JP2014528360A - パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム - Google Patents

パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム Download PDF

Info

Publication number
JP2014528360A
JP2014528360A JP2014534001A JP2014534001A JP2014528360A JP 2014528360 A JP2014528360 A JP 2014528360A JP 2014534001 A JP2014534001 A JP 2014534001A JP 2014534001 A JP2014534001 A JP 2014534001A JP 2014528360 A JP2014528360 A JP 2014528360A
Authority
JP
Japan
Prior art keywords
welding
period
short
circuit
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014534001A
Other languages
English (en)
Other versions
JP6129188B2 (ja
Inventor
ダニエル,ジョーゼフ,エー
コール,スティーヴン,アール
ピーターズ,スティーヴン,アール
Original Assignee
リンカーン グローバル,インコーポレイテッド
リンカーン グローバル,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンカーン グローバル,インコーポレイテッド, リンカーン グローバル,インコーポレイテッド filed Critical リンカーン グローバル,インコーポレイテッド
Publication of JP2014528360A publication Critical patent/JP2014528360A/ja
Application granted granted Critical
Publication of JP6129188B2 publication Critical patent/JP6129188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit

Abstract

スパッタの生成を抑制するパルス溶接プロセスを実行する電気アーク溶接機(100)及び方法を提供する。溶接機は、前進する電極(E)とワークピース(W)との間に電流を生成する。溶接機(100)は、前進電極とワークピースとの間の短絡回路の発生を受けて短絡状態を検出する短絡検出能力を含む。溶接機(100)はまた、当該溶接機の溶接回路経路内に、電気スイッチと抵抗路とを有するスイッチングモジュール(110)を含み得る。短絡期間の発生時間を追跡し、追跡された短絡期間に基づき、パルス溶接プロセスの次のパルス周期における次の短絡期間を予測し、ブランキング信号を生成することができる。ブランキング信号を使用することで、スイッチングモジュール(110)を介して溶接回路経路内に追加の抵抗を導入すること又はブランキング期間中の溶接プロセスの波形の一部を制御することにより、溶接回路経路内の溶接電流を低減することができる。

Description

特定の実施形態は、パルス電気アーク溶接装置及びプロセスに関する。より具体的には、特定の実施形態は、ショートの期間中に出力電流を低減してスパッタを抑制することによって、パルス電気アーク溶接プロセス中に電極(溶接棒)とワークピース(加工対象物)との間に形成される短絡回路を防止する、あるいはそれに対処することに関する。
電気アーク溶接において、一般的な溶接プロセスは、アウターシールドガスとともに単線電極を主として使用するパルス溶接である。ミグ(MIG)溶接は離間パルスを使用し、それにより、ワークピースへのアークを介して、先ず前進されるワイヤ電極の端部が溶融され、その後、ワイヤの端部から溶融金属が押し出される。パルス溶接プロセスのパルス周期ごとに、溶融金属の球塊が移行される。特定のパルス周期において、特に溶接棒がワークピースの非常に近くで作用する用途において、溶融金属は、前進ワイヤ電極から完全に解放される前にワークピースに接触する。これは、前進ワイヤ電極とワークピースとの間に短絡回路(ショートとしても知られる)を生じさせる。適正なパルス溶接に関連付けられるコンシステンシーを得るためには、ショートを迅速に排除あるいは除去することが望ましい。しかしながら、ショートを除去することは、望ましくないスパッタの生成をもたらし得る。そのようなスパッタは、溶接プロセスに非効率性を生じさせるとともに、溶融金属がワークピース上に飛び散り、それを後に例えば研削工具を用いて除去しなければならないということをもたらし得る。
図面を参照して本願の以下の部分にて説明される本発明の実施形態との比較を通じて、従来の伝統的な手法のその他の制約及び欠点が当業者に明らかになる。
本発明の1つの目的は、パルスアーク溶接プロセスにおいてスパッタを抑制する電気アーク溶接システム及び方法を提供することである。
上記目的は、請求項1、9、16及び21の特徴により解決される。本発明の実施形態は、パルス電気アーク溶接プロセスにおいてスパッタを抑制する電気アーク溶接システム及び方法を含む。溶接棒とワークピースとの間で短絡が発生している期間中の溶接出力電流を抑制することにより、溶接処理中のスパッタが抑制される。一実施形態において、電気アーク溶接システムの電源の戻り溶接電流パス内に、電気スイッチと抵抗路とを含んだスイッチングモジュールが組み込まれる。パルス溶接処理の非短絡状態においては、電気スイッチが閉じられ、すなわち、オンにされ、溶接電流が該スイッチ中の小さい抵抗のみを経ることで自由に電源に戻ることが可能にされる。しかしながら、溶接プロセスにおいて短絡が予想される、あるいは発生しているとき、電気スイッチが開かれ、すなわち、オフにされ、溶接電流はスイッチングモジュールの抵抗路を進むことを強いられて、溶接電流のレベルをその他のときより低くさせる。短絡期間中に生成される低められた電流は、短絡が消滅するときに、作り出されるスパッタの減少をもたらす。パルス周期中の短絡の発生時間を追跡することができ、予期される短絡の対応する期間に重なるブランキング期間が、該ブランキング期間中にスイッチが開かれるように適用され得る。更なる実施形態及び特徴が、明細書、図面、及び特許請求の範囲にて開示される。
以下の説明及び図面から、請求項に係る発明の上述及びその他の特徴、並びに請求項に係る発明の例示実施形態の詳細が、より十分に理解されることになる。
溶接電流戻り路内にスイッチングモジュールを組み入れた電気アーク溶接システムの一実施形態例を示すブロック図である。 溶接電流戻り路内にスイッチングモジュールを含んだ図1のシステムの一部の一実施形態例を示す図である。 図1及び図2のスイッチングモジュールの一実施形態例を示す模式図である。 図1のシステムを用いるパルス電気アーク溶接プロセスにおいてスパッタを防止する方法の第1の実施形態例を示すフローチャートである。 図4の方法に従って図1−3のスイッチングモジュールを用いない従来のパルス電気アーク溶接機により得られる従来のパルス出力電流波形の一例を示す図である。 繋ぎ接続を有する自由落下移行過程において高速ビデオ技術を用いて見出される爆発的なスパッタ過程を示す図である。 図4の方法に従って図1−3のスイッチングモジュールを用いる図1のパルス電気アーク溶接機により得られるパルス出力電流波形の一例を示す図である。 図1のシステムを用いるパルス電気アーク溶接プロセスにおいてスパッタを防止する方法の他の一実施形態例を示すフローチャートである。 図8の方法に従って図1−3のスイッチングモジュールを用いる図1のパルス電気アーク溶接機により得られるパルス出力電流波形の一例を示す図である。
アーク溶接プロセスにおいて、溶接棒の先端とワークピースとの間の距離が比較的小さいとき、溶融金属は、接触移行過程(例えば、表面張力移行(surface-tension-transfer;STT)過程)、又は繋ぎ接続を伴う自由落下移行過程(例えば、パルス溶接過程)を介して移行され得る。接触移行過程においては、溶接棒の先端の溶融金属ボールは、該溶融金属ボールが溶接棒の先端から実質的に分離され始める前に、ワークピースと接触して(すなわち、ショートして)、ワークピース上の溶解池に“濡れ入り”始める。
自由落下移行過程においては、溶融金属ボールは、溶接棒の先端から抜け出して、アークを横切ってワークピースの方に“飛行”する。しかしながら、溶接棒の先端とワークピースとの間の距離が比較的短いとき、アークを横切って飛行する溶融金属ボールが、溶融金属の細い繋ぎ部(テザー)が依然として溶融金属ボールを溶接棒の先端に接続したままで、ワークピースと接触(すなわち、ショート)してしまい得る。そのような繋がれた自由落下移行の状況では、溶融金属の細いテザーは、図6に示すように、溶融金属ボールがワークピースと接触する時に、テザーを流れる電流の急増に起因して、爆発してスパッタを生じさせる傾向にある。
図1は、溶接出力リターンパス(戻り路)内にスイッチングモジュール110を組み入れて溶接出力121及び122を提供する電気アーク溶接システム100の一実施形態例のブロック図を示している。システム100は、入力電力を溶接出力電力へと変換することが可能な電力変換器120を含んでいる。電力変換器120は、例えば、インバータ型の電力変換器又はチョッパ型の電力変換器とし得る。システム100は更に、溶接電極ワイヤEを、例えば溶接電極ワイヤEを溶接出力121に接続する溶接ガン(図示せず)を通して、送給することが可能なワイヤフィーダ130を含んでいる。
システム100はまた、電流シャント(分路)140を含んでいる。電流シャント140は、電力変換器120によって生成される溶接出力電流を検知するために、システム100の電流フィードバックセンサ150に溶接出力電流を送るように電力変換器120と溶接出力121との間に動作的に接続される。システム100は更に、電圧フィードバックセンサ160を含んでいる。電圧フィードバックセンサ160は、電力変換器120によって生成される溶接出力電圧を検知するために、溶接出力121と溶接出力122との間に動作的に接続される。一代替例として、スイッチングモジュール110は、例えば、電力変換器120と電流シャント140との間、又は電流シャント140と溶接出力121との間など、送出溶接電流パス(経路)内に組み入れられてもよい。
システム100はまた、高速コントローラ170を含んでいる。高速コントローラ170は、溶接出力を表す信号161及び162の形態の検知電流及び検知電圧を受信するよう、電流フィードバックセンサ150及び電圧フィードバックセンサ160に動作的に接続される。システム100は更に、波形発生器180を含んでいる。波形発生器180は、高速コントローラ170に動作的に接続され、リアルタイムに溶接波形信号181をどのように適応させるかを当該波形発生器に伝えるコマンド信号171を高速コントローラ170から受信する。波形発生器180が出力溶接波形信号181を生成し、電力変換器120が、波形発生器180に動作的に接続されて、出力溶接波形信号181を受信する。電力変換器120は、出力溶接波形信号181に基づいて入力電力を溶接出力電力へと変換することによって、変調された溶接出力(例えば、電圧及び電流)を生成する。
スイッチングモジュール110は、処理中に溶接ワークピースWに接続される溶接出力122と電力変換器120との間に動作的に接続される。高速コントローラ170もスイッチングモジュール110に動作的に接続され、スイッチングモジュール110にスイッチングコマンド信号(又はブランキング信号)172を提供する。高速コントローラ170は、本発明の一実施形態によれば、ロジック回路、プログラム可能マイクロプロセッサ、及びコンピュータメモリを含み得る。
本発明の一実施形態によれば、高速コントローラ170は、検知された電圧信号161、検知された電流信号162、又はこれら2つの組合せを用いて、各パルス周期中に、前進する溶接棒EとワークピースWとの間でいつショートが起こるか、ショートがいつ消え去りそうか、及びショートが実際にいつ消え去ったか、を決定し得る。ショートが起こる時及びショートが消え去る時を決定するこのような手法は、技術的に周知であり、例えば米国特許第7304269号明細書に記載されている。なお、この文献のその部分をここに援用する。高速コントローラ170は、ショートが起こるとき及び/又はショートが消え去るときに波形信号181を変更するよう波形発生器180に命令し得る。例えば、ショートが既に消え去ったと決定されたとき、高速コントローラ170は、先のショートの除去の直後に別のショートが起こることを防止するために、波形信号181内にプラズマブーストパルス(図7のパルス750参照)を組み入れるよう、波形発生器180に命令し得る。
図2は、溶接電流リターンパス内にスイッチングモジュール110を含んだ図1のシステム100の一部の一実施形態例を示す図である。電力変換器120は、インバータ電源123とフリーホイールダイオード124とを含み得る。溶接出力パスは、当該溶接出力パス内の様々な電気的成分に起因して、生来的な溶接回路インダクタンス210を有することになる。スイッチングモジュール110は、抵抗路112(例えば、高電力定格の抵抗器の回路)と並列な電気スイッチ111(パワートランジスタ回路)として示されている。
溶接波形の或るパルス周期において、ショートが存在しないとき、電気スイッチ111は、高速コントローラ170からのスイッチングコマンド信号172により、閉じるように命令される。電流スイッチ111が閉じているとき、電気スイッチ111は、出力溶接リターンパスに、溶接電流がスイッチ111を通って電力変換器120まで自由に戻ることを可能にする非常に低い抵抗の経路を提供する。抵抗路112も依然として溶接出力リターンパス内に存在するが、電流の大部分は、閉じたスイッチ111によって提供される低抵抗路を流れることになる。しかし、ショートが検出されると、電気スイッチ111は、高速コントローラ170からのスイッチングコマンド信号172により、開くように命令される。電気スイッチ111が開いているとき、電流は、スイッチ111を流れないように遮断されて、抵抗路112を流れるようにさせられ、その結果、抵抗路112によって提供される抵抗によって電流レベルが低下される。
図3は、図1及び図2のスイッチングモジュール110の一実施形態例の模式図を示している。スイッチングモジュール110は、図示のようにトランジスタ回路111と抵抗網112とを含んでいる。スイッチングモジュール110は、モジュールの様々な電気部品(例えば、トランジスタ回路111、抵抗網112、LED、及びステータスロジック回路を含む)を実装するための回路基板を含み得る。
図4は、図1のシステム100を用いるパルス電気アーク溶接プロセスにおいてスパッタを防止する方法400の第1の実施形態例のフローチャートを示している。ステップ410は、スイッチングモジュール110のスイッチ111が通常のように閉じている動作(ショートのない状態)を表している。ステップ420にて、ショートが検出されない場合、スイッチ111は閉じたままである(ショートのない状態)。しかし、ショートが検出されると、ステップ430にて、スイッチ111は、短時間(すなわち、溶接棒がワークピースにショートされる期間)の間、開いて閉じるシーケンスを実行するように命令される。
ステップ430におけるこの開/閉シーケンスは、ショートが最初に検出されたときにスイッチ111を開くことによって開始する。スイッチ111は、第1の期間(例えば、短絡期間の最初の10%)にわたって開いたままである。これは、ショートが直ちにはじけて多量のスパッタを生じさせないよう、出力電流を迅速に低下させる。第1の期間の後、スイッチは再び閉じられ、第2の期間中、溶融ショートが溶接棒から抜け出てショートを消し去ろうとする際に細い首状部を形成し始めるよう、出力電流が上昇される。この第2の期間中、電流が上昇されるときに、ショートがいつ消え去るか(すなわち、首状部がいつ破断するか)を予測するためにdv/dt検出が実行される。このようなdv/dt方式は技術的によく知られている。そして、ショートが消え去ろうとする直前(例えば、短絡期間の最後の10%の間)に、首状部が実際に破断する時(すなわち、ショートが実際に消え去る時)の過剰なスパッタを防止するよう出力電流をもう一度迅速に低下させるために、スイッチ111が再び開かれる。
ステップ440にて、ショート(溶接棒とワークピースとの間の短絡)が依然として存在している場合、スイッチ111は開いたままにされる。一方、ショートが消え去った場合、ステップ450にて、スイッチ111は再び閉じられる。斯くして、短絡状態の間、スイッチ111は開/閉シーケンスを実行し、スイッチが開いているときに溶接出力パスを流れる電流が低減されて、スパッタの抑制がもたらされる。方法400は、本発明の一実施形態によれば、高速コントローラ170に実装される。また、本発明の一実施形態によれば、システム100は、120kHzの速度で反応することができ(すなわち、スイッチングモジュール110はこの高い速度でオン/オフに切り換えられることができ)、方法400を実効的に実現するのに十分なショート検出及びショート除去検出への反応が提供される。
もう少し単純な代替的な一実施形態によれば、前進するワイヤ電極とワークピースとの間でのショートの検出に応答して、図4に関して上述した開/閉シーケンスを実行することに代えて、少なくとも決定された期間にわたってスイッチ111を開くことで溶接回路パスの抵抗を増大させることによって、溶接回路パスの電流が低減される。ほとんどのパルス周期において、上記決定された期間は、溶接回路パスの電流を最初に増大させる必要なく短絡が消え去ることを可能にする期間にされる。所与のパルス周期中、決定された期間が所望通りに満了する前にショートが消え去る場合、プロセスは該パルス周期の次の部分に進む。しかしながら、この予め決定された期間内にショートが消えない場合、この決定された期間の直後にスイッチ111が再び閉じられ、溶接回路パスの電流がもう一度増大されてショートを除去するようにされる。代替的な一実施形態において、スイッチ111は単純に、ショートの検出に応答して、決定された期間のうちの少なくとも一部にわたって開かれる。ほとんどのパルス周期において、電流は、ショートを除去するために増大される必要がない。
また、一選択肢として、前進するワイヤ電極とワークピースとの間でのショートが検出されるとき、前進するワイヤ電極の速度を低下させることができる。前進するワイヤ電極の速度を低下させることは、そうでない場合に付与されるのと同程度の多さの材料をショートに付与しないことによって、より容易にショートを除去する助けとなる。前進するワイヤ電極の速度を低下させるため、ワイヤ電極を前進させるワイヤフィーダのモータがオフに切り換えられてモータに制動(ブレーキ)がかけられ得る。この制動は、様々な実施形態に従って、機械的な制動又は電気的な制動とし得る。
図5は、図4の方法400又は上述の単純な代替法に従って図1−3のスイッチングモジュール110を用いない従来のパルス電気アーク溶接機により得られる従来のパルス出力電流波形500の一例を示している。図5の波形500から見て取れるように、ピークパルス510が発せられた後、ショートが時間520に始まって、例えば、ショートが消え去る時である時間530まで続き得る。時間520と530とが短絡期間540を定める。図5にて見て取れるように、ピークパルス510は、溶接プロセスの複数のパルス周期又はサイクルの間に規則的な間隔で発せられる。任意の所与のサイクル又はパルス周期において、短絡状態は発生することもあるし、発生しないこともある。従来システムにおいては、ショートが発生するとき、溶接出力パス内には、インダクタンスと比較して非常に小さい抵抗が存在するのみである。電源がオフにされた場合であっても電流が流れ続ける。
再び図5を参照するに、短絡期間540中、出力電流は、溶接棒とワークピースWとの間のアークの欠如(抵抗が非常に低くなる)に起因して、また、電力変換器120が最小レベルに戻されるときであっても溶接回路インダクタンス210が溶接出力パスを流れる電流を維持するように作用することに起因して、上昇する傾向にある。電流は、ショートが消え去るまで(すなわち、溶融金属ショートが溶接棒から抜け出すまで)上昇する傾向にある。しかしながら、そのような上昇された電流レベルにおいては、ショートが中断あるいは消滅するときに、上昇された電流レベルにより、溶融金属が爆発してスパッタを引き起こすようになる傾向がある。
図6は、繋ぎ接続を有する自由落下移行過程において高速ビデオ技術を用いて見出される爆発的なスパッタ過程を示している。高いピークのパルス(例えば、510)により、溶融金属のボール610がワークピースWに向けて押し出され、ボール610と溶接棒Eとの間の細い繋ぎ部(テザー)620が作り出される。ボール610がアークを横切ってワークピースWに向かって飛行するとき、テザー620が細くなり、最終的に、テザー620を介して溶接棒EとワークピースWとの間でショートが発生する。この状態は、溶接棒がワークピースの非常に近くで作用する処理において、ほぼ全てのパルス周期で発生する傾向にある。特に、自由落下移行式のパルス溶接プロセスの場合、テザー620が初期のショートを作り出し、多量の電流が細いテザー620を流れ始め得ることが見出された。上昇する電流レベルは、最終的に、図6に示されるように、比較的細い溶融テザー620が爆発してスパッタ630を生み出すことを引き起こす。しかしながら、上述のスイッチングモジュール110及び方法400を組み込むことにより、生み出されるスパッタ630を大幅に抑制することができる。
図7は、図4の方法400に従って図1−3のスイッチングモジュール110を用いる図1のパルス電気アーク溶接機100により得られるパルス出力電流波形700の一例を示している。図7の波形700から見て取れるように、ピークパルス710が発せられた後、ショートが時間720に始まって、例えば、ショートが消え去る時である時間730まで続き得る。時間720と730とが短絡期間740を定める。図7にて見て取れるように、ピークパルス710は、溶接プロセスの複数のパルス周期又はサイクルの間に規則的な間隔で発せられる。任意の所与のサイクル又はパルス周期において、短絡状態は発生することもあるし、発生しないこともある。しかしながら、溶接棒の先端とワークピースとの間の距離が比較的小さいとき、ほぼ全てのサイクルでショートが発生し得る。
再び図7を参照するに、短絡期間740中、スイッチングモジュール110のスイッチ111が、ショートが最初に起こるときに開かれ、そして、ショートが消え去ろうとするときに再び開かれ、それにより、出力電流が抵抗路112を流れるようにされ、ひいては、電流レベルが低減される。一例として、スイッチング信号172は、ショートが検出されるときにhigh(高)からlow(低)になってスイッチを開かせる論理信号とし得る。同様に、ショートが除去されるとき、スイッチング信号172はスイッチ111を再び閉じるようにlowからhighになり得る。スイッチ111が開かれているとき、抵抗路112は溶接出力パス上に負荷を置き、フリーホイール(還流)電流が所望レベルまで迅速に低下することを可能にする。電流は、ショートが除去されるまで低下する傾向にあり、そのような低下した電流レベルでショートが中断あるいは消滅するとき、溶融金属は非爆発的にピンチオフする(摘み切られる)傾向にあり、それにより、生み出されるスパッタが排除され、あるいは少なくとも、その量が低減される。また、図7の波形700においては、ショートが消え去った直後に別のショートが発生することを防止する助けとなるよう使用されるプラズマブーストパルス750が、より目立ったもの且つ潜在的に一層効果的なものになる。
図8は、図1のシステム100を用いるパルス電気アーク溶接プロセスにおいてスパッタを防止する他の一実施形態例に係る方法800のフローチャートを示している。一実施形態によれば、方法800は、コントローラ170によって実行される。高速コントローラ170は、ショートの発生時間及び/又はショートの除去の起こった時間を追跡し、少なくとも次のパルス周期において短絡期間940(ショートの発生とショートが除去された時との間の期間)(図9参照)がいつ発生するかの推定を提供する。この推定から、ブランキング信号172を生成するために使用されるブランキング期間960(図9参照)を決定することができる。
方法800のステップ810にて、システム100は、パルス溶接波形の繰り返しのパルス周期において、既知の技術に従ってショートの発生及び/又はそれらショートの消滅を検出する。ステップ820にて、パルス周期内での検出ショート及び/又は消滅の発生時間が(例えば、高速コントローラ170によって)追跡される。ステップ830にて、追跡結果に基づいて、次のパルス周期の短絡期間940(図9参照)の位置及び継続時間が推定される。ステップ840にて、次のパルス周期の短絡期間の推定位置に基づいて、それに重なる少なくとも次のパルス周期のブランキング期間960が決定される。ステップ850にて、次のパルス周期中にスイッチングモジュール110に与えるべきブランキング信号(一種のスイッチング信号)172が(例えば、コントローラ170によって)生成される。
図9は、図8の方法800に従って図1−3のスイッチングモジュール110を用いる図1のパルス電気アーク溶接機100により得られるパルス出力電流波形900の一例を示している。図9の波形900から見て取れるように、ピークパルス910が発せられた後、ショートが時間920に始まって、例えば、ショートが消え去る時である時間930まで続き得る。時間920と930とが短絡期間940を定める。図9にて見て取れるように、ピークパルス910は、溶接プロセス中に規則的な間隔で発せられる。任意の所与のサイクルにおいて、短絡状態は発生することもあるし、発生しないこともある。しかしながら、アーク長が比較的短い(すなわち、ワイヤ電極がワークピースの比較的近くで操作される)溶接プロセスにおいては、ほぼ全てのサイクルでショートが発生し得る。
方法800によれば、パルス周期内でのショートの発生時間及び/又はショートの消滅時間が、パルス周期ごとに決定され、追跡される。斯くして、コントローラ170は、次あるいは来たるパルス周期において起こりそうな短絡期間の位置を推定し得る。しかしながら、何らかの実質的な追跡情報が利用可能になる前の、パルス溶接プロセスの開始時においては、短絡期間の位置は、例えば実験データ又は先行溶接プロセスからの保管データに基づいた、格納されたデフォルト位置とし得る。ブランキング信号172は、次のパルス周期の推定短絡期間940に時間的に重なるブランキング信号172内のブランキング期間960を形成するよう、適応あるいは修正されることができる。理想的には、ブランキング期間960は、時間的オーバーラップで、次のパルス周期の短絡期間940の少し前(例えば、時間920の前)に始まり、次のパルス周期の短絡期間940の少し後(例えば、時間930の後)に終了する。一実施形態においては、ショートの発生時間のみが追跡され、ショートの消滅は追跡されない。そのような一実施形態において、ブランキング期間の長さは、実験的知識に基づき、ショートが消え去るのに十分な長さだけ続くように設定される。
斯くして、次のパルス周期中のショートの実際の発生は、スイッチングモジュール110のスイッチ111が開かれ得る前に検出される必要はない。パルス溶接プロセスが進むにつれて、例えばワイヤ電極とワークピースとの間の距離がドリフトあるいは変化するために、短絡期間の位置がドリフトあるいは変化することがある。しかしながら、この実施形態においては、短絡期間の位置が経時的に追跡されるので、ブランキング信号172の位置を、短絡期間を実効的に追従・予測するように適応させることができる。ブランキング期間960中にスイッチ111を開くことにより、電流が低下し、そして、ブランキング期間960中にテザーが生じて破断することが期待される。
実験結果が示すことには、特定のパルス溶接状況においてここで説明したようにスイッチングモジュール110を使用すると、ショートを除去する時点での出力電流レベルを約280アンペアから約40アンペアに低減することができ、生成されるスパッタの量に著しい差を生じる。一般に、電流を50アンペア未満に低減することがスパッタを大幅に低減するようである。また、進行速度(例えば、60−80インチ/分)及び溶着速度を維持することができる。
溶接棒とワークピースとの間にショートが存在する期間中の溶接出力電流レベルを低減するその他の手段及び方法も同様に可能である。例えば、代替的な一実施形態において、溶接用電源の制御トポロジが、ショートの期間中に出力電流を高度に安定化されたレベルに制御するように構成されてもよい。この電源は、短絡期間中にショート電流を、より低いレベル(例えば、50アンペア未満)に制御して、スタッパを抑制することができる。例えば、図1を参照するに、スイッチングモジュール110を無効化あるいは排除して、電流が溶接出力回路パス内を自由に流れることを可能にすることができる。コントローラ170は、溶接出力回路パス中の溶接出力電流を低減するようにブランキング期間中の溶接プロセスの出力溶接波形信号181の一部を変更するよう、波形発生器180に命令するように構成される。故に、この代替実施形態においては、コントローラ170は、スイッチングモジュール110を介することに代えて、波形発生器180及び電力変換器120を介してブランキング期間中の電流を低減させる。このような代替実施形態は、溶接回路のインダクタンス210が十分に低い場合に非常に良好に機能することができる。
まとめるに、生成されるスパッタを抑制するパルス溶接プロセスを実行する電気アーク溶接機及び方法を開示した。溶接機は、前進する電極とワークピースとの間に電流を生成する。溶接機は、前進電極とワークピースとの間の短絡回路の発生を受けて、短絡状態を検出する短絡検出能力を含む。溶接機は、短絡が消滅する時の溶融金属のスパッタを抑制するため、短絡期間中の前進電極とワークピースとの間の電流を抑制するように制御される。
本発明の一実施形態は、パルスアーク溶接プロセスにおいてスパッタを抑制する方法を有する。当該方法は、溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の短絡期間の発生時間を追跡することを含む。この追跡は、パルス溶接プロセスのパルス周期中の短絡の発生を検出することと、パルス溶接プロセスのパルス周期中の短絡の消滅を検出することと、のうちの少なくとも一方に基づき得る。当該方法は更に、前記追跡に基づき、パルスアーク溶接プロセスの少なくとも次のパルス周期の短絡期間の時間的位置を推定することを含む。当該方法はまた、前記推定に基づき、少なくとも次のパルス周期のブランキング期間を決定することを含む。当該方法は更に、ブランキング期間に基づき、少なくとも次のパルス周期のブランキング信号を生成することを含み得る。当該方法は更に、ブランキング信号に応答して、ブランキング期間中に溶接システムの溶接回路経路の抵抗を増大させて、ブランキング期間中に溶接回路経路を流れる溶接電流を低減させることを含み得る。抵抗を増大させることは、溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含み得る。一実施形態によれば、電気スイッチはスイッチングモジュール内の抵抗路と並列にされる。当該方法は、ブランキング期間中に溶接プロセスの波形の一部を変更することによって、少なくとも次のパルス周期のブランキング期間中に溶接システムの溶接回路経路を流れる溶接電流を低減させること、を含んでいてもよく、該波形は溶接システムの波形発生器によって生成され得る。一実施形態によれば、ブランキング期間は、少なくとも次のパルス周期の予期される短絡期間に対して、時間的に長く且つ時間的に重ねられる。
本発明の一実施形態は、パルスアーク溶接プロセスにおいてスパッタを抑制するシステムを有する。当該システムはコントローラを有し、該コントローラは、溶接システムのパルスアーク溶接プロセスのパルス周期中の短絡期間の発生時間を追跡するように構成される。該コントローラは更に、前記追跡に基づき、パルスアーク溶接プロセスの少なくとも次のパルス周期の短絡期間の時間的位置を推定するように構成される。該コントローラはまた、前記推定に基づき、少なくとも次のパルス周期のブランキング期間を決定するように構成される。該コントローラはまた、ブランキング期間に基づき、少なくとも次のパルス周期のブランキング信号を生成するように構成され得る。一実施形態によれば、ブランキング期間は、少なくとも次のパルス周期の予期される短絡期間に対して、時間的に長く且つ時間的に重なる。当該システムは更に、溶接システムの溶接回路経路内に配置され且つ前記コントローラに動作的に接続されるスイッチングモジュールを含み得る。スイッチングモジュールは、ブランキング信号に応答して、ブランキング期間中に溶接システムの溶接回路経路の抵抗を増大させて、ブランキング期間中に溶接回路経路を流れる溶接電流を低減させるように構成される。スイッチングモジュールは電気スイッチと抵抗路とを並列に含む。前記コントローラは、ブランキング期間中に溶接プロセスの波形の一部を変更することによって、少なくとも次のパルス周期のブランキング期間中に溶接システムの溶接回路経路を流れる溶接電流を低減させるように、溶接システムの波形発生器に命令するように構成され得る。前記コントローラは更に、パルスアーク溶接プロセスのパルス周期中の短絡の発生及び/又は該短絡の消滅を検出するように構成され得る。
本発明の一実施形態は、パルスアーク溶接プロセスにおいてスパッタを抑制する方法を有する。当該方法は、溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の、ワークピースと前進する溶接棒との間の短絡を検出することを含む。当該方法は更に、短絡を検出したことに応答して、第1の期間、溶接システムの溶接回路経路の抵抗を増大させて、溶接回路経路を流れる溶接電流を低減させることを含む。当該方法はまた、第1の期間の直後の第2の期間、溶接システムの溶接回路経路の抵抗を低減させて、溶接回路経路を流れる溶接電流を増大させることを含む。当該方法は更に、第2の期間の直後の第3の期間、短絡の消滅を予期して、溶接システムの溶接回路経路の抵抗を増大させて、溶接回路経路を流れる溶接電流を低減させることを含む。抵抗を増大させることは、溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含み得る。抵抗を低減させることは、溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを閉じることを含み得る。当該方法は更に、短絡が消滅したことを検出し、短絡が消滅したことの検出に応答して、溶接システムの溶接回路経路の抵抗を低減させることを含み得る。
本発明の一実施形態は、パルスアーク溶接プロセスにおいてスパッタを抑制する方法を有する。当該方法は、溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の、ワークピースと前進するワイヤ電極との間の短絡を検出することを含む。当該方法は更に、短絡を検出したことに応答して、決定された期間のうちの少なくとも一部にわたって溶接システムの溶接回路経路の電流を低減させることを含み、パルスアーク溶接プロセスの大部分のパルス周期において、前記決定された期間は、溶接回路経路の電流を先ず増大させる必要なく短絡が消滅することが可能な長さの期間である。電流を低減させることは、溶接回路経路の抵抗を増大させることを含み得る。抵抗を増大させることは、溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含むことができ、スイッチングモジュールは電気スイッチを抵抗路と並列に含み得る。当該方法は更に、短絡が消滅していない場合に、前記決定された期間の直後に溶接システムの溶接回路経路の電流を増大させることを含み得る。電流を増大させることは、溶接回路経路の抵抗を低減させることを含み得る。抵抗を低減させることは、溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを閉じることを含むことができ、スイッチングモジュールは電気スイッチを抵抗路と並列に含み得る。当該方法は更に、電極とワークピースとの間の短絡を検出したことに応答して、前進するワイヤ電極の速度を遅くすることを含み得る。前進するワイヤ電極の速度を遅くすることは、ワイヤ電極を前進させるワイヤフィーダのモータをオフに切り換えて該モータに制動をかけることを含み得る。この制動は、様々な実施形態に従って、機械的制動又は電気的制動とし得る。
特定の実施形態を参照して特許請求に係る本願の主題を説明してきたが、当業者に理解されるように、特許請求に係る主題の範囲を逸脱することなく、様々な変形が為され、均等物が代用され得る。また、特許請求に係る主題の教示に合わせて、その範囲を逸脱することなく、特定の状況又は材料を適応させるように数多くの変更が為され得る。故に、特許請求に係る主題は、開示した特定の実施形態に限定されるものではなく、添付の請求項の範囲に入る全ての実施形態を含むものである。
本願は、2010年10月22日に出願した米国仮特許出願第61/405895号の優先権及び利益を主張するものであり、その内容全体をここに援用する。
本願は、2010年11月12日に出願した米国仮特許出願第61/413007号の優先権及び利益を主張するものであり、その内容全体をここに援用する。
2007年12月4日に発行された米国特許第7304269号明細書の好適な実施形態の部分及び図面をここに援用する。
100 電気アーク溶接システム
110 スイッチングモジュール
111 電気スイッチ
112 抵抗路(抵抗パス)
120 電力変換器
121、122 溶接出力
123 インバータ電源
124 フリーホイールダイオード
130 ワイヤフィーダ
140 電流シャント
150 電流フィードバックセンサ
160 電圧フィードバックセンサ
161、162 信号
170 高速コントローラ
171 コマンド信号
172 スイッチングコマンド信号
180 波形発生器
181 波形信号
210 回路インダクタンス
500 波形
510 ピークパルス
520、530 時間
540 短絡期間
610 ボール
620 繋ぎ部(テザー)
630 スパッタ
700 電流波形
710 ピークパルス
720、730 時間
740 短絡期間
900 電流波形
910 ピークパルス
920、930 時間
940 短絡期間
960 ブランキング期間
E 溶接棒(電極)
W ワークピース

Claims (28)

  1. パルスアーク溶接プロセスにおいてスパッタを抑制する方法であって、
    溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の短絡期間の発生時間を追跡し、
    前記追跡に基づき、前記パルスアーク溶接プロセスの少なくとも次のパルス周期の短絡期間の時間的位置を推定し、且つ
    前記推定に基づき、少なくとも次のパルス周期のブランキング期間を決定する、
    ことを有する方法。
  2. 前記ブランキング期間に基づき、少なくとも次のパルス周期のブランキング信号を生成すること、を更に有する請求項1に記載の方法。
  3. 前記ブランキング信号に応答して、前記ブランキング期間中に前記溶接システムの溶接回路経路の抵抗を増大させて、前記ブランキング期間中に前記溶接回路経路を流れる溶接電流を低減させること、を更に有する請求項2に記載の方法。
  4. 前記抵抗を増大させることは、前記溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含む、請求項3に記載の方法。
  5. 前記電気スイッチは抵抗路と並列にされている、請求項4に記載の方法。
  6. 当該方法は、前記ブランキング期間中に前記溶接プロセスの波形の一部を変更することによって、少なくとも次のパルス周期の前記ブランキング期間中に前記溶接システムの溶接回路経路を流れる溶接電流を低減させること、を更に有し、前記波形は前記溶接システムの波形発生器によって生成される、請求項1乃至5の何れか一項に記載の方法。
  7. 前記ブランキング期間は、少なくとも次のパルス周期の予期される短絡期間に対して、時間的に長く且つ時間的に重ねられる、請求項1乃至6の何れか一項に記載の方法。
  8. 前記追跡は、前記パルスアーク溶接プロセスのパルス周期中の短絡の発生及び/又は該短絡の消滅を検出することに基づく、請求項1乃至7の何れか一項に記載の方法。
  9. パルスアーク溶接プロセスにおいてスパッタを抑制するシステムであって、
    当該システムはコントローラを有し、
    前記コントローラは、
    溶接システムのパルスアーク溶接プロセスのパルス周期中の短絡期間の発生時間を追跡し、
    該追跡に基づき、前記パルスアーク溶接プロセスの少なくとも次のパルス周期の短絡期間の時間的位置を推定し、且つ
    該推定に基づき、少なくとも次のパルス周期のブランキング期間を決定する
    ように構成される
    システム。
  10. 前記コントローラは更に、前記ブランキング期間に基づき、少なくとも次のパルス周期のブランキング信号を生成するように構成される、請求項9に記載のシステム。
  11. 当該システムは更に、前記溶接システムの溶接回路経路内に配置され且つ前記コントローラに動作的に接続されるスイッチングモジュールを有し、前記スイッチングモジュールは、前記ブランキング信号に応答して、前記ブランキング期間中に前記溶接システムの前記溶接回路経路の抵抗を増大させて、前記ブランキング期間中に前記溶接回路経路を流れる溶接電流を低減するように構成される、請求項10に記載のシステム。

  12. 前記スイッチングモジュールは電気スイッチと抵抗路とを並列に含む、請求項11に記載のシステム。
  13. 前記コントローラは更に、前記ブランキング期間中に前記溶接プロセスの波形の一部を変更することによって、少なくとも次のパルス周期の前記ブランキング期間中に前記溶接システムの溶接回路経路を流れる溶接電流を低減させるように、前記溶接システムの波形発生器に命令するように構成される、請求項9乃至12の何れか一項に記載のシステム。
  14. 前記ブランキング期間は、少なくとも次のパルス周期の予期される短絡期間に対して、時間的に長く且つ時間的に重なる、請求項9乃至13の何れか一項に記載のシステム。
  15. 前記コントローラは更に、前記パルスアーク溶接プロセスのパルス周期中の短絡の発生及び/又は該短絡の消滅を検出するように構成される、請求項9乃至14の何れか一項に記載のシステム。
  16. パルスアーク溶接プロセスにおいてスパッタを抑制する、請求項1乃至8の何れか一項に記載の方法であって、
    溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の、ワークピースと前進する溶接棒との間の短絡を検出し、
    前記短絡を検出したことに応答して、第1の期間、前記溶接システムの溶接回路経路の抵抗を増大させて、該溶接回路経路を流れる溶接電流を低減させ、
    前記第1の期間の直後の第2の期間、前記溶接システムの前記溶接回路経路の前記抵抗を低減させて、前記溶接回路経路を流れる前記溶接電流を増大させ、且つ
    前記第2の期間の直後の第3の期間、前記短絡の消滅を予期して、前記溶接システムの前記溶接回路経路の前記抵抗を増大させて、前記溶接回路経路を流れる前記溶接電流を低減させる、
    ことを有する方法。
  17. 前記抵抗を増大させることは、前記溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含む、請求項16に記載の方法。
  18. 前記抵抗を低減させることは、前記溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを閉じることを含む、請求項16又は17に記載の方法。
  19. 前記短絡が消滅したことを検出することを更に有する請求項16乃至18の何れか一項に記載の方法。
  20. 前記短絡が消滅したことの検出に応答して、前記溶接システムの前記溶接回路経路の前記抵抗を低減させること、を更に有する請求項19に記載の方法。
  21. パルスアーク溶接プロセスにおいてスパッタを抑制する、請求項1乃至8の何れか一項に記載の方法であって、
    溶接システムのコントローラを用いて、パルスアーク溶接プロセスのパルス周期中の、ワークピースと前進するワイヤ電極との間の短絡を検出し、
    前記短絡を検出したことに応答して、決定された期間のうちの少なくとも一部にわたって前記溶接システムの溶接回路経路の電流を低減させ、ここで、前記パルスアーク溶接プロセスの大部分のパルス周期において、前記決定された期間は、前記溶接回路経路の前記電流を先ず増大させる必要なく前記短絡が消滅することが可能な長さの期間である、
    ことを有する方法。
  22. 前記電流を低減させることは、前記溶接回路経路の抵抗を増大させることを含む、請求項21に記載の方法。
  23. 前記抵抗を増大させることは、前記溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを開くことを含み、前記スイッチングモジュールは前記電気スイッチを抵抗路と並列に含む、請求項22に記載の方法。
  24. 前記短絡が消滅していない場合に、前記決定された期間の直後に前記溶接システムの前記溶接回路経路の前記電流を増大させること、を更に有する請求項21乃至23の何れか一項に記載の方法。
  25. 前記電流を増大させることは、前記溶接回路経路の抵抗を低減させることを含む、請求項24に記載の方法。
  26. 抵抗を低減させることは、前記溶接回路経路内に配置されたスイッチングモジュールの電気スイッチを閉じることを含み、前記スイッチングモジュールは前記電気スイッチを抵抗路と並列に含む、請求項25に記載の方法。
  27. 前記電極と前記ワークピースとの間の前記短絡を検出したことに応答して、前記前進するワイヤ電極の速度を遅くすること、を更に有する請求項21乃至26の何れか一項に記載の方法。
  28. 前記前進するワイヤ電極の速度を遅くすることは、前記ワイヤ電極を前進させるワイヤフィーダのモータをオフに切り換えて該モータに制動をかけることを含み、前記制動は好ましくは機械的制動又は電気的制動の一方である、請求項27に記載の方法。
JP2014534001A 2011-10-06 2012-09-13 パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム Active JP6129188B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/267,153 2011-10-06
US13/267,153 US9415457B2 (en) 2010-10-22 2011-10-06 Method to control an arc welding system to reduce spatter
PCT/IB2012/001779 WO2013050844A1 (en) 2011-10-06 2012-09-13 Methods of and system for reducing spatter in a pulse arc welding process

Publications (2)

Publication Number Publication Date
JP2014528360A true JP2014528360A (ja) 2014-10-27
JP6129188B2 JP6129188B2 (ja) 2017-05-17

Family

ID=47076271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534001A Active JP6129188B2 (ja) 2011-10-06 2012-09-13 パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム

Country Status (6)

Country Link
US (2) US9415457B2 (ja)
JP (1) JP6129188B2 (ja)
CN (2) CN106862722A (ja)
BR (1) BR112014008070A2 (ja)
DE (1) DE202012013076U1 (ja)
WO (1) WO2013050844A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850804B1 (ko) * 2015-12-31 2018-04-20 한국생산기술연구원 용접데이터베이스가 내장된 파형제어형 피복아크 용접전원
US10086463B2 (en) 2015-06-18 2018-10-02 Sansha Electric Manufacturing Co., Ltd. Arc welding apparatus

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895760B2 (en) 2007-09-26 2018-02-20 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
US9415457B2 (en) 2010-10-22 2016-08-16 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
US9403233B2 (en) 2011-12-16 2016-08-02 Illinois Tool Works Inc. DC electrode negative rotating arc welding method and system
US10071434B2 (en) 2012-05-17 2018-09-11 Lincoln Global, Inc. Intelligent waveform selection for a welding system having particular electrical output characteristics
EP2669037B1 (de) * 2012-05-30 2019-09-11 Ewm Ag Schweißrauchreduzierung
US9511442B2 (en) 2012-07-27 2016-12-06 Illinois Tool Works Inc. Adaptable rotating arc welding method and system
US9481046B2 (en) * 2012-09-24 2016-11-01 Lincoln Global, Inc. Systems and methods providing controlled AC arc welding processes
US10315268B2 (en) 2012-11-07 2019-06-11 Lincoln Global, Inc. Method and system to control heat input in a welding operation
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
CN103111732B (zh) * 2013-01-25 2015-12-02 昆山华恒焊接股份有限公司 熔化极气体保护焊中短路过渡过程的控制方法
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US9550248B2 (en) 2013-03-07 2017-01-24 Lincoln Global, Inc. Electric arc welder using high frequency pulses and negative polarity
US10835983B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US10040142B2 (en) 2013-03-15 2018-08-07 Lincoln Global, Inc. Variable polarity pulse with constant droplet size
US11045891B2 (en) * 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US10543549B2 (en) 2013-07-16 2020-01-28 Illinois Tool Works Inc. Additive manufacturing system for joining and surface overlay
US10953484B2 (en) 2013-09-16 2021-03-23 Illinois Tool Works Inc. Narrow groove welding method and system
US10543551B2 (en) 2013-09-16 2020-01-28 Illinois Tool Works Inc. Synchronized rotating arc welding method and system
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
US10124435B2 (en) * 2014-02-24 2018-11-13 Lincoln Global, Inc. Automatic control on auxiliary voltage for engine driven welder
US20150343549A1 (en) * 2014-05-30 2015-12-03 Lincoln Global, Inc. Multiple electrode welding system with reduced spatter
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
US11478870B2 (en) * 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US10974337B2 (en) 2015-08-17 2021-04-13 Illinois Tool Works Inc. Additive manufacturing systems and methods
US10179369B2 (en) 2015-10-27 2019-01-15 Lincoln Global, Inc. Welding system for AC welding with reduced spatter
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11110536B2 (en) 2017-01-27 2021-09-07 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10682719B2 (en) 2017-01-27 2020-06-16 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10744584B2 (en) 2017-01-27 2020-08-18 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10722967B2 (en) 2017-01-27 2020-07-28 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10821535B2 (en) 2017-03-16 2020-11-03 Lincoln Global, Inc. Short circuit welding using self-shielded electrode
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
CA3066666A1 (en) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Contact tips with screw threads and head to enable unthreading of the screw threads comprising longitudinal slots for gas flow; welding torch with contact tips
US11247290B2 (en) 2017-06-09 2022-02-15 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
CA3066619C (en) 2017-06-09 2022-07-19 Illinois Tool Works Inc. Welding torch with a first contact tip to preheat welding wire and a second contact tip
US11590597B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11253942B2 (en) * 2017-09-08 2022-02-22 Illinois Tool Works Inc. Methods and apparatus for automatic control of a welding-type power supply
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US10792682B2 (en) 2017-10-02 2020-10-06 Illinois Tool Works Inc. Metal manufacturing systems and methods using mechanical oscillation
US11897060B2 (en) 2017-11-29 2024-02-13 Lincoln Global, Inc. Systems and methods for welding torch weaving
US11065707B2 (en) 2017-11-29 2021-07-20 Lincoln Global, Inc. Systems and methods supporting predictive and preventative maintenance
WO2020047438A1 (en) 2018-08-31 2020-03-05 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
US20200122262A1 (en) * 2018-10-19 2020-04-23 Illinois Tool Works Inc. Systems and methods for voltage control of a short circuit during a pulse welding process
US11931835B2 (en) 2018-10-24 2024-03-19 Lincoln Global, Inc. Welding system for mitigating gun damage in pulsed arc welding
US11370051B2 (en) * 2018-10-30 2022-06-28 Lincoln Global, Inc. Time-based short circuit response
CN111230260A (zh) * 2018-11-28 2020-06-05 林肯环球股份有限公司 用于控制电弧焊接系统以减少飞溅的方法
US11897062B2 (en) 2018-12-19 2024-02-13 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11623292B2 (en) * 2019-03-29 2023-04-11 Lincoln Global, Inc. Real time resistance monitoring of an arc welding circuit
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305372A (ja) * 1991-04-01 1992-10-28 Matsushita Electric Ind Co Ltd 距離計算装置およびこれを用いた消耗電極式アーク溶接電源装置
JPH04322881A (ja) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機
JPH04322882A (ja) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機
US5270516A (en) * 1991-04-01 1993-12-14 Matsushita Electric Industrial Co., Ltd. Arc welding machine
JP2005342789A (ja) * 2004-06-04 2005-12-15 Lincoln Global Inc パルス溶接機およびその使用方法
US20120097656A1 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Apparatus and method for pulse welding with ac waveform
US20120097655A1 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
WO2012052839A2 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809853A (en) * 1972-08-24 1974-05-07 Union Carbide Corp Method for short circuit metal transfer arc welding
JPS5710011B2 (ja) 1974-05-04 1982-02-24
US4288682A (en) * 1979-11-28 1981-09-08 Union Carbide Corporation Welding system with reversible drive motor control
JPS59206159A (ja) 1983-05-04 1984-11-21 Shinko Electric Co Ltd 溶接電源の制御方法および装置
JPS61229471A (ja) 1985-04-04 1986-10-13 Matsushita Electric Ind Co Ltd ア−ク溶接機
US4954691A (en) * 1986-12-10 1990-09-04 The Lincoln Electric Company Method and device for controlling a short circuiting type welding system
US4835360A (en) 1986-12-11 1989-05-30 The Lincoln Electric Company Method and device for controlling a short circuiting type welding system
US4889969A (en) * 1987-04-28 1989-12-26 Matsushita Electric Industrial Co., Ltd. Reduced-spatter pulse arc welding machine for use with a consumable electrode
JP2563465B2 (ja) * 1988-04-15 1996-12-11 松下電器産業株式会社 消耗電極式パルスアーク溶接方法及び溶接機
US4885453A (en) * 1988-08-11 1989-12-05 M. K. Products Brake for welding machine
US5317116A (en) * 1989-08-02 1994-05-31 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
JP3156033B2 (ja) * 1994-11-08 2001-04-16 松下電器産業株式会社 消耗電極式パルスアーク溶接機
DE19548093C1 (de) * 1995-12-21 1997-04-17 Univ Magdeburg Tech Verfahren zur Steuerung des Wärmeeintrages beim Lichtbogenschweißen mit abschmelzender Elektrode und kurzschlußbehaftetem Werkstoffübergang
CN1158157C (zh) * 1999-03-18 2004-07-21 株式会社安川电机 熔极式电弧焊接方法以及装置
US6794608B2 (en) * 2001-10-30 2004-09-21 Tri Tool Inc. Welding current control system and method
AUPS274002A0 (en) * 2002-06-03 2002-06-20 University Of Wollongong, The Control method and system for metal arc welding
US7102099B2 (en) * 2002-07-23 2006-09-05 Illinois Tool Works Inc. Method and apparatus for feeding wire to a welding arc
CN100344402C (zh) * 2003-09-26 2007-10-24 清华大学 用于降低短路过渡气体保护焊飞溅的方法和系统
US9393635B2 (en) * 2004-06-04 2016-07-19 Lincoln Global, Inc. Adaptive GMAW short circuit frequency control and high deposition arc welding
CN100493801C (zh) 2005-04-14 2009-06-03 松下电器产业株式会社 消耗电极式电弧焊接机
US8680432B2 (en) 2005-04-20 2014-03-25 Illinois Tool Works Inc. Cooperative welding system
JP3844004B1 (ja) 2005-05-31 2006-11-08 松下電器産業株式会社 パルスアーク溶接制御方法及びパルスアーク溶接装置
JP4916759B2 (ja) 2006-04-20 2012-04-18 株式会社ダイヘン 消耗電極交流パルスアーク溶接の極性切換制御方法
US20080011727A1 (en) 2006-07-14 2008-01-17 Lincoln Global, Inc. Dual fillet welding methods and systems
US8373093B2 (en) * 2008-06-27 2013-02-12 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
EP2251132B1 (en) 2009-01-28 2017-03-15 Panasonic Intellectual Property Management Co., Ltd. Ac pulse arc welding method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305372A (ja) * 1991-04-01 1992-10-28 Matsushita Electric Ind Co Ltd 距離計算装置およびこれを用いた消耗電極式アーク溶接電源装置
US5270516A (en) * 1991-04-01 1993-12-14 Matsushita Electric Industrial Co., Ltd. Arc welding machine
JPH04322881A (ja) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機
JPH04322882A (ja) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機
JP2005342789A (ja) * 2004-06-04 2005-12-15 Lincoln Global Inc パルス溶接機およびその使用方法
US20120097656A1 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Apparatus and method for pulse welding with ac waveform
US20120097655A1 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
WO2012052839A2 (en) * 2010-10-22 2012-04-26 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
JP5710011B2 (ja) * 2010-10-22 2015-04-30 リンカーン グローバル,インコーポレイテッド パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086463B2 (en) 2015-06-18 2018-10-02 Sansha Electric Manufacturing Co., Ltd. Arc welding apparatus
KR101850804B1 (ko) * 2015-12-31 2018-04-20 한국생산기술연구원 용접데이터베이스가 내장된 파형제어형 피복아크 용접전원

Also Published As

Publication number Publication date
CN103974798B (zh) 2017-04-05
JP6129188B2 (ja) 2017-05-17
DE202012013076U1 (de) 2014-09-15
CN106862722A (zh) 2017-06-20
US20160346859A1 (en) 2016-12-01
US9415457B2 (en) 2016-08-16
BR112014008070A2 (pt) 2017-04-11
US20120097655A1 (en) 2012-04-26
WO2013050844A1 (en) 2013-04-11
CN103974798A (zh) 2014-08-06
US11007595B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
JP6129188B2 (ja) パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム
JP3204946U (ja) Ac波形を用いて溶接する装置及び方法
US9162308B2 (en) Apparatus and method for pulse welding with AC waveform
CN108356390B (zh) 用于利用ac波形焊接的设备和方法
CN108356388B (zh) 用于利用ac波形焊接的设备和方法
CN108356391B (zh) 用于利用ac波形焊接的设备和方法
US11110536B2 (en) Apparatus and method for welding with AC waveform
JP5710011B2 (ja) パルスアーク溶接プロセスにおいてスパッタを抑制する方法及びシステム
JP2012071310A (ja) 消耗電極アーク溶接のくびれ検出制御方法
JP2020082195A (ja) スパッタを低減するためのアーク溶接システム制御方法
US20190091789A1 (en) Method to control an arc welding system to reduce spatter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

R150 Certificate of patent or registration of utility model

Ref document number: 6129188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250