JP2014521321A - 独立栄養生物の培養を監視するための装置及び方法 - Google Patents

独立栄養生物の培養を監視するための装置及び方法 Download PDF

Info

Publication number
JP2014521321A
JP2014521321A JP2014521882A JP2014521882A JP2014521321A JP 2014521321 A JP2014521321 A JP 2014521321A JP 2014521882 A JP2014521882 A JP 2014521882A JP 2014521882 A JP2014521882 A JP 2014521882A JP 2014521321 A JP2014521321 A JP 2014521321A
Authority
JP
Japan
Prior art keywords
ccpod
culture
value
autotrophic
optical density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014521882A
Other languages
English (en)
Inventor
ティキシェ,セバスチャン
フクスマン,エイドリアン・エム
Original Assignee
ハネウェル・アスカ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハネウェル・アスカ・インコーポレーテッド filed Critical ハネウェル・アスカ・インコーポレーテッド
Publication of JP2014521321A publication Critical patent/JP2014521321A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/635Photosynthetic material analysis, e.g. chrorophyll
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

方法は、独立栄養培養物(104)の葉緑素濃度測定値(504)と前記独立栄養培養物の光学濃度測定値(506)を用いて単位光学濃度当たりの葉緑素濃度パラメータ(CCpOD)値(408)を識別するステップ(508)を含む。前記方法はまた、前記CCpOD値を用いて前記独立栄養培養物における変化を識別するステップ(510)も含む。前記独立栄養培養物における変化は、前記CCpOD値が上側管理限界(404)と下側管理限界(406)の外にあるか否かを判定することによって識別されることが可能である。前記上側及び下側管理限界は、所定数の既に決定されたCCpOD値を用いて識別されることが可能であり、前記既に決定されたCCpOD値は、前記独立栄養培養物が既知の健康的な状態にある時に計算されることが可能である。複数のCCpOD値が計算されることが可能であり、所定数の(例えば1又は複数の)前記CCpOD値が前記上側及び下側管理限界の外にある場合に、警報(120)が発せられることが可能である。
【選択図】図1

Description

[0001] 本開示は、概してシステムを監視する処理に関する。より具体的には、本開示は、独立栄養生物の培養を監視するための装置及び方法に関する。
[0001] 藻類は、一般的に、光合成を利用して成長する単純な、典型的には独立栄養性の有機体の大規模で多様な集団を含む。光合成は、植物が葉緑素に関係した化学的プロセスを用いて、糖などのより高次の有機化合物を生成するプロセスである。葉緑素は、一般的に、ほとんどの生体植物に見られる緑色色素によって特徴付けられる。
[0002] ある種の藻類は比較的速い速度で成長することから、それらの利用が食料やエネルギーの開拓において探究されてきた。この種類の藻類は、開放池や閉鎖反応槽において培養され、閉鎖反応槽では、藻類は、水溶液中に懸濁されて、成長のための栄養分を定期的に供与される。藻類の培養は様々な目的で実施され、それには、産業廃水や都市下水の浄化、高付加価値食品サプリメント(例えばスピルリナ)の栽培、水産養殖用飼料の栽培、及び藻類の脂質からのバイオ燃料生産が含まれる。
[0003] 本開示は、独立栄養生物の培養を監視するための装置及び方法を提供する。
[0004] 第1の実施態様において、装置は、独立栄養培養物の葉緑素濃度測定値と前記独立栄養培養物の光学濃度測定値を用いて単位光学濃度当たりの葉緑素濃度(CCpOD)値を決定するように構成された少なくとも1つの処理装置を含む。前記少なくとも1つの処理装置はまた、前記CCpOD値を用いて前記独立栄養培養物における変化を識別するようにも構成される。
[0005] 第2の実施態様において、方法は、独立栄養培養物の葉緑素濃度測定値と前記独立栄養培養物の光学濃度測定値を用いてCCpOD値を識別するステップを含む。前記方法はまた、前記CCpOD値を用いて前記独立栄養培養物における変化を識別するステップも含む。
[0006] 第3の実施態様において、システムは、独立栄養培養物の葉緑素濃度を測定するように構成された第1測定装置と、前記独立栄養培養物の光学濃度を測定するように構成された第2測定装置を含む。前記システムは、更に、前記第1測定装置から葉緑素濃度測定値を受け取り、前記第2測定装置から光学濃度測定値を受け取るように構成された監視装置を含む。前記監視装置はまた、前記葉緑素濃度測定値と前記光学濃度測定値を用いてCCpOD値を識別し、前記CCpOD値を用いて前記独立栄養培養物における変化を識別するようにも構成される。
[0007] 他の技術的特徴は、以下の図、説明、及びクレームから当業者には直ちに明らかとなるだろう。
[0008] 本開示のより完全な理解のために、これより、添付図面と併せて以下の説明に対する参照が行われる。
図1は、本開示による独立栄養生物の培養を監視するための例示的なシステムを示す。 図2は、本開示による独立栄養生物の培養を監視するための例示的な監視装置を示す。 図3Aは、本開示による独立栄養培養物の例示的な単位光学濃度当たりの葉緑素濃度(CCpOD)測定値を示す。 図3Bは、本開示による独立栄養培養物の例示的な単位光学濃度当たりの葉緑素濃度(CCpOD)測定値を示す。 図4は、本開示による独立栄養培養物に関する例示的な管理図を示す。 図5は、本開示による独立栄養生物の培養を監視するための例示的な方法を示す。
[0014] 以下に論じられる図1から5、及びこの特許文書において本発明の原理を説明するのに用いられる様々な実施態様は、例示のみのためであり、如何なる方法でも本発明の範囲を限定するように解されるべきではない。当業者は、本発明の原理は適切に構成された任意の種類の装置又はシステムにおいて実施されることができる、ということを理解するだろう。
[0015] 図1は、本開示による独立栄養生物の培養を監視するための例示的なシステム100を示す。以下の説明では、藻類の培養を監視することに対して言及がなされる。しかしながら、システム100は、如何なる独立栄養生物の培養を監視するのにも使用されることが可能であろう。独立栄養生物は、光からエネルギーを得る有機体(例えば、微細藻類、大型藻類、植物プランクトン、及び藍藻などの光独立栄養生物)、又は無機化学反応からエネルギーを得る有機体(化学合成独立栄養生物など)を含む。
[0016] 上述されたように、ある藻類種の比較的速い成長速度によって、これらの種は、汚水の浄化、食料の補充、及びバイオ燃料の生産などの数多くの応用に有益なものとなる。大規模な藻類培養における挑戦は、藻類の培養を最適な水準に維持することである。様々な要因が、ある藻類の培養物の培養速度に影響を及ぼし得る。例えば、様々な藻類種の共存は、例えば天候などの同じ環境条件の変化によって時間の経過と共に変化し、優勢な藻類種の変化をもたらすことがある。別の例として、藻類の培養物の培養速度は、他の微生物、例えば細菌、かび、及び他の草食生物又は捕食者との共存によって変化することがある。草食生物は、藻類の培養物のために用意された栄養分を盗み取るあるいはまた食べ尽くす微生物を意味し、一方、捕食者は、藻類の培養物を食べ尽くす微生物を意味する。
[0017] 従来のシステムは、しばしば、葉緑素濃度測定装置及び/又は混濁度測定装置を相互に独立的に使用して、藻類の培養物を監視する。しかしながら、健康な藻類の培養物でさえ、様々な要因、例えば季節変化、日光、温度、及び栄養分の入手可能性によって、異なる速度で成長することがある。それ故に、藻類の培養物が成長するにつれて、特に、藻類自体が懸濁水溶液中に異なる濃度レベルで存在する水中懸濁培養物においては、葉緑素濃度レベルの変化が予想されることになるだろう。葉緑素濃度自体が健康な藻類の培養物において正常に変化し得るため、藻類培養物における正常な変化と有害な変化を区別することは、従来の技術と方法のみを用いる場合、しばしば判断するのが困難である。
[0018] 本開示に従って、独立栄養生物監視システムは、単位光学濃度当たりの葉緑素濃度(CCpOD)パラメータを測定する。このパラメータの使用は、葉緑素濃度のみが測定される場合には観測するのが困難であろう変化の増強された検出を提供することが可能である。葉緑素濃度は、藻類の生物量の尺度であるのに対し、混濁度は、藻類の生物量と藻類以外の生物量を含んだ総生物量の尺度である。よって、CCpOD値を用いて独立栄養培養物を監視することによって、独立栄養培養物における有害な変化の増強された検出が実現されることが可能である。これらの有害な変化は、優勢な藻類種の変化、及び、増加した草食生物又は捕食者レベルの変化を含み得る。
[0019] 図1に示されるように、システム100は、タンク102を含み、タンク102の中に、独立栄養培養物104が保持される。システム100はまた、ある物質を独立栄養培養物104へ供給する構成要素を含む。この特定の例では、ガス供給部106が、1又は複数のガス(例えば二酸化炭素及び/又は空気)を独立栄養培養物104へ供給する。また、栄養分供給部108が、独立栄養培養物の成長のための栄養分を供給する。水供給部110は、淡水を独立栄養培養物104へ供給する。空気供給部106からの空気は、散気管111を介してタンク102へ供給されることができ、散気管111は、タンク102内の液体中に空気を拡散させる。任意の他の若しくは付加的な装置又は構成要素が、システム100において用いられることが可能である。
[0020] システム100はまた、独立栄養培養物104の葉緑素濃度を測定する葉緑素濃度測定装置112を含む。システム100は更に、独立栄養培養物104の光学濃度を測定する光学濃度測定装置114を含む。測定装置112−114は、それぞれの測定値を、例えばネットワーク118を介して、又は直接接続を通じて、監視装置116へ供給する。葉緑素濃度測定装置112は、葉緑素濃度を測定するための任意の適切な機構を含む。光学濃度測定装置114は、光学濃度を測定するための任意の適切な機構を含む。
[0021] 監視装置116は、例えば定期的な時間間隔で、又は任意の他の適切な時間に、測定装置112−114から測定値を受け取る。監視装置116はまた、それらの測定値に基づいて、単位光学濃度当たりの葉緑素濃度(CCpOD)のパラメータ値を決定する。CCpODパラメータは、葉緑素濃度と光学濃度の任意の関数に従って計算されることができる。一実施態様では、CCpOD値は、(Cst×葉緑素濃度)−Cst×混濁度−Cstとして計算されることが可能である。ここで、定数Cst、Cst、及びCstは、葉緑素センサと混濁度センサを健康な培養物のサンプルを用いた乾燥生物量に対して較正することによって得られる。別の実施態様では、CCpOD値は、(Cst×葉緑素濃度)−混濁度−Cstとして計算されることが可能である。このCCpODの特定の計算は、葉緑素センサが混濁度に対して較正され、且つ全体的に健康な培養物が想定されて、葉緑素と混濁度の値が直線的に相関している場合に用いられることができる。
[0022] しかしながら、他の実施態様では、葉緑素と混濁度の値は必ずしも直線的に相関せず、葉緑素濃度を混濁度に関係付けるためのより複雑な関数が用いられることができる。その場合は、任意の適切な方法で計算されたCCpOD値が用いられることが可能であろう。例えば、いくつかの実施態様では、監視装置116は、定期的にCCpOD値を決定し、もしCCpOD値(例えば単一のCCpOD値又はある数のCCpOD値)が所定の時間期間に対する閾値を超えたら警報120を発生することによって、独立栄養培養物104を連続的に監視することができる。監視装置116は、CCpOD値を閾値と比較する別の構成要素へCCpOD値を出力することも可能であろう。
[0023] 葉緑素濃度測定装置112は、独立栄養培養物104の葉緑素濃度を測定するために任意の適切な技術を使用する。いくつかの実施態様では、測定装置112は、独立栄養培養物の葉緑素濃度を測定するために抽出分析を使用する。抽出分析法においては、独立栄養培養物からサンプルが採取され、遠心分離又は膜濾過によって培養物の細胞が収集される。次いで、アセトン、メタノール、又はジエチルエーテルなどの1又は複数の溶媒を用いて色素が抽出される。抽出物は、光吸収又は蛍光法を用いて測定される。葉緑素濃度を測定する別の技術は、高速液体クロマトグラフィ(HPLC)の使用を伴う。
[0024] 蛍光法のいくつかの実施態様では、葉緑素分子を励起するために青色光が抽出物に照射される。これにより、葉緑素分子は、例えば、典型的にはおよそ650nmから700nmの赤色光領域内の相対的に長波長において、蛍光を発する、即ち光を放射する。具体的な例では、青色励起光はおよそ470nmの波長を有するが、葉緑素分子に測定可能な蛍光を発光させ放射させる、任意の適切な波長が用いられることができる。葉緑素濃度は、サンプルから発せられた光のレベルを測定することによって、決定されることができる。
[0025] 直接測定法のいくつかの実施態様では、蛍光法が原位置で適用されることができる。即ち、直接測定法は、独立栄養培養物からサンプルを移動させることなく、葉緑素濃度レベルを直接的に測定することができる。直接測定法は、例えば、独立栄養培養物104が遠隔の場所又は近くに行くのが困難な場所にある際のオンライン計測に用いられることが可能であろう。いくつかの場合には、直接測定法を利用する測定装置112は、比較的良好な精度を提供するために、定期的な時間間隔で較正されることができる。
[0026] 光学濃度測定装置114もまた、独立栄養培養物104の光学濃度を測定するための任意の適切な技術を使用する。独立栄養培養物の光学濃度は、様々な形態の有機及び無機物質を含み得る、培養物104内に存在している全ての種の結果である。
[0027] いくつかの実施態様では、測定装置114は、光学濃度測定の代わりに総懸濁固体量(TSS)測定を使用し、それは、典型的には実験室環境において実施される。TSS測定は、通常、水性媒質から固体物を分離し、分離された固体物を洗浄及び乾燥し、その結果得られた固体物を計量して独立栄養培養物のTSSのレベルを決定することを伴う。具体的な実施態様では、手作業の介在なく光学濃度測定値がオンラインで得られるように、この手順は、測定装置114によって自動化されることができる。
[0028] 他の実施態様では、測定装置114は、光散乱法を使用する。この方法においては、一列の光が独立栄養培養物104のサンプルに照射され、当該光列からの反射又は散乱光が、入射光列に対して1又は複数の角度で測定される。いくつかの点で、光散乱法は、水性媒質の混濁度測定値又はTSS測定値を表すこともできる。光源は、例えばおよそ700nmの波長を有する赤色光源又は赤外光源であり、任意の適切な波長を有することができる。光散乱法は、独立栄養培養物104の原位置測定に適している。独立栄養培養物104を監視する間、より長い時間期間にわたる定期的な較正を用いて、比較的良好な精度を得ることができる。
[0029] 上述されたように、葉緑素濃度と光学濃度の測定値は、監視装置116へ直接的に又はネットワーク118を介して伝達されることができる。ネットワーク118の利用は、例えば、近くに行くことが比較的困難である遠隔の場所において独立栄養培養物を監視することを容易化するであろう。また、監視装置116は、多数の独立栄養培養物のCCpODパラメータを1つの集中化位置において監視するように構成されることができる。ネットワーク118は、例えばイーサネット(登録商標)ネットワーク、(HARTネットワーク又はFOUNDATION FIELDBUSネットワークなどの)電気信号ネットワーク、又は任意の他の種類若しくは付加的種類のネットワークのような、任意の適切なネットワーク又はネットワークの組み合わせを表す。
[0030] 監視装置116は、1又は複数の独立栄養培養物104を監視するための任意の適切な機構を含む。監視装置116は、例えば、ハードウェア又はハードウェアとソフトウェア/ファームウェア命令の組み合わせを用いて実装されることが可能であろう。監視装置116の例示的実施態様が図2に示され、後述される。具体的な実施態様では、監視装置116は、HONEYWELL INTERNATIONAL INCからのEXPERION OPCサーバ、EXPERION HSサーバ、EXPERIONサーバペア、又はEXPERION EASサーバを含むことが可能であろう。
[0031] 図1は独立栄養培養物を監視するためのシステム100の一例を示すが、様々な変更が図1に対してなされることができる。例えば、独立栄養培養物104は、任意の他の適切な構造物、例えば、人工貯水池、閉鎖した密閉タンク、又は開放構造物などに収容されることが可能であろう。別の例として、図1に示された機能的部分は、例示のみのためのものである。図1の様々な構成要素が、省略され、組み合わせられ、又は更に細分化されることが可能であり、また、特定の必要性に従って、付加的な構成要素が追加されることが可能であろう。具体的な例として、測定装置112−114が単一のユニットに組み合わせられることが可能であり、監視装置116が測定装置112−114の1つに統合されることが可能であり、又は、3つの構成要素112−116全てが単一の機能性ユニットに組み合わせられることが可能であろう。加えて、監視装置116の機能性は、任意の他の適切な装置又はシステムにおいて用いられることが可能であろう。
[0032] 図2は、本開示による独立栄養生物の培養を監視するための例示的な監視装置116を示す。図2に示されるように、監視装置116は、少なくとも1つの処理装置202、少なくとも1つのメモリ装置204、少なくとも1つのインターフェース206、ディスプレイ208、及び少なくとも1つの入力装置210を含む。
[0033] 処理装置202は、任意の適切な処理装置、例えば、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は他の論理回路などを表す。メモリ装置204は、任意の適切な揮発性及び/又は不揮発性の記憶及び読み出し装置、例えば、ランダムアクセスメモリ又は読み出し専用メモリなどを表す。インターフェース206は、1又は複数のネットワークを介した通信を容易化するための任意の適切なインターフェース、例えば、イーサネット(登録商標)インターフェース、又は、他の電気信号線インターフェース若しくは無線インターフェースなどを表す。インターフェース206は、葉緑素濃度と光学濃度の測定値を受け取り、又は、他の装置若しくはシステムへデータを出力するのに使用されることが可能である。ディスプレイ208は、ユーザに情報を提示するための任意の適切な表示装置を表す。入力装置210は、ユーザから入力を受け取るための任意の適切な装置、例えばキーボード又はマウスなどを表す。
[0034] 図2において、メモリ装置204は、少なくとも1つのアプリケーション212を含む。アプリケーション212は、監視装置116がどのようにして独立栄養培養物104を監視するかを定義する1又は複数のコンピュータプログラムを表す。例えば、アプリケーション212は、CCpODパラメータ値を計算するための命令と、統計処理モデル化法を用いてCCpOD値を処理する分析ツールを含むことができる。例えば、アプリケーション212は、過去のCCpOD測定値のヒストグラムを作成して、(一般に標準偏差値と呼ばれる)上側と下側のプロセス管理点を決定することができる。分析は、定期的な進行方向の時間間隔で行われることが可能であろう。アプリケーション212はまた、1又は複数のCCpOD測定値がヒストグラム分布を用いて設定された標準偏差値のいずれかを超えた場合に警報120を発生するための命令を含むことも可能であろう。
[0035] 図2は独立栄養生物の培養を監視するための監視装置116の一例を示すが、様々な変更が図2に対してなされることができる。例えば、監視装置116は、特定の必要性に従って任意の他の又は付加的な構成要素を含むことが可能であろう。また、監視装置116は、任意の適切な監視又は管理技術を用いて実装されることが可能であろう。加えて、監視装置116は、1又は複数の独立栄養培養物を監視及び/又は管理するのに用いられることが可能であろう。
[0036] 図3A及び3Bは、本開示による独立栄養培養物の例示的なCCpOD測定値を示す。具体的には、図3Aは、(望まれた成長を除いて)何も変化が起きていない独立栄養培養物に対するCCpOD測定値302を示し、一方、図3Bは、変化が生じた藻類培養物を表しているCCpOD測定値304を示す。
[0037] 図3Aに示されるように、光学濃度(即ち混濁度)センサから計算された乾燥生物量が葉緑素センサから計算された乾燥生物量に等しいため、比較的、CCpOD測定値302は直線的である。これは、例えば、水性媒質が藻類を最近播種されたところであるため比較的低い葉緑素濃度を示すであろう、新しく開始された藻類培養物において起こり得る。この場合、藻類培養物は、比較的低い光学濃度を示すであろう。培養物が成熟し続けるにつれて、光学濃度レベルは、藻類の成長の増進に比例して増大するであろう。この例は、藻類の成長が正常に起きる望ましい健康的な場合を表す。
[0038] いくつかの実施態様では、図3Aに示されたCCpOD測定値は、培養物が(例えば培養物の一生の初期など)既知の健康な状態で存在している時に実施された較正に基づくことができる。その培養物の一生の間の後になって、当該培養物が何らかの異常に見舞われているかどうかを判定するために、続けて行われる測定値が取得され、較正値と比較されることができる。藻類の異なる種は、互いに対して異なるCCpOD値を示す可能性があることに留意されたい。反対に、似通った種は、異なる培養物から又は異なる時期に測定されることにもかかわらず、比較的似たCCpOD値を示す可能性がある。結果として、ある特定の生育期の間にある既知の健康的な培養物に対して、CCpODの較正値が生成されることができる。もし同じ種が次の生育期(例えば1年後)に比較的似通った環境条件で成長したなら、前の生育期からのCCpODの較正値が、当該次の生育期に藻類の培養物を監視するのに用いられることが可能であろう。
[0039] 図3Bに示されるように、葉緑素の培養物は、図3Aに示されたような健康な培養物の場合のようには発達しない。混濁度から計算された乾燥生物量は、葉緑素濃度から計算された乾燥生物量に比例していない。培養物は、健康な状態、即ち乾燥生物量に対する混濁度と乾燥生物量に対する葉緑素濃度の較正時に比較して、変化が生じた状態を有する。いくつかの場合において、これは、培養物が不健康になったことを示すかもしれない。他の場合には、これは、何らかの変化が起きたことを示すだけであるかもしれない。例えば、培養物は、初めに、藻類の多数種を包含する藻類有機体のある亜属を播種されることができる。環境条件の変化によって、これらの種のうちの1又は複数がその培養物において優勢となり始め、そしてその結果のCCpOD測定値が、たとえ当該培養物が比較的健康のままであったとしても、変化する場合がある。これは不健康な状況を示さないかもしれないが、人々は、このCCpOD測定値を使用して培養物における変化を検出し、その結果当該培養物が適切に管理されるようにすることができる。
[0040] 図3A及び3Bは独立栄養培養物に対するCCpOD測定値の例を示すが、様々な変更が図3A及び3Bに対してなされることができる。例えば、図3A及び3Bは、特定の独立栄養培養物に対して求められるであろう例示的なCCpOD測定値を示すに過ぎない。独立栄養培養物の内容と構成は大きく異なることがあるので、他の独立栄養培養物は、図3A及び3Bに示されたものに対して異なるCCpODの関数を示す場合がある。
[0041] 図4は、本開示による独立栄養培養物に関する例示的な管理図400を示す。管理図400は、例えば、図1の監視装置116によって生成されることが可能であろう。
[0042] 本例では、管理図400は、中央線402、上側管理限界線404、下側管理限界線406、及び経時的にプロットされたCCpODパラメータ値408を含む、プロセス変動図(R管理図)を表す。中央線402は、所定数の既に受け取られたCCpOD値408の平均値を示す。管理限界線404−406は、任意の適切な統計モデル化処理を用いて決定されることが可能な、上側と下側のプロセス管理点(標準偏差値)を示す。いくつかの実施態様では、管理限界線404−406は、較正段階410の間に決定された所定数のCCpOD値408を用いて計算されることが可能である。
[0043] いくつかの実施態様では、CCpOD値408は、所定の時間間隔、例えば1時間の時間間隔で受け取られて処理される。任意の適切な時間間隔、例えば、独立栄養培養物における変化を検出するのに十分な粒度を与える時間間隔が用いられることが可能であろう。その結果、培養物を比較的安定した状態に維持するように、適正な修復作業が行われるようにすることができる。また、本例では、管理限界線404−406は、既に取得されたCCpOD値408の標準偏差の3シグマ点に設定される。しかしながら、管理限界線404−406は、任意の他の適切な値に設定されることができる。
[0044] また、図4には、上側管理限界線404を超えたCCpODパラメータ値408’が示されている。これは、混濁度由来の乾燥生物量が、葉緑素由来の乾燥生物量に対してより大きな速度で推移し始めたことを示す。このような場合、監視装置116は、培養物における変化を人々に警告するための警報120を発生することができる。
[0045] 図4は独立栄養培養物に関する管理図400の一例を示すが、様々な変更が図4に対してなされることができる。例えば、任意の他の種類の管理図が用いられることが可能であろう。具体的な例として、管理図は、独立栄養培養物におけるCCpODパラメータ値の統計的進展を示す、バーX管理図及び/又はS管理図を含むことができる。
[0046] 図5は、本開示による独立栄養生物の培養を監視するための例示的な方法500を示す。図5に示されるように、ステップ502において、独立栄養生物監視装置が初期化される。これは、例えば、ある装置設定を監視装置116の較正段階410の間に設定することを含むことが可能であろう。
[0047] ステップ504において、独立栄養培養物に関する葉緑素濃度測定値が受け取られ、ステップ506において、独立栄養培養物に関する光学濃度測定値が受け取られる。葉緑素濃度測定値は、抽出分析法又は直接測定法などの任意の適切な技術を用いて決定されることができる。また、光学濃度測定値は、光散乱法などの任意の適切な技術を用いて決定されることができる。
[0048] ステップ508において、監視装置は、独立栄養培養物に関するCCpODパラメータ値を決定する。CCpODパラメータは、図1を参照して上述されたように計算されることができる。次いで、ステップ510において、CCpODパラメータ値が何らかの方法で出力及び/又は使用される。例えば、独立栄養培養物104に何か変化が起きたかどうかを判定するために、最新のCCpODパラメータ値が以前に計算されたCCpODパラメータ値と比較されることができる。もし顕著な変化が検出されたなら、監視装置116は、警報120を発生させる、又は、例えば培養物104に物質を供給している構成要素106−110を自動的に調整するなどの、何らかの他の動作をとることが可能であろう。
[0049] 図5は独立栄養生物の培養を監視するための方法500の一例を示すが、様々な変更が図5に対してなされることができる。例えば、一連のステップとして示されているが、図5の様々なステップが、重なり合い、並行して行われ、異なる順序で行われ、又は複数回行われることが可能であろう。
[0050] いくつかの実施態様では、上述された様々な機能は、コンピュータ可読プログラムコードから形成されコンピュータ可読媒体に具現化されたコンピュータプログラムによって、実装又はサポートされる。「コンピュータ可読プログラムコード」という表現は、ソースコード、オブジェクトコード、及び実行可能コードを含む、任意の種類のコンピュータコードを含む。「コンピュータ可読媒体」という表現は、コンピュータによってアクセスされる能力を有した任意の種類の媒体、例えば、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、ハードディスクドライブ、コンパクトディスク(CD)、デジタルビデオディスク(DVD)、又は任意の他の種類のメモリを含む。
[0051] 本特許文書中で用いられているいくつかの語句の定義を明記することは有益であるだろう。「アプリケーション」及び「プログラム」という用語は、(ソースコード、オブジェクトコード、又は実行可能コードを含む)適切なコンピュータコードで実装するのに適合した、1又は複数のコンピュータプログラム、ソフトウェアコンポーネント、命令群、処理手順、関数、オブジェクト、クラス、インスタンス、関連データ、又はそれらの一部分を意味する。「含む(include)」及び「含む、備える(comprise)」という用語とそれらの派生語は、制限のない包含を意味する。「又は」という用語は包括的であり、及び/又は、を意味する。「〜と関連する(associated with)」という表現及びその派生語は、含む(include)、〜の中に含まれる(included within)、〜と相互接続される(interconnect with)、包含する(contain)、〜の中に包含される(contained within)、〜に又は〜と接続する(connect to or with)、〜に又は〜と結合する(couple to or with)、〜と通信可能である(communicable with)、〜と協力する(cooperate with)、インターリーブする(interleave)、並置する(juxtapose)、〜に近接している(proximate to)、〜に又は〜と結び付けられる(bound to or with)、有する(have)、〜の属性を有する(have a property of)、〜に対して又は〜と関係を有する(have a relationship to or with)、等を意味する。「受け取る」という用語及びその派生語は、外部供給源又は内部供給源から受け取ることを含む。
[0052] 本開示はある実施態様及び一般的に関連した方法を説明したが、これらの実施態様及び方法の改変や変更は、当業者に明らかであるだろう。したがって、例示的な実施態様の上記説明は、本開示の範囲を限定し又は本開示を拘束することはない。以下のクレームによって特徴付けられる本開示の趣旨及び範囲から逸脱することなく、他の変更、置き換え、及び改変もまた可能である。

Claims (14)

  1. 独立栄養培養物(104)の葉緑素濃度測定値(504)と前記独立栄養培養物の光学濃度測定値(506)の関数である単位光学濃度当たりの葉緑素濃度(CCpOD)値(408)を決定し(508)、
    前記CCpOD値を用いて前記独立栄養培養物における変化を識別する(510)、
    ように構成された少なくとも1つの処理装置(202)を備えた装置。
  2. 前記少なくとも1つの処理装置は、前記CCpOD値が上側管理限界(404)と下側管理限界(406)の外にあるか否かを判定することによって、前記独立栄養培養物における変化を識別するように構成される、請求項1に記載の装置。
  3. 前記少なくとも1つの処理装置は、所定数の既に決定されたCCpOD値を用いて前記上側及び下側管理限界を識別するように構成される、請求項2に記載の装置。
  4. 前記少なくとも1つの処理装置は、更に、
    複数のCCpOD値を計算し、
    所定数の前記CCpOD値が前記上側及び下側管理限界の外にある場合に警報(120)を発生する、
    ように構成される、請求項2に記載の装置。
  5. 前記独立栄養培養物は藻類を含む、請求項1に記載の装置。
  6. 独立栄養培養物(104)の葉緑素濃度測定値(504)と前記独立栄養培養物の光学濃度測定値(506)の関数である単位光学濃度当たりの葉緑素濃度(CCpOD)値(408)を識別するステップ(508)と、
    前記CCpOD値を用いて前記独立栄養培養物における変化を識別するステップ(510)と、
    を含む方法。
  7. 前記CCpOD値を識別する前記ステップは、
    前記葉緑素濃度測定値を受け取るステップ(504)と、
    前記光学濃度測定値を受け取るステップ(506)と、
    前記光学濃度当たりの前記葉緑素濃度のパラメータを計算するステップと、
    を含む、請求項6に記載の方法。
  8. 前記独立栄養培養物における変化を識別する前記ステップは、前記CCpOD値が上側管理限界(404)と下側管理限界(406)の外にあるか否かを判定するステップを含む、請求項6に記載の方法。
  9. 所定数の既に決定されたCCpOD値を用いて前記上側及び下側管理限界を識別するステップを更に含む、請求項8に記載の方法。
  10. 前記既に決定されたCCpOD値は、前記独立栄養培養物が既知の健康的な状態にある時に計算される、請求項9に記載の方法。
  11. 複数のCCpOD値を計算するステップと、
    所定数の前記CCpOD値が前記上側及び下側管理限界の外にある場合に警報(120)を発生するステップと、
    を更に含む、請求項9に記載の方法。
  12. 独立栄養培養物(104)の葉緑素濃度を測定するように構成された第1測定装置(112)と、
    前記独立栄養培養物の光学濃度を測定するように構成された第2測定装置(114)と、
    前記第1測定装置から葉緑素濃度測定値(504)を受け取り(504)、
    前記第2測定装置から光学濃度測定値(506)を受け取り(506)、
    前記葉緑素濃度測定値と前記光学濃度測定値の関数である単位光学濃度当たりの葉緑素濃度(CCpOD)値(408)を識別し(508)、
    前記CCpOD値を用いて前記独立栄養培養物における変化を識別する(510)、
    ように構成された監視装置(116)と、
    を備えるシステム。
  13. 前記監視装置は、前記CCpOD値が上側管理限界(404)と下側管理限界(406)の外にあるか否かを判定することによって、前記独立栄養培養物における変化を識別するように構成される、請求項12に記載のシステム。
  14. 前記監視装置は、所定数の既に決定されたCCpOD値を用いて前記上側及び下側管理限界を識別するように構成される、請求項13に記載のシステム。
JP2014521882A 2011-07-29 2012-05-16 独立栄養生物の培養を監視するための装置及び方法 Pending JP2014521321A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/194,676 2011-07-29
US13/194,676 US9540604B2 (en) 2011-07-29 2011-07-29 Apparatus and method for monitoring autotroph cultivation
PCT/CA2012/000467 WO2013016799A1 (en) 2011-07-29 2012-05-16 Apparatus and method for monitoring autotroph cultivation

Publications (1)

Publication Number Publication Date
JP2014521321A true JP2014521321A (ja) 2014-08-28

Family

ID=47597924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521882A Pending JP2014521321A (ja) 2011-07-29 2012-05-16 独立栄養生物の培養を監視するための装置及び方法

Country Status (6)

Country Link
US (1) US9540604B2 (ja)
EP (1) EP2737075B1 (ja)
JP (1) JP2014521321A (ja)
CN (1) CN103814138A (ja)
CA (1) CA2842261A1 (ja)
WO (1) WO2013016799A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848190B2 (en) 2012-06-21 2014-09-30 Honeywell Asca Inc. Sensor for early detection of problems in algae cultures and related system and method
JP5990127B2 (ja) * 2013-04-08 2016-09-07 日本電信電話株式会社 微細藻類の濃度決定方法、装置およびプログラム
WO2018096143A1 (en) * 2016-11-25 2018-05-31 Danmarks Tekniske Universitet A laboratory device to automatically measure growth of cell culture non-invasively
EP3385366A1 (de) * 2017-04-04 2018-10-10 Siemens Aktiengesellschaft Verfahren zur kontrolle eines biotechnologischen prozesses
IT201900000355A1 (it) * 2019-01-10 2020-07-10 Thema Informatik Srl Apparecchio per la coltivazione di alghe in particolare alghe unicellulari e un procedimento per la coltivazione di alghe con un apparecchio
CN110908329A (zh) * 2019-12-23 2020-03-24 深圳赛动生物自动化有限公司 基于可编程控制器的干细胞进出料仓控制系统及控制方法
CN114199843A (zh) * 2021-12-13 2022-03-18 国家海洋标准计量中心 一种海水叶绿素a传感器的稳定性评价和修正方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023379A1 (en) 2001-09-12 2003-03-20 Apprise Technologies, Inc. Multichannel fluorosensor
KR20080086988A (ko) * 2005-12-09 2008-09-29 바이오나비타스, 인크. 바이오매스 생산을 위한 시스템, 디바이스, 및 방법들
US20100255541A1 (en) 2007-05-16 2010-10-07 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Advanced Algal Photosynthesis-Driven Bioremediation Coupled with Renewable Biomass and Bioenergy Production
US8033047B2 (en) * 2007-10-23 2011-10-11 Sartec Corporation Algae cultivation systems and methods
WO2009108223A2 (en) * 2007-11-09 2009-09-03 Biovigilant Systems, Inc. Pathogen detection by simultaneous size/fluorescence measurement
ITMI20072343A1 (it) * 2007-12-14 2009-06-15 Eni Spa Processo per la produzione di biomassa algale ad alto contenuto lipidico
US8654319B2 (en) * 2009-01-23 2014-02-18 University Of Maryland, Baltimore County Chlorophyll and turbidity sensor system
US8748160B2 (en) 2009-12-04 2014-06-10 Aurora Alage, Inc. Backward-facing step
US8862277B1 (en) * 2010-02-01 2014-10-14 Green Badge, LLC Automatic efficient irrigation threshold setting
AU2011213006B2 (en) 2010-02-03 2015-02-19 Renew Biopharma, Inc. Stress-induced lipid trigger
WO2011099016A2 (en) * 2010-02-15 2011-08-18 Univerve Ltd. System and plant for cultivation of aquatic organisms
WO2012036758A1 (en) * 2010-09-19 2012-03-22 Alex Yuan Aquaculture biocide methods and compositions
CN201844976U (zh) * 2010-11-18 2011-05-25 吉林市光大分析技术有限责任公司 水表面叶绿素a检测装置
US8478444B2 (en) 2011-01-05 2013-07-02 Honeywell Asca Inc. Apparatus and method for controlling autotroph cultivation

Also Published As

Publication number Publication date
WO2013016799A1 (en) 2013-02-07
US20130030715A1 (en) 2013-01-31
EP2737075A1 (en) 2014-06-04
CN103814138A (zh) 2014-05-21
EP2737075B1 (en) 2018-10-10
US9540604B2 (en) 2017-01-10
EP2737075A4 (en) 2015-05-20
CA2842261A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP2014521321A (ja) 独立栄養生物の培養を監視するための装置及び方法
CN101978068B (zh) 用于推测性鉴定培养物内微生物类型的系统和方法
Haack et al. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence
Havlik et al. Monitoring of microalgal processes
CN108647783A (zh) 一种水产养殖水质溶解氧检测方法
Rowland‐Jones et al. At‐line raman spectroscopy and design of experiments for robust monitoring and control of miniature bioreactor cultures
Barbosa et al. Low-cost and versatile sensor based on multi-wavelengths for real-time estimation of microalgal biomass concentration in open and closed cultivation systems
Graf et al. A novel approach for non-invasive continuous in-line control of perfusion cell cultivations by Raman spectroscopy
EP2864504A1 (en) Sensor for early detection of problems in algae cultures and related system and method
Benavides et al. Parameter identification of Droop model: an experimental case study
Milligan et al. Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy
Rodrigues et al. The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems
Finger et al. Insights into Streptomyces coelicolor A3 (2) growth and pigment formation with high‐throughput online monitoring
Mortensen et al. Real-time monitoring and chemical profiling of a cultivation process
CN105044065A (zh) 一种用于荧光法测定叶绿素含量的藻液的制备方法
CN204964400U (zh) 同时检测菌落总数和大肠菌群的多道快速检测系统
Obata et al. Using chlorophyll fluorescence to monitor yields of microalgal production
Mantikci et al. Patterns of dark respiration in aquatic systems
Becerra-Celis et al. Estimation of microalgal photobioreactor production based on total inorganic carbon in the medium
Yao et al. Algae optical density sensor for pond monitoring and production process control.
CN101978373B (zh) 用于确定血培养物内的血量的系统和方法
Gaskill et al. Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas
RU2802224C1 (ru) Система измерения оптической плотности культуры микроводоросли tetraselmis viridis и способ измерения оптической плотности культуры микроводорослей
US20230385703A1 (en) High-resolution environmental sensor imputation using machine learning
CN108795741A (zh) 藻类观测与藻种智能识别系统