JP6209398B2 - Hydrogen production apparatus and hydrogen production method - Google Patents

Hydrogen production apparatus and hydrogen production method Download PDF

Info

Publication number
JP6209398B2
JP6209398B2 JP2013175945A JP2013175945A JP6209398B2 JP 6209398 B2 JP6209398 B2 JP 6209398B2 JP 2013175945 A JP2013175945 A JP 2013175945A JP 2013175945 A JP2013175945 A JP 2013175945A JP 6209398 B2 JP6209398 B2 JP 6209398B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
containing compound
heat generating
generating part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013175945A
Other languages
Japanese (ja)
Other versions
JP2015044702A (en
Inventor
昭彦 宮越
昭彦 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2013175945A priority Critical patent/JP6209398B2/en
Priority to PCT/JP2014/004241 priority patent/WO2015029377A1/en
Publication of JP2015044702A publication Critical patent/JP2015044702A/en
Application granted granted Critical
Publication of JP6209398B2 publication Critical patent/JP6209398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0855Methods of heating the process for making hydrogen or synthesis gas by electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、水素原子をその構造内に含む化合物である含水素化合物から水素を生成する技術に関する。   The present invention relates to a technique for generating hydrogen from a hydrogen-containing compound that is a compound containing a hydrogen atom in its structure.

エネルギー政策として大規模なエネルギーと小〜中規模のエネルギーをコミュニティーのサイズに合わせて供給する「ベストミックス」が課題となっている。とくにメタンを主成分とする天然ガスやバイオガスは、地球環境保全の面でも好ましい化学資源である。そのため、メタンから水素などを効率的に転換できるシステムが求められている。   The “best mix” of supplying large-scale energy and small-to-medium-scale energy according to the size of the community is an issue as an energy policy. In particular, natural gas and biogas mainly composed of methane are preferable chemical resources in terms of global environmental conservation. Therefore, there is a need for a system that can efficiently convert hydrogen from methane.

現在、工業的なメタンからの水素製造は水蒸気改質法が主流である。これは、スチーム供給を伴う二段階反応であり、高コストやCO、COを副生する問題がある。 At present, steam reforming is the mainstream for industrial hydrogen production from methane. This is a two-stage reaction involving steam supply, and has a problem of high costs and CO or CO 2 by-product.

特開2006−188397号公報JP 2006-188397 A

本発明はこのような事情に基づきなされたものであり、副生物の発生を抑えてメタンなどの含水素化合物から水素を生成できる新規な技術を提供することを目的とする。   The present invention has been made based on such circumstances, and an object thereof is to provide a novel technique capable of generating hydrogen from a hydrogen-containing compound such as methane while suppressing generation of by-products.

本発明者は、鋭意研究の結果、マイクロ波を触媒に照射しての含水素化合物の分解において、加熱して活性化された炭化ケイ素およびニッケルを含む触媒の存在下で反応を進行させることにより、含水素化合物から副生物の発生を抑えて水素を生成することができることを見出した。
さらに、本発明者は、マルチモードでのマイクロ波照射による含水素化合物の分解において、触媒を、マイクロ波によって加熱される発熱部と、発熱部とは独立しており、発熱部からの熱で加熱されて含水素化合物の熱分解を促進する反応促進部とを含む構成とすることを着想した。本発明者は、触媒を当該構成とすることで、触媒の寿命をより長くして含水素化合物からの水素の安定した生成をより長く維持できることを見出し、本発明を完成させた。
As a result of diligent research, the present inventor conducted a reaction in the presence of a catalyst containing silicon carbide and nickel activated by heating in the decomposition of a hydrogen-containing compound by irradiating the catalyst with microwaves. The present inventors have found that hydrogen can be generated from hydrogen-containing compounds while suppressing the generation of by-products.
Furthermore, the present inventor, in the decomposition of the hydrogen-containing compound by microwave irradiation in multi-mode, the catalyst is independent of the heat-generating part heated by the microwave and the heat-generating part. The idea is to include a reaction promoting portion that is heated to promote thermal decomposition of the hydrogen-containing compound. The present inventor has found that the catalyst can be configured as described above, so that the lifetime of the catalyst can be extended and stable production of hydrogen from the hydrogen-containing compound can be maintained longer, and the present invention has been completed.

本発明の要旨は以下のとおりである。
[1] その内部に炭化ケイ素およびニッケルを含む触媒が装填されており、含水素化合物を含むガスが供給される反応器と、
前記反応器内の前記触媒にマルチモードでマイクロ波を照射するマイクロ波照射部と、を備え、
前記マイクロ波照射部によるマルチモードでのマイクロ波照射によって加熱されることにより活性化された前記触媒の存在下で前記含水素化合物の熱分解を進行させて水素を生成し、
前記触媒が、前記炭化ケイ素を含み、マイクロ波を吸収して加熱される発熱部と、ニッケルを含み、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを含んで構成される水素製造装置。
[2] 前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている[1]に記載の水素製造装置。
[3] 前記反応促進部がHZSM−5ゼオライトをさらに含む[1]または[2]に記載の水素製造装置。
[4] 前記含水素化合物がメタンである[1]から[3]のいずれか1つに記載の水素製造装置。
[5] 炭化ケイ素およびニッケルを含む触媒に対してマルチモードでマイクロ波を照射することにより加熱して前記触媒を活性化し、
活性化された前記触媒の存在下で前記触媒に接触するガスに含まれる前記含水素化合物の熱分解を進行させ、水素を生成することを含み、
前記触媒が、前記炭化ケイ素を含み、マイクロ波を吸収して加熱される発熱部と、ニッケルを含み、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを含んで構成される水素製造方法。
[6] 前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている[5]に記載の水素製造方法。
[7] 前記触媒がHZSM−5ゼオライトをさらに含む[5]または[6]に記載の水素製造方法。
[8] 前記含水素化合物がメタンである[5]から[7]のいずれか1つに記載の水素製造方法。
[9] 接触するガスに含まれる含水素化合物の分解による水素製造用触媒であって、
炭化ケイ素を含み、マイクロ波を吸収して加熱される発熱部と、
ニッケルを含み、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを備える水素製造用触媒。
[10] 前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている[9]に記載の水素製造用触媒。
[11] 前記反応促進部がHZSM−5ゼオライトをさらに含む[9]または[10]に記載の水素製造用触媒。
[12] 前記含水素化合物がメタンである[9]から[11]のいずれか1つに記載の水素製造用触媒。
The gist of the present invention is as follows.
[1] A reactor in which a catalyst containing silicon carbide and nickel is loaded, and a gas containing a hydrogen-containing compound is supplied;
A microwave irradiation unit that irradiates the catalyst in the reactor with microwaves in multimode, and
In the presence of the catalyst activated by being heated by microwave irradiation in multimode by the microwave irradiation unit, the thermal decomposition of the hydrogen-containing compound proceeds to generate hydrogen,
The catalyst includes the silicon carbide and includes a heating part that absorbs microwaves and is heated, and includes nickel and is disposed at a position adjacent to the heating part, and is heated by the heat supplied from the heating part. A hydrogen production apparatus comprising a reaction promoting unit that is activated to promote thermal decomposition of the hydrogen-containing compound.
[2] The hydrogen production apparatus according to [1], wherein the reaction promoting unit is stacked on the heating unit along a direction in which a gas containing the hydrogen-containing compound flows.
[3] The hydrogen production apparatus according to [1] or [2], wherein the reaction promoting unit further includes HZSM-5 zeolite.
[4] The hydrogen production apparatus according to any one of [1] to [3], wherein the hydrogen-containing compound is methane.
[5] The catalyst including silicon carbide and nickel is heated by irradiating with microwaves in multimode to activate the catalyst,
Proceeding thermal decomposition of the hydrogen-containing compound contained in the gas in contact with the catalyst in the presence of the activated catalyst to produce hydrogen,
The catalyst includes the silicon carbide and includes a heating part that absorbs microwaves and is heated, and includes nickel and is disposed at a position adjacent to the heating part, and is heated by the heat supplied from the heating part. A hydrogen production method comprising a reaction promoting part that is activated to promote thermal decomposition of the hydrogen-containing compound.
[6] The hydrogen production method according to [5], wherein the reaction promoting unit is stacked on the heat generating unit along a direction in which the gas containing the hydrogen-containing compound flows.
[7] The method for producing hydrogen according to [5] or [6], wherein the catalyst further contains HZSM-5 zeolite.
[8] The method for producing hydrogen according to any one of [5] to [7], wherein the hydrogen-containing compound is methane.
[9] A catalyst for producing hydrogen by decomposition of a hydrogen-containing compound contained in a contacting gas,
A heating part containing silicon carbide and heated by absorbing microwaves;
For hydrogen production, comprising a reaction promoting part that includes nickel, is disposed at a position adjacent to the heat generating part, and is activated by heat supplied from the heated heat generating part to promote thermal decomposition of the hydrogen-containing compound. catalyst.
[10] The hydrogen production catalyst according to [9], wherein the reaction promoting unit is stacked on the heat generating unit along a direction in which a gas containing the hydrogen-containing compound flows.
[11] The catalyst for hydrogen production according to [9] or [10], wherein the reaction promoting part further contains HZSM-5 zeolite.
[12] The hydrogen production catalyst according to any one of [9] to [11], wherein the hydrogen-containing compound is methane.

本発明によれば、副生物の発生を抑えてメタンなどの含水素化合物から水素を生成できる新規な技術を提供することができる。さらに、本発明によれば、マルチモードでのマイクロ波照射による含水素化合物分解反応において、含水素化合物からの水素の安定した生成をより長く維持できる。   ADVANTAGE OF THE INVENTION According to this invention, the novel technique which can suppress generation | occurrence | production of a by-product and can produce | generate hydrogen from hydrogen containing compounds, such as methane, can be provided. Furthermore, according to the present invention, in the hydrogen-containing compound decomposition reaction by microwave irradiation in multimode, stable production of hydrogen from the hydrogen-containing compound can be maintained for a longer time.

本実施形態の水素製造装置の構成の概要を示すためのブロック図である。It is a block diagram for showing the outline of the composition of the hydrogen production device of this embodiment. 本実施形態の水素製造装置に係る触媒が装填されている反応器の概要を示す図であって、反応器の含水素化合物を含むガスが流れる方向に沿った断面図である。It is a figure which shows the outline | summary of the reactor with which the catalyst concerning the hydrogen production apparatus of this embodiment is loaded, Comprising: It is sectional drawing along the direction through which the gas containing the hydrogen-containing compound of a reactor flows. 本実施形態に係る水素製造の処理フローを示す図である。It is a figure which shows the processing flow of the hydrogen production which concerns on this embodiment. 本実施形態の水素製造装置を備える燃料電池発電システムの概要を示すためのブロック図である。It is a block diagram for showing the outline of a fuel cell power generation system provided with the hydrogen production device of this embodiment. 実施例1に係る水素選択率を示すグラフである。2 is a graph showing hydrogen selectivity according to Example 1. 実施例1に係る水素の収率を示すグラフである。2 is a graph showing the yield of hydrogen according to Example 1. 比較例1に係る水素選択率を示すグラフである。5 is a graph showing hydrogen selectivity according to Comparative Example 1. 比較例1に係る水素の収率を示すグラフである。5 is a graph showing the yield of hydrogen according to Comparative Example 1. 他の実施形態に係る触媒が装填されている反応器の概要を示す図であって、含水素化合物を含むガスが流れる方向とは垂直である面に沿った断面図である。It is a figure which shows the outline | summary of the reactor with which the catalyst which concerns on other embodiment is loaded, Comprising: It is sectional drawing along the surface perpendicular | vertical to the direction through which the gas containing a hydrogen-containing compound flows. 他の実施形態に係る触媒が装填されている反応器の概要を示す図であって、含水素化合物を含むガスが流れる方向とは垂直である面に沿った断面図である。It is a figure which shows the outline | summary of the reactor with which the catalyst which concerns on other embodiment is loaded, Comprising: It is sectional drawing along the surface perpendicular | vertical to the direction through which the gas containing a hydrogen-containing compound flows. 他の実施形態に係る触媒が装填されている反応器の概要を示す図であって、含水素化合物を含むガスが流れる方向とは垂直である面に沿った断面図である。It is a figure which shows the outline | summary of the reactor with which the catalyst which concerns on other embodiment is loaded, Comprising: It is sectional drawing along the surface perpendicular | vertical to the direction through which the gas containing a hydrogen-containing compound flows. 他の実施形態に係る触媒が装填されている反応器の概要を示す図であって、含水素化合物を含むガスが流れる方向とは垂直である面に沿った断面図である。It is a figure which shows the outline | summary of the reactor with which the catalyst which concerns on other embodiment is loaded, Comprising: It is sectional drawing along the surface perpendicular | vertical to the direction through which the gas containing a hydrogen-containing compound flows.

以下、本発明の実施形態の1つについて詳細に説明する。
図1は、本実施形態の水素製造装置10(以下、単に装置10ともいう)の概要を示すブロック図である。
本実施形態の装置10は、炭化ケイ素およびニッケルを含む触媒2が装填されており含水素化合物を含むガスが供給される反応器1と、反応器1内の触媒2にマルチモードでマイクロ波を照射するマイクロ波照射部3と、を備える。本実施形態の水素製造装置10においては、マイクロ波照射部3によるマルチモードでのマイクロ波照射によって加熱されて活性化された触媒2の存在下で含水素化合物の熱分解を進行させて水素を生成させる。また、本実施形態の装置10においては、触媒2が、炭化ケイ素を含み、マイクロ波を吸収して加熱される発熱部21と、ニッケルを含み、発熱部21と隣り合う位置に配置され、加熱された発熱部21から供給される熱によって活性化されて含水素化合物の熱分解を促進させる反応促進部23とを含んで構成される。
なお、本明細書において、含水素化合物とは、その構造内に少なくとも1つの水素原子を含む化合物をいう。
Hereinafter, one embodiment of the present invention will be described in detail.
FIG. 1 is a block diagram showing an outline of a hydrogen production apparatus 10 (hereinafter also simply referred to as the apparatus 10) of the present embodiment.
The apparatus 10 of the present embodiment is loaded with a catalyst 2 containing silicon carbide and nickel and supplied with a gas containing a hydrogen-containing compound, and a multimode microwave is applied to the catalyst 2 in the reactor 1. A microwave irradiation unit 3 for irradiation. In the hydrogen production apparatus 10 of the present embodiment, hydrogen decomposition is performed by advancing thermal decomposition of a hydrogen-containing compound in the presence of the catalyst 2 that is heated and activated by microwave irradiation in multimode by the microwave irradiation unit 3. Generate. Moreover, in the apparatus 10 of this embodiment, the catalyst 2 contains silicon carbide, absorbs microwaves and is heated by heating, and includes nickel and is disposed at a position adjacent to the heating part 21 and is heated. And a reaction promoting unit 23 that is activated by heat supplied from the heat generating unit 21 and promotes thermal decomposition of the hydrogen-containing compound.
In the present specification, the hydrogen-containing compound refers to a compound containing at least one hydrogen atom in its structure.

本実施形態の装置10の構成について、より詳細に説明する。また、図1において、供給される含水素化合物を含むガスおよび生成された水素を含むガス(改質ガス)の流れを実線で示す。
本実施形態の装置10は、その内部空間15内に納められた反応器1を備えている。反応器1は、含水素化合物を含むガスの導入部1Aと、反応による生成ガスの導出部1Bに連通している。
この反応器1内には、触媒2が装填されている。反応器1の形状や大きさ、構成は、内部の触媒2に対してマイクロ波の照射を行なうことができ、且つ内部において触媒2の存在下における含水素化合物の熱分解を進行させることが可能である限り特に限定されず、当業者が適宜設定することができる。例えば、反応器1は、石英によって構成することができる。
また、本実施形態においては、理解を容易とするために反応器1を装置10において1つ備える構成を示しているが、反応器1が装置10において複数設けられる構成としてもよい。
また、装置10は、反射温度計17を備えている構成とすることができる。当該反射温度計17を用いてマイクロ波照射によって加熱される触媒2の温度(表面温度)を測定することができる。反射温度計17も特に限定されず、公知のものを使用することができる。
The configuration of the device 10 of this embodiment will be described in more detail. Moreover, in FIG. 1, the flow of the gas (reformed gas) containing the gas containing the hydrogen-containing compound supplied and the produced | generated hydrogen (reformed gas) is shown as a continuous line.
The apparatus 10 of this embodiment includes a reactor 1 that is housed in the internal space 15 thereof. The reactor 1 communicates with a gas introducing portion 1A containing a hydrogen-containing compound and a product gas deriving portion 1B by reaction.
A catalyst 2 is loaded in the reactor 1. The shape, size, and configuration of the reactor 1 allows microwave irradiation to the internal catalyst 2, and allows thermal decomposition of the hydrogen-containing compound in the presence of the catalyst 2 to proceed. As long as it is, it will not specifically limit, Those skilled in the art can set suitably. For example, the reactor 1 can be composed of quartz.
Further, in the present embodiment, a configuration in which one reactor 1 is provided in the apparatus 10 is shown for easy understanding, but a configuration in which a plurality of reactors 1 are provided in the apparatus 10 may be employed.
Further, the device 10 can be configured to include a reflection thermometer 17. The reflection thermometer 17 can be used to measure the temperature (surface temperature) of the catalyst 2 heated by microwave irradiation. The reflection thermometer 17 is not particularly limited, and a known one can be used.

本実施の形態の水素製造装置10は、反応器1内の触媒2にマイクロ波を照射するマイクロ波照射部3を備えている。本実施形態の装置10において、マイクロ波照射部3は、触媒2にマルチモードでマイクロ波を照射する。マイクロ波照射部3から放射されたマイクロ波は、装置10の内部空間15において反射しながら進行し、反応器1内部の触媒2に到達する。
マイクロ波照射部3は装置10に内蔵される電源部5からマイクロ波励起電流が供給される回路構成とすることができる。また、マイクロ波照射部3から照射されるマイクロ波の出力や周波数は、装置10に内蔵される制御部7によって制御される回路構成とすることができる。なお、これらマイクロ波照射部3と電源部5、制御部7の構成は従来知られているものを使用でき、当業者が適宜設定することができる。例えば、マイクロ波照射部3は、マグネトロン等によって構成することができる。
The hydrogen production apparatus 10 of the present embodiment includes a microwave irradiation unit 3 that irradiates the catalyst 2 in the reactor 1 with microwaves. In the apparatus 10 of the present embodiment, the microwave irradiation unit 3 irradiates the catalyst 2 with microwaves in multimode. The microwave radiated from the microwave irradiation unit 3 travels while being reflected in the internal space 15 of the apparatus 10 and reaches the catalyst 2 inside the reactor 1.
The microwave irradiation unit 3 may have a circuit configuration in which a microwave excitation current is supplied from a power supply unit 5 built in the apparatus 10. Further, the output and frequency of the microwave irradiated from the microwave irradiating unit 3 can be a circuit configuration controlled by the control unit 7 built in the apparatus 10. In addition, the structure of these microwave irradiation parts 3, the power supply part 5, and the control part 7 can use what is known conventionally, and those skilled in the art can set suitably. For example, the microwave irradiation unit 3 can be configured by a magnetron or the like.

図2は、本実施形態の水素製造装置10の、図1において破線mで囲む領域を示す図である。
反応器1に装填され、マイクロ波が照射される触媒2は、ニッケル(Ni)と炭化ケイ素(SiC)とを含んで構成される。
ここで、本実施形態において、触媒2は、発熱部21と、反応促進部23とを備える。発熱部21は、炭化ケイ素を含み、マイクロ波照射部3から放射されたマイクロ波を吸収して加熱される。炭化ケイ素は、マイクロ波を吸収し自己発熱して周囲に伝熱させるサセプタ成分として寄与する。
また、反応促進部23は、ニッケルを含み、加熱された発熱部21から供給される熱によって活性化され、含水素化合物の熱分解を促進させる。ニッケルは、メタン転化率を高めるとともに、水素を高選択的に生成させることに寄与する。
反応促進部23は、反応器1内において、発熱部21と隣り合う位置に配置される。具体的には、例えば図2に示すような、反応促進部23(23a、23b)が含水素化合物を含むガスが流れる方向に沿って発熱部21(21a、21b、21c)に積層されている構成とすることができる。
なお、本明細書において、隣り合う位置に配置されるとは、発熱部21と反応促進部23とが直接的に接している場合のほか、伝熱可能である仕切り25を介して発熱部21と反応促進部23とが隣り合っている場合も含む概念である。当該仕切り25は、例えば石英ウールなどを用いて構成することができる。
FIG. 2 is a diagram showing a region surrounded by a broken line m in FIG. 1 of the hydrogen production apparatus 10 of the present embodiment.
The catalyst 2 loaded in the reactor 1 and irradiated with microwaves includes nickel (Ni) and silicon carbide (SiC).
Here, in the present embodiment, the catalyst 2 includes a heat generating part 21 and a reaction promoting part 23. The heat generating part 21 includes silicon carbide and is heated by absorbing the microwave radiated from the microwave irradiating part 3. Silicon carbide contributes as a susceptor component that absorbs microwaves and generates heat by self-heating.
The reaction promoting unit 23 contains nickel and is activated by heat supplied from the heated heat generating unit 21 to promote thermal decomposition of the hydrogen-containing compound. Nickel increases the methane conversion rate and contributes to highly selective production of hydrogen.
The reaction promoting unit 23 is disposed in the reactor 1 at a position adjacent to the heat generating unit 21. Specifically, for example, as illustrated in FIG. 2, the reaction promoting unit 23 (23 a, 23 b) is stacked on the heat generating unit 21 (21 a, 21 b, 21 c) along the direction in which the gas containing the hydrogen-containing compound flows. It can be configured.
In the present specification, the phrase “arranged at adjacent positions” refers to the case where the heat generating part 21 and the reaction promoting part 23 are in direct contact, as well as the heat generating part 21 via a partition 25 that can transfer heat. This is a concept including the case where the reaction promoting unit 23 and the reaction promoting unit 23 are adjacent. The partition 25 can be configured using, for example, quartz wool.

触媒2の製造方法は特に限定されず、当業者が適宜設定することができる。例えば、反応促進部23が含水素化合物を含むガスが流れる方向に沿って発熱部21に積層されている構成とする場合は、反応器1内において炭化ケイ素を含む粉末体とニッケルを含む粉末体とを含水素化合物のガスが流れる方向に沿って積層することにより構成することができる。
また、炭化ケイ素粉末と無機系接着材とを混ぜ、耐熱性セラミックに塗布したものを得、これを発熱部21としてニッケルを含む反応促進部23に隣り合う位置に配置してもよい。
The method for producing the catalyst 2 is not particularly limited, and can be appropriately set by those skilled in the art. For example, in the case where the reaction promoting unit 23 is configured to be stacked on the heat generating unit 21 along the direction in which the gas containing the hydrogen-containing compound flows, a powder body containing silicon carbide and a powder body containing nickel in the reactor 1 Are stacked along the direction in which the gas of the hydrogen-containing compound flows.
Alternatively, silicon carbide powder and an inorganic adhesive material may be mixed and applied to a heat-resistant ceramic, and this may be disposed as a heat generating portion 21 at a position adjacent to the reaction promoting portion 23 containing nickel.

また、本実施形態においては、触媒2における反応促進部23が、HZSM−5ゼオライトをさらに含有することが好ましい。HZSM−5ゼオライトを含むことで、生成される水素の選択性をさらに高めることができる。
また、本実施形態においては、ニッケル、炭化ケイ素、必要に応じて含有されるHZSM−5ゼオライトのほか他の成分が含有されていてもよい。具体的には、触媒の成形性を高めることができる炭化モリブデンなどを挙げることができる。当該炭化モリブデンは、例えば反応促進部23に含有されるようにすることができる。
本実施形態において、触媒2を構成する成分の比率は特に限定されず当業者が適宜設定することができる。反応器1に装填される触媒2の量なども特に限定されない。また、触媒2を例えば図2に示すような複数の反応促進部23や複数の発熱部21によって構成する場合の、これらの重量や体積での比率も、適宜設定することができる。なお、触媒2の活性をより長く維持できるようにする観点から、触媒2は、炭化ケイ素を含む発熱部とニッケルおよびHZSM−5ゼオライトを含む反応促進部を含み、且つ触媒2全体に対しニッケルの割合が20質量%以上(より好ましくは30質量%以上)であることが好ましい。
Moreover, in this embodiment, it is preferable that the reaction promotion part 23 in the catalyst 2 further contains HZSM-5 zeolite. By including HZSM-5 zeolite, the selectivity of the produced hydrogen can be further increased.
Moreover, in this embodiment, other components may be contained in addition to nickel, silicon carbide, and HZSM-5 zeolite contained as necessary. Specific examples include molybdenum carbide that can improve the moldability of the catalyst. The molybdenum carbide can be contained in the reaction promoting unit 23, for example.
In this embodiment, the ratio of the component which comprises the catalyst 2 is not specifically limited, Those skilled in the art can set suitably. The amount of the catalyst 2 loaded in the reactor 1 is not particularly limited. Further, when the catalyst 2 is constituted by a plurality of reaction promoting portions 23 and a plurality of heat generating portions 21 as shown in FIG. 2, for example, the ratios in weight and volume can also be set as appropriate. From the viewpoint of maintaining the activity of the catalyst 2 for a longer time, the catalyst 2 includes a heat generating portion containing silicon carbide, a reaction promoting portion containing nickel and HZSM-5 zeolite, and nickel as a whole with respect to the catalyst 2. The ratio is preferably 20% by mass or more (more preferably 30% by mass or more).

本実施形態の水素製造装置10では、水素原料として、含水素化合物を含むガスを用いる。含水素化合物として、具体的には、メタン(CH)、エタン(C)、プロパン(CHCHCH)、ブタン(C10)、ベンゼン(C)、トルエン(C)、キシレン(C)等の炭化水素化合物や、硫化水素(H2S)などを挙げることができる。また、本実施形態の水素製造装置の反応器1内に供給されるガスは、含水素化合物を1種または複数種含んでいてもよい。 In the hydrogen production apparatus 10 of this embodiment, a gas containing a hydrogen-containing compound is used as a hydrogen source. Specific examples of the hydrogen-containing compound include methane (CH 4 ), ethane (C 2 H 6 ), propane (CH 3 CH 2 CH 3 ), butane (C 4 H 10 ), benzene (C 6 H 6 ), Examples thereof include hydrocarbon compounds such as toluene (C 7 H 8 ) and xylene (C 6 H 4 ), hydrogen sulfide (H 2 S), and the like. Moreover, the gas supplied into the reactor 1 of the hydrogen production apparatus of the present embodiment may contain one or more hydrogen-containing compounds.

本実施形態において、含水素化合物を含むガスを反応器1に供給する態様については特に限定されず、ガスボンベやパイプラインから供給する形式など、適宜設定することができる。   In the present embodiment, the aspect of supplying the gas containing the hydrogen-containing compound to the reactor 1 is not particularly limited, and a mode of supplying from a gas cylinder or a pipeline can be appropriately set.

図3は、本実施形態の水素製造装置10において水素を製造する際の処理フローの一例を示す図である。
まず、ステップS1において、導入部1Aから反応器1内に含水素化合物を含むガスを供給し、反応容器1の内部の空気をすべて当該ガスに置き換える。反応器1内に流入させる含水素化合物を含むガスの圧力は、ガスの種類や反応容器1内に装填される触媒2の体積、反応器1の大きさ等に応じて適宜設定することができる。
次に、ステップS2において、マイクロ波照射部3からマルチモードでマイクロ波を反応器1内の触媒2に対して照射し、触媒2を加熱によって活性化するとともに、当該活性化された触媒2の存在下において接触するガスに含まれる含水素化合物の熱分解を進行させる。
マイクロ波照射部3から照射されるマイクロ波の出力および周波数については、マルチモードでの照射であって触媒2を活性化して含水素化合物を熱分解できる限り特に限定されず、当業者が適宜設定できる。例えば、発振出力を1000Wと、発振周波数を2.45GHzとすることができる。
また、触媒2は、マイクロ波照射により、含水素化合物の種類等にも因るが、例えば500〜800℃に加熱される。なお、本実施形態に係る含水素化合物の熱分解においては、当該触媒2の表面温度を反応温度とすることができる。当該反応温度は、例えば装置10が備える放射温度計17によって測定することができる。
続いて、ステップS3において、導出部1Bを介してステップS2において生成された水素を反応器1から取り出す。
FIG. 3 is a diagram showing an example of a processing flow when hydrogen is produced in the hydrogen production apparatus 10 of the present embodiment.
First, in step S1, a gas containing a hydrogen-containing compound is supplied from the introduction unit 1A into the reactor 1, and all the air inside the reaction vessel 1 is replaced with the gas. The pressure of the gas containing the hydrogen-containing compound flowing into the reactor 1 can be appropriately set according to the type of gas, the volume of the catalyst 2 loaded in the reaction vessel 1, the size of the reactor 1, and the like. .
Next, in step S2, microwaves are irradiated from the microwave irradiation unit 3 to the catalyst 2 in the reactor 1 in a multimode, the catalyst 2 is activated by heating, and the activated catalyst 2 is activated. In the presence, the thermal decomposition of the hydrogen-containing compound contained in the contacting gas is allowed to proceed.
The output and frequency of the microwave irradiated from the microwave irradiation unit 3 are not particularly limited as long as it is irradiation in multimode and the catalyst 2 can be activated to thermally decompose the hydrogen-containing compound. it can. For example, the oscillation output can be 1000 W and the oscillation frequency can be 2.45 GHz.
Further, the catalyst 2 is heated to, for example, 500 to 800 ° C. by microwave irradiation, depending on the type of the hydrogen-containing compound. In the thermal decomposition of the hydrogen-containing compound according to this embodiment, the surface temperature of the catalyst 2 can be set as the reaction temperature. The said reaction temperature can be measured with the radiation thermometer 17 with which the apparatus 10 is equipped, for example.
Subsequently, in step S3, the hydrogen generated in step S2 is taken out from the reactor 1 through the derivation unit 1B.

本実施形態の水素製造装置10は、様々なシステムへの適用が可能である。例えば、燃料電池発電システムの水素供給源として利用することができる。
図4は本実施形態の水素製造装置10を利用した燃料電池発電システムの構成の一例を示している。燃料電池発電システムは、例えば、本実施形態の水素製造装置10と、ガス供給部200と、燃料電池ユニット300とを含んで構成することができる。なお、図1と同様に、ガスの流れを実線で示す。
ガス供給部200は、ガスチューブ等を介して水素製造装置10が有する導入部1Aに接続される。また、燃料電池ユニット300は、アノード310とカソード300を備えて形成される。アノード310と水素製造装置10の導出部1Bとはガスチューブ等を介して接続されており、水素製造装置10で製造された水素はアノード310に供給される。このようにアノード310に水素が供給されると、当該水素とカソード330に供給される空気中の酸素とが電気化学的反応をして発電する。
なお、ガス供給部200は例えばガスボンベ等とすることができ、また、燃料電池ユニット300も公知である種々の方式が採用できる。また、水素製造装置10と燃料電池ユニット14との間には、生成された水素の温度を低下させることのできる冷却部が設けられていてもよい。
The hydrogen production apparatus 10 of this embodiment can be applied to various systems. For example, it can be used as a hydrogen supply source of a fuel cell power generation system.
FIG. 4 shows an example of the configuration of a fuel cell power generation system using the hydrogen production apparatus 10 of the present embodiment. The fuel cell power generation system can be configured to include, for example, the hydrogen production apparatus 10 of the present embodiment, the gas supply unit 200, and the fuel cell unit 300. As in FIG. 1, the gas flow is shown by a solid line.
The gas supply unit 200 is connected to the introduction unit 1A of the hydrogen production apparatus 10 through a gas tube or the like. The fuel cell unit 300 includes an anode 310 and a cathode 300. The anode 310 and the lead-out unit 1B of the hydrogen production apparatus 10 are connected via a gas tube or the like, and the hydrogen produced by the hydrogen production apparatus 10 is supplied to the anode 310. When hydrogen is supplied to the anode 310 in this way, the hydrogen and oxygen in the air supplied to the cathode 330 undergo an electrochemical reaction to generate power.
The gas supply unit 200 can be a gas cylinder, for example, and the fuel cell unit 300 can employ various known methods. Further, a cooling unit that can lower the temperature of the generated hydrogen may be provided between the hydrogen production apparatus 10 and the fuel cell unit 14.

本実施形態においては、含水素化合物の熱分解において、ニッケルと炭化ケイ素とを含む触媒を用いて反応を促進し、水素を生成する。
当該触媒を用いることにより、本実施形態においては、反応生成物中の水素の選択性が極めて高く、また、メタンの工業反応で主に利用される水蒸気改質反応(CH4 + H2O → 3H2+ CO)において反応を進行させるために必要なスチーム成分(H2O)を必要としない。そのため、本実施形態においては、副生物(例えばメタンなどの炭化水素ガスを含水素化合物として用いる場合には、COやCO2、エチレンやエタン等)の発生を抑えることができる。
また、副生物の発生を抑えてメタン等から水素を製造できることは、メタンを主成分とする天然ガス、メタンハイドレート、シェールガス、バイオガスなど多くの低炭素原料からの高純度水素への転換技術として広く応用が期待される。特に本実施形態の水素製造装置においてバイオガスに含まれるメタンの分解に用いた場合、天然ガス精製設備がある海浜地域のみならず、都市部や山間部などに点在する下水処理施設や畜産農家などから生じるガスにも利用でき、電気エネルギー供給を図ることができる。このように、本実施形態は、国内のエネルギー供給問題に対して大きく改善できる技術へと発展する可能性がある。
In the present embodiment, in the thermal decomposition of the hydrogen-containing compound, the reaction is promoted using a catalyst containing nickel and silicon carbide to generate hydrogen.
By using the catalyst, in this embodiment, the selectivity of hydrogen in the reaction product is extremely high, and the steam reforming reaction (CH 4 + H 2 O → mainly used in the industrial reaction of methane) 3H 2 + CO) does not require the steam component (H 2 O) necessary for the reaction to proceed. Therefore, in this embodiment, generation of by-products (for example, when hydrocarbon gas such as methane is used as a hydrogen-containing compound, CO, CO 2 , ethylene, ethane, etc.) can be suppressed.
In addition, the ability to produce hydrogen from methane, etc. while suppressing the generation of by-products is the conversion of high-purity hydrogen from many low-carbon raw materials such as methane-based natural gas, methane hydrate, shale gas, and biogas. Wide application as a technology is expected. In particular, when used for decomposing methane contained in biogas in the hydrogen production apparatus of the present embodiment, sewage treatment facilities and livestock farmers scattered not only in beach areas where natural gas purification facilities are located but also in urban areas and mountainous areas. It can also be used for gas generated from the above, and electric energy can be supplied. As described above, the present embodiment may be developed into a technology that can greatly improve the domestic energy supply problem.

また、本実施形態においては、マルチモードでマイクロ波を照射する。そのため、シングルモードでのマイクロ波照射の場合と比較して、装置全体を小さくすることも可能である。また、マルチモードでマイクロ波を照射するので、マルチモードは加熱されている触媒に対して、複数の箇所から反射式温度計等を用いて温度を測定することができる。そのため、安定なメタンの熱分解反応を維持しやすい。さらに、マルチモードでのマイクロ波照射であることにより、触媒の交換など、操作性(ハンドリング性)を高めることも容易である。   In the present embodiment, microwaves are irradiated in a multimode. Therefore, it is possible to make the entire apparatus smaller as compared with the case of microwave irradiation in a single mode. In addition, since the microwave is irradiated in the multi mode, the multi mode can measure the temperature of the heated catalyst from a plurality of locations using a reflection thermometer or the like. Therefore, it is easy to maintain a stable thermal decomposition reaction of methane. Furthermore, it is easy to improve operability (handling properties) such as catalyst exchange by microwave irradiation in multimode.

さらにまた、本実施形態においては、触媒が、炭化ケイ素を含み、マイクロ波を吸収して加熱される発熱部21と、当該発熱部21とは独立して存在する、ニッケルを含み、発熱部21から伝わる熱によって活性化されて含水素化合物の熱分解を促進させる反応促進部とを含む構成としている。
当該構成を備えることで、マルチモードでのマイクロ波照射によるガスに含まれる含水素化合物の熱分解において、触媒の寿命をさらに長くすることができる。その結果、より長い時間の安定した水素の製造を可能とすることができる。
よって、本実施形態によれば、メタン等の含水素化合物を含むガスを原料とした水素製造の実用化に大きく貢献できると考えられる。
Furthermore, in the present embodiment, the catalyst includes silicon carbide, includes a heat generating portion 21 that is heated by absorbing microwaves, and nickel that is present independently of the heat generating portion 21. And a reaction accelerating portion that is activated by heat transmitted from the substrate to promote thermal decomposition of the hydrogen-containing compound.
By providing the structure, the life of the catalyst can be further extended in the thermal decomposition of the hydrogen-containing compound contained in the gas by the microwave irradiation in multimode. As a result, stable production of hydrogen for a longer time can be enabled.
Therefore, according to this embodiment, it is thought that it can contribute greatly to the practical use of hydrogen production using a gas containing a hydrogen-containing compound such as methane as a raw material.

以下実施例により本発明をさらに詳しく説明するが、本発明は実施例のみに限られるものではない。
以下に示すように、本実施形態の水素製造装置に係る触媒を調製し、水素生成に係る試験に供した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
As shown below, the catalyst which concerns on the hydrogen production apparatus of this embodiment was prepared, and it used for the test which concerns on hydrogen production | generation.

実施例1に係る触媒
ニッケル(Ni)粉末、HZSM−5ゼオライト(HZSM−5)粉末、および炭化モリブデン(MoC)粉末を物理混合した(当該粉末を以下NHM粉末と称す)。次いで、反応器1としての反応管内において、NHM粉末と炭化ケイ素(SiC)粉末をメタンが流れる方向に沿って、仕切り25としての石英ウールを介し、図2に示すとおり積層し、触媒を構成した。
各成分の比率は、触媒全体に対して、SiC:30質量%、MoC:2.1質量%、Ni:30質量%、HZSM−5:37.9質量%である。
また、触媒における発熱部(21a、21b、21c)および反応促進部(23a、23b)の重量は以下のとおりである。
21a:0.65g、21b:2.8g、21c:2.61g、23a:7.4g、23b:4.78g
Catalyst according to Example 1 Nickel (Ni) powder, HZSM-5 zeolite (HZSM-5) powder, and molybdenum carbide (Mo 2 C) powder were physically mixed (the powder is hereinafter referred to as NHM powder). Next, in the reaction tube as the reactor 1, NHM powder and silicon carbide (SiC) powder were laminated along the direction in which methane flows through quartz wool as the partition 25 as shown in FIG. .
The ratio of each component, relative to the total catalyst, SiC: 30 wt%, Mo 2 C: 2.1 wt%, Ni: 30 wt%, HZSM-5: a 37.9 mass%.
Further, the weights of the heat generating portions (21a, 21b, 21c) and the reaction promoting portions (23a, 23b) in the catalyst are as follows.
21a: 0.65 g, 21b: 2.8 g, 21c: 2.61 g, 23a: 7.4 g, 23b: 4.78 g

比較例1に係る触媒
SiC:30質量%、MoC:2.1質量%、Ni:30質量%、HZSM−5:37.9質量%の割合で各成分の粉末を混合したもの(18.37g、容積20mL)を反応管内に装填し、触媒とした。
Catalyst according to Comparative Example 1 SiC: 30% by mass, Mo 2 C: 2.1% by mass, Ni: 30% by mass, HZSM-5: 37.9% by mass, with each component powder mixed (18 .37 g, volume 20 mL) was charged into the reaction tube to form a catalyst.

反応試験
マルチモード式のマイクロ波反応装置(四国計測工業(株)μ Reactor Ex)を用いて反応試験を行なった。当該マイクロ波反応装置のスペックを以下に示す。また、含水素化合物を含むガスとして、メタンガスを用いた。
発振周波数:2.45GHz
出力:1000W
温度検出:放射温度計によりマイクロ波の出力を制御
寸法・重量:
外形寸法 520W×425D×439H(25kg)
庫内寸法 280W×280D×250H
Reaction test The reaction test was conducted using a multi-mode microwave reactor (Shikoku Keiki Kogyo Co., Ltd. μ Reactor Ex). The specifications of the microwave reactor are shown below. Moreover, methane gas was used as gas containing a hydrogen-containing compound.
Oscillation frequency: 2.45GHz
Output: 1000W
Temperature detection: Control of microwave output by radiation thermometer Dimensions and weight:
External dimensions 520W × 425D × 439H (25kg)
Inside dimensions 280W × 280D × 250H

実施例1または比較例1に係る触媒を装填した反応管をマイクロ波反応装置に設けた含水素化合物を含むガスの導入部および生成ガスの導出部に装着した。
導入部からメタンガスを10 ml/minで導入するとともに、マルチモードで反応管内の触媒に対しマイクロ波照射を行い、反応させた。反応温度は触媒の表面温度を放射温度計で計測し、650℃に設定した。反応生成物は導出部からオンラインでガスクロマトグラフに接続して定量し、水素選択率(Selectivity)、水素収率(H yield)を求めた。
なお、各値は次のように定義した。
A reaction tube loaded with the catalyst according to Example 1 or Comparative Example 1 was attached to a gas introduction unit and a product gas extraction unit including a hydrogen-containing compound provided in the microwave reactor.
Methane gas was introduced at 10 ml / min from the introduction part, and the catalyst in the reaction tube was irradiated with microwaves in a multimode to cause a reaction. The reaction temperature was set at 650 ° C. by measuring the surface temperature of the catalyst with a radiation thermometer. The reaction product was quantified by connecting to a gas chromatograph online from the derivation unit, and the hydrogen selectivity (Selectivity) and hydrogen yield (H yield) were determined.
Each value was defined as follows.

実施例1の水素選択率および水素収率に関するグラフを図5、6に、また、比較例1の水素選択率および水素収率に関するグラフを図7、8に示す。実施例においては、装置を一端停止して一晩置いた後、次の日に再度装置を稼動させ、反応を続行した。1〜5日目それぞれの計測結果をRun1〜5として示す。
なお、図5、6においては、2日目以降の操作開始直後の水素の収率や水素選択率が他の時点よりも低い場合も併せて示している。これは、触媒の温度が反応が安定的に進む温度に達する前であることや装置停止中における触媒の吸湿などの影響により、触媒の活性化前であることによるものである。すなわち、2日目以降の操作開始直後の水素の収率や水素選択率が他の時点よりも低い値は本実施形態に係る水素製造の実行前の値であり、実施例の結果とみなされるものでないことは、当業者は当然に理解できる。
実施例1は、比較例1と比較し、反応時間全体にわたって良好な水素選択性を示した。また、比較例1は反応開始から300分経過後に水素の収率が大きく減少したが、実施例1は300分経過後もおよそ93%の安定した水素の収率を維持していた。
Graphs relating to hydrogen selectivity and hydrogen yield of Example 1 are shown in FIGS. 5 and 6, and graphs relating to hydrogen selectivity and hydrogen yield of Comparative Example 1 are shown in FIGS. In the examples, the apparatus was stopped once and left overnight, and then the apparatus was operated again the next day to continue the reaction. The measurement results on the first to fifth days are shown as Run 1 to 5, respectively.
5 and 6 also show cases where the hydrogen yield and hydrogen selectivity immediately after the start of the operation on the second day and after are lower than those at other points in time. This is due to the fact that the temperature of the catalyst has not yet reached the temperature at which the reaction proceeds stably and that the catalyst has not yet been activated due to the influence of moisture absorption of the catalyst while the apparatus is stopped. That is, the values of hydrogen yield and hydrogen selectivity immediately after the start of operation on and after the second day are lower than those at other time points are values before the execution of hydrogen production according to this embodiment, and are regarded as the results of the examples. Those skilled in the art can naturally understand that this is not the case.
Example 1 compared to Comparative Example 1 showed good hydrogen selectivity over the entire reaction time. In Comparative Example 1, the yield of hydrogen was greatly reduced after 300 minutes from the start of the reaction, but Example 1 maintained a stable hydrogen yield of approximately 93% after 300 minutes.

以上、本実施形態の水素製造装置について、実施例を挙げて説明した。但し、本発明はこれに限定されず、他の態様とすることも、もちろん可能である。
例えば、触媒の構成について、反応促進部23が含水素化合物を含むガスが流れる方向に沿って発熱部21に積層されている場合を挙げて説明したが、発熱部21と反応促進部23の配置は、他の構成とすることも、もちろん可能である。
例えば、含水素化合物を含むガスが流れる方向とは垂直な面(図1における破線bb’に沿った面)において、反応促進部23と発熱部21とが例えば同心円状または同心の多角形状等で交互に繰り返し配置されるようにしてもよい(図9、図10)。さらにまた、含水素化合物を含むガスが流れる方向とは垂直な面において、円形あるいは多角形状の反応促進部23が発熱部21中に点在するように配置することもできる(図11)。さらにまた、含水素化合物を含むガスが流れる方向とは垂直な面において、反応促進部23と発熱部21とが円周方向に交互に並び、反応促進部23と発熱部21それぞれが放射状に延びる配置とすることもできる(図12)。
The hydrogen production apparatus of this embodiment has been described with reference to the examples. However, this invention is not limited to this, Of course, it is also possible to set it as another aspect.
For example, the structure of the catalyst has been described with reference to the case where the reaction promoting unit 23 is stacked on the heat generating unit 21 along the direction in which the gas containing the hydrogen-containing compound flows, but the arrangement of the heat generating unit 21 and the reaction promoting unit 23 is described. Of course, other configurations are possible.
For example, the reaction promoting portion 23 and the heat generating portion 21 are, for example, concentric or concentric polygons on a plane perpendicular to the direction in which the gas containing the hydrogen-containing compound flows (the plane along the broken line bb ′ in FIG. 1). You may make it arrange | position repeatedly alternately (FIG. 9, FIG. 10). Furthermore, the reaction promoting portions 23 having a circular shape or a polygonal shape can be arranged so as to be scattered in the heat generating portion 21 on a plane perpendicular to the direction in which the gas containing the hydrogen-containing compound flows (FIG. 11). Furthermore, the reaction promoting portions 23 and the heat generating portions 21 are alternately arranged in the circumferential direction on a plane perpendicular to the direction in which the gas containing the hydrogen-containing compound flows, and the reaction promoting portions 23 and the heat generating portions 21 extend radially. It can also be arranged (FIG. 12).

Claims (12)

その内部に炭化ケイ素およびニッケルを含む触媒が装填されており、含水素化合物を含むガスが供給される反応器と、
前記反応器内の前記触媒にマルチモードでマイクロ波を照射するマイクロ波照射部と、を備え、
前記マイクロ波照射部によるマルチモードでのマイクロ波照射によって加熱されることにより活性化された前記触媒の存在下で前記含水素化合物の熱分解を進行させて水素を生成し、
前記触媒が、前記炭化ケイ素を含む粉末体からなり、マイクロ波を吸収して加熱される発熱部と、ニッケルを含む粉末体からなり、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを含んで構成され、
前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている水素製造装置。
A reactor in which a catalyst containing silicon carbide and nickel is loaded, and a gas containing a hydrogen-containing compound is supplied;
A microwave irradiation unit that irradiates the catalyst in the reactor with microwaves in multimode, and
In the presence of the catalyst activated by being heated by microwave irradiation in multimode by the microwave irradiation unit, the thermal decomposition of the hydrogen-containing compound proceeds to generate hydrogen,
The catalyst is made of a powder body containing the silicon carbide, is composed of a heat generating part that is heated by absorbing microwaves, and is made of a powder body containing nickel, and is disposed at a position adjacent to the heat generating part and heated. A reaction promoting part that is activated by heat supplied from the heat generating part and promotes thermal decomposition of the hydrogen-containing compound,
The hydrogen production apparatus, wherein the reaction promoting unit is stacked on the heat generating unit along a direction in which a gas containing the hydrogen-containing compound flows.
前記発熱部と前記反応促進部との間に、伝熱可能である仕切りが設けられている、請求項1に記載の水素製造装置。   The hydrogen production apparatus according to claim 1, wherein a partition capable of transferring heat is provided between the heat generating unit and the reaction promoting unit. 前記反応促進部がHZSM−5ゼオライトをさらに含む請求項1または2に記載の水素製造装置。   The hydrogen production apparatus according to claim 1 or 2, wherein the reaction promoting unit further includes HZSM-5 zeolite. 前記含水素化合物がメタンである請求項1から3のいずれか1つに記載の水素製造装置。   The hydrogen production apparatus according to any one of claims 1 to 3, wherein the hydrogen-containing compound is methane. 炭化ケイ素およびニッケルを含む触媒に対してマルチモードでマイクロ波を照射することにより加熱して前記触媒を活性化し、
活性化された前記触媒の存在下で前記触媒に接触するガスに含まれる含水素化合物の熱分解を進行させ、水素を生成することを含み、
前記触媒が、前記炭化ケイ素を含む粉末体からなり、マイクロ波を吸収して加熱される発熱部と、ニッケルを含む粉末体からなり、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを含んで構成され、
前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている水素製造方法。
The catalyst comprising silicon carbide and nickel is heated by irradiating with microwaves in multimode to activate the catalyst,
Proceeding thermal decomposition of a hydrogen-containing compound contained in a gas that contacts the catalyst in the presence of the activated catalyst to generate hydrogen,
The catalyst is made of a powder body containing the silicon carbide, is composed of a heat generating part that is heated by absorbing microwaves, and is made of a powder body containing nickel, and is disposed at a position adjacent to the heat generating part and heated. A reaction promoting part that is activated by heat supplied from the heat generating part and promotes thermal decomposition of the hydrogen-containing compound,
The method for producing hydrogen, wherein the reaction promoting part is stacked on the heat generating part along a direction in which a gas containing the hydrogen-containing compound flows.
前記発熱部と前記反応促進部との間に、伝熱可能である仕切りが設けられている、請求項5に記載の水素製造方法The hydrogen production method according to claim 5, wherein a partition capable of transferring heat is provided between the heat generating part and the reaction promoting part. 前記触媒がHZSM−5ゼオライトをさらに含む請求項5または6に記載の水素製造方法。   The method for producing hydrogen according to claim 5 or 6, wherein the catalyst further contains HZSM-5 zeolite. 前記含水素化合物がメタンである請求項5から7のいずれか1つに記載の水素製造方法。   The method for producing hydrogen according to claim 5, wherein the hydrogen-containing compound is methane. 接触するガスに含まれる含水素化合物の分解による水素製造用触媒であって、
炭化ケイ素を含む粉末体からなり、マイクロ波を吸収して加熱される発熱部と、
ニッケルを含む粉末体からなり、前記発熱部と隣り合う位置に配置され、加熱された前記発熱部から供給される熱によって活性化されて前記含水素化合物の熱分解を促進させる反応促進部とを備え、
前記反応促進部が前記含水素化合物を含むガスが流れる方向に沿って前記発熱部に積層されている水素製造用触媒。
A catalyst for producing hydrogen by decomposition of a hydrogen-containing compound contained in a gas to be contacted,
A heat generating part made of a powder body containing silicon carbide and heated by absorbing microwaves,
A reaction accelerator made of a powder containing nickel, disposed at a position adjacent to the heat generating part, and activated by heat supplied from the heated heat generating part to promote thermal decomposition of the hydrogen-containing compound; Prepared,
The catalyst for hydrogen production, wherein the reaction promoting part is stacked on the heat generating part along a direction in which a gas containing the hydrogen-containing compound flows.
前記発熱部と前記反応促進部との間に、伝熱可能である仕切りが設けられている、請求項9に記載の水素製造用触媒。   The hydrogen production catalyst according to claim 9, wherein a partition capable of transferring heat is provided between the heat generating part and the reaction promoting part. 前記反応促進部がHZSM−5ゼオライトをさらに含む請求項9または10に記載の水素製造用触媒。   The catalyst for hydrogen production according to claim 9 or 10, wherein the reaction promoting part further contains HZSM-5 zeolite. 前記含水素化合物がメタンである請求項9から11のいずれか1つに記載の水素製造用触媒。   The catalyst for hydrogen production according to any one of claims 9 to 11, wherein the hydrogen-containing compound is methane.
JP2013175945A 2013-08-27 2013-08-27 Hydrogen production apparatus and hydrogen production method Active JP6209398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013175945A JP6209398B2 (en) 2013-08-27 2013-08-27 Hydrogen production apparatus and hydrogen production method
PCT/JP2014/004241 WO2015029377A1 (en) 2013-08-27 2014-08-20 Hydrogen generation device and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175945A JP6209398B2 (en) 2013-08-27 2013-08-27 Hydrogen production apparatus and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2015044702A JP2015044702A (en) 2015-03-12
JP6209398B2 true JP6209398B2 (en) 2017-10-04

Family

ID=52585969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175945A Active JP6209398B2 (en) 2013-08-27 2013-08-27 Hydrogen production apparatus and hydrogen production method

Country Status (2)

Country Link
JP (1) JP6209398B2 (en)
WO (1) WO2015029377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221733A (en) * 2014-05-22 2015-12-10 独立行政法人国立高等専門学校機構 Graphene production device and method for producing graphene

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200711B2 (en) * 2013-07-19 2017-09-20 国立研究開発法人宇宙航空研究開発機構 Hydrogen production apparatus and hydrogen production method
TWI608991B (en) * 2016-08-04 2017-12-21 陳昱煒 Microwave-assisted method and apparatus for producing hydrogen
GB201620667D0 (en) * 2016-12-05 2017-01-18 Univ Oxford Innovation Ltd Process
CN107892930B (en) * 2017-11-06 2019-10-29 南昌大学 A kind of method of fruit stone class waste fast pyrolysis oil production
CN107828431B (en) * 2017-11-06 2019-10-01 南昌大学 A kind of method of the microwave-assisted converting fuel oil of shell class waste
CN107723015B (en) * 2017-11-06 2020-03-13 南昌大学 Downdraft type device for fast pyrolysis of biomass
CN107652995B (en) * 2017-11-06 2019-10-01 南昌大学 A kind of method that vinasse fast pyrogenation prepares biological flue gas
EP4003908A1 (en) * 2019-07-23 2022-06-01 Oxford University Innovation Limited Process
CN110980639B (en) * 2019-12-31 2021-10-26 湘潭大学 Method for directly producing hydrogen by methane conversion under microwave catalysis
CN113117712B (en) * 2021-04-16 2022-11-01 湘潭大学 Methane dry reforming reaction under microwave condition and catalyst thereof
JPWO2023276677A1 (en) 2021-06-29 2023-01-05

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075869B2 (en) * 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
JP2012097015A (en) * 2010-11-01 2012-05-24 National Institute Of Advanced Industrial Science & Technology Method for producing cycloalkyl benzene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221733A (en) * 2014-05-22 2015-12-10 独立行政法人国立高等専門学校機構 Graphene production device and method for producing graphene

Also Published As

Publication number Publication date
WO2015029377A1 (en) 2015-03-05
JP2015044702A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP6209398B2 (en) Hydrogen production apparatus and hydrogen production method
JP6200711B2 (en) Hydrogen production apparatus and hydrogen production method
Kelly et al. Nitrogen fixation in an electrode-free microwave plasma
Mehta et al. Catalysis enabled by plasma activation of strong chemical bonds: a review
Lebouvier et al. Assessment of carbon dioxide dissociation as a new route for syngas production: a comparative review and potential of plasma-based technologies
Buelens et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle
Heijkers et al. CO2 conversion in a microwave plasma reactor in the presence of N2: Elucidating the role of vibrational levels
Zhang et al. Influence of the material dielectric constant on plasma generation inside catalyst pores
Snoeckx et al. Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale
Li et al. Carbon dioxide reforming of methane using DC corona discharge plasma reaction
Liu et al. Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model
Chen et al. Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing
Sun et al. Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol
Muley et al. Microwave-assisted heterogeneous catalysis
Duan et al. Degradation of CO2 through dielectric barrier discharge microplasma
Tan et al. Electrocatalytic reduction of carbon dioxide to methane on single transition metal atoms supported on a defective boron nitride monolayer: First principle study
Wittreich et al. Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain
Lee et al. Plasma-catalyst hybrid methanol-steam reforming for hydrogen production
Pacheco et al. Greenhouse gas treatment and H2 production, by warm plasma reforming
KR101446118B1 (en) Plasma reactor for easily injecting modified target materials inside swirl shaped plasma
JP6234681B2 (en) Ammonia synthesis method
Chiremba et al. Direct nonoxidative conversion of methane to hydrogen and higher hydrocarbons by dielectric barrier discharge plasma with plasma catalysis promoters
Zhao et al. Microwave-enhanced hydrogen production: a review
Ambrosetti A perspective on power-to-heat in catalytic processes for decarbonization
Zhou et al. Direct decomposition of CO2 using self‐cooling dielectric barrier discharge plasma

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6209398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250