JP2014530292A - High load oxygen generating anode and its manufacturing method - Google Patents

High load oxygen generating anode and its manufacturing method Download PDF

Info

Publication number
JP2014530292A
JP2014530292A JP2014512990A JP2014512990A JP2014530292A JP 2014530292 A JP2014530292 A JP 2014530292A JP 2014512990 A JP2014512990 A JP 2014512990A JP 2014512990 A JP2014512990 A JP 2014512990A JP 2014530292 A JP2014530292 A JP 2014530292A
Authority
JP
Japan
Prior art keywords
catalyst layer
iridium oxide
metal substrate
conductive metal
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014512990A
Other languages
Japanese (ja)
Other versions
JP5686455B2 (en
Inventor
翊 曹
翊 曹
昭博 加藤
昭博 加藤
和宏 平尾
和宏 平尾
崇 古澤
崇 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47559625&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014530292(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2014512990A priority Critical patent/JP5686455B2/en
Publication of JP2014530292A publication Critical patent/JP2014530292A/en
Application granted granted Critical
Publication of JP5686455B2 publication Critical patent/JP5686455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

【課題】電解銅箔等の電解金属箔製造、アルミニウム液中給電、連続電気亜鉛メッキ鋼板製造、金属採取等の工業電解で使用される、高負荷電解条件下で優れた耐久性を有する耐高負荷用酸素発生用陽極及びその製造方法を提供すること。【解決手段】導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、430℃〜480℃の高温領域で加熱焼成され、非晶質の酸化イリジウムを含有する触媒層が形成され、次いで、該非晶質の酸化イリジウムを含有する前記触媒層が520℃〜600℃の高温領域でポストベークされ、該触媒層中の酸化イリジウムの略全量が結晶化されていることを特徴とする酸素発生用陽極及びその製造方法。【選択図】図2[PROBLEMS] To provide excellent durability under high load electrolysis conditions used in industrial electrolysis such as electrolytic metal foil production such as electrolytic copper foil, feeding in aluminum liquid, continuous electrogalvanized steel sheet production, metal extraction, etc. To provide an anode for oxygen generation for load and a manufacturing method thereof. In an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, the coating amount of iridium per catalyst layer is 2 g / The catalyst layer containing amorphous iridium oxide is formed by heating and firing in a high temperature region of 430 ° C. to 480 ° C., and then the catalyst layer containing amorphous iridium oxide is 520 ° C. An anode for oxygen generation, which is post-baked in a high temperature region of ˜600 ° C., and substantially the entire amount of iridium oxide in the catalyst layer is crystallized, and a method for producing the same. [Selection] Figure 2

Description

本発明は、各種工業電解に使用される酸素発生用陽極及びその製造方法に関し、より詳細には、電解銅箔等の電解金属箔製造、アルミニウム液中給電、連続電気亜鉛メッキ鋼板製造、金属採取等の工業電解で使用される、高負荷電解条件下で優れた耐久性を有する耐高負荷用酸素発生用陽極及びその製造方法に関する。   The present invention relates to an oxygen generating anode used for various industrial electrolysis and a method for producing the same, and more specifically, electrolytic metal foil production such as electrolytic copper foil, feeding in aluminum liquid, continuous electrogalvanized steel plate production, metal sampling. The present invention relates to an oxygen generating anode for high load resistance having excellent durability under high load electrolysis conditions and a method for producing the same.

電解銅箔、アルミニウム液中給電、連続電気亜鉛めっき鋼板、金属採取等の工業電解では、陽極において酸素発生を伴うため、金属チタン基体に主として酸素発生に耐性のある酸化イリジウムを電極触媒としてコーティングした陽極が多く用いられるようになった。一般的に陽極において酸素発生を伴うこの種の工業電解では、生産効率や、省エネルギー等面より定電流で電解を行う場合が多い。電流密度は金属採取等業界における主に用いられる数A/dm2から、電解銅箔用の最大100A/dm2まで範囲で設定した。 In industrial electrolysis such as electrolytic copper foil, feeding in aluminum liquid, continuous electrogalvanized steel sheet, metal sampling, etc., oxygen generation occurs at the anode, so the metal titanium substrate was coated with iridium oxide that is mainly resistant to oxygen generation as an electrode catalyst. Many anodes have been used. In general, this type of industrial electrolysis with oxygen generation at the anode is often electrolyzed at a constant current in terms of production efficiency and energy saving. The current density was set in a range from several A / dm 2 which is mainly used in industries such as metal extraction to a maximum of 100 A / dm 2 for electrolytic copper foil.

しかし、近年から製品の品質向上や、特殊性能を付与するため、300A/dm2〜700A/dm2または更に高める電流密度で電解を行う場合もしばしば見られる。このような高い電流は工業電解設備における据付けた全部の陽極に流すことではなく、電解で得られる製品へ特殊性能を与えるため、高負荷電解条件下となる特定箇所に補助陽極として設置することが考えられる。
このような高電流密度の電解下では、電極触媒層に負荷が高くなり、加えて電流集中を発生しやすいので、電極触媒層の消耗が速くなる。また、製品の安定化のために有機物や不純物元素が添加されるため、種々の電気化学反応や化学反応が起こり、酸素発生反応に伴う水素イオン濃度の高まり(pHが低下)による電極触媒の消耗をさらに早めることになる。
However, in recent years, electrolysis is often performed at a current density of 300 A / dm 2 to 700 A / dm 2 or higher in order to improve product quality or provide special performance. In order to give special performance to products obtained by electrolysis, it is necessary to install such a high current as an auxiliary anode at a specific location under high load electrolysis conditions. Conceivable.
Under such high current density electrolysis, the load on the electrode catalyst layer becomes high, and in addition, current concentration tends to occur, so that the electrode catalyst layer is consumed quickly. In addition, because organic substances and impurity elements are added to stabilize the product, various electrochemical reactions and chemical reactions occur, and the consumption of the electrode catalyst due to the increased hydrogen ion concentration (lower pH) associated with the oxygen generation reaction Will be further accelerated.

これを解決するためには、電極触媒層の表面積を増大させ、実電流負荷を低下することは解決策の一つとして考えられる。例えば、従来の板基材に代り、メッシュや、パンチングメタル等基材を使うことより物理的に表面積を増大させることも一つの解決策となる。しかし、これらの基材を使用すると、余計な加工費用を伴いコストを高める等デメッリトを見られた。また、物理的に基材の表面積の増大により実電流密度が下がるが、電極触媒層に電流集中が改善せず触媒消耗の抑制効果は僅かであった。
また、電極触媒層の塗布〜焼成を繰返す熱分解形成方法において、簡単に考えると、一回あたりのイリジウムの塗布量が増えれば、ふかふかした触媒層を形成できるが、この方法だけでは、電極の触媒層の有効表面積の増大が僅かであり、高負荷条件下での触媒層消耗の抑制と、耐久性向上効果をはっきり見られなかった。
In order to solve this, it is considered as one of the solutions to increase the surface area of the electrode catalyst layer and reduce the actual current load. For example, instead of using a conventional plate base material, physically increasing the surface area by using a base material such as a mesh or punching metal is another solution. However, when these base materials were used, demerits were seen such as an increase in costs accompanied by extra processing costs. In addition, although the actual current density decreased physically due to the increase in the surface area of the substrate, the current concentration in the electrode catalyst layer was not improved, and the effect of suppressing catalyst consumption was slight.
In addition, in the thermal decomposition forming method in which the electrode catalyst layer is repeatedly applied to baked repeatedly, if the amount of iridium applied per time increases, a fluffy catalyst layer can be formed. The increase in the effective surface area of the catalyst layer was slight, and the effect of improving the durability and suppressing the consumption of the catalyst layer under high load conditions could not be clearly seen.

この種の電解用電極としては、酸素発生電位が低く、しかも寿命の長い電極が要求されている。従来、この種の電極としては、チタンなどの導電性金属基体上を貴金属又は貴金属酸化物を含む触媒層で被覆した不溶性電極が用いられている。例えば、特許文献1には、チタンなどの導電性金属基体上に、酸化イリジウムとバルブ金属酸化物を含有する触媒層を650℃〜850℃の酸化雰囲気中で加熱焼成し、バルブ金属酸化物の一部を結晶化した触媒層を有する不溶性電極が開示されている。しかし、この電極は、650℃以上の高温で焼成されるため、チタン等の金属基体の界面腐食が生じ、チタンなどの金属基体が不良導電体となり、酸素過電圧が上昇し、電極として使用できなくなる。また、触媒層中の酸化イリジウムの結晶子径が大きくなり、その結果、触媒層の有効表面積が小さくなり、触媒活性が劣るという欠点を有していた。   As an electrode for this type of electrolysis, an electrode having a low oxygen generation potential and a long life is required. Conventionally, as this type of electrode, an insoluble electrode in which a conductive metal substrate such as titanium is coated with a catalyst layer containing a noble metal or a noble metal oxide is used. For example, Patent Document 1 discloses that a catalyst layer containing iridium oxide and a valve metal oxide is heated and fired in an oxidizing atmosphere of 650 ° C. to 850 ° C. on a conductive metal substrate such as titanium, An insoluble electrode having a partially crystallized catalyst layer is disclosed. However, since this electrode is baked at a high temperature of 650 ° C. or more, interfacial corrosion of a metal substrate such as titanium occurs, the metal substrate such as titanium becomes a defective conductor, oxygen overvoltage increases, and it cannot be used as an electrode. . In addition, the crystallite size of iridium oxide in the catalyst layer is increased. As a result, the effective surface area of the catalyst layer is decreased and the catalyst activity is inferior.

また、特許文献2には、チタンなどの導電性金属基体上に、非晶質の酸化イリジウム及び非晶質の酸化タンタルの混在する触媒層を設け、銅メッキ及び銅箔製造用陽極を使用することが開示されている。しかし、この電極は、非晶質の酸化イリジウムを特徴としているため、電極耐久性が十分ではなかった。非晶質酸化イリジウムになると、耐食性が低下する理由としては、非晶質酸化イリジウムは、アモルファス状態であり、結晶性の酸化イリジウムに比較して、イリジウムと酸素との結合が不安定となる。   In Patent Document 2, a catalyst layer in which amorphous iridium oxide and amorphous tantalum oxide are mixed is provided on a conductive metal substrate such as titanium, and an anode for producing copper plating and copper foil is used. It is disclosed. However, since this electrode is characterized by amorphous iridium oxide, the electrode durability was not sufficient. When amorphous iridium oxide is used, the reason why the corrosion resistance is reduced is that amorphous iridium oxide is in an amorphous state, and the bond between iridium and oxygen becomes unstable as compared with crystalline iridium oxide.

更に、特許文献3には、触媒層の消耗を抑制し、電極の耐久性を向上するために、結晶質酸化イリジウムよりなる下層と非晶質酸化イリジウムよりなる上層の二層構造よりなる触媒層を被覆した電極が開示されている。しかるに、特許文献3に開示の電極は、触媒層の上層が非晶質酸化イリジウムよりなるため、電極耐久性が充分ではなかった。また、結晶質酸化イリジウムは、下層のみに存在し、触媒層全体に均一的に分布しておらず、電極耐久性が十分ではなかった。   Further, Patent Document 3 discloses a catalyst layer having a two-layer structure of a lower layer made of crystalline iridium oxide and an upper layer made of amorphous iridium oxide in order to suppress exhaustion of the catalyst layer and improve the durability of the electrode. An electrode coated with is disclosed. However, the electrode disclosed in Patent Document 3 has insufficient electrode durability because the upper layer of the catalyst layer is made of amorphous iridium oxide. Further, crystalline iridium oxide was present only in the lower layer and was not uniformly distributed throughout the catalyst layer, and the electrode durability was not sufficient.

更に、特許文献4には、チタンなどの導電性金属基体上に、非晶質の酸化イリジウムを含有することを必須要件とし、結晶質の酸化イリジウムと非晶質の酸化イリジウムを混在する触媒層を設けた亜鉛電解採取用陽極が開示されており、特許文献5には、チタンなどの導電性金属基体上に、非晶質の酸化イリジウムを含有することを必須要件とし、酸化イリジウム結晶質と酸化イリジウム非晶質を混在する触媒層を設けたコバルト電解採取用陽極が開示されている。しかるに、いずれの電極も多量の非晶質の酸化イリジウムを含有することを必須要件としているため、電極耐久性が十分ではないと考えられる。   Further, in Patent Document 4, it is essential to contain amorphous iridium oxide on a conductive metal substrate such as titanium, and a catalyst layer in which crystalline iridium oxide and amorphous iridium oxide are mixed. An electrode for zinc electrowinning is disclosed, and in Patent Document 5, it is essential that amorphous iridium oxide is contained on a conductive metal substrate such as titanium, and iridium oxide crystalline and An anode for cobalt electrowinning provided with a catalyst layer mixed with amorphous iridium oxide is disclosed. However, since it is an essential requirement that any electrode contains a large amount of amorphous iridium oxide, it is considered that the electrode durability is not sufficient.

本発明者等は、これらの問題を解決する為に、酸素発生過電圧低下を主要目的として一回あたりイリジウムの塗布量が2g/m2以下の場合、(1)低温焼成(370℃〜400℃)+高温ポストベーク(520℃〜600℃)による結晶質酸化イリジウムと非晶質酸化イリジウムを混在する触媒層を形成する焼成方法及び(2)高温焼成(410℃〜450℃)+高温ポストベーク(520℃〜560℃)による略完全な結晶質酸化イリジウムのみを含有する触媒層を形成する焼成方法を開発し、本出願と同日付で2件の特許出願を行った。
この2件の発明によれば、100A/dm2以下の電流密度の電解条件においては、1回あたりのイリジウムの塗布量が2g/m2以下の場合、難鉛付着性を達成することができるとともに、触媒層の有効面積の増大による耐久性の向上、酸素発生過電圧の低減を達成することができる。
然るに、近年から製品の品質向上や、特殊性能を付与するため、300A/dm2〜700A/dm2またはそれ以上の電流密度で電解を行う場合もしばしば見られる。このような高い電流は工業電解設備における据付けた全部の陽極に流すことではなく、電解で得られる製品へ特殊性能を与えるため、高負荷電解条件下となる特定箇所に補助陽極として設置することが必要とされるようになった。
このような高電流密度の電解下では、電極触媒層に負荷が高くなり、加えて電流集中を発生しやすいので、電極触媒層の消耗が速くなり、また、製品の安定化のために有機物や不純物元素が添加されるため、種々の電気化学反応や化学反応が起こり、酸素発生反応に伴う水素イオン濃度の高まり(pHが低下)による電極触媒の消耗がさらに早まるため、本発明者等による上記2件の特許出願に係る発明では、触媒層の有効面積の増大による耐久性の向上、酸素発生過電圧の低減を充分に達成できないことがあることが判明した。
In order to solve these problems, the inventors of the present invention have (1) low-temperature firing (370 ° C. to 400 ° C.) when the application amount of iridium is 2 g / m 2 or less per time for the main purpose of reducing the oxygen generation overvoltage. ) + High temperature post-baking (520 ° C. to 600 ° C.) and a baking method for forming a catalyst layer in which crystalline iridium oxide and amorphous iridium oxide are mixed, and (2) high temperature baking (410 ° C. to 450 ° C.) + high temperature post baking A calcining method for forming a catalyst layer containing only substantially perfect crystalline iridium oxide by (520 ° C. to 560 ° C.) was developed, and two patent applications were filed on the same date as the present application.
According to these two inventions, under the electrolysis conditions with a current density of 100 A / dm 2 or less, when the amount of iridium applied per time is 2 g / m 2 or less, lead-free adhesion can be achieved. At the same time, it is possible to improve durability and reduce oxygen generation overvoltage by increasing the effective area of the catalyst layer.
However, in recent years, electrolysis is often performed at a current density of 300 A / dm 2 to 700 A / dm 2 or more in order to improve the quality of products and to provide special performance. In order to give special performance to products obtained by electrolysis, it is necessary to install such a high current as an auxiliary anode at a specific location under high load electrolysis conditions. It came to be needed.
Under such high current density electrolysis, the load on the electrode catalyst layer is increased, and current concentration is likely to occur, so that the electrode catalyst layer is consumed quickly, and organic substances and Since the impurity element is added, various electrochemical reactions and chemical reactions occur, and the consumption of the electrode catalyst is further accelerated due to the increase in hydrogen ion concentration (decrease in pH) associated with the oxygen generation reaction. In the inventions according to the two patent applications, it has been found that the improvement in durability and the reduction in oxygen generation overvoltage may not be sufficiently achieved by increasing the effective area of the catalyst layer.

特開2002−275697号公報(特許第3654204号)JP 2002-275697 A (Patent No. 3654204) 特開2004−238697号公報(特許第3914162号)Japanese Patent Laying-Open No. 2004-238697 (Patent No. 3914162) 特開2007−146215号公報JP 2007-146215 A 特開2009−293117号公報(特許第4516617号)JP 2009-293117 A (Patent No. 4516617) 特開2010−1556号公報(特許第4516618号)JP 2010-1556 A (Patent No. 4516618)

本発明は、これらの問題を解決する為に、高負荷条件下において、電極触媒層の有効表面積を増大することにより、電極触媒層への電流分布を改善し、電極触媒の消耗を抑制し、電極触媒の耐久性を向上することのできる高負荷電解条件下で優れた耐久性を有する耐高負荷用酸素発生用陽極及びその製造方法を提供することにある。   In order to solve these problems, the present invention increases the effective surface area of the electrode catalyst layer under high load conditions, thereby improving the current distribution to the electrode catalyst layer and suppressing the consumption of the electrode catalyst. An object of the present invention is to provide an oxygen generating anode for high load resistance having excellent durability under high load electrolysis conditions capable of improving the durability of an electrode catalyst and a method for producing the same.

本発明における第1の課題解決手段は、上記目的を達成する為、導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、430℃〜480℃の比較的高温領域で加熱焼成され、非晶質の酸化イリジウムを含有する触媒層が形成され、次いで、該非晶質の酸化イリジウムを含有する前記触媒層が520℃〜600℃の更なる高温領域でポストベークされ、該触媒層中の酸化イリジウムの略全量が結晶化されていることを特徴とする酸素発生用陽極を提供することにある。 In order to achieve the above object, the first problem-solving means in the present invention is an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate. The amount of iridium applied per catalyst layer is 2 g / m 2 or more, and is fired and fired in a relatively high temperature region of 430 ° C. to 480 ° C. to form a catalyst layer containing amorphous iridium oxide, Next, the catalyst layer containing the amorphous iridium oxide is post-baked in a further high temperature region of 520 ° C. to 600 ° C., and substantially all of the iridium oxide in the catalyst layer is crystallized. Another object is to provide an oxygen generating anode.

本発明における第2の課題解決手段は、上記目的を達成する為、導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、前記ポストベーク後の触媒層中の酸化イリジウムの結晶化度を80%以上としたことを特徴とする酸素発生用陽極を提供することにある。 In order to achieve the above object, the second problem-solving means of the present invention is the oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate. The oxygen generation anode characterized in that the amount of iridium applied per catalyst layer is 2 g / m 2 or more and the crystallinity of iridium oxide in the catalyst layer after the post-baking is 80% or more. Is to provide.

本発明における第3の課題解決手段は、上記目的を達成する為、導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、前記触媒層中の酸化イリジウムの結晶子径を9.0nm以下としたことを特徴とする酸素発生用陽極を提供することにある。 In order to achieve the above object, a third problem-solving means in the present invention is an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate. Provided is an anode for oxygen generation, wherein the application amount of iridium per catalyst layer is 2 g / m 2 or more, and the crystallite diameter of iridium oxide in the catalyst layer is 9.0 nm or less. There is.

本発明における第4の課題解決手段は、上記目的を達成する為、導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層を形成する前に、前記導電性金属基体上に、アークイオンプレーティング(以下、AIPと称す。)法によりタンタル及びチタン成分を含有するAIP下地層を形成したことを特徴とする酸素発生用陽極を提供することにある。   In order to achieve the above object, a fourth problem-solving means in the present invention is an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate. Oxygen generation characterized in that an AIP underlayer containing a tantalum and a titanium component is formed on the conductive metal substrate by an arc ion plating (hereinafter referred to as AIP) method before forming the catalyst layer. It is to provide an anode.

本発明における第5の課題解決手段は、上記目的を達成する為、導電性金属基体の表面に、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の比較的高温領域で加熱焼成することによって非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の更なる高温領域でポストベークし、該触媒層中の酸化イリジウムの略全量を結晶化することを特徴とする酸素発生用陽極の製造方法を提供することにある。 In order to achieve the above object, the fifth means for solving the problems in the present invention is such that the amount of iridium applied per time of the catalyst layer is 2 g / m 2 or more on the surface of the conductive metal substrate, and the temperature is from 430 ° C. to 480 ° C. A catalyst layer containing amorphous iridium oxide is formed by heating and firing in a relatively high temperature region of ° C. Thereafter, the catalyst layer containing amorphous iridium oxide is further heated to 520 ° C to 600 ° C. An object of the present invention is to provide a method for producing an anode for oxygen generation, characterized by post-baking in a high temperature region and crystallizing substantially the entire amount of iridium oxide in the catalyst layer.

本発明における第6の課題解決手段は、上記目的を達成する為、導電性金属基体の表面に、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の比較的高温領域で加熱焼成することによって、非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の更なる高温領域でポストベークし、該触媒層中の酸化イリジウムの結晶化度を80%以上としたことを特徴とする酸素発生用陽極の製造方法を提供することにある。 In order to achieve the above object, the sixth problem-solving means in the present invention is such that the amount of iridium applied to the surface of the conductive metal substrate is 2 g / m 2 or more on the surface of the catalyst layer, and the temperature is from 430 ° C. to 480 ° C. A catalyst layer containing amorphous iridium oxide is formed by heating and firing in a relatively high temperature region of ℃, and then the catalyst layer containing amorphous iridium oxide is further heated to 520 ° C. to 600 ° C. Another object of the present invention is to provide a method for producing an anode for oxygen generation, characterized in that post-baking is performed in a high temperature region and the crystallinity of iridium oxide in the catalyst layer is 80% or more.

本発明における第7の課題解決手段は、上記目的を達成する為、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の比較的高温領域で加熱焼成することによって、非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の更なる高温領域でポストベークし、該触媒層中の酸化イリジウムの結晶子径を9.0nm以下としたことを特徴とする酸素発生用陽極の製造方法を提供することにある。 In order to achieve the above object, the seventh means for solving the problem in the present invention is to heat the iridium in a relatively high temperature range of 430 ° C. to 480 ° C. with an application amount of iridium per catalyst layer of 2 g / m 2 or more. By baking, a catalyst layer containing amorphous iridium oxide is formed, and then the catalyst layer containing amorphous iridium oxide is post-baked in a further high temperature region of 520 ° C. to 600 ° C., An object of the present invention is to provide a method for producing an oxygen generating anode, wherein the crystallite diameter of iridium oxide in the catalyst layer is 9.0 nm or less.

本発明における第8の課題解決手段は、上記目的を達成する為、導電性金属基体と、該導電性金属基体上に形成された、酸化イリジウムを含有する触媒層を有する酸素発生用陽極の製造方法において、該触媒層を形成する前に、前記導電性金属基体上に、AIP法によりタンタル及びチタン成分を含有するAIP下地層を形成することを特徴とする酸素発生用陽極の製造方法を提供することにある。   In order to achieve the above object, an eighth problem-solving means of the present invention is to produce an anode for oxygen generation having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate. A method for producing an anode for generating oxygen, comprising: forming an AIP underlayer containing a tantalum and a titanium component on the conductive metal substrate by an AIP method before forming the catalyst layer. There is to do.

本発明は、酸化イリジウムを含有する電極触媒層の形成において、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、従来の酸化イリジウムの結晶完全析出温度である500℃以上で繰返して焼成する代わりに、焼成を2段階で行い、先ず、430℃〜480℃の比較的高温領域で加熱焼成することによって非晶質の酸化イリジウムを含有する触媒層を形成し、その後、520℃〜600℃の更なる高温領域でポストベークすることにより、電極触媒層中の酸化イリジウムの結晶子径を小さく抑え、好ましくは、結晶子径が9.0nm以下とするとともに、酸化イリジウムの大部分を結晶化し、好ましくは、結晶化度が80%以上に結晶化することにより、酸化イリジウムの結晶子径の成長を抑制し、かつ触媒層の有効表面積が増大することができた。従って、本発明によれば、酸化イリジウムの結晶子径の成長が抑制されるが、その理由としては、焼成を2段階で行い、先ず、430℃〜480℃の比較的高温領域で塗布と焼成を繰返すため、その後、520℃〜600℃の更なる高温領域でポストベークしても、結晶子径は、従来法のように最初から高温焼成した場合に比し、結晶子径がある程度以上は、大きくならないためと考えられる。このように、酸化イリジウムの結晶子径の成長が抑制され、結晶子径が小さいほど、触媒層の有効表面積が増大することになり、電極の酸素発生過電圧が低減でき、酸素発生を促進すると共に、鉛イオンからPbO2を生成する反応を抑制することが出来る。従って、電極へのPbO2の付着・被覆を抑止することが可能となった。
更に、本発明によれば、同時に触媒層の有効表面積の増大により、電流分布が分散し、電流集中を抑制することができ、電解による触媒層の消耗が抑制でき、電極耐久性を向上することができる。
更に、本発明によれば、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とすることにより、製品の品質向上や、特殊性能を付与するため、300A/dm2〜700A/dm2またはそれ以上の電流密度で電解を行う場合、或いは、電解で得られる製品へ特殊性能を与えるため、高負荷電解条件下となる特定箇所に補助陽極として設置する場合においても、電極触媒層への負荷を低減し、加えて電流集中を防ぎ、電極触媒層の消耗をおさえることができる。
In the present invention, in the formation of an electrode catalyst layer containing iridium oxide, the amount of iridium applied per catalyst layer is 2 g / m 2 or more, and the crystal complete precipitation temperature of conventional iridium oxide is 500 ° C. or more. , The catalyst layer containing amorphous iridium oxide is formed by heating and firing in a relatively high temperature region of 430 ° C. to 480 ° C. By post-baking in a further high temperature region of 520 ° C. to 600 ° C., the crystallite diameter of iridium oxide in the electrode catalyst layer is kept small, preferably the crystallite diameter is 9.0 nm or less, and the iridium oxide Mostly crystallized, preferably crystallized to a crystallinity of 80% or more to suppress the growth of the crystallite diameter of iridium oxide, and the effective surface of the catalyst layer There could be increased. Therefore, according to the present invention, the growth of the crystallite diameter of iridium oxide is suppressed because the firing is performed in two stages, and first, coating and firing are performed in a relatively high temperature region of 430 ° C. to 480 ° C. Therefore, even after post-baking in a further high temperature region of 520 ° C. to 600 ° C., the crystallite diameter is larger than the crystallite diameter to a certain extent as compared with the case of high temperature firing from the beginning as in the conventional method. This is probably because it doesn't get bigger. Thus, the growth of the crystallite diameter of iridium oxide is suppressed, and the smaller the crystallite diameter, the greater the effective surface area of the catalyst layer, which can reduce the oxygen generation overvoltage of the electrode and promote oxygen generation. The reaction of generating PbO 2 from lead ions can be suppressed. Accordingly, it becomes possible to suppress the adhesion / covering of PbO 2 to the electrode.
Furthermore, according to the present invention, the effective surface area of the catalyst layer is increased at the same time, the current distribution is dispersed, current concentration can be suppressed, consumption of the catalyst layer due to electrolysis can be suppressed, and electrode durability can be improved. Can do.
Furthermore, according to the present invention, the application amount of iridium per one time of the catalyst layer is 2 g / m 2 or more, so that the quality of the product is improved and the special performance is imparted, so that 300 A / dm 2 to 700 A Electrocatalyst even when electrolysis is performed at a current density of / dm 2 or higher, or when it is installed as an auxiliary anode at a specific location under high load electrolysis conditions to give special performance to products obtained by electrolysis The load on the layer can be reduced, in addition, current concentration can be prevented, and consumption of the electrode catalyst layer can be suppressed.

焼成温度とポストベーク温度による触媒層の酸化イリジウム(IrO2)の結晶化度の変化を示すグラフ。Graph showing changes in crystallinity of iridium oxide of the catalyst layer due to sintering temperature and the post-bake temperature (IrO 2). 焼成温度とポストベーク温度による触媒層の酸化イリジウム(IrO2)の結晶子径の変化を示すグラフ。Graph showing changes in crystallite size of the iridium oxide of the catalyst layer due to sintering temperature and the post-bake temperature (IrO 2). 焼成温度とポストベーク温度による電極静電容量の変化を示すグラフ。The graph which shows the change of the electrode electrostatic capacitance by baking temperature and post-baking temperature. 焼成条件と酸素過電圧との依存性を示すグラフ。The graph which shows the dependence of baking conditions and oxygen overvoltage.

以下本発明の実施の態様を図面とともに詳細に説明する。本発明では、酸化鉛の電極表面への付着反応の抑制を目的として、電極触媒層の有効表面積を増大させれば、酸素発生過電圧を低減することが出来ることより、酸素発生を促進するとともに酸化鉛の付着反応を抑制できる事を見いだしたものである。また、本発明は、同時に電極耐久性を向上するために触媒層の酸化イリジウムが主に結晶質であることが必要であると考え、実験を繰り返し、完成させたものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present invention, the oxygen generation overvoltage can be reduced by increasing the effective surface area of the electrode catalyst layer for the purpose of suppressing the adhesion reaction of lead oxide to the electrode surface. It has been found that the adhesion reaction of lead can be suppressed. In addition, the present invention has been completed by repeating the experiment on the assumption that the iridium oxide of the catalyst layer is mainly crystalline in order to improve the electrode durability at the same time.

本発明は、焼成を2段階で行い、先ず、430℃〜480℃の比較的高温領域の焼成で非晶質IrO2を含有する触媒層を形成させ、その後、520℃〜600℃の更なる高温領域でポストベークすることにより、触媒層の酸化イリジウムを略完全に結晶化するものである。
本発明者の実験によれば、非晶質酸化イリジウムを含有する触媒層は、有効表面積が大幅に増大することができるが、電解による非晶質酸化イリジウムの消耗がかなり速く、耐久性は相対的に低下することが判明した。即ち、触媒層の酸化イリジウムが結晶化されないと電極耐久性の向上ができないと考える。従って、電極触媒層の有効表面積を増大させ、電極の過電圧が低減させるという本発明の目的を達成するため、本発明においては、高温焼成+高温ポストベークの2段階焼成をおこなうことにより、触媒層の酸化イリジウムの結晶子径を制御でき、従来品により小さい酸化イリジウム結晶を析出するので、従来品と比べ、電極触媒層の有効表面積が増大でき、過電圧の低減が実現できた。
In the present invention, calcination is performed in two stages. First, a catalyst layer containing amorphous IrO 2 is formed by calcination in a relatively high temperature region of 430 ° C. to 480 ° C., and then further 520 ° C. to 600 ° C. By post-baking in a high temperature region, iridium oxide in the catalyst layer is crystallized almost completely.
According to the inventor's experiments, the catalyst layer containing amorphous iridium oxide can significantly increase the effective surface area, but the consumption of amorphous iridium oxide by electrolysis is considerably fast, and the durability is relatively high. It turned out to decline. That is, it is considered that the electrode durability cannot be improved unless iridium oxide in the catalyst layer is crystallized. Therefore, in order to achieve the object of the present invention to increase the effective surface area of the electrode catalyst layer and reduce the overvoltage of the electrode, in the present invention, the catalyst layer is obtained by performing two-step firing of high temperature firing + high temperature post-baking. The iridium oxide crystallite size can be controlled, and smaller iridium oxide crystals are deposited on the conventional product, so that the effective surface area of the electrode catalyst layer can be increased and the overvoltage can be reduced compared to the conventional product.

本発明においては、導電性金属基体の表面に、430℃〜480℃の比較的高温領域で加熱焼成することによって、非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムの触媒層を520℃〜600℃の更なる高温領域でポストベークし、該触媒層中の酸化イリジウムを略完全に結晶化する。   In the present invention, a catalyst layer containing amorphous iridium oxide is formed on the surface of the conductive metal substrate by heating and firing in a relatively high temperature region of 430 ° C. to 480 ° C., and then the amorphous The high quality iridium oxide catalyst layer is post-baked in a further high temperature region of 520 ° C. to 600 ° C., and the iridium oxide in the catalyst layer is crystallized almost completely.

本発明による酸化イリジウムの触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とすることにより、製品の品質向上や、特殊性能を付与するため、300A/dm2〜700A/dm2またはそれ以上の電流密度で電解を行う場合、或いは、電解で得られる製品へ特殊性能を与えるため、高負荷電解条件下となる特定箇所に補助陽極として設置する場合においても、電極触媒層への負荷を低減し、加えて電流集中を防ぎ、電極触媒層の消耗をおさえることができる。 In order to give an improvement in product quality and special performance by setting the amount of iridium oxide applied to the catalyst layer of iridium oxide according to the present invention to 2 g / m 2 or more, 300 A / dm 2 to 700 A / dm 2 Even when electrolysis is performed at a current density higher than that, or in order to give special performance to products obtained by electrolysis, even if it is installed as an auxiliary anode at a specific location under high load electrolysis conditions, The load can be reduced, in addition, current concentration can be prevented, and consumption of the electrode catalyst layer can be suppressed.

また、本発明による前記比較的高温領域での焼成温度430℃〜480℃と更なる高温領域におけるポストベーク温度の温度範囲520℃〜600℃は、触媒層中に形成される酸化イリジウムの結晶粒子径と結晶化度によって求められるものであり、上記温度範囲によって、酸素過電圧が低く、且つ耐食性のよい触媒層が形成される。
本発明においては、電極触媒層中の酸化イリジウムの結晶子径を小さく抑え、好ましくは、結晶子径が9.0nm以下とするとともに、酸化イリジウムの大部分を結晶化し、好ましくは、結晶化度が80%以上に結晶化することにより、酸化イリジウムの結晶子径の成長を抑制し、かつ触媒層の有効表面積が増大することができた。
Further, the calcination temperature in the relatively high temperature range according to the present invention is 430 ° C. to 480 ° C. and the post baking temperature range 520 ° C. to 600 ° C. in the further high temperature range is the iridium oxide crystal particles formed in the catalyst layer. The catalyst layer is determined by the diameter and the degree of crystallinity, and a catalyst layer having a low oxygen overvoltage and good corrosion resistance is formed depending on the temperature range.
In the present invention, the crystallite diameter of iridium oxide in the electrode catalyst layer is kept small, preferably the crystallite diameter is 9.0 nm or less, and most of the iridium oxide is crystallized, preferably the crystallinity is By crystallizing to 80% or more, growth of the crystallite size of iridium oxide was suppressed, and the effective surface area of the catalyst layer could be increased.

尚、該触媒層を形成する前に、前記導電性金属基体上に、タンタル及びチタン成分を含有するAIP下地層を設けた場合、金属基体の界面腐食をより一層防止することができる。
また、AIP下地層に代えて、TiTaOx酸化物層よりなる下地層を形成してもよい。
If an AIP underlayer containing a tantalum and a titanium component is provided on the conductive metal substrate before forming the catalyst layer, interfacial corrosion of the metal substrate can be further prevented.
Further, instead of the AIP underlayer, an underlayer made of a TiTaO x oxide layer may be formed.

AIP被覆チタン基材を用いてIrCl3/Ta2Cl5の塩酸水溶液を塗布液として一回あたり3g−Ir/m2で塗布し、IrO2が部分的に結晶化する温度で(430〜480℃)の焼成による触媒層を形成させた。必要な触媒担持量まで前記塗布・焼成工程を繰返した後、さらに高い温度(520℃〜600℃)で一時間のポストベークを実施したことより電極サンプルを作製した。作製したサンプルにはXRDでの触媒層のIrO2結晶性、酸素発生過電圧、電極静電容量等測定及び硫酸・ゼラチン電解評価と鉛付着試験評価を行った。
その結果、形成した触媒層のIrO2の大部分が結晶質であったが、結晶子径が小さくなり、電極有効表面積の増大ができた。加速電解寿命評価を行ったところ、後述するように、硫酸電解寿命は従来品の約1.4倍、ゼラチン電解寿命は従来品の約1.5倍になり、耐久性向上効果を認められた。
An aqueous solution of IrCl 3 / Ta 2 Cl 5 using an AIP-coated titanium substrate was applied as a coating solution at a rate of 3 g-Ir / m 2 , and IrO 2 was partially crystallized (430 to 480). The catalyst layer was formed by calcination. After repeating the said application | coating and baking process to the required catalyst carrying amount, the electrode sample was produced from having carried out the post-baking for one hour at still higher temperature (520 degreeC-600 degreeC). The prepared samples were subjected to measurement of IrO 2 crystallinity, oxygen generation overvoltage, electrode capacitance, etc. of the catalyst layer by XRD, sulfuric acid / gelatin electrolysis evaluation and lead adhesion test evaluation.
As a result, most of the IrO 2 in the formed catalyst layer was crystalline, but the crystallite diameter was reduced, and the effective electrode surface area was increased. As a result of an accelerated electrolysis life evaluation, as described later, the sulfuric acid electrolysis life was about 1.4 times that of the conventional product, and the gelatin electrolysis life was about 1.5 times that of the conventional product. .

以下、本発明による実験条件及び方法を示す。
非晶質酸化イリジウムの形成温度と、その後の結晶化するポストベーク温度の範囲を調べるために、表1に示した試料を作製し、X線回析、サイクリックボルタンメトリと酸素発生過電圧等測定を行った。
試料の製作方法は以下の通りとした。
JIS I種チタン板の表面を鉄グリット(G120サイズ)にて乾式ブラスト処理を施し、次いで、沸騰濃塩酸水溶液中にて10分間酸洗処理を行い、電極金属基体の洗浄処理を行った。洗浄した電極金属基体を、蒸発源としてTi−Ta合金ターゲットを用いたアークイオンプレーティング装置にセットし、電極金属基体表面にタンタルとチタン合金下地層コーティング被覆を行った。被覆条件は、表1の通りである。
Hereinafter, experimental conditions and methods according to the present invention will be described.
In order to investigate the range of the formation temperature of amorphous iridium oxide and the post-baking temperature for subsequent crystallization, samples shown in Table 1 were prepared, X-ray diffraction, cyclic voltammetry, oxygen generation overvoltage, etc. Measurements were made.
The sample manufacturing method was as follows.
The surface of the JIS type I titanium plate was dry blasted with iron grit (G120 size), then pickled in a boiling concentrated hydrochloric acid aqueous solution for 10 minutes to clean the electrode metal substrate. The cleaned electrode metal substrate was set in an arc ion plating apparatus using a Ti-Ta alloy target as an evaporation source, and the surface of the electrode metal substrate was coated with a tantalum and titanium alloy undercoat. The coating conditions are as shown in Table 1.

Figure 2014530292
Figure 2014530292

次に、前記被覆処理済金属基体は空気循環式の電気炉中において530℃、180分間の熱処理を行った。
次に、四塩化イリジウム、五塩化タンタルを濃塩酸に溶解して塗布液とし、前記被覆処理済金属基体に塗布し、乾燥後、空気循環式の電気炉中にて表2に示した温度で15分間の熱分解被覆を行い、酸化イリジウムと酸化タンタルとの混合酸化物よりなる電極触媒層を形成した。塗布液の1回あたりの塗布厚みがイリジウム金属に換算してほぼ3.0g/m2になる様に前記塗布液の量を設定し、この塗布〜焼成の操作を9回繰り返して、イリジウム金属換算で約27.0g/m2の電極触媒層を得た。
次に、前記触媒層を被覆済試料は空気循環式の電気炉中にて表2に示した温度で更に1時間のポストベークを行い、電解用電極を製作した。また、比較する為に、ポストベークを施さない試料を作製した。
各試料の焼成温度とポストベーク温度のリストは表2に示した。
評価実験項目
(1)結晶化度と結晶子径の測定
X線回折法で触媒層のIrO2結晶性と結晶子径を測定した。
回折ピーク強度より結晶化度を推算した。
(2)電極静電容量
サイクリックボルタンメトリ法
電解液:150g/L H2SO4 aq.
電解温度:60℃
電解面積:10×10mm2
対極:Zr板(20mm×70mm)
参照電極:硫酸第一水銀電極(SSE)
(3)酸素過電圧測定
電流遮断法(current interrupt method)
電 解 液:150g/L H2SO4 aq.
電解温度:60℃
電解面積:10×10mm2
対 極:Zr板(20mm×70mm)
参照電極:硫酸第一水銀電極(SSE)
Next, the coated metal substrate was heat-treated at 530 ° C. for 180 minutes in an air circulating electric furnace.
Next, iridium tetrachloride and tantalum pentachloride are dissolved in concentrated hydrochloric acid to form a coating solution, applied to the coated metal substrate, dried, and then dried in an air circulating electric furnace at the temperatures shown in Table 2. Thermal decomposition coating was performed for 15 minutes to form an electrode catalyst layer made of a mixed oxide of iridium oxide and tantalum oxide. The amount of the coating solution is set so that the coating thickness per coating solution is approximately 3.0 g / m 2 in terms of iridium metal, and this operation of coating to baking is repeated nine times. An electrode catalyst layer of about 27.0 g / m 2 in terms of conversion was obtained.
Next, the sample coated with the catalyst layer was further post-baked for 1 hour at the temperature shown in Table 2 in an air circulation type electric furnace to produce an electrode for electrolysis. For comparison, a sample not subjected to post-baking was prepared.
A list of the firing temperature and post-bake temperature for each sample is shown in Table 2.
Evaluation Experiment Item (1) Measurement of crystallinity and crystallite diameter IrO 2 crystallinity and crystallite diameter of the catalyst layer were measured by X-ray diffraction method.
The crystallinity was estimated from the diffraction peak intensity.
(2) Electrode capacitance Cyclic voltammetry method Electrolyte solution: 150 g / L H 2 SO 4 aq.
Electrolysis temperature: 60 ° C
Electrolytic area: 10 × 10 mm 2
Counter electrode: Zr plate (20mm x 70mm)
Reference electrode: Mercury sulfate electrode (SSE)
(3) Oxygen overvoltage measurement Current interrupt method
Electrolysis solution: 150 g / L H 2 SO 4 aq.
Electrolysis temperature: 60 ° C
Electrolytic area: 10 × 10 mm 2
Counter electrode: Zr plate (20mm x 70mm)
Reference electrode: Mercury sulfate electrode (SSE)

Figure 2014530292
焼成温度及びポストベーク温度によるIrO2結晶性の変化は、以下の通りであった。
結晶化度の推算は従来品の結晶回析ピーク(θ=28°)強度を100として、各サンプルの同結晶回析ピーク(θ=28°)の強度が従来品の強度との割合を結晶度とした。その結果は表2に示した。また、表2の結晶化度に関するデータを基づき作成したグラフを図1に示した。
Figure 2014530292
The change in IrO 2 crystallinity with the firing temperature and post-bake temperature was as follows.
The degree of crystallinity is estimated by taking the intensity of the crystal diffraction peak (θ = 28 °) of the conventional product as 100 and the intensity of the same crystal diffraction peak (θ = 28 °) of each sample as the strength of the conventional product. Degree. The results are shown in Table 2. Moreover, the graph produced based on the data regarding the crystallinity degree of Table 2 was shown in FIG.

表2及び図1から明らかなように、本発明の実施例(430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベーク)によるサンプル2〜4及び6〜8のポストベーク後の酸化イリジウムの結晶化度は、80%以上であった。一方、ポストベーク無し430℃焼成による電極触媒層(サンプル1)に帰属する酸化イリジウムの明瞭なピークは認められず、この試料の触媒層が非晶質の酸化イリジウムから形成されていることを確認した。ポストベーク無し480℃焼成による電極触媒層(サンプル5)の結晶化度は、72%であり、非晶質酸化イリジウムが多く残存していた。また、従来品であるサンプル9は、完全に結晶化され、結晶化度は、100%であったが、結晶子径が9.1nmと大きくなり、そのため、電気静電容量は、7.6と低い値となり、有効表面積が小さかった。
即ち、高温ポストベークによる結晶化度の変化について、430℃の焼成後、更に高温ポストベークを施したことによる電極触媒層に帰属するIrO2の明瞭なピークが見られ、高温ポストベークにより触媒層の非晶質IrO2は、結晶質に転換したことが分かった。また、いずれのポストベーク温度でもピーク強度が従来品と同様で、非晶質のIrO2は残存していないことが分かった。一方、480℃焼成品は更に高温ポストベークにより、結晶化度が増加したことが分かった。しかし、520℃と560℃でのポストベーク後IrO2非晶質がまだ少量で残存していることが分かった。これに対して600℃のポストベーク後のIrO2結晶化度は従来品とほぼ同等になり、完全に結晶化したことが分かった。
As can be seen from Table 2 and FIG. 1, Sample 2 to Example 2 of the present invention (high temperature firing at a relatively high temperature range of 430 ° C. to 480 ° C. + post baking at a further high temperature range of 520 ° C. to 600 ° C.) The crystallinity of iridium oxide after post-baking of 4 and 6 to 8 was 80% or more. On the other hand, a clear peak of iridium oxide attributed to the electrode catalyst layer (sample 1) by post-baking at 430 ° C. was not observed, and it was confirmed that the catalyst layer of this sample was formed from amorphous iridium oxide. did. The degree of crystallinity of the electrode catalyst layer (sample 5) obtained by baking at 480 ° C. without post-baking was 72%, and a large amount of amorphous iridium oxide remained. In addition, the conventional sample 9 was completely crystallized and the crystallinity was 100%, but the crystallite diameter was as large as 9.1 nm. Therefore, the electric capacitance was 7.6. The effective surface area was small.
That is, regarding the change in crystallinity due to high-temperature post-baking, a clear peak of IrO 2 attributed to the electrode catalyst layer due to further high-temperature post-baking after firing at 430 ° C. is observed. Of amorphous IrO 2 was found to be converted to crystalline. It was also found that at any post-bake temperature, the peak intensity was the same as that of the conventional product, and amorphous IrO 2 did not remain. On the other hand, it was found that the crystallinity of the 480 ° C. fired product was further increased by high temperature post-baking. However, it was found that a small amount of IrO 2 amorphous remained after post-baking at 520 ° C. and 560 ° C. In contrast, the IrO 2 crystallinity after post-baking at 600 ° C. was almost the same as that of the conventional product, indicating that it was completely crystallized.

次に、X線回析より、結晶子径の計算を行った。その結果は表2に示した。また、表2の結晶子径に関するデータに基づき作成したグラフを図2に示した。
ポストベークポストベーク無し430℃の焼成で非晶質のIrO2を生成したので、結晶子径は「0」とした。ポストベークを施すと、非晶質IrO2は結晶化されたが、形成した結晶の結晶子径は、従来品と比べ小さくなったことが分かった。また、ポストベーク温度とIrO2結晶子径との依存性はほぼ見られなかった。
一方、ポストベークを施した480℃焼成品において、ポストベーク温度に関わらず、形成した結晶子径は、従来品により小さくなることが分かった。即ち、ポストベークにより低温焼成で形成した触媒層のIrO2結晶化度は上昇したが、IrO2結晶子径の増加を抑制出来た。
Next, the crystallite diameter was calculated by X-ray diffraction. The results are shown in Table 2. Moreover, the graph produced based on the data regarding the crystallite diameter of Table 2 was shown in FIG.
Amorphous IrO 2 was generated by 430 ° C. firing without post-baking and post-baking, so the crystallite diameter was set to “0”. When post-baking was performed, amorphous IrO 2 was crystallized, but it was found that the crystallite diameter of the formed crystal was smaller than that of the conventional product. Further, almost no dependency was observed between the post-bake temperature and the IrO 2 crystallite diameter.
On the other hand, in the post-baked 480 ° C. fired product, the formed crystallite diameter was found to be smaller than that of the conventional product regardless of the post-bake temperature. That is, although the IrO 2 crystallinity of the catalyst layer formed by low-temperature calcination by post-baking was increased, an increase in the IrO 2 crystallite diameter could be suppressed.

表2の結晶子径に関するデータ及び図2から明らかなように、本発明の実施例(430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベーク)によるサンプル2〜4及び6〜8のポストベーク後の酸化イリジウムの結晶子径は、9.0nm以下であった。一方、ポストベーク無し430℃焼成による電極触媒層(サンプル1)に帰属する酸化イリジウムの明瞭なピークは認められず、この試料の触媒層が非晶質の酸化イリジウムから形成されていることを確認した。ポストベーク無し480℃焼成による電極触媒層(サンプル5)の結晶子径は大きく、9.3nmであった。また、従来品であるサンプル9の酸化イリジウムの結晶子径は大きく、9.1nmであった。   As is clear from the data on the crystallite size in Table 2 and FIG. The crystallite size of iridium oxide after post-baking of Samples 2 to 4 and 6 to 8 by baking was 9.0 nm or less. On the other hand, a clear peak of iridium oxide attributed to the electrode catalyst layer (sample 1) by post-baking at 430 ° C. was not observed, and it was confirmed that the catalyst layer of this sample was formed from amorphous iridium oxide. did. The crystallite diameter of the electrode catalyst layer (sample 5) obtained by baking at 480 ° C. without post-baking was large, which was 9.3 nm. Moreover, the crystallite diameter of the iridium oxide of the sample 9 which is a conventional product was large and was 9.1 nm.

次に、430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベークによる電極触媒層の有効表面積の変化を測定した。
サイクリックボルタンメトリ法で算出した電極静電容量は表2に示した。電極静電容量は、電極の有効表面積と比例し、いわゆる静電容量が高くなると有効表面積も高いと言える。表2のデータに基づき触媒層の焼成条件と静電容量との関係図は図3に示した。
表2及び図3から本発明の実施例(430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベーク)によるサンプル2〜4及び6〜8の電極静電容量は、11.6以上と高くなることが判明した。一方、ポストベーク無し430℃の焼成で形成した触媒層のIrO2(サンプル1)は、非晶質であるので、最大の有効表面積(電気静電容量)を示した。ポストベークを実施した後、IrO2が結晶化するため、有効表面積(電気静電容量)は、減少したが、従来品と比べると高いことが分かった。これは形成した結晶子径は従来品により小さくなったためと考える。また、ポストベーク温度の増加による電極有効表面積(電気静電容量)の減少傾向が見られた。
また、480℃焼成後ポストベークした場合(サンプル5〜8)に、ポストベーク温度に関わらず、有効表面積(電気静電容量)は、ほぼ同等であるが、従来品と比べると、2倍増大したことが分かった。これはIrO2結晶子径が従来品と比べ小さく、また非晶質のIrO2が少量で残存しているためと考えられる。また、ポストベーク温度を上昇しても電極有効表面積(電気静電容量)の変化が見られなかった。
Next, the change in the effective surface area of the electrode catalyst layer due to high temperature firing in a relatively high temperature region of 430 ° C. to 480 ° C. + post baking in a further high temperature region of 520 ° C. to 600 ° C. was measured.
The electrode capacitance calculated by the cyclic voltammetry method is shown in Table 2. The electrode capacitance is proportional to the effective surface area of the electrode, and the higher the so-called capacitance, the higher the effective surface area. Based on the data in Table 2, the relationship between the firing conditions of the catalyst layer and the capacitance is shown in FIG.
From Table 2 and FIG. 3, Samples 2 to 4 and 6 to 8 according to examples of the present invention (high temperature baking at a relatively high temperature range of 430 ° C. to 480 ° C. + post baking at a further high temperature range of 520 ° C. to 600 ° C.) The electrode capacitance was found to be as high as 11.6 or more. On the other hand, IrO 2 (sample 1) of the catalyst layer formed by calcination at 430 ° C. without post-baking was amorphous, and thus showed the maximum effective surface area (electrical capacitance). Since IrO 2 crystallized after post-baking, the effective surface area (electrical capacitance) was reduced, but was found to be higher than that of the conventional product. This is probably because the crystallite diameter formed is smaller than that of the conventional product. Moreover, the tendency for the electrode effective surface area (electrical capacitance) to decrease by the increase in post-baking temperature was observed.
In addition, when post-baking after baking at 480 ° C (samples 5 to 8), the effective surface area (electrical capacitance) is almost the same regardless of the post-baking temperature, but it is twice as large as the conventional product. I found out. This is probably because the IrO 2 crystallite diameter is smaller than that of the conventional product, and a small amount of amorphous IrO 2 remains. Further, even when the post-bake temperature was raised, no change in the electrode effective surface area (electrical capacitance) was observed.

各試料の酸素発生過電圧(V vs. SSE @100A/dm2)の測定を行った。結果は表2に示した。また、焼成条件と酸素発生過電圧との依存性は、図4に示した。図4のグラフの変化傾向は、図3と逆になり、電極有効表面積の増大に従い、試料の酸素発生過電圧は低下した傾向が見られた。これは電極有効表面積の増大による電流分布を分散でき、実電流を下がるためと考える。
最大の有効表面積を有するポストベークなし430℃焼成品は最低の酸素過電圧を示したが、ポストベークによる有効表面積を減少することによって、酸素過電圧が上昇した。480℃焼成品の酸素過電圧とポストベーク温度との依存性は同様な傾向が見られた。また、これらの試料の酸素過電圧は、従来品に比べ高くなったことも分かった。これは従来品より表面積が増大したためと思われる。
表2及び図4から本発明の実施例(430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベーク)によるサンプル2〜4及び6〜8の酸素発生過電圧は、低くなることが判明した。
The oxygen generation overvoltage (V vs. SSE @ 100 A / dm 2 ) of each sample was measured. The results are shown in Table 2. Further, the dependency between the firing conditions and the oxygen generation overvoltage is shown in FIG. The trend of change in the graph of FIG. 4 was opposite to that of FIG. 3, and as the electrode effective surface area increased, the oxygen generation overvoltage of the sample tended to decrease. This is considered to be because the current distribution due to the increase of the electrode effective surface area can be dispersed and the actual current is lowered.
The post-baked 430 ° C. fired product with the largest effective surface area showed the lowest oxygen overvoltage, but the oxygen overvoltage increased by reducing the effective surface area due to post-baking. A similar tendency was observed in the dependency of oxygen overvoltage and post-baking temperature on the 480 ° C. fired product. It was also found that the oxygen overvoltage of these samples was higher than that of the conventional product. This seems to be because the surface area increased compared to the conventional product.
From Table 2 and FIG. 4, samples 2 to 4 and 6 to 8 according to examples of the present invention (high temperature baking at a relatively high temperature range of 430 ° C. to 480 ° C. + post baking at a further high temperature range of 520 ° C. to 600 ° C.) It has been found that the oxygen generation overvoltage of is low.

上述のように、430℃〜480℃の比較的高温領域での高温焼成+520℃〜600℃の更なる高温領域でのポストベークによる焼成手段で製作した電極は、従来品に比べ触媒層のIrO2結晶は小さく、電極表面積が増大できた。これらの試料は高負荷条件下で電流分布が分散でき、実電流負荷を低下したので、触媒消耗の抑制効果が大きく、耐久性の向上も期待できると考えられる。 As described above, the electrode manufactured by the high temperature baking in the relatively high temperature range of 430 ° C. to 480 ° C. + post baking in the further high temperature range of 520 ° C. to 600 ° C. is IrO in the catalyst layer as compared with the conventional product. Two crystals were small and the electrode surface area could be increased. Since these samples were able to disperse the current distribution under high load conditions and reduced the actual current load, it is considered that the effect of suppressing the catalyst consumption is great and the durability can be expected to be improved.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

<実施例1>
JIS I種チタン板の表面を鉄グリット(G120サイズ)にて乾式ブラスト処理を施し、次いで、沸騰濃塩酸水溶液中にて10分間酸洗処理を行い、電極金属基体の洗浄処理を行った。洗浄した電極金属基体を、蒸発源としてTi−Ta合金ターゲットを用いたアークイオンプレーティング装置にセットし、電極金属基体表面にタンタルとチタンを含有するAIP下地層コーティング被覆を行った。被覆条件は、表1の通りである。
次に、前記被覆処理済金属基体は空気循環式の電気炉中において530℃、180分間の熱処理を行った。
次に、四塩化イリジウム、五塩化タンタルを濃塩酸に溶解して塗布液とし、前記被覆処理済金属基体に塗布し、乾燥後、空気循環式の電気炉中にて480℃、15分間の熱分解被覆を行い、酸化イリジウムと酸化タンタルとの混合酸化物よりなる電極触媒層を形成した。塗布液の1回あたりの塗布厚みがイリジウム金属に換算してほぼ3.0g/m2になる様に前記塗布液の量を設定し、この塗布〜焼成の操作を9回繰り返して、イリジウム金属換算で約27.0g/m2の電極触媒層を得た。
この試料についてX線回折を行ったところ、電極触媒層に帰属する酸化イリジウムの明瞭なピークは認められたが、ピークの強度は比較例1に比べ低く、結晶質のIrO2は部分的に析出したことが分かった。
次に、前記触媒層を被覆した試料は空気循環式の電気炉中にて更に520℃、1時間のポストベークを行い、電解用電極を製作した。
ポストベーク後試料についてX線回析を行ったところ、電極触媒層に帰属するIrO2の明瞭なピークは見られ、ピークの強度はポストベーク前と比べ高くなったが、比較例1に比べまだ低い。このことより、高温ポストベークによる前の低温焼成の被覆工程で形成した触媒層の結晶化度が増加したが、非晶質IrO2が部分的に残存していることが分かった。
このようにして作製した電解用電極について表3に示した2種類寿命評価試験(純硫酸溶液とゼラチン添加あり硫酸溶液の両方)を行った。結果は表4に示した。表4の比較例1(従来品)と比べると、硫酸電解寿命は1.7倍、ゼラチン電解寿命は1.1倍になったので、硫酸又は有機添加物に対する耐久性を両方共に向上したことが明らかにした。
<Example 1>
The surface of the JIS type I titanium plate was dry blasted with iron grit (G120 size), then pickled in a boiling concentrated hydrochloric acid aqueous solution for 10 minutes to clean the electrode metal substrate. The cleaned electrode metal substrate was set in an arc ion plating apparatus using a Ti—Ta alloy target as an evaporation source, and the surface of the electrode metal substrate was coated with an AIP underlayer coating containing tantalum and titanium. The coating conditions are as shown in Table 1.
Next, the coated metal substrate was heat-treated at 530 ° C. for 180 minutes in an air circulating electric furnace.
Next, iridium tetrachloride and tantalum pentachloride are dissolved in concentrated hydrochloric acid to obtain a coating solution, which is coated on the coated metal substrate, dried, and then heated in an air circulating electric furnace at 480 ° C. for 15 minutes. Decomposition coating was performed to form an electrode catalyst layer made of a mixed oxide of iridium oxide and tantalum oxide. The amount of the coating solution is set so that the coating thickness per coating solution is approximately 3.0 g / m 2 in terms of iridium metal, and this operation of coating to baking is repeated nine times. An electrode catalyst layer of about 27.0 g / m 2 in terms of conversion was obtained.
When this sample was subjected to X-ray diffraction, a clear peak of iridium oxide attributed to the electrode catalyst layer was observed, but the intensity of the peak was lower than that of Comparative Example 1, and crystalline IrO 2 was partially precipitated. I found out.
Next, the sample coated with the catalyst layer was further post-baked at 520 ° C. for 1 hour in an air circulation type electric furnace to produce an electrode for electrolysis.
When X-ray diffraction was performed on the post-baked sample, a clear peak of IrO 2 belonging to the electrode catalyst layer was observed, and the intensity of the peak was higher than that before the post-baking, but still not as compared with Comparative Example 1. Low. From this, it was found that the crystallinity of the catalyst layer formed in the coating step of the previous low-temperature firing by high-temperature post-baking increased, but amorphous IrO 2 partially remained.
Two types of life evaluation tests (both pure sulfuric acid solution and sulfuric acid solution with gelatin addition) shown in Table 3 were performed on the electrodes for electrolysis thus prepared. The results are shown in Table 4. Compared to Comparative Example 1 (conventional product) in Table 4, the sulfuric acid electrolysis life was 1.7 times longer and the gelatin electrolysis life was 1.1 times longer, so both durability against sulfuric acid or organic additives were improved. Revealed.

Figure 2014530292
Figure 2014530292

<実施例2>
空気循環式の電気炉中におけるポストベークの温度を560℃としたこと以外は、実施例1と同様にして、評価用電極の作製を行い、さらに同様の電解評価を行った。
ポストベーク後のX線回析を行ったところ、触媒層のIrO2の結晶化度と結晶子径は実施例1と同程度と認められた。
表4に示したように、表4の比較例1(従来品)と比べると、硫酸電解寿命は1.5倍、ゼラチン電解寿命は1.3倍になったので、硫酸又は有機添加物に対する耐久性を両方共に向上したことが明らかにした。
<Example 2>
An evaluation electrode was prepared in the same manner as in Example 1 except that the post-baking temperature in an air circulation type electric furnace was 560 ° C., and the same electrolytic evaluation was performed.
As a result of X-ray diffraction after post-baking, the degree of crystallinity and crystallite size of IrO 2 in the catalyst layer were found to be the same as those in Example 1.
As shown in Table 4, compared to Comparative Example 1 (conventional product) in Table 4, the sulfuric acid electrolysis life was 1.5 times longer and the gelatin electrolysis life was 1.3 times longer. It was revealed that both durability were improved.

<比較例1>
実施例1における空気循環式の電気炉中における焼成温度、焼成時間を520℃、15分間に変えて熱分解被覆を行い、酸化イリジウムと酸化タンタルとの混合酸化物よりなる電極触媒層を形成した。こうして作製した電極はポストベークを実施せず、実施例1と同様のX線回析と電解評価を行った。
この試料についてX線回折を行ったところ、電極触媒層に帰属する酸化イリジウムの明瞭なピークは認められ、触媒層のIrO2が結晶質であることを確認した。
実施例1と同様の寿命評価を行った。表4に示した結果により、本発明において提案した低温焼成+高温ポストベークの触媒層の形成によって高負荷条件下での電解に対する耐久性を向上したことが明確された。
<Comparative Example 1>
Pyrolysis coating was performed by changing the firing temperature and firing time in the air circulation type electric furnace in Example 1 to 520 ° C. for 15 minutes to form an electrode catalyst layer made of a mixed oxide of iridium oxide and tantalum oxide. . The electrodes thus prepared were not subjected to post-baking, and the same X-ray diffraction and electrolytic evaluation as in Example 1 were performed.
When this sample was subjected to X-ray diffraction, a clear peak of iridium oxide attributed to the electrode catalyst layer was observed, and it was confirmed that IrO 2 of the catalyst layer was crystalline.
Life evaluation similar to Example 1 was performed. From the results shown in Table 4, it was clarified that the durability against electrolysis under high load conditions was improved by the formation of the catalyst layer of low-temperature firing + high-temperature post-baking proposed in the present invention.

<比較例2>
ポストベークを実施しないこと以外は、実施例1と同様にして、評価用電極の製作を行い、次に実施例1と同様な電解評価を行った。
表4に示したように、ポストベークせず480℃焼成した電極の硫酸電解寿命とゼラチン電解寿命は比較例1の従来品と同等になり、耐久性向上効果が見られなかった。
<Comparative example 2>
An evaluation electrode was produced in the same manner as in Example 1 except that post-baking was not performed, and then electrolytic evaluation similar to that in Example 1 was performed.
As shown in Table 4, the sulfuric acid electrolysis life and the gelatin electrolysis life of the electrode baked at 480 ° C. without post-baking were the same as those of the conventional product of Comparative Example 1, and no durability improvement effect was observed.

Figure 2014530292
Figure 2014530292

本発明は、各種工業電解に使用される酸素発生用陽極及びその製造方法に関し、より詳細には、電解銅箔等の電解金属箔製造、アルミニウム液中給電、連続電気亜鉛メッキ鋼板製造、金属採取等の工業電解で使用される、高負荷電解条件下で優れた耐久性を有する耐高負荷用酸素発生用陽極として利用することができる。   The present invention relates to an oxygen generating anode used for various industrial electrolysis and a method for producing the same, and more specifically, electrolytic metal foil production such as electrolytic copper foil, feeding in aluminum liquid, continuous electrogalvanized steel plate production, metal sampling. It can be used as an oxygen generating anode for high load resistance having excellent durability under high load electrolysis conditions used in industrial electrolysis.

Claims (8)

導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、430℃〜480℃の高温領域で加熱焼成され、非晶質の酸化イリジウムを含有する触媒層が形成され、次いで、該非晶質の酸化イリジウムを含有する前記触媒層が520℃〜600℃の高温領域でポストベークされ、該触媒層中の酸化イリジウムの略全量が結晶化されていることを特徴とする酸素発生用陽極。 In an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, the amount of iridium applied per catalyst layer is 2 g / m 2 or more. Yes, a catalyst layer containing amorphous iridium oxide is formed by heating and firing in a high temperature region of 430 ° C. to 480 ° C., and then the catalyst layer containing amorphous iridium oxide is 520 ° C. to 600 ° C. An oxygen generating anode, wherein the catalyst is post-baked in a high temperature region, and substantially all of iridium oxide in the catalyst layer is crystallized. 導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、前記ポストベーク後の触媒層中の酸化イリジウムの結晶化度を80%以上としたことを特徴とする請求項1に記載の酸素発生用陽極。 In an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, the amount of iridium applied per catalyst layer is 2 g / m 2 or more. 2. The oxygen generating anode according to claim 1, wherein the degree of crystallinity of iridium oxide in the catalyst layer after the post-baking is 80% or more. 導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層の一回あたりのイリジウムの塗布量が2g/m2以上であり、前記触媒層中の酸化イリジウムの結晶子径を9.0nm以下としたことを特徴とする請求項1又は2に記載の酸素発生用陽極。 In an oxygen generating anode having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, the amount of iridium applied per catalyst layer is 2 g / m 2 or more. 3. The oxygen generating anode according to claim 1, wherein a crystallite diameter of iridium oxide in the catalyst layer is 9.0 nm or less. 導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、該触媒層を形成する前に、前記導電性金属基体上に、アークイオンプレーティング法によりタンタル及びチタン成分を含有するアークイオンプレーティング下地層を形成したことを特徴とする請求項1〜3のいずれか1項に記載の酸素発生用陽極。   In an anode for oxygen generation having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, arc ions are formed on the conductive metal substrate before forming the catalyst layer. The anode for oxygen generation according to any one of claims 1 to 3, wherein an arc ion plating underlayer containing tantalum and titanium components is formed by a plating method. 導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極において、導電性金属基体の表面に、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の高温領域で加熱焼成することによって非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の高温領域でポストベークし、該触媒層中の酸化イリジウムの略全量を結晶化することを特徴とする酸素発生用陽極の製造方法。 In an anode for oxygen generation having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, iridium per coating of the catalyst layer is applied to the surface of the conductive metal substrate. A catalyst layer containing amorphous iridium oxide is formed by heating and baking in a high temperature region of 430 ° C. to 480 ° C. with an amount of 2 g / m 2 or more, and then containing the amorphous iridium oxide. A method for producing an anode for generating oxygen, characterized in that the catalyst layer is post-baked in a high temperature region of 520 ° C. to 600 ° C., and substantially the entire amount of iridium oxide in the catalyst layer is crystallized. 導電性金属基体の表面に、該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の高温領域で加熱焼成することによって、非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の高温領域でポストベークし、該触媒層中の酸化イリジウムの結晶化度を80%以上としたことを特徴とする請求項5に記載の酸素発生用陽極の製造方法。 Amorphous iridium oxide is formed on the surface of the conductive metal substrate by heating and baking in a high temperature region of 430 ° C. to 480 ° C. with an application amount of iridium per catalyst layer of 2 g / m 2 or more. After forming the catalyst layer containing the catalyst layer, the catalyst layer containing the amorphous iridium oxide is post-baked in a high temperature region of 520 ° C. to 600 ° C., and the crystallinity of the iridium oxide in the catalyst layer is 80%. The method for producing an anode for oxygen generation according to claim 5, which is as described above. 該触媒層の一回あたりのイリジウムの塗布量を2g/m2以上とし、430℃〜480℃の高温領域で加熱焼成することによって、非晶質の酸化イリジウムを含有する触媒層を形成し、しかる後、該非晶質の酸化イリジウムを含有する触媒層を520℃〜600℃の高温領域でポストベークし、該触媒層中の酸化イリジウムの結晶子径を9.0nm以下としたことを特徴とする請求項5又は6に記載の酸素発生用陽極の製造方法。 A catalyst layer containing amorphous iridium oxide is formed by heating and firing at a high temperature region of 430 ° C. to 480 ° C. with an application amount of iridium per one time of the catalyst layer being 2 g / m 2 or more, Thereafter, the catalyst layer containing the amorphous iridium oxide is post-baked in a high temperature region of 520 ° C. to 600 ° C., and the crystallite diameter of the iridium oxide in the catalyst layer is set to 9.0 nm or less. The method for producing an anode for oxygen generation according to claim 5 or 6. 導電性金属基体と、該導電性金属基体上に形成された酸化イリジウムを含有する触媒層を有する酸素発生用陽極の製造方法において、該触媒層を形成する前に、前記導電性金属基体上に、アークイオンプレーティング法によりタンタル及びチタン成分を含有するアークイオンプレーティング下地層を形成することを特徴とする請求項5〜7のいずれか1項に記載の酸素発生用陽極の製造方法。   In a method for producing an anode for generating oxygen having a conductive metal substrate and a catalyst layer containing iridium oxide formed on the conductive metal substrate, the catalyst layer is formed on the conductive metal substrate before forming the catalyst layer. The method for producing an oxygen generating anode according to any one of claims 5 to 7, wherein an arc ion plating underlayer containing a tantalum and a titanium component is formed by an arc ion plating method.
JP2014512990A 2011-12-26 2012-12-14 Method for producing anode for oxygen generation for high load resistance Active JP5686455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014512990A JP5686455B2 (en) 2011-12-26 2012-12-14 Method for producing anode for oxygen generation for high load resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011283846 2011-12-26
JP2011283846 2011-12-26
JP2014512990A JP5686455B2 (en) 2011-12-26 2012-12-14 Method for producing anode for oxygen generation for high load resistance
PCT/JP2012/083168 WO2013099780A2 (en) 2011-12-26 2012-12-14 High-load durable anode for oxygen generation and manufacturing method for the same

Publications (2)

Publication Number Publication Date
JP2014530292A true JP2014530292A (en) 2014-11-17
JP5686455B2 JP5686455B2 (en) 2015-03-18

Family

ID=47559625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512990A Active JP5686455B2 (en) 2011-12-26 2012-12-14 Method for producing anode for oxygen generation for high load resistance

Country Status (14)

Country Link
US (1) US20150075978A1 (en)
JP (1) JP5686455B2 (en)
KR (1) KR101583179B1 (en)
CN (1) CN104024481A (en)
AU (1) AU2012361801A1 (en)
CA (1) CA2859939A1 (en)
CL (1) CL2014001717A1 (en)
MX (1) MX2014007759A (en)
MY (1) MY162043A (en)
PE (1) PE20142157A1 (en)
PH (1) PH12014501345A1 (en)
TW (1) TWI541385B (en)
WO (1) WO2013099780A2 (en)
ZA (1) ZA201404259B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047792A1 (en) * 2015-09-18 2017-03-23 旭化成株式会社 Positive electrode for water electrolysis, electrolysis cell and method for producing positive electrode for water electrolysis
JP2017115232A (en) * 2015-12-25 2017-06-29 株式会社東芝 Electrode, membrane electrode composite, electrochemical cell and stack
JPWO2019240200A1 (en) * 2018-06-12 2021-07-15 国立研究開発法人科学技術振興機構 Catalyst and how to use it
WO2023189350A1 (en) * 2022-03-31 2023-10-05 デノラ・ペルメレック株式会社 Electrolysis electrode and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2850501T3 (en) * 2016-11-22 2021-08-30 Asahi Chemical Ind Electrode for electrolysis
KR102126183B1 (en) * 2017-11-29 2020-06-24 한국과학기술연구원 Diffusion layer and oxygen electrode composite layers of polymer electrolyte membrane water electrolysis apparatus and method for preparing the same and polymer electrolyte membrane water electrolysis apparatus using the same
CN110760894A (en) * 2019-10-28 2020-02-07 昆明冶金研究院 Preparation method of titanium coating anode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538955A1 (en) * 1991-10-21 1993-04-28 Magneto-Chemie B.V. Anodes with extended service life and methods for their manufacturing
JP2003503598A (en) * 1999-06-28 2003-01-28 エルテック・システムズ・コーポレーション Copper foil manufacturing method
JP2006515389A (en) * 2003-03-24 2006-05-25 エルテック・システムズ・コーポレーション Electrocatalytic coating with platinum group metals and electrodes made therefrom
JP2008511755A (en) * 2004-09-01 2008-04-17 エルテック・システムズ・コーポレーション Pd-containing coating for low chlorine overvoltage
JP2009263770A (en) * 2008-03-31 2009-11-12 Permelec Electrode Ltd Method of manufacturing electrode for electrolysis
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
JP2010059446A (en) * 2008-09-01 2010-03-18 Asahi Kasei Chemicals Corp Electrode for electrolysis
WO2011078353A1 (en) * 2009-12-25 2011-06-30 旭化成ケミカルズ株式会社 Negative electrode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing negative electrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116892A (en) * 1980-02-20 1981-09-12 Japan Carlit Co Ltd:The Insoluble anode for generating oxygen and preparation thereof
DE3731285A1 (en) * 1987-09-17 1989-04-06 Conradty Metallelek Dimensionally stable anode, method for manufacturing it, and use thereof
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
US5587058A (en) * 1995-09-21 1996-12-24 Karpov Institute Of Physical Chemicstry Electrode and method of preparation thereof
US7247229B2 (en) * 1999-06-28 2007-07-24 Eltech Systems Corporation Coatings for the inhibition of undesirable oxidation in an electrochemical cell
JP3654204B2 (en) 2001-03-15 2005-06-02 ダイソー株式会社 Oxygen generating anode
JP3914162B2 (en) 2003-02-07 2007-05-16 ダイソー株式会社 Oxygen generating electrode
JP4771130B2 (en) 2005-11-25 2011-09-14 ダイソー株式会社 Oxygen generating electrode
CN1995464A (en) * 2006-11-28 2007-07-11 北京科技大学 Nanocrystalline iridium series oxide coating electrode preparation method
JP4516618B2 (en) 2008-06-23 2010-08-04 学校法人同志社 Anode for electrolytic collection of cobalt and electrolytic collection method
CN101914782A (en) * 2010-07-27 2010-12-15 武汉大学 Metallic oxide anode suitable for Fenton system and preparation method thereof
CN102168283B (en) * 2011-04-08 2014-01-15 江苏美特林科特殊合金有限公司 Electrode coating and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538955A1 (en) * 1991-10-21 1993-04-28 Magneto-Chemie B.V. Anodes with extended service life and methods for their manufacturing
JP2003503598A (en) * 1999-06-28 2003-01-28 エルテック・システムズ・コーポレーション Copper foil manufacturing method
JP2006515389A (en) * 2003-03-24 2006-05-25 エルテック・システムズ・コーポレーション Electrocatalytic coating with platinum group metals and electrodes made therefrom
JP2008511755A (en) * 2004-09-01 2008-04-17 エルテック・システムズ・コーポレーション Pd-containing coating for low chlorine overvoltage
JP2009263770A (en) * 2008-03-31 2009-11-12 Permelec Electrode Ltd Method of manufacturing electrode for electrolysis
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
JP2010059446A (en) * 2008-09-01 2010-03-18 Asahi Kasei Chemicals Corp Electrode for electrolysis
WO2011078353A1 (en) * 2009-12-25 2011-06-30 旭化成ケミカルズ株式会社 Negative electrode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing negative electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047792A1 (en) * 2015-09-18 2017-03-23 旭化成株式会社 Positive electrode for water electrolysis, electrolysis cell and method for producing positive electrode for water electrolysis
JPWO2017047792A1 (en) * 2015-09-18 2018-07-19 旭化成株式会社 Anode for water electrolysis, electrolysis cell, and method for producing anode for water electrolysis
JP2017115232A (en) * 2015-12-25 2017-06-29 株式会社東芝 Electrode, membrane electrode composite, electrochemical cell and stack
JPWO2019240200A1 (en) * 2018-06-12 2021-07-15 国立研究開発法人科学技術振興機構 Catalyst and how to use it
JP7315240B2 (en) 2018-06-12 2023-07-26 国立研究開発法人科学技術振興機構 Catalyst and its use
WO2023189350A1 (en) * 2022-03-31 2023-10-05 デノラ・ペルメレック株式会社 Electrolysis electrode and method for producing same

Also Published As

Publication number Publication date
KR20140101425A (en) 2014-08-19
TW201339372A (en) 2013-10-01
ZA201404259B (en) 2015-09-30
JP5686455B2 (en) 2015-03-18
PE20142157A1 (en) 2015-01-17
CN104024481A (en) 2014-09-03
WO2013099780A2 (en) 2013-07-04
KR101583179B1 (en) 2016-01-07
CL2014001717A1 (en) 2014-09-05
US20150075978A1 (en) 2015-03-19
WO2013099780A3 (en) 2013-10-10
PH12014501345B1 (en) 2014-09-15
MY162043A (en) 2017-05-31
AU2012361801A1 (en) 2014-06-26
TWI541385B (en) 2016-07-11
PH12014501345A1 (en) 2014-09-15
CA2859939A1 (en) 2013-07-04
MX2014007759A (en) 2015-04-14

Similar Documents

Publication Publication Date Title
JP5686455B2 (en) Method for producing anode for oxygen generation for high load resistance
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
JP4394159B2 (en) Method for producing electrode for electrolysis
JP5686456B2 (en) Method for producing oxygen generating anode
JP4916040B1 (en) Electrolytic sampling anode and electrolytic sampling method using the anode
Yang et al. Effects of current density on preparation and performance of Al/conductive coating/a-PbO2-CeO2-TiO2/ß-PbO2-MnO2-WC-ZrO2 composite electrode materials
JP2014507563A (en) Electrodes for oxygen generation in industrial electrochemical processes.
WO2013038928A1 (en) Positive electrode for electrolytic plating and electrolytic plating method using positive electrode
JP2004238697A (en) Electrode for oxygen generation
JP5686457B2 (en) Method for producing oxygen generating anode
KR100770736B1 (en) Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
JP2004360067A (en) Electrode for electrolysis, and its production method
EP2450475B1 (en) A method for a metal electrowinning

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5686455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250