JP2014532265A5 - - Google Patents

Download PDF

Info

Publication number
JP2014532265A5
JP2014532265A5 JP2014534054A JP2014534054A JP2014532265A5 JP 2014532265 A5 JP2014532265 A5 JP 2014532265A5 JP 2014534054 A JP2014534054 A JP 2014534054A JP 2014534054 A JP2014534054 A JP 2014534054A JP 2014532265 A5 JP2014532265 A5 JP 2014532265A5
Authority
JP
Japan
Prior art keywords
flame
gas
water
plasma
brown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014534054A
Other languages
Japanese (ja)
Other versions
JP2014532265A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2012/006347 external-priority patent/WO2013051255A1/en
Publication of JP2014532265A publication Critical patent/JP2014532265A/en
Publication of JP2014532265A5 publication Critical patent/JP2014532265A5/ja
Pending legal-status Critical Current

Links

Description

溶接、融解およびタングステンの昇華(気化)などの様々な用途に、通常は、水の場合と同じ比率である2:1のモル比の、水素(H)と酸素(O)の混合物である、酸水素(その発明者、Yull Brownにちなんでブラウンガス(Brown’s Gas)と呼ばれることもある)を使用することは、当該技術分野において良く知られている。ブラウンガスは、通常の水から上記の「ガス」を生成する工程を伴う。この「ガス」は、その火炎が、(通常の火炎の場合のように)一連の爆発ではなく、一連の爆縮(implosion)であるという、特異な特性を有する、完全に安全な化学量論的な水素および酸素である。したがって、理論的には、その火炎には温度限界がない場合がある。例えば、周辺空気とだけ接触しているときには、この火炎は、華氏264〜269度の温度を有することが測定されている。しかし、この火炎をタングステンワイヤに適用したときには、その温度は、ほぼ摂氏6000度であることが測定されている。 For various applications such as welding, melting and sublimation (vaporization) of tungsten, usually with a mixture of hydrogen (H 2 ) and oxygen (O 2 ) in a molar ratio of 2: 1 which is the same ratio as for water. The use of certain oxyhydrogens (sometimes called Brown's Gas after its inventor, Yull Brown) is well known in the art. Brown gas involves the process of producing the “gas” described above from normal water. This “gas” is a completely safe stoichiometry with the unique property that the flame is a series of implosions rather than a series of explosions (as in a normal flame). Hydrogen and oxygen. Thus, theoretically, the flame may not have a temperature limit. For example, when in contact only with ambient air, the flame has been measured to have a temperature of 264-269 degrees Fahrenheit. However, when this flame is applied to tungsten wire, its temperature has been measured to be approximately 6000 degrees Celsius.

放出された火炎をプラズマと呼ぶとき、上記のプロセスは、以下のように見なすことができる:約1.3kWの入力電力だけを使用して、水を蒸気に変えることが可能であり、次いで水分子が分解されて、次いで、プラズマ状態を達成することができる。ある種の素粒子反応が、プラズマ内部で発生しているとともに(しかしながら、核融合反応は起こることなく)、エネルギー変換が生じている可能性があることが理解される。反時計、螺旋方向への流れを介して、電気エネルギーが吸収され、原子および量子への分解が起こる。そのようなプラズマ発生において、電子は消滅させられて、結果として、熱と光の放出が生じることは十分に可能である。 When the emitted flame is referred to as a plasma, the above process can be viewed as follows: Using only about 1.3 kW of input power, it is possible to turn water into steam, then water The molecules are decomposed and then a plasma state can be achieved. It is understood that certain elementary particle reactions are occurring within the plasma (but no fusion reactions occur) and energy conversion may occur. The electric energy is absorbed through the counterclockwise and spiral flow, and decomposition into atoms and quanta occurs. In such a plasma generation, it is well possible that electrons are extinguished and as a result, heat and light are emitted.

JP2014534054A 2011-10-07 2012-10-03 Plasma generation method and system Pending JP2014532265A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161544482P 2011-10-07 2011-10-07
US61/544,482 2011-10-07
PCT/JP2012/006347 WO2013051255A1 (en) 2011-10-07 2012-10-03 A plasma generating method and system

Publications (2)

Publication Number Publication Date
JP2014532265A JP2014532265A (en) 2014-12-04
JP2014532265A5 true JP2014532265A5 (en) 2015-11-19

Family

ID=48043436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534054A Pending JP2014532265A (en) 2011-10-07 2012-10-03 Plasma generation method and system

Country Status (2)

Country Link
JP (1) JP2014532265A (en)
WO (1) WO2013051255A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107182165B (en) * 2017-06-20 2024-05-14 华中科技大学 Plasma emission device based on thermionic emission cathode
JP7478733B2 (en) * 2018-11-30 2024-05-07 エリコン メテコ(ユーエス)インコーポレイテッド Plasma gun electrodes
CN109483031B (en) * 2018-12-14 2020-06-09 山东大学 Plasma arc welding device and welding method for large-fusion-depth large-depth-to-width-ratio through hole
CN110561511A (en) * 2019-10-12 2019-12-13 胡世龙 Auxiliary equipment for manufacturing novel flame-retardant conductive fabric by using plasma electrification technology
CN113853054B (en) * 2021-11-05 2023-11-14 北京环境特性研究所 Plasma torch and gap adjusting method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240170A (en) * 1986-04-11 1987-10-20 Akira Kanekawa Torch
WO1998002270A1 (en) * 1996-07-11 1998-01-22 Apunevich Aleksandr I Method for the plasmic arc-welding of metals
JPH11345699A (en) * 1998-06-01 1999-12-14 Tadamasa Fujimura Liquid plasma generating method and its device
JP2001332399A (en) * 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Plasma generating device and surface cleaning method using this
JP2004111137A (en) * 2002-09-17 2004-04-08 Fujimura Tadamasa Manufacturing method and manufacturing device of hydrogen by plasma reaction method
JP4570847B2 (en) * 2003-03-06 2010-10-27 忠正 藤村 Method and apparatus for halogen-containing compound decomposition by plasma reaction method
JP3883005B2 (en) * 2003-03-07 2007-02-21 株式会社レイテック Steam plasma torch
AT503646B1 (en) * 2006-09-15 2007-12-15 Fronius Int Gmbh Water vapor plasma burner for cutting a workpiece, comprises a feed line for a liquid, a heating device, an evaporator for forming a gas from the liquid, a cathode detachably connected to a movably mounted piston rod, and a nozzle

Similar Documents

Publication Publication Date Title
JP2014532265A5 (en)
Shi et al. Chemically modified graphene: flame retardant or fuel for combustion?
Chun et al. Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure
Shin et al. A pure steam microwave plasma torch: gasification of powdered coal in the plasma
JP6209398B2 (en) Hydrogen production apparatus and hydrogen production method
JP2016511526A5 (en)
MY162645A (en) Composition generating fire extinguishing substance through chemical reaction of ingredients at high temperature
US20140170057A1 (en) Method and apparatus for manufacturing graphene sheet
Tatarova et al. Microwave plasma source operating with atmospheric pressure air-water mixtures
BR112015032593A2 (en) Direct burn heating method and ease of implementation even
JP2014532265A (en) Plasma generation method and system
Zhang et al. Ammonia cracking for hydrogen production using a microwave argon plasma jet
Nedybaliuk et al. Plasma-catalytic reforming of liquid hydrocarbons
US20150027433A1 (en) Self-Regulated Hydrogen ThermoCell and Applications
El‐Shafie et al. Comprehensive assessment of hydrogen production in argon‐water vapors plasmolysis
JP2014227873A5 (en)
Panchal Science of Fire tetrahedron & Chain reaction of fire mechanism
Zhang et al. Comparison of non-isothermal and isothermal cycles in a novel methane-assisted two-step thermochemical process
Elahi et al. Computational modeling of CO2 conversion by a solar-enhanced microwave plasma reactor
Fukuda et al. Stabilization of a lean premixed flame using non-thermal plasma
Daykin et al. Investigation of fast electron properties from hybrid-PIC modeling of angularly resolved bremsstrahlung
Renno Afriansyah et al. Performance Test and Operating Condition Optimization of Parallel Plate Plasma Reactor for Carbon Dioxide Decomposition
Carbone et al. Optical emission spectroscopy characterization of a kHz pulsed atmospheric pressure N 2 microwave plasma
Serbin et al. Theoretical investigations of plasma assisted conversion of natural gas into synthesis gas
Yatom et al. Applying a laser-induced incandescence (LII) diagnostic to monitor nanoparticle synthesis in an atmospheric plasma, in situ