JP2014531550A - Bypass steam line - Google Patents

Bypass steam line Download PDF

Info

Publication number
JP2014531550A
JP2014531550A JP2014527565A JP2014527565A JP2014531550A JP 2014531550 A JP2014531550 A JP 2014531550A JP 2014527565 A JP2014527565 A JP 2014527565A JP 2014527565 A JP2014527565 A JP 2014527565A JP 2014531550 A JP2014531550 A JP 2014531550A
Authority
JP
Japan
Prior art keywords
mixing
mixing unit
flow
steam
laval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014527565A
Other languages
Japanese (ja)
Other versions
JP5739070B2 (en
Inventor
ペーター・ベレンブリンク
フランク・ダイドヴィヒ
ホルガー・ゲダニッツ
ディルク・ハックリーデ
マリオ・ケーベー
ベルント・プラデ
ホルスト・ウーヴェ・ラウ
シュテファン・シェスターク
Original Assignee
シーメンス アクティエンゲゼルシャフト
シーメンス アクティエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーメンス アクティエンゲゼルシャフト, シーメンス アクティエンゲゼルシャフト filed Critical シーメンス アクティエンゲゼルシャフト
Publication of JP2014531550A publication Critical patent/JP2014531550A/en
Application granted granted Critical
Publication of JP5739070B2 publication Critical patent/JP5739070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • B01F23/21321High pressure atomization, i.e. the liquid is atomized and sprayed by a jet at high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3123Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements
    • B01F25/31232Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/91Heating or cooling systems using gas or liquid injected into the material, e.g. using liquefied carbon dioxide or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • F22G5/126Water injection apparatus in combination with steam-pressure reducing valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Abstract

本発明は、バイパスステーションにおいて水を蒸気に混合するための混合ユニット(1)に関し、複数のラバルノズル(5,5a,5b,...)が混合ユニット(1)に配置され、ラバルノズル(5,5a,5b,...)が互いに対して水蒸気方向において軸方向に移動し、その結果騒音放射が全体的に低減される。The present invention relates to a mixing unit (1) for mixing water with steam in a bypass station, wherein a plurality of Laval nozzles (5, 5a, 5b, ...) are arranged in the mixing unit (1), 5a, 5b,.

Description

本発明は、流れ媒体を冷却媒体と混合するための混合ユニットに関連し、該混合ユニットは、混合部が流体的に連結されたパイプ導管部を備え、混合部は、複数のラバルノズルを備え、それらを通り流れ媒体が流れることができ、冷却媒体が流れる噴射ダクトがラバルノズルに形成され、それにより流れ媒体と冷却媒体の混合が行われる。   The present invention relates to a mixing unit for mixing a flow medium with a cooling medium, the mixing unit comprising a pipe conduit part to which the mixing part is fluidly connected, the mixing part comprising a plurality of Laval nozzles, A flow medium can flow therethrough, and an injection duct through which the cooling medium flows is formed in the Laval nozzle, whereby the flow medium and the cooling medium are mixed.

蒸気発電所において、蒸気が蒸気発生器で生成され、蒸気発生器に流体的に連結されたターボセットで蒸気の熱エネルギーを回転エネルギーに変換する。回転エネルギーは、最後に電気エネルギーに変換される。蒸気発電所が連続的に運転し、かつ発電機への負荷が比較的一定である限り、熱力学的条件は、長期間にわたり比較的一定である。   In a steam power plant, steam is generated by a steam generator, and the heat energy of the steam is converted into rotational energy by a turbo set fluidly connected to the steam generator. The rotational energy is finally converted into electrical energy. As long as the steam power plant operates continuously and the load on the generator is relatively constant, the thermodynamic conditions are relatively constant over time.

しかし、蒸気発電所が負荷状態を迅速に変更するよう適合されなければならないという状況がある。例えばある事態が発生し、かつネットワークから発電機が突然分離されなければならないということがある。また蒸気発電所が予期せず全負荷から部分負荷に変更しなければならないということが起こる場合がある。このような負荷変化は、蒸気発電所全体を制御するための技術に対する挑戦である。負荷変化の状況に迅速に従う、または対抗する1つの可能性は、蒸気発生器によって発生し、かつ連続運転または全負荷運転中に高圧サブタービンに直接流れる蒸気を、バイパスステーションを介して凝縮器に直接送るということである。このバイパスステーションにおいて、非常に熱い蒸気を水と混合し、それにより蒸気の熱力学的条件を変更する装置が設けられる。従来技術によると、これは、水が蒸気に噴出される噴射ダクトを有するラバルノズルに配置されるバイパスステーションにおいて行われる。   However, there are situations in which steam power plants must be adapted to change load conditions quickly. For example, a situation may occur and the generator must be suddenly disconnected from the network. It may also happen that a steam power plant has to unexpectedly change from full load to partial load. Such load changes are a challenge to technology to control the entire steam power plant. One possibility to quickly follow or counter the load change situation is that the steam generated by the steam generator and flowing directly to the high pressure sub-turbine during continuous or full load operation is passed to the condenser via the bypass station. Send directly. In this bypass station, a device is provided for mixing very hot steam with water, thereby changing the thermodynamic conditions of the steam. According to the prior art, this is done in a bypass station arranged in a Laval nozzle with an injection duct through which water is jetted into steam.

しかしこれにより、騒音放射が比較的高いということが示される。さらに、温度分配が十分な一様でなく、それにより部分負荷下において非最適な運転状態をまねくことが示されている。   However, this indicates that the noise emission is relatively high. Furthermore, it has been shown that the temperature distribution is not sufficiently uniform, thereby leading to non-optimal operating conditions under partial loads.

今日使用されるバイパスステーションは、基本的にバイパス弁およびバイパス蒸気送込みから成る。バイパス蒸気送込みは、隔壁、水噴射装置および混合パイプを備える。蒸気発電所が起動する時、またはトリップの後、蒸気タービンにおいて生じる蒸気は、バイパスステーションを通り水の噴射によって冷却され、かつ凝縮器に直接導入される。   The bypass station used today basically consists of a bypass valve and a bypass steam feed. The bypass steam feed includes a partition wall, a water injection device and a mixing pipe. When the steam power plant starts up or after a trip, the steam generated in the steam turbine is cooled by a water jet through a bypass station and introduced directly into the condenser.

本発明の目的は、運転中の水と蒸気のより良好な混合と同時に騒音放射を低減することを可能にすることである。   The object of the present invention is to make it possible to reduce noise radiation simultaneously with better mixing of water and steam during operation.

この目的は、流れ媒体を冷却媒体と混合するための混合ユニットによって達成され、該混合ユニットは、混合部が流体的に連結されたパイプ導管部を備え、混合部は、それを通り流れ媒体が流れることができる複数のラバルノズルを備え、冷却媒体が流れる噴射ダクトがラバルノズルに形成され、それにより流れ媒体と冷却媒体の混合が行われ、互いに隣接するラバルノズルは、流れ媒体の流れ方向において互いに対してオフセットされるように配置される。   This object is achieved by a mixing unit for mixing the flow medium with the cooling medium, said mixing unit comprising a pipe conduit part to which the mixing part is fluidly connected, through which the mixing part passes the flow medium. A plurality of Laval nozzles that can flow and an injection duct through which a cooling medium flows are formed in the Laval nozzle, whereby mixing of the flow medium and the cooling medium is performed, and the adjacent Laval nozzles are relative to each other in the flow direction of the flow medium. Arranged to be offset.

好都合な発展形は、サブクレームに規定されている。   Convenient developments are defined in the subclaims.

したがって本発明は、蒸気が単一の隔壁開口部のみを通り流れるという既存の概念に反して、複数の隔壁開口部を用いる経路を達成しようとするものである。単一の隔壁開口部を使用することによって生じる欠点は、特に混合部の縁において混合が最適ではないということである。複数の隔壁開口部を用いることにより、より良好な混合および騒音放射の低減が達成される。   Thus, the present invention seeks to achieve a path that uses multiple partition openings, contrary to the existing concept that steam flows only through a single partition opening. The disadvantage caused by using a single septum opening is that mixing is not optimal, especially at the edges of the mixing section. By using multiple septum openings, better mixing and noise emission reduction is achieved.

本発明の必須の発想は、互いに隣接する2つのラバルノズルが、流れ方向において互いに対してオフセットするように配置されるということである。蒸気を冷却するために、バイパスモードにおいて水がバイパス蒸気ラインに射出される。水の良好な噴霧化を達成し、それにより冷却を有効にするために、混合される前の蒸気がラバルノズルを通り、または多孔隔壁を通り送られることにより、流速が急激に上昇するという結果になる。蒸気および水滴の間の相対的に速い速度は、良好な噴霧化につながるが、水滴が蒸気流のコアに到達せず、それにより蒸気流の内部または内部コアが十分冷却されないという欠点を有する。ラバルノズルは、この場合、流れ媒体の流れ方向において軸方向に移動する。流れがラバルノズルを通過すると、音波が発生する。音波は、ラバルノズルの後ろに発生する。ラバルノズルがそのうえ互いに対してある長さ分軸方向に移動することにより、互いに隣接する異なるラバルノズルの音波ピークおよび音波の谷は、互いに打ち消し合い、全体として音放射は著しく低減される。   The essential idea of the present invention is that two Laval nozzles adjacent to each other are arranged to be offset with respect to each other in the flow direction. In order to cool the steam, water is injected into the bypass steam line in the bypass mode. In order to achieve good atomization of water and thereby enable cooling, the result is that the steam before mixing is passed through a Laval nozzle or through a porous partition, resulting in a rapid increase in flow rate. Become. The relatively fast speed between the steam and the water droplets leads to good atomization, but has the disadvantage that the water droplets do not reach the core of the steam flow and thereby the internal or inner core of the steam flow is not sufficiently cooled. In this case, the Laval nozzle moves axially in the flow direction of the flow medium. As the flow passes through the Laval nozzle, sound waves are generated. Sound waves are generated behind the Laval nozzle. As the Laval nozzles are further moved axially relative to each other, the acoustic peaks and troughs of the different Laval nozzles adjacent to each other cancel each other, and the overall sound emission is significantly reduced.

したがってここでの必須の機構は、互いに隣接して配置された個々のラバルノズルが軸方向に互いに移動するということである。   Therefore, the essential mechanism here is that the individual Laval nozzles arranged adjacent to each other move relative to each other in the axial direction.

ラバルノズルは、移動装置に連結され、運転中にラバルノズルの移動が可能である。したがって、電気的または液圧的に、または他の手段によって行うことが可能な能動的な移動を提供することが提案され、それにより運転中に異なる周波数帯が影響受けることができるようにラバルノズル平面が互いに対して移動することができる。したがって騒音放射は、異なる運転状態において積極的に低減されることができる。   The Laval nozzle is connected to a moving device, and the Laval nozzle can be moved during operation. It is therefore proposed to provide an active movement that can be performed electrically or hydraulically or by other means, so that different frequency bands can be affected during operation. Can move relative to each other. Thus, noise emission can be actively reduced in different operating conditions.

第1の好都合な発展形において、ラバルノズルは、互いに同一に設計される。これは、音波の谷および音波ピークのより良好な計算可能性につながり、したがってどのくらい軸方向移動を行わなければならないかを音放射からの計算によってより効果的に予め決定することができる。   In a first advantageous development, the Laval nozzles are designed identical to each other. This leads to better computability of the sonic valleys and sonic peaks, so that how much axial movement must be made can be more effectively pre-determined by calculation from the sound radiation.

さらに好都合な発展形において、ラバルノズルは、移動装置に連結され、運転中のラバルノズルの移動が可能となる。したがって、電気的または液圧的、または他の手段によって行うことが可能な能動的な移動を提供することが提案され、それにより運転中に異なる周波数帯に影響を与えることができるようにラバルノズル平面が互いに対して移動することができる。したがって異なる運転状態においても騒音放射を積極的に低減することができる。   In a further advantageous development, the Laval nozzle is connected to a moving device, allowing the Laval nozzle to move during operation. It is therefore proposed to provide active movement that can be performed electrically or hydraulically or by other means, so that different frequency bands can be affected during operation so that the Laval nozzle plane Can move relative to each other. Therefore, noise emission can be actively reduced even in different operating conditions.

そして本発明は、例示的な実施形態によってより詳細に説明される。   The invention is then described in more detail by way of exemplary embodiments.

従来の混合ユニットの横断面図を示す。A cross-sectional view of a conventional mixing unit is shown. 本発明による混合ユニットの横断面図を示す。Figure 2 shows a cross-sectional view of a mixing unit according to the present invention. 混合ユニットの一部の横断面図を示す。Fig. 2 shows a cross-sectional view of a part of the mixing unit.

図1は、従来技術による混合ユニット1を示す。このような混合ユニット1は、流れ媒体3が混合部4の方向に流れるパイプ導管部2によって特徴付けられる。この混合部4において、その中で流れ媒体が加速されるラバルノズル5が配置される。ラバルノズル5に配置されるのは、噴射ダクト6であり、これを通り水などの冷却媒体が流れる。冷却媒体は、混合ユニット4に流体的に接続されたパイプ部7において流れ媒体3と混合される。   FIG. 1 shows a mixing unit 1 according to the prior art. Such a mixing unit 1 is characterized by a pipe conduit part 2 in which the flow medium 3 flows in the direction of the mixing part 4. In this mixing part 4, a Laval nozzle 5 is arranged in which the flow medium is accelerated. Arranged in the Laval nozzle 5 is an injection duct 6 through which a cooling medium such as water flows. The cooling medium is mixed with the flow medium 3 in a pipe part 7 fluidly connected to the mixing unit 4.

図2は、本発明による混合ユニット1の図を示す。図1による混合ユニット1との相違点は、混合部4において複数のラバルノズル5a,5b,5cが配置され、これらを通り流れ媒体3が流れ、かつ各ラバルノズルに噴射ダクト6が形成され、これによって水が流れ媒体に混合される。さらに、図1および図2の混合ユニット1の相違点は、軸方向と呼ばれることもできる流れ媒体方向8において、ラバルノズル5a,5b,5cが互いに対して移動することである。この移動の結果として、隣接するラバルノズルの音波ピークと一致する音波の谷が打ち消される。音放射の全体的な減少がそれにより達成される。最後に、より詳細には図示されていない凝縮器にパイプ部7が接続される。   FIG. 2 shows a diagram of a mixing unit 1 according to the invention. The difference from the mixing unit 1 according to FIG. 1 is that a plurality of Laval nozzles 5a, 5b, 5c are arranged in the mixing section 4, the flow medium 3 flows through them, and an injection duct 6 is formed in each Laval nozzle. Water is mixed into the flow medium. Furthermore, the difference between the mixing unit 1 of FIGS. 1 and 2 is that the Laval nozzles 5a, 5b, 5c move relative to each other in the flow medium direction 8, which may also be referred to as the axial direction. As a result of this movement, the trough of the sound wave that coincides with the sound wave peak of the adjacent Laval nozzle is canceled. An overall reduction in sound emission is thereby achieved. Finally, the pipe part 7 is connected to a condenser not shown in more detail.

互いに対するラバルノズル5a,5b,5cの軸方向移動は、電気または液圧力による能動的な移動によって行うことができる。これは、異なる運転状態が生じる運転中に行うことができる。それにより異なる周波数帯が影響を受け、したがって運転中においても騒音放射が全体的に低減されることができる。   The axial movement of the Laval nozzles 5a, 5b, 5c relative to each other can be effected by active movement by means of electricity or hydraulic pressure. This can be done during operation where different operating conditions occur. Thereby, different frequency bands are affected, so that noise emission can be reduced overall even during operation.

周波数帯を運転中に測定することができ、かつ騒音放射が最小となるように隔壁が互いに対して移動することができる。発電所の試運転中にもっとも好ましい軸方向位置を各負荷点に対してあらかじめ決定することができ、かつこれらは、周波数スペクトルを積極的に測定することなく運転中に簡単に入力することができる。   The frequency bands can be measured during operation and the bulkheads can be moved relative to each other so that noise emission is minimized. During the power plant commissioning, the most preferred axial position can be predetermined for each load point, and these can be easily entered during operation without actively measuring the frequency spectrum.

図3は、一例としてラバルノズル5aおよび5bの移動の図を示す。ラバルノズル5aは、ラバルノズル5bに対して長さLだけ移動している。1000Hzの音の周波数は、音速を約500m/sとすると、必要な長さ0.5mが得られる。この長さは、第1近似値として静的に設定することができ、または上述のように、運転中でも能動的な移動によって得ることができる。   FIG. 3 shows a diagram of the movement of the Laval nozzles 5a and 5b as an example. The Laval nozzle 5a has moved by a length L relative to the Laval nozzle 5b. As for the frequency of the sound of 1000 Hz, if the speed of sound is about 500 m / s, a necessary length of 0.5 m can be obtained. This length can be set statically as a first approximation or can be obtained by active movement even during operation, as described above.

1 混合ユニット
2 パイプ導管部
3 媒体
4 混合部
5 ラバルノズル
5a,5b,5c ラバルノズル
6 噴射ダクト
7 パイプ部
8 媒体方向
DESCRIPTION OF SYMBOLS 1 Mixing unit 2 Pipe conduit part 3 Medium 4 Mixing part 5 Laval nozzle 5a, 5b, 5c Laval nozzle 6 Injection duct 7 Pipe part 8 Medium direction

Claims (6)

流れ媒体(3)を冷却媒体と混合するための混合ユニット(1)であって、
混合部(4)が流体的に連結されるパイプ導管部(2)を備え、
前記混合部(4)は、前記流れ媒体(3)が流れることができる複数のラバルノズル(5,5a,5b,…)を備え、
前記ラバルノズル(5,5a,5b,…)において噴射ダクト(6)が形成され、該噴射ダクトを通り前記冷却媒体が流れて、前記流れ媒体(3)と前記冷却媒体との混合が行われ、
互いに隣接するラバルノズル(5,5a,5b,…)は、前記流れ媒体(3)の流れ方向において(8)互いに対してオフセットするように配置される、混合ユニットにおいて、
前記ラバルノズル(5,5a,5b,…)は、移動装置に連結され、
運転中に、前記ラバルノズル(5,5a,5b,…)の移動が可能であることを特徴とする混合ユニット(1)。
A mixing unit (1) for mixing the flow medium (3) with the cooling medium,
A pipe conduit part (2) to which the mixing part (4) is fluidly connected,
The mixing section (4) includes a plurality of Laval nozzles (5, 5a, 5b, ...) through which the flow medium (3) can flow.
An injection duct (6) is formed in the Laval nozzle (5, 5a, 5b,...), The cooling medium flows through the injection duct, and the flow medium (3) and the cooling medium are mixed.
In the mixing unit, Laval nozzles (5, 5a, 5b, ...) adjacent to each other are arranged (8) offset with respect to each other in the flow direction of the flow medium (3),
The Laval nozzles (5, 5a, 5b, ...) are connected to a moving device,
A mixing unit (1) characterized in that the Laval nozzle (5, 5a, 5b, ...) can be moved during operation.
前記ラバルノズル(5,5a,5b,…)が互いに同一に設計される、請求項1に記載の混合ユニット(1)。   The mixing unit (1) according to claim 1, wherein the Laval nozzles (5, 5a, 5b, ...) are designed identical to each other. 前記噴射ダクト(6)が前記ラバルノズルの壁に対して斜めに形成される、請求項1または2に記載の混合ユニット(1)。   The mixing unit (1) according to claim 1 or 2, wherein the injection duct (6) is formed obliquely with respect to the wall of the Laval nozzle. 前記流れ媒体(3)が蒸気である、請求項1〜3のいずれか一項に記載の混合ユニット(1)。   The mixing unit (1) according to any one of claims 1 to 3, wherein the flow medium (3) is steam. 前記冷却媒体が水である、請求項1〜4のいずれか一項に記載の混合ユニット(1)。   The mixing unit (1) according to any one of claims 1 to 4, wherein the cooling medium is water. 電気または液圧手段によって移動が行われる、請求項1に記載の混合ユニット(1)。   2. Mixing unit (1) according to claim 1, wherein the movement is effected by electrical or hydraulic means.
JP2014527565A 2011-08-31 2012-08-02 Bypass steam line Expired - Fee Related JP5739070B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11179513.4 2011-08-31
EP11179513A EP2565538A1 (en) 2011-08-31 2011-08-31 Diversion steam line
PCT/EP2012/065121 WO2013029914A1 (en) 2011-08-31 2012-08-02 Bypass steam line

Publications (2)

Publication Number Publication Date
JP2014531550A true JP2014531550A (en) 2014-11-27
JP5739070B2 JP5739070B2 (en) 2015-06-24

Family

ID=46603980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014527565A Expired - Fee Related JP5739070B2 (en) 2011-08-31 2012-08-02 Bypass steam line

Country Status (5)

Country Link
US (1) US20140209044A1 (en)
EP (2) EP2565538A1 (en)
JP (1) JP5739070B2 (en)
CN (1) CN103765098B (en)
WO (1) WO2013029914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210027429A (en) * 2018-07-03 2021-03-10 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 Steam bypass conduit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390224A (en) * 2014-11-04 2015-03-04 南车资阳机车有限公司 Waste gas switching pipeline for waste heat boiler
CN106288084A (en) * 2016-08-30 2017-01-04 李士明 Laval air-conditioning
CN108144470A (en) * 2017-12-18 2018-06-12 大连通亚重工有限公司 A kind of gas-liquid mixed pipe
CN109026229B (en) * 2018-07-23 2023-08-29 嘉兴石化有限公司 High-pressure steam pressure-reducing, temperature-reducing and noise-reducing system
KR102162510B1 (en) * 2018-11-29 2020-10-06 김광민 Spray type nozzle with uniform spraying function of superheated steam
DE102019112964A1 (en) * 2019-05-16 2020-11-19 Westnetz Gmbh Injection device for injecting a liquid odorant into a gas stream flowing through a gas line, its use and method for its production
EP4308278A1 (en) * 2021-03-18 2024-01-24 Hilla Consulting Oy A device for manipulating fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE554162C (en) * 1932-07-02 Andreas Lenz Superheated steam temperature controller
DE960354C (en) * 1952-04-11 1957-03-21 Albert Lob Maschinen Und Appba Superheated steam cooler
DE1177169B (en) * 1961-08-03 1964-09-03 Schneider Bochumer Maschf A Device for steam cooling by injecting water

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361150A (en) * 1941-01-24 1944-10-24 Mathieson Alkali Works Inc Method and apparatus for admitting chlorine to a liquid stream
US3612212A (en) * 1969-08-11 1971-10-12 Rohr Corp Method and apparatus for suppressing the noise of a jet engine
SU1195133A1 (en) * 1983-12-30 1985-11-30 Казанский Филиал Московского Ордена Ленина Энергетического Института Arrangement for steam cooling
SU1179013A2 (en) * 1984-02-20 1985-09-15 Kz Mo Energet I Device for steam humidification
US4792436A (en) * 1987-05-08 1988-12-20 Kinetics Technology International Hydrocarbon converter furnace
US5249551A (en) * 1991-04-09 1993-10-05 Kirkpatrick William J Steam generation system mass and feedwater control system
US5205728A (en) * 1991-11-18 1993-04-27 Manufacturing And Technology Conversion International Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries
DE4305116A1 (en) * 1993-02-03 1994-08-04 Holter Gmbh & Co Injection-cooler for superheated steam
DE10254825A1 (en) * 2002-11-25 2004-06-03 Alstom Technology Ltd Water spray device for gas turbines
CN200996597Y (en) * 2007-01-16 2007-12-26 郑州锅炉有限责任公司 Water-jetting overheat steam temperature decreaser
US8209951B2 (en) * 2007-08-31 2012-07-03 General Electric Company Power generation system having an exhaust attemperating device
CN201093477Y (en) * 2007-10-15 2008-07-30 洛阳蓝海实业有限公司 Attemperation pressure reducing capacity adding equipment with changeable sound speed
CN201121886Y (en) * 2007-10-15 2008-09-24 洛阳蓝海实业有限公司 Dynamic regulation type sound velocity changing supercharging heat converter
US9080793B2 (en) * 2008-01-11 2015-07-14 Oy Ece Eco Cooling Engineering Ltd. Method and apparatus in connection with a vortex tube process
US7654509B2 (en) * 2008-05-09 2010-02-02 Control Components, Inc. Desuperheater spray nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE554162C (en) * 1932-07-02 Andreas Lenz Superheated steam temperature controller
DE960354C (en) * 1952-04-11 1957-03-21 Albert Lob Maschinen Und Appba Superheated steam cooler
DE1177169B (en) * 1961-08-03 1964-09-03 Schneider Bochumer Maschf A Device for steam cooling by injecting water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210027429A (en) * 2018-07-03 2021-03-10 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 Steam bypass conduit
JP2022505564A (en) * 2018-07-03 2022-01-14 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Bypass steam introduction
KR102481662B1 (en) * 2018-07-03 2022-12-28 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 steam bypass duct

Also Published As

Publication number Publication date
CN103765098A (en) 2014-04-30
CN103765098B (en) 2015-12-09
EP2726785A1 (en) 2014-05-07
JP5739070B2 (en) 2015-06-24
EP2565538A1 (en) 2013-03-06
US20140209044A1 (en) 2014-07-31
EP2726785B1 (en) 2015-09-30
WO2013029914A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5739070B2 (en) Bypass steam line
US10641122B2 (en) Tip clearance control for turbine blades
US20120186261A1 (en) System and method for a gas turbine exhaust diffuser
JP2017096260A (en) Active clearance control with integral double wall heat shielding
EP3040519B1 (en) Tip clearance control for turbine blades
CN108730038B (en) Method and system for cooling fluid distribution
JP2016148330A (en) Systems and methods for controlling inlet air temperature of intercooled gas turbine engine
GB2468669C (en) A flow discharge device
CN101372898A (en) Method and apparatus for clearance control of turbine blade tip
CN106403661B (en) A kind of low speed cooling hydro-thermal protective device
JP2013160233A (en) System and method for gas turbine inlet air heating
CN207556310U (en) A kind of high-temperature exhaust air central water spray cooling device
US7137241B2 (en) Transition duct apparatus having reduced pressure loss
Ye et al. Spray cooling for high temperature of exhaust gas using a nozzle array in a confined space: Analytical and empirical predictions on cooling capacity
CN204127940U (en) Mixed cell
CN106089316A (en) A kind of stator part projective table type periodic pressure wave generation device
CN103743570B (en) For the silencing apparatus of supersonic combustion punching engine testing stand
US20150121871A1 (en) Forced cooling in steam turbine plants
JP2018530707A (en) Equipment for ventilation of turbomachine turbine casings
CN104094053B (en) For the sprinkler of the reject steam system in power station
CN208606157U (en) A kind of Direct Air-Cooled photo-thermal unit and its water replanishing device
RU197736U1 (en) GAS TURBINE INSTALLATION
CN114215657B (en) Water-cooling center cone of aero-engine
CN109339873B (en) Steam turbine last-stage blade protection device for high back pressure heat supply
KR20180137217A (en) Wall Cooling Passage for Turbine Airfoil Cooling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150422

R150 Certificate of patent or registration of utility model

Ref document number: 5739070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees