジルコニアであれば金属ジルコニウム)を粒子状としその粒子を酸素含有雰囲気中に投入し着火させることにより酸化することで球形度が高い無機酸化物を得ることができる。   The production method of the particulate material is not particularly limited. For example, the inorganic material constituting the particulate material is pulverized to obtain the required particle size, and the obtained particulate material is poured into a flame having a temperature equal to or higher than the melting point of the inorganic material constituting the particulate material and melted. And a method of obtaining a particulate material having a high sphericity by cooling and a method of using a chemical reaction such as hydrolysis using a metal, a metal alkoxide, a metal halide or the like as a raw material. Further, when an inorganic oxide is adopted as the inorganic material, the material before oxidation constituting the inorganic oxide (if the inorganic oxide is a metal oxide, the metal itself, for example, silica, metal silicon, alumina In this case, aluminum and metal zirconium in the case of zirconia) are formed into particles, and the particles are put into an oxygen-containing atmosphere and ignited to ignite, whereby an inorganic oxide having a high sphericity can be obtained.

粒子材料の粒径としては特に限定しない。封止材を使用する対象物において侵入させる隙間の大きさよりも小さな粒径であることが望ましい。例えば粒径が5μm以下であることが望ましく、3μm以下であることがより望ましく、1μm以下であることが更に望ましい。また、一定以上の粒径をもつ粗粒の存在量が制限されていることが望ましい。例えば粗粒の粒径の下限としては20μmを採用することが望ましく、10μmを採用することがより望ましく、5μmを採用することが更に望ましい。粗粒の含有量としては粒子材料全体の質量基準で1000ppm以下であることが望ましく、100ppm以下であることがより望ましく、 10ppm以下であることが更に望ましい。   The particle size of the particulate material is not particularly limited. It is desirable that the particle size be smaller than the size of the gap to be entered in the object using the sealing material. For example, the particle size is desirably 5 μm or less, more desirably 3 μm or less, and further desirably 1 μm or less. In addition, it is desirable that the abundance of coarse particles having a certain particle size or more is limited. For example, the lower limit of the grain size of the coarse particles is desirably 20 μm, more desirably 10 μm, and even more desirably 5 μm. The content of the coarse particles is desirably 1000 ppm or less, more desirably 100 ppm or less, and further desirably 10 ppm or less, based on the mass of the entire particulate material.

粒子材料を正に帯電する方法としては特に限定しない。なお、粒子材料が正に帯電するのは少なくとも封止材を構成する樹脂組成物に分散されている場合である。粒子材料の表面に正の電荷をもつ残基を導入したり、正に帯電する材料にて被覆したりすることにより、粒子材料の表面を正に帯電させることができる。   The method for positively charging the particulate material is not particularly limited. The particulate material is positively charged at least when it is dispersed in the resin composition constituting the sealing material. The surface of the particle material can be positively charged by introducing a residue having a positive charge on the surface of the particle material or coating with a positively charged material.

粒子材料の表面を正に荷電させるために導入される残基としては正の電荷をもつものであるか、あるいは封止剤を構成する成分(正電荷をもつもの、又は、正電荷を生じうるもの)と会合するなどして正電荷を導入できるもの、あるいは使用雰囲気に存在するイオンと会合することにより正電荷を導入できるものであれば充分である。例えば電荷を生じた状態である、アンモニウム、及びフォスフォニウムから選択される残基が例示できる。アミン及びフォスフィンは封止剤を構成する成分あるいは使用雰囲気に存在するイオン性分子と会合することにより使用雰囲気でアンモニウムまたはフォスフォニウム型の会合状態を取ることで正電荷をもつことができる。すなわち正電荷をもつ状態である1級、2級、3級アンモニウム(またはフォスフォニウム)は、対応する1級、2級、3級アミン(またはフォスフィン)を粒子材料表面に導入することで系中で発生しても良い。特に3級又は4級のアンモニウム(またはフォスフォニウム)が望ましく、更には3級のアンモニウム(またはフォスフォニウム)が望ましい。特に後述する樹脂組成物としてエポキシ樹脂を採用する場合には3級のものを採用することにより望まない硬化の進行を抑制できるため望ましい。   Residues introduced to positively charge the surface of the particle material have a positive charge, or a component constituting a sealant (having a positive charge or can generate a positive charge) It is sufficient to be able to introduce a positive charge by associating with an ion) or to be able to introduce a positive charge by associating with an ion present in the use atmosphere. For example, a residue selected from ammonium and phosphonium that are in a charged state can be exemplified. Amine and phosphine can have a positive charge by taking an association state of ammonium or phosphonium type in the use atmosphere by associating with components constituting the sealant or ionic molecules present in the use atmosphere. In other words, primary, secondary, and tertiary ammonium (or phosphonium) that are positively charged are introduced by introducing the corresponding primary, secondary, and tertiary amine (or phosphine) into the particle material surface. It may occur in. In particular, tertiary or quaternary ammonium (or phosphonium) is desirable, and tertiary ammonium (or phosphonium) is more desirable. In particular, when an epoxy resin is employed as a resin composition to be described later, it is desirable to employ a tertiary resin because the progress of undesired curing can be suppressed.

粒子材料の表面にこれらの残基を導入する方法を例示する。例えばシランカップリング剤などの表面処理剤にて粒子材料の表面を処理することにより残基を導入する方法である。表面処理剤としては粒子材料の表面に結合する化合物で上述した残基を分子中に有するものや、そのままでは上述の残基を分子中には有していないが粒子材料の表面に反応することにより上述の残基を生成する化合物が挙げられる。具体的には上述の残基をもつシランカップリング剤が例示できる。更に、粒子材料の表面を正に荷電する以外の処理を行うこともできる。例えば疎水性を向上したり、反対に親水性を向上したり、ビニル基やエポキシ基などの反応性が高い官能基を導入したり出来る。   A method for introducing these residues into the surface of the particulate material is illustrated. For example, the residue is introduced by treating the surface of the particle material with a surface treatment agent such as a silane coupling agent. The surface treatment agent is a compound that binds to the surface of the particle material and has the above-mentioned residue in the molecule, or it does not have the above-mentioned residue in the molecule as it is but reacts with the surface of the particle material. Can give compounds that produce the aforementioned residues. Specific examples include silane coupling agents having the above-described residues. Furthermore, treatments other than positively charging the surface of the particulate material can be performed. For example, the hydrophobicity can be improved, the hydrophilicity can be improved, and a highly reactive functional group such as a vinyl group or an epoxy group can be introduced.

好ましいシランカップリング剤としては一般式(1):(RN−R−)SiZ4−n、一般式(2):nX・(R−R−)SiZ4−n、一般式(3):(RP−R−)SiZ4−n、一般式(4):nX・(R−R−)SiZ4−nが例示できる(Rは同一分子内、異分子間のそれぞれにおいて、それぞれ独立して選択可能な水素、炭化水素基、及び炭化水素基の炭素及び/又は水素の一部を酸素及び/又は窒素にて置換したものであり、2つ又は3つ以上のRが合わさって環状構造を形成することもできる。Rとしては水素原子を採用する数は少ない方が望ましい。例えば2級又は3級のアミン(アンモニウム、フォスフィン、又は、フォスフォニウム)になるようにRを選択することが望ましく、3級のアミン(アンモニウム、フォスフィン、又は、フォスフォニウム)になるようにRを選択することが更に望ましい。Zは同一分子内、異分子間のそれぞれにおいて、それぞれ独立して選択可能な官能基であり、ハロゲン、アルコキシ基、アルキル基、水素から選択できる。XはN、Pのカウンターイオンである。nは1,2,3のうちのいずれかであり、特に1であることが望ましい。)。特にカウンターイオンを含まない一般式(1)、(3)のシランカップリング剤を採用することが望ましい。更に、他のシランカップリング剤を組み合わせて使用することができる。 Preferable silane coupling agents include general formula (1): (R 2 N—R—) n SiZ 4-n , general formula (2): nX · (R 3 N + —R—) n SiZ 4-n , General formula (3): (R 2 P—R—) n SiZ 4-n , general formula (4): nX · (R 3 P + —R—) n SiZ 4-n can be exemplified (R is In each of the same molecule and between different molecules, hydrogen, a hydrocarbon group, and a part of carbon and / or hydrogen of the hydrocarbon group, which can be independently selected, are substituted with oxygen and / or nitrogen, Two or three or more Rs may be combined to form a cyclic structure, and it is desirable that R be a smaller number of hydrogen atoms, for example, secondary or tertiary amines (ammonium, phosphine, or Select R to be phosphonium) Preferably, R is selected so as to be a tertiary amine (ammonium, phosphine, or phosphonium), and Z can be independently selected in the same molecule or between different molecules. A functional group, which can be selected from halogen, alkoxy group, alkyl group, hydrogen, X is a counter ion of N + , P + , n is one of 1, 2, 3 and in particular 1 It is desirable.) In particular, it is desirable to employ a silane coupling agent of the general formulas (1) and (3) that does not contain counter ions. Furthermore, other silane coupling agents can be used in combination.

望ましいシランカップリング剤を例示すると、N,N−ビス(ヒドロキシエチル)アミノプロピルトリアルコキシシラン、3−(2−イミダゾリン−1−イル)プロピルトリアルコキシシラン、2−(ジフェニルフォスフィノ)エチルトリアルコキシシラン、3−アミノプロピルトリアルコキシシラン、トリアルキル(3−トリアルコキシシリルプロピル)アンモニウムの塩、オクタデシルジメチル(3−トリアルコキシシリルプロピル)アンモニウムの塩が挙げられる。塩としてはハロゲンの塩が例示できる。   Examples of desirable silane coupling agents include N, N-bis (hydroxyethyl) aminopropyltrialkoxysilane, 3- (2-imidazolin-1-yl) propyltrialkoxysilane, 2- (diphenylphosphino) ethyltrialkoxy. Examples include silane, 3-aminopropyltrialkoxysilane, a salt of trialkyl (3-trialkoxysilylpropyl) ammonium, and a salt of octadecyldimethyl (3-trialkoxysilylpropyl) ammonium. Examples of the salt include a halogen salt.

粒子材料の表面をシランカップリング剤にて処理する量としては処理後の粒子材料の表面の表面電位が0mV以上になるようにすることが望ましい。科学的に厳密な意味での表面電位の測定は不可能であるため、動的光散乱電気泳動法にて求まるゼータ電位をもって表面電位とした。具体的には大塚電子株式会社製のゼータ電位測定システムELSZ−1を用いて測定を行った。たとえばイソプロピルアルコール中での粒子材料の表面電位が-50mV程度である場合、処理後の粒子材料の表面の表面電位としては-20mV以上にすることがより望ましく、+30mV以上にすることが更に望ましい。表面電位を0mV付近にすることができれば、本件で問題とする偏析の逆の現象が起こったとしても偏析しないフィラーとなりうる。なお、表面に電荷が存在すると、粒子間の静電的反発が期待できるため、粒子材量の分散性が向上し、粒子材料の凝集性が低減できる。   The amount of the surface of the particulate material to be treated with the silane coupling agent is preferably such that the surface potential of the surface of the particulate material after the treatment is 0 mV or more. Since it is impossible to measure the surface potential in a scientifically strict sense, the surface potential was defined as the zeta potential obtained by dynamic light scattering electrophoresis. Specifically, the measurement was performed using a zeta potential measurement system ELSZ-1 manufactured by Otsuka Electronics Co., Ltd. For example, when the surface potential of the particulate material in isopropyl alcohol is about -50 mV, the surface potential of the surface of the particulate material after treatment is more preferably -20 mV or more, and further preferably +30 mV or more. . If the surface potential can be set to around 0 mV, it can be a filler that does not segregate even if the reverse phenomenon of segregation, which is a problem in this case, occurs. In addition, since the electrostatic repulsion between particle | grains can be anticipated when an electric charge exists on the surface, the dispersibility of the amount of particle materials improves and the cohesiveness of particle material can be reduced.

シランカップリング剤により粒子材料を処理する方法としては特に限定しない。例えば乾燥した粒子材料の表面にシランカップリング剤を接触させる方法、何らかの液状の分散媒中にてシランカップリング剤を接触させる方法が挙げられる。分散媒としては特に限定しないが、水および/または有機溶媒が例示できる。   The method for treating the particulate material with a silane coupling agent is not particularly limited. For example, a method of bringing a silane coupling agent into contact with the surface of a dried particulate material, and a method of bringing a silane coupling agent into contact in some liquid dispersion medium can be mentioned. Although it does not specifically limit as a dispersion medium, Water and / or an organic solvent can be illustrated.

有機溶媒としては、メタノール、エタノール、プロパノール、2−プロパノール(IPA)等などのアルコール類を含む親水性溶媒、酢酸メチル、酢酸エチル、酢酸イソプルピルなどのエステル類、プロピレングリコールモノメチルエーテル、エチレングリコール時エチルエーテルなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類、トルエン等の疎水性溶媒が挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。   Examples of the organic solvent include hydrophilic solvents including alcohols such as methanol, ethanol, propanol and 2-propanol (IPA), esters such as methyl acetate, ethyl acetate and isopropyl acetate, propylene glycol monomethyl ether, ethyl when ethylene glycol is used. Examples include ethers such as ether, ketones such as acetone and methyl ethyl ketone, and hydrophobic solvents such as toluene. These may be used singly or in combination of two or more.

粒子材料は全体の質量を基準として分散媒中に1〜80質量%、さらには10〜60質量%の範囲にあることが好ましい。粒子材料の量を上述の下限以上にすると、生産性が高くなり、粒子材料の量を上述の上限以下にすると、粒子間の凝集が抑制できる。   The particle material is preferably in the range of 1 to 80 mass%, more preferably 10 to 60 mass% in the dispersion medium based on the total mass. When the amount of the particle material is equal to or higher than the above lower limit, productivity is increased, and when the amount of the particle material is equal to or lower than the above upper limit, aggregation between particles can be suppressed.

表面処理を行った粒子材料は、粒子表面にシランカップリング剤を接触させる方法で調製した場合固体(粉末)として得られるので、そのまま使用しても良いし、何がしかの分散媒に分散した後に使用してもよい。また処理を行う際に分散媒を使用した場合には、表面処理を行った粒子材料は、処理を行う際に使用した分散媒の全部または一部を残したまま使用しても良いし、別の分散媒を追加して使用してもよいし、適切な方法で分散媒を除き乾燥した固体(粉末)の状態として使用してもよく、さらには得られた固体を再度分散媒に分散した後に使用してもよい。
・樹脂組成物
樹脂組成物は前述の封止材用フィラーを分散する。樹脂組成物としては硬化前のものも含む。つまり、樹脂を含有する組成物以外にも樹脂を生成する組成物の意味をも含む。硬化前のものである場合には熱や光などにより重合反応が進行するものが挙げられる。樹脂組成物としては有機樹脂組成物、シリコーン樹脂組成物が例示できる。特に熱硬化性樹脂が望ましいものとして例示できる。
The surface-treated particle material is obtained as a solid (powder) when prepared by contacting the particle surface with a silane coupling agent, so it may be used as it is or dispersed in some dispersion medium. It may be used later. In addition, when a dispersion medium is used during the treatment, the surface-treated particle material may be used while leaving all or part of the dispersion medium used during the treatment. The dispersion medium may be used additionally, or may be used as a dried solid (powder) state by removing the dispersion medium by an appropriate method, and the obtained solid is dispersed again in the dispersion medium. It may be used later.
-Resin composition A resin composition disperse | distributes the above-mentioned filler for sealing materials. The resin composition includes those before curing. That is, the meaning of the composition which produces | generates resin is also included besides the composition containing resin. In the case of being uncured, those in which the polymerization reaction proceeds by heat, light or the like can be mentioned. Examples of the resin composition include an organic resin composition and a silicone resin composition. In particular, a thermosetting resin can be exemplified as a desirable one.

前述の封止材用フィラーを樹脂組成物と混合する場合、フィラーは乾燥した固体(粉)の状態で樹脂組成物中に加えてもよく、分散媒に分散した状態で加えても良い。また、フィラーを加えられる樹脂組成物は溶媒乃至分散媒を含んでいても含んでいなくても良い。樹脂組成物中に溶媒乃至分散媒を含まないほうが望ましい場合には、適切な方法でそれらの成分を除き樹脂組成物中に溶媒乃至分散媒を含まないようにできる。   When mixing the filler for sealing materials described above with the resin composition, the filler may be added to the resin composition in a dry solid (powder) state, or may be added in a state dispersed in a dispersion medium. The resin composition to which the filler is added may or may not contain a solvent or a dispersion medium. When it is desirable that the resin composition does not contain a solvent or dispersion medium, these components can be removed by an appropriate method so that the resin composition does not contain a solvent or dispersion medium.

更に樹脂組成物中には樹脂組成物の粘度や反応性を調節する目的で含有される溶媒乃至分散媒を含有することもできる。混合時に溶媒乃至分散媒が使用される場合には、これらの全部または一部を残すことで同様の効果を得ても好いし、さらに溶媒乃至分散媒を追加しても良い。   Further, the resin composition may contain a solvent or a dispersion medium contained for the purpose of adjusting the viscosity and reactivity of the resin composition. When a solvent or a dispersion medium is used at the time of mixing, it is preferable to obtain the same effect by leaving all or a part of these, and a solvent or a dispersion medium may be further added.

有機樹脂組成物としては、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂などが挙げられる。特に熱硬化性樹脂が望ましく、その中でもエポキシ樹脂が望ましい。   The organic resin composition includes epoxy resin, urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, etc. And thermoplastic resins such as an adhesive resin, polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluororesin, vinyl acetate resin, and silicone rubber. In particular, a thermosetting resin is preferable, and an epoxy resin is preferable among them.

以下に本発明の封止材及び封止材用フィラーについて実施例に基づき詳細に説明を行う。   Hereinafter, the sealing material and the filler for sealing material of the present invention will be described in detail based on examples.

(実験方法)
・湿式表面処理
1000質量部の粒子材料を1000質量部の分散媒としてのイソプロピルアルコール(IPA)に懸濁し、50%スラリーとした。これに所定量の表面処理剤を加え、良く混合した。その後、120℃で加熱して反応を完結させると共に分散媒を除去し、得られた固形物をミキサーにて粉砕することにより封止材用フィラーとした。
・乾式表面処理
1000質量部の粒子材料をミキサーに入れ、撹拌しながら所定量の表面処理剤を加え、良く混合した。その後、室温で24時間密封して反応を完結させることにより封止材用フィラーとした。
・表面電位の測定
0.5質量部の封止材用フィラーを1000質量部のIPAに懸濁させて0.05%スラリーとした。これを試験試料として動的光散乱電気泳動法(大塚電子株式会社製、ゼータ電位測定システム、ELSZ−1)にてゼータ電位を測定し、この値を封止材用フィラーの表面電位とした。
・封止材粘度の測定
6質量部の封止材用フィラーと4質量部のBisA/BisFエポキシ混合物(樹脂組成物に相当:新日鉄住金化学製、ZX−1059)とを良く混合し封止材用フィラーを60質量%含有する封止材を得た。回転レオメーター(TAインスツルメント、ARES−G2)を用いて粘度を測定した。
・その他の物性の測定
平均粒径は光散乱法にて測定した。比表面積は窒素を用いたBET法にて測定した。炭素量は酸素気流中燃焼法にて行った。電気伝導度及び水素イオン濃度は封止材を固化させた固化物1gを10mLの水中に1時間、25℃で浸漬した液について測定した。塩素量は原子吸光分析法にて測定した。
(experimental method)
-Wet surface treatment 1000 parts by mass of particulate material was suspended in isopropyl alcohol (IPA) as a dispersion medium of 1000 parts by mass to obtain a 50% slurry. A predetermined amount of the surface treatment agent was added thereto and mixed well. Then, it heated at 120 degreeC, the reaction was completed, a dispersion medium was removed, and it was set as the filler for sealing materials by grind | pulverizing the obtained solid substance with a mixer.
-Dry surface treatment 1000 parts by mass of the particulate material was placed in a mixer, and a predetermined amount of the surface treatment agent was added while stirring and mixed well. Then, it was set as the filler for sealing materials by sealing at room temperature for 24 hours, and completing reaction.
-Measurement of surface potential 0.5 parts by mass of filler for sealing material was suspended in 1000 parts by mass of IPA to form a 0.05% slurry. Using this as a test sample, the zeta potential was measured by dynamic light scattering electrophoresis (manufactured by Otsuka Electronics Co., Ltd., zeta potential measurement system, ELSZ-1), and this value was taken as the surface potential of the filler for sealing material.
・ Measurement of sealing material viscosity 6 parts by weight of filler for sealing material and 4 parts by weight of BisA / BisF epoxy mixture (corresponding to resin composition: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., ZX-1059) were mixed well. A sealing material containing 60% by mass of a filler was obtained. The viscosity was measured using a rotary rheometer (TA Instruments, ARES-G2).
-Measurement of other physical properties The average particle diameter was measured by the light scattering method. The specific surface area was measured by the BET method using nitrogen. The amount of carbon was measured by a combustion method in an oxygen stream. The electrical conductivity and hydrogen ion concentration were measured for a solution obtained by immersing 1 g of a solidified product obtained by solidifying the sealing material in 10 mL of water at 25 ° C. for 1 hour. The amount of chlorine was measured by atomic absorption spectrometry.

(試験例1)
N,N−ビス(ヒドロキシエチル)アミノプロピルトリエトキシシラン(ゲレスト(米国)製、SIB1140.0)を表面処理剤として用い、粒子材料としてのシリカ(平均粒径0.5μm、株式会社アドマテックス製)に対して、1質量%になるように湿式処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 1)
N, N-bis (hydroxyethyl) aminopropyltriethoxysilane (manufactured by Gelest (USA), SIB1140.0) is used as a surface treatment agent, and silica as a particle material (average particle size 0.5 μm, manufactured by Admatechs Co., Ltd.) ) With respect to 1% by mass. The obtained sample was used as a filler for sealing material of this test example.

(試験例2)
表面処理剤として3−(2−イミダゾリン−1−イル)プロピルトリエトキシシラン(ゲレスト(米国)製、SIT8187.5)を用いたこと、処理方法として乾式表面処理を採用したこと、以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 2)
Test example, except that 3- (2-imidazolin-1-yl) propyltriethoxysilane (manufactured by Gelest (USA), SIT8187.5) was used as the surface treatment agent and dry surface treatment was adopted as the treatment method 1 was performed. The obtained sample was used as a filler for sealing material of this test example.

(試験例3)
表面処理剤として2−(ジフェニルフォスフィノ)エチルトリエトキシシラン(ゲレスト(米国)製、SID4558.0)を用いたこと、処理方法として乾式表面処理を採用したこと、以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 3)
Similar to Test Example 1 except that 2- (diphenylphosphino) ethyltriethoxysilane (manufactured by Gelest (USA), SID4558.0) was used as the surface treatment agent, and dry surface treatment was adopted as the treatment method. Processed. The obtained sample was used as a filler for sealing material of this test example.

(試験例4)
表面処理剤として3−アミノプロピルトリメトキシシラン(信越化学製、KBM−903)を用いたこと、処理方法として乾式表面処理を採用したこと、以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 4)
The same treatment as in Test Example 1 was performed, except that 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-903) was used as the surface treatment agent and dry surface treatment was adopted as the treatment method. The obtained sample was used as a filler for sealing material of this test example.

(試験例5)
表面処理剤としてトリメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド(ゲレスト(米国)製、SIT8415.0)を用いたこと以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 5)
The same treatment as in Test Example 1 was performed except that trimethyl (3-trimethoxysilylpropyl) ammonium chloride (Gerest (USA), SIT8415.0) was used as the surface treating agent. The obtained sample was used as a filler for sealing material of this test example.

(試験例6)
表面処理剤としてオクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド(ゲレスト(米国)製、SIO6620.0)を用いたこと以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 6)
The same treatment as in Test Example 1 was performed except that octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (Gerest (USA), SIO6620.0) was used as the surface treating agent. The obtained sample was used as a filler for sealing material of this test example.

(試験例7)
試験例1で用いた表面処理剤にて処理する前の粒子材料をそのまま本試験例の封止材用フィラーとした。
(Test Example 7)
The particulate material before being treated with the surface treating agent used in Test Example 1 was directly used as the filler for sealing material in this Test Example.

(試験例8)
表面処理剤として3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン(信越化学製、KBM−403)を用いたこと、処理方法として乾式表面処理を採用したこと、以外は試験例1と同様の処理を行った。得られた試料を本試験例の封止材用フィラーとした。
(Test Example 8)
Similar to Test Example 1 except that 3- (2,3-epoxypropoxy) propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was used as the surface treatment agent, and dry surface treatment was adopted as the treatment method. Was processed. The obtained sample was used as a filler for sealing material of this test example.

(試験例9a〜9h)
N,N−ビス(ヒドロキシエチル)アミノプロピルトリエトキシシラン(ゲレスト(米国)製、SIB1140.0)を所定量だけ表面処理剤として用い、粒子材料としてのシリカ(平均粒径0.5μm、株式会社アドマテックス製)に対して湿式処理を行った。
(Test Examples 9a to 9h)
A predetermined amount of N, N-bis (hydroxyethyl) aminopropyltriethoxysilane (manufactured by Gelest (USA), SIB1140.0) is used as a surface treatment agent, and silica as an average particle material (average particle size 0.5 μm, Inc. Wet treatment was performed on Admatechs).

その後、3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン(信越化学製、KBM−403)を所定量だけ用い乾式処理を行った。得られた試料を本試験例の封止材用フィラーとした。   Thereafter, dry processing was performed using a predetermined amount of 3- (2,3-epoxypropoxy) propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403). The obtained sample was used as a filler for sealing material of this test example.

以下に(N,N−ビス(ヒドロキシエチル)アミノプロピルトリエトキシシラン)、(3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン)のそれぞれの処理量を各試験例毎に記載する。   The respective treatment amounts of (N, N-bis (hydroxyethyl) aminopropyltriethoxysilane) and (3- (2,3-epoxypropoxy) propyltrimethoxysilane) are described for each test example.

試験例9a(0.0%、1.0%)、試験例9b(0.05%、0.95%)、試験例9c(0.10%、0.90%)、試験例9d(0.20%、0.80%)、試験例9e(0.30%、0.70%)、試験例9f(0.50%、0.50%)、試験例9g(0.70%、0.30%)、試験例9h(1.0%、0.0%)。ここで、試験例9aは試験例8と同じ試験試料であり、試験例9hは試験例1の試験試料と同じ物である。   Test Example 9a (0.0%, 1.0%), Test Example 9b (0.05%, 0.95%), Test Example 9c (0.10%, 0.90%), Test Example 9d (0 .20%, 0.80%), Test Example 9e (0.30%, 0.70%), Test Example 9f (0.50%, 0.50%), Test Example 9g (0.70%, 0) .30%), Test Example 9h (1.0%, 0.0%). Here, Test Example 9a is the same test sample as Test Example 8, and Test Example 9h is the same as the test sample of Test Example 1.

(試験例10a〜10g)
3−(2−イミダゾリン−1−イル)プロピルトリエトキシシラン(ゲレスト(米国)製、SIT8187.5)を所定量だけ表面処理剤として用い、粒子材料としてのシリカ(平均粒径0.5μm、株式会社アドマテックス製)に対して湿式処理を行った。
(Test Examples 10a to 10g)
A predetermined amount of 3- (2-imidazolin-1-yl) propyltriethoxysilane (Gerest (USA), SIT 8187.5) was used as a surface treatment agent, and silica as a particulate material (average particle size 0.5 μm, stock) Wet treatment was performed on the product manufactured by Admatechs.

その後、3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン(信越化学製、KBM−403)を所定量だけ用い乾式処理を行った。得られた試料を本試験例の封止材用フィラーとした。   Thereafter, dry processing was performed using a predetermined amount of 3- (2,3-epoxypropoxy) propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403). The obtained sample was used as a filler for sealing material of this test example.

以下に(3−(2−イミダゾリン−1−イル)プロピルトリエトキシシラン)、(3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン)のそれぞれの処理量を各試験例毎に記載する。   Hereinafter, the respective treatment amounts of (3- (2-imidazolin-1-yl) propyltriethoxysilane) and (3- (2,3-epoxypropoxy) propyltrimethoxysilane) are described for each test example.

試験例10a(0.0%、1.0%)、試験例10b(0.10%、0.90%)、試験例10c(0.20%、0.80%)、試験例10d(0.30%、0.70%)、試験例10e(0.40%、0.60%)、試験例10f(0.60%、0.40%)、試験例10g(1.0%、0.0%)。ここで、試験例10aは試験例8と同じ試験試料であり、試験例10gは試験例2の試験試料と同じ物である。   Test Example 10a (0.0%, 1.0%), Test Example 10b (0.10%, 0.90%), Test Example 10c (0.20%, 0.80%), Test Example 10d (0 .30%, 0.70%), Test Example 10e (0.40%, 0.60%), Test Example 10f (0.60%, 0.40%), Test Example 10g (1.0%, 0 0.0%). Here, Test Example 10a is the same test sample as Test Example 8, and Test Example 10g is the same as the test sample of Test Example 2.

(試験例11a〜11g)
オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド(ゲレスト(米国)製、SIO6620.0)を所定量だけ表面処理剤として用い、粒子材料としてのシリカ(平均粒径0.5μm、株式会社アドマテックス製)に対して湿式処理を行った。
(Test Examples 11a to 11g)
A predetermined amount of octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (Gerest (USA), SIO6620.0) was used as a surface treatment agent, and silica as a particle material (average particle size 0.5 μm, Admatechs Co., Ltd.) Wet treatment was carried out.

その後、3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン(信越化学製、KBM−403)を所定量だけ用い乾式処理を行った。得られた試料を本試験例の封止材用フィラーとした。   Thereafter, dry processing was performed using a predetermined amount of 3- (2,3-epoxypropoxy) propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403). The obtained sample was used as a filler for sealing material of this test example.

以下に(オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド)、(3−(2,3−エポキシプロポキシ)プロピルトリメトキシシラン)のそれぞれの処理量を各試験例毎に記載する。   The respective treatment amounts of (octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride) and (3- (2,3-epoxypropoxy) propyltrimethoxysilane) are described for each test example.

試験例11a(0.0%、1.0%)、試験例11b(0.10%、0.90%)、試験例11c(0.20%、0.80%)、試験例11d(0.30%、0.70%)、試験例11e(0.40%、0.60%)、試験例11f(0.60%、0.40%)、試験例11g(1.0%、0.0%)。ここで、試験例11aは試験例8と同じ試験試料であり、試験例11gは試験例6の試験試料と同じ物である。   Test Example 11a (0.0%, 1.0%), Test Example 11b (0.10%, 0.90%), Test Example 11c (0.20%, 0.80%), Test Example 11d (0 .30%, 0.70%), Test Example 11e (0.40%, 0.60%), Test Example 11f (0.60%, 0.40%), Test Example 11g (1.0%, 0 0.0%). Here, Test Example 11a is the same test sample as Test Example 8, and Test Example 11g is the same as the test sample of Test Example 6.

(結果)
・試験試料1〜8について表面電位、体積平均粒径、比表面積、炭素量、電気伝導度、塩素量、封止材粘度のそれぞれを測定した。結果を表1に示す。
(result)
-About the test samples 1-8, each of the surface potential, the volume average particle diameter, the specific surface area, the carbon content, the electrical conductivity, the chlorine content, and the sealing material viscosity was measured. The results are shown in Table 1.

Figure 2015000920
Figure 2015000920

表より明らかなように、シランカップリング剤として正に帯電可能な化合物を用いることにより封止材用フィラーについても正に帯電させることが可能になった。本試験例では樹脂組成物としてエポキシ樹脂を採用したため、試験例1,試験例6と塩素量が増加するにつれて粘度も大きくなること、塩素量が著しく大きい試験例5についてはエポキシ樹脂の硬化反応が進行すること、つまり、塩素量が少ない方がエポキシ樹脂との組み合わせでは粘度上昇が抑制できることが分かった。
・試験例9a〜9hについて得られた封止材用フィラーの表面電位を測定した。結果を図1に示す。
As is apparent from the table, it was possible to charge the sealing material filler positively by using a positively chargeable compound as the silane coupling agent. In this test example, an epoxy resin was used as the resin composition, so that the viscosity increased as the amount of chlorine increased with Test Example 1 and Test Example 6; It has been found that the progress of the viscosity, that is, the lower the amount of chlorine, can suppress the increase in viscosity in combination with the epoxy resin.
-The surface potential of the filler for sealing materials obtained for Test Examples 9a to 9h was measured. The results are shown in FIG.

図1から明らかなように、特定処理剤(N,N−ビス(ヒドロキシエチル)アミノプロピルトリエトキシシラン)の割合が大きくなるにつれて表面電位が大きくなることが明らかになった。
・試験例10a〜10gについて得られた封止材用フィラーの表面電位を測定した。結果を図2に示す。
As is apparent from FIG. 1, the surface potential increases as the proportion of the specific treatment agent (N, N-bis (hydroxyethyl) aminopropyltriethoxysilane) increases.
-The surface potential of the filler for sealing materials obtained for Test Examples 10a to 10g was measured. The results are shown in FIG.

図2から明らかなように、特定処理剤(3−(2−イミダゾリン−1−イル)プロピルトリエトキシシラン)の割合が大きくなるにつれて表面電位が大きくなることが明らかになった。
・試験例11a〜11gについて得られた封止材用フィラーの表面電位を測定した。結果を図3に示す。
As apparent from FIG. 2, it became clear that the surface potential increased as the proportion of the specific treatment agent (3- (2-imidazolin-1-yl) propyltriethoxysilane) increased.
-The surface potential of the filler for sealing materials obtained for Test Examples 11a to 11g was measured. The results are shown in FIG.

図3から明らかなように、特定処理剤(オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド)の割合が大きくなるにつれて表面電位が大きくなることが明らかになった。
・以上の結果から、表面処理剤の種類・処理量を制御することにより、封止材用フィラーの表面電位を制御できることが明らかになった。
As apparent from FIG. 3, it became clear that the surface potential increased as the proportion of the specific treatment agent (octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride) increased.
-From the above result, it became clear that the surface potential of the filler for sealing materials can be controlled by controlling the type and amount of the surface treatment agent.

Claims (9)

無機物から構成され正に帯電する粒子材料であり、
異種金属が接合乃至接触する部位を封止する封止材に含有させて用いる、
封止材用フィラー。
It is a particle material that is composed of inorganic substances and is positively charged.
It is used by being included in a sealing material that seals a site where a dissimilar metal is bonded or contacted.
Sealant filler.
前記粒子材料の表面電位は30mV以上である請求項1に記載の封止材用フィラー。   The filler for sealing materials according to claim 1 whose surface potential of said particulate material is 30mV or more. アミン、フォスフィン、アンモニウム、及びフォスフォニウムから選択される残基を表面にもつ請求項1又は2に記載の封止材用フィラー。   The filler for sealing materials according to claim 1 or 2 which has on the surface a residue selected from amine, phosphine, ammonium and phosphonium. 前記無機物は金属酸化物であり、
前記粒子材料は正に帯電する残基をもつ表面処理剤にて処理されている、
請求項1〜3のうちの何れか1項に記載の封止材用フィラー。
The inorganic substance is a metal oxide;
The particulate material is treated with a surface treatment agent having a positively charged residue,
The filler for sealing materials in any one of Claims 1-3.
前記表面処理剤は、アミン、フォスフィン、アンモニウム、及びフォスフォニウムから選択される前記残基をもつシランカップリング剤である、
請求項4に記載の封止材用フィラー。
The surface treatment agent is a silane coupling agent having the residue selected from amine, phosphine, ammonium, and phosphonium.
The filler for sealing materials according to claim 4.
前記残基は三級アミンまたは三級フォスフィンである請求項3〜5のうちの何れか1項に記載の封止材用フィラー。   The filler for a sealing material according to any one of claims 3 to 5, wherein the residue is a tertiary amine or a tertiary phosphine. 前記粒子材料は粒径が3μm以下である請求項1〜6の何れか1項に記載の封止材用フィラー。   The filler for sealing materials according to any one of claims 1 to 6, wherein the particle material has a particle size of 3 µm or less. 前記封止材は前記粒子材料を分散するエポキシ樹脂を含有する請求項1〜7の何れか1項に記載の封止材用フィラー。   The filler for sealing material according to any one of claims 1 to 7, wherein the sealing material contains an epoxy resin in which the particulate material is dispersed. 請求項1〜8の何れか1項に記載の封止材用フィラーと、前記封止材用フィラーを分散する樹脂組成物とを有する封止材。   The sealing material which has the filler for sealing materials of any one of Claims 1-8, and the resin composition which disperse | distributes the said filler for sealing materials.
JP2013125886A 2013-06-14 2013-06-14 Filler for sealing material and sealing material containing the filler Active JP6122350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125886A JP6122350B2 (en) 2013-06-14 2013-06-14 Filler for sealing material and sealing material containing the filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125886A JP6122350B2 (en) 2013-06-14 2013-06-14 Filler for sealing material and sealing material containing the filler

Publications (2)

Publication Number Publication Date
JP2015000920A true JP2015000920A (en) 2015-01-05
JP6122350B2 JP6122350B2 (en) 2017-04-26

Family

ID=52295646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125886A Active JP6122350B2 (en) 2013-06-14 2013-06-14 Filler for sealing material and sealing material containing the filler

Country Status (1)

Country Link
JP (1) JP6122350B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132864A (en) * 2016-01-26 2017-08-03 株式会社アドマテックス Filler for resin composition, method for producing the same, and resin composition
JP2018172333A (en) * 2017-03-31 2018-11-08 株式会社松風 Functional composite particles and dental curable composition containing the same
WO2021010291A1 (en) * 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206654A (en) * 1988-02-15 1989-08-18 Hitachi Ltd Resin-sealed semiconductor device
JP2000080285A (en) * 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device using the same
JP2003253154A (en) * 2001-12-25 2003-09-10 Asahi Kasei Corp Inorganic porous fine particle
JP2005171208A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Filler and resin composition
JP2009173846A (en) * 2007-12-27 2009-08-06 Sekisui Chem Co Ltd Organically-modified inorganic oxide microparticle, manufacturing method thereof, dispersion slurry thereof, and resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206654A (en) * 1988-02-15 1989-08-18 Hitachi Ltd Resin-sealed semiconductor device
JP2000080285A (en) * 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device using the same
JP2003253154A (en) * 2001-12-25 2003-09-10 Asahi Kasei Corp Inorganic porous fine particle
JP2005171208A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Filler and resin composition
JP2009173846A (en) * 2007-12-27 2009-08-06 Sekisui Chem Co Ltd Organically-modified inorganic oxide microparticle, manufacturing method thereof, dispersion slurry thereof, and resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132864A (en) * 2016-01-26 2017-08-03 株式会社アドマテックス Filler for resin composition, method for producing the same, and resin composition
JP2018172333A (en) * 2017-03-31 2018-11-08 株式会社松風 Functional composite particles and dental curable composition containing the same
WO2021010291A1 (en) * 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance
JPWO2021010291A1 (en) * 2019-07-17 2021-01-21
CN114144470A (en) * 2019-07-17 2022-03-04 富士胶片株式会社 Composition for forming heat conductive material, and surface-modified inorganic material
JP7472135B2 (en) 2019-07-17 2024-04-22 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, surface-modified inorganic material

Also Published As

Publication number Publication date
JP6122350B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US10144816B2 (en) Spherical alumina powder and resin composition using same
JP6122350B2 (en) Filler for sealing material and sealing material containing the filler
EP2676930A1 (en) Surface-modified silica powder and method for producing the same, as well as toner composition for electrophotography
JP6317472B2 (en) Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
WO2013018704A1 (en) Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
JP2003238141A (en) Surface modified spherical silica, its production method, and resin composition for semiconductor sealing
TW202231574A (en) Hydrophobic aluminum nitride powder and method for producing the same
JP2020083736A (en) Hollow silica particle and method for producing the same
TWI586771B (en) A paste composition for a solar cell electrode
Asad et al. The tracking and erosion performance of silicone rubber incorporated with novel TiO2@ SiO2 core-shell nano fillers under the IEC 60587 standard
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP2011148661A (en) Process for producing surface-treated metal oxide powder
KR101248026B1 (en) Semi-conductive liquid silicone rubber composition and manufacturing method thereof
JP5603659B2 (en) Surface-modified inorganic oxide powder, method for producing the inorganic oxide powder, and semiconductive material
JP2005022915A (en) Surface-modified spherical silica, method of manufacturing the same and resin composition for sealing
JP6805538B2 (en) Silica particle dispersion and surface-treated silica particles
JP7257384B2 (en) Powder composed of organic-inorganic composite particles
US20220306866A1 (en) Silica particles and method for producing the same
JP4525899B2 (en) Charge control material and charge control paint using the charge control material
JP5683101B2 (en) Surface-treated silica
JP6429791B2 (en) Hydrophobized spherical silica fine powder and use thereof
JPH0393605A (en) Improvement of flowability of metal oxide film powder
JP2014127520A (en) Paste for mounting semiconductor device
JP2022151524A (en) Silica particle
CN110536866B (en) Silicone-coated filler, method for producing same, and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170331

R150 Certificate of patent or registration of utility model

Ref document number: 6122350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250