JP2014518333A - electrolytic - Google Patents

electrolytic Download PDF

Info

Publication number
JP2014518333A
JP2014518333A JP2014518479A JP2014518479A JP2014518333A JP 2014518333 A JP2014518333 A JP 2014518333A JP 2014518479 A JP2014518479 A JP 2014518479A JP 2014518479 A JP2014518479 A JP 2014518479A JP 2014518333 A JP2014518333 A JP 2014518333A
Authority
JP
Japan
Prior art keywords
cathode
anode
container
vessel
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014518479A
Other languages
Japanese (ja)
Inventor
ヴァシレヴィッチ ポドベドフ ヴラッディミア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2014518333A publication Critical patent/JP2014518333A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本発明は、電解装置に関し、より詳細には、水系電解質の電気分解によって水素と酸素とを生成する技術の各種部分に用いることができる電解槽に関する。
【選択図】なし
The present invention relates to an electrolysis apparatus, and more particularly to an electrolytic cell that can be used in various parts of a technique for generating hydrogen and oxygen by electrolysis of an aqueous electrolyte.
[Selection figure] None

Description

本発明は、電解装置に関し、より詳細には、水系電解質の電気分解によって水素と酸素とを生成する技術の各種部分に用いることができる電解槽に関する。   The present invention relates to an electrolysis apparatus, and more particularly to an electrolytic cell that can be used in various parts of a technique for generating hydrogen and oxygen by electrolysis of an aqueous electrolyte.

公知の装置(ロシア連邦特許第2149921号)は、陽極を形成する積層体の形状をとり、それぞれが平坦なプレートからなる複数の電極である陽極電極と、陰極を形成する積層体の形状をとり、それぞれが平坦なプレートからなる複数の電極である陰極電極とを備え、陽極電極が陰極電極と交互に配置されている、水の電気分解用の電解槽である。さらに、電解槽は、交互配置の陽極を通り、各陽極電極のみとの電気接続のために提供される、少なくとも1つの第1の導電性接続要素と、交互配置の陰極を通り、各陰極電極のみとの電気接続のために提供される、少なくとも1つの第2の導電性接続要素とを備える。
ロシア連邦特許第2149921号
A known device (Russian Patent No. 2149921) takes the shape of a laminate forming an anode, and takes the shape of an anode electrode, which is a plurality of electrodes each consisting of a flat plate, and a laminate forming a cathode. , An electrolytic cell for electrolysis of water, comprising a plurality of cathode electrodes each composed of a flat plate, and anode electrodes arranged alternately with the cathode electrodes. Furthermore, the electrolytic cell passes through the interleaved anodes and is provided for electrical connection only with each anode electrode, with at least one first conductive connection element and the interleaved cathodes passing through each cathode electrode. At least one second conductive connection element provided for electrical connection only with
Russian Federation Patent No. 2149921

溶接に用いられる水素ガス及び酸素ガスを生成するための公知の電解槽の欠点としては、その複雑な設計と低い効率が挙げられる。   Disadvantages of known electrolyzers for producing hydrogen gas and oxygen gas used for welding include their complex design and low efficiency.

公知の装置(ロシア連邦特許第2228390号)は、火力、水素、及び酸素を生成する装置であって、誘電体材料から作製されるケースと、カバーと、陽極キャビティ及び陰極キャビティと、陽極キャビティに位置する開口部を有し電源の正極に接続される平坦なリング状の陽極と、外ねじにより誘電体管の中に挿入され電源の負極に接続される耐火材料のロッドの形態の陰極と、陽極キャビティの中央部に位置する作動溶液供給ポートとを備え、カバーが、誘電体材料から作製され、ケースと共同して陽極キャビティ及び陰極キャビティを形成する貫通開口部を備えた円錐台形部(cylinder−conic extension)を有し、誘電体管が、ケースのねじ付き開口部を通って及び上部陰極キャビティを形成するカバーの貫通開口部を中心として、その外ねじによって電極間のチャンバの中に挿入され、陽極キャビティが、カバーに位置する垂直区域及び水平区域からなるチャネルを介して上部陰極キャビティと相互接続され、さらに、誘電体管を動かすことで上部陰極キャビティと下部陰極キャビティとの間のギャップが調節可能に設定される装置であり、カバーの側部に位置する作動溶液排水ポートと、上部陰極キャビティと同軸にカバーの上部に位置するガス混合出力ポートとをさらに備え、陰極及び陽極が、パルス発生器と制御回路からなる電源装置に接続される、装置である。
ロシア連邦特許第2228390号
A known device (Russian Federal Patent No. 2228390) is a device for generating thermal power, hydrogen and oxygen, which is made of a dielectric material, a cover, an anode cavity and a cathode cavity, and an anode cavity. A flat ring-shaped anode having an opening located and connected to the positive electrode of the power supply; a cathode in the form of a rod of refractory material inserted into the dielectric tube by an external screw and connected to the negative electrode of the power supply; And a working solution supply port located in the center of the anode cavity, the cover is made of a dielectric material, and a cylinder with a through-opening that cooperates with the case to form the anode cavity and the cathode cavity. -Conic extension) and the dielectric tube passes through the threaded opening of the case and forms an upper cathode cavity. Centered around the through-opening and inserted into the chamber between the electrodes by its external threads, the anode cavity is interconnected with the upper cathode cavity via a channel consisting of vertical and horizontal sections located in the cover, and A device in which the gap between the upper cathode cavity and the lower cathode cavity is adjustable by moving the dielectric tube, and the working solution drain port located on the side of the cover and the cover coaxially with the upper cathode cavity And a gas mixing output port located at the top of the device, wherein the cathode and anode are connected to a power supply comprising a pulse generator and a control circuit.
Russian Federation Patent No. 2228390

公知の装置の欠点としては、その複雑な設計と低い効率とが挙げられる。   The disadvantages of the known devices include their complex design and low efficiency.

本明細書で提供される技術的解決策の最も近い対応物は、火力、水素、及び酸素を生成する装置であって、誘電体材料から作製されるケースを備え、貫通開口部、電極間のチャンバ、作動溶液供給ポート及び排水ポート、電源の正極に接続される陽極、及び電源の負極に接続される陰極を有する装置である(ロシア連邦特許第2175027号)。軸方向開口部を備えたケースは、下部円錐台形部と、下部区域で相互接続される陽極キャビティ及び陰極キャビティからなる電極間のチャンバをケースと共同して形成する下部カバーとを備える。開口部を備えた平坦なリング状の陽極は、陽極キャビティに位置する。陰極は、ねじ付き誘電体管の中に挿入される耐火材料のロッドの形態である。誘電体管は、下部カバーのねじ付き開口部を介して電極間のチャンバの中に挿入され、装置の軸線に沿って垂直方向に動かすことができる。陰極キャビティの中の自動溶液レベル制御システムを備えた作動溶液容器は、陽極キャビティと接続される。装置はまた、蒸気の凝縮及び水素の分離のための冷却チャンバを備え、そのキャビティは、陽極キャビティの作動溶液供給ポートと相互接続される。冷却チャンバの蒸気/ガス混合物供給ポートは、そのねじによってケース開口部の中に挿入され、酸素出力ポートは、陽極キャビティの上部の中に挿入される。
ロシア連邦特許第2175027号
The closest counterpart of the technical solution provided herein is a device that generates thermal power, hydrogen, and oxygen, comprising a case made of a dielectric material, between a through opening and an electrode A device having a chamber, a working solution supply port and a drain port, an anode connected to the positive electrode of the power source, and a cathode connected to the negative electrode of the power source (Russian Federation No. 2175027). A case with an axial opening comprises a lower frustoconical part and a lower cover which, in cooperation with the case, forms a chamber between electrodes consisting of an anode cavity and a cathode cavity interconnected in the lower section. A flat ring-shaped anode with an opening is located in the anode cavity. The cathode is in the form of a rod of refractory material that is inserted into a threaded dielectric tube. The dielectric tube is inserted into the chamber between the electrodes through a threaded opening in the bottom cover and can be moved vertically along the axis of the device. A working solution container with an automatic solution level control system in the cathode cavity is connected to the anode cavity. The apparatus also includes a cooling chamber for vapor condensation and hydrogen separation, the cavity of which is interconnected with the working solution supply port of the anode cavity. The vapor / gas mixture supply port of the cooling chamber is inserted into the case opening by its screw and the oxygen output port is inserted into the top of the anode cavity.
Russian Federation Patent No. 2175027

公知の装置は、以下のように作動する。   Known devices operate as follows.

作動溶液が、容器の中に注がれ、容器からバッチング装置及びフロートチャンバを経由して陽極キャビティと陰極キャビティとに流れる。反応器の中の必要な溶液レベルに達した後で、フロートチャンバのフロートがバッチング装置の取入開口部を閉じる。次いで、電力が供給され、陰極域で安定したプラズマが発生するまで電圧が徐々に高められる。陰極で生じた蒸気/ガス混合物が冷却器に供給される。冷却器パイプの低温の表面に曝された蒸気が凝縮し、放出されたガスがリフレクタの下から出力ポートに出る。蒸気凝縮物は、管及び取入ポートを介して陽極キャビティに供給される。陽極で放出される酸素は、陽極キャビティの上部に供給され、ポートを介して除去される。反応器の中の溶液レベルが自動的に制御されるので、この水素及び酸素生成装置は同様に自動的に作動する。作動溶液が消費されるので、これは受入容器の中に再充填される。   A working solution is poured into the container and flows from the container through the batching device and the float chamber to the anode cavity and the cathode cavity. After reaching the required solution level in the reactor, the float in the float chamber closes the intake opening of the batching apparatus. Next, power is supplied and the voltage is gradually increased until a stable plasma is generated in the cathode region. The vapor / gas mixture produced at the cathode is fed to the cooler. Vapor exposed to the cold surface of the cooler pipe condenses and the released gas exits from the bottom of the reflector to the output port. Vapor condensate is supplied to the anode cavity via a tube and an intake port. Oxygen released at the anode is supplied to the top of the anode cavity and removed through the port. Since the solution level in the reactor is automatically controlled, the hydrogen and oxygen generator operates automatically as well. As the working solution is consumed, it is refilled into the receiving container.

反応器の中で起こる物理化学プロセスの性質は、陰極領域が陽極領域よりもかなり小さい場合の陰極と陽極との間の電界が、電解質中に存在するアルカリ金属の最初に陰極にイオン流を集中させる。陰極に向けた移動中に蓄積される運動エネルギーの保存により、アルカリ金属イオンが水分子から水素原子を押す。陰極に到着すると、陽子は、電子を得て水素原子を形成し、フォトンを生じ、これは5000〜10,000℃で原子状水素プラズマを形成する。このプラズマのエネルギーが、水の水素及び酸素への熱解離と、加熱された溶液、蒸発した水、及び収集されたガスのエネルギーの増加によって容易に示される付加的なエネルギーの放出を推進する。電気分解による水素の放出は陽極で同時に発生する。したがって、陰極での水素プラズマは、水溶液に伝達される熱エネルギー源となるのと同時に、原子状及び分子状の水素及び酸素の源となる。   The nature of the physicochemical process that takes place in the reactor is that the electric field between the cathode and the anode when the cathode region is much smaller than the anode region concentrates the ion flow at the cathode first of the alkali metal present in the electrolyte. Let Alkali metal ions push hydrogen atoms from water molecules by preserving the kinetic energy stored during movement towards the cathode. When arriving at the cathode, the protons gain electrons and form hydrogen atoms, producing photons, which form an atomic hydrogen plasma at 5000-10,000 ° C. This plasma energy drives the thermal dissociation of water into hydrogen and oxygen and the release of additional energy that is readily indicated by the increased energy of the heated solution, evaporated water, and collected gas. Hydrogen release by electrolysis occurs simultaneously at the anode. Therefore, the hydrogen plasma at the cathode becomes a source of thermal energy transmitted to the aqueous solution, and at the same time a source of atomic and molecular hydrogen and oxygen.

公知の技術的解決策の欠点は、陰極が、その耐用年数を劇的に減らすプラズマ域内に恒久的にあることである。さらに、装置は非常に複雑な設計を有する。   A disadvantage of the known technical solution is that the cathode is permanently in the plasma zone, which dramatically reduces its useful life. Furthermore, the device has a very complex design.

本発明の目的は、水を水素と酸素とに分解するための効率的な電解槽を提供することである。   An object of the present invention is to provide an efficient electrolytic cell for decomposing water into hydrogen and oxygen.

本明細書で提供される設計を有するプラズマ電解槽を用いることで目的を達成することが提案される。プラズマ電解槽は、誘電体容器の中に位置し、誘電体容器の下部でパイプを介して相互接続される、陽極及び陰極を備える。螺旋形状の陰極は、電気的に絶縁された銅線から作製され、電気絶縁体は局所的断絶部(local breaks)を有し、陽極は平坦であり、陰極容器及び陽極容器は組み込みガス圧力調整弁を備えたカバーを有し、容器の上部はガス排出装置に接続され、陰極容器及び陽極容器は電解質の追加を可能にする。本発明のいくつかの実施形態では、陰極電気絶縁体は、20〜60mm離間された幅4〜6mmのストリップを有する階段状のパターンを形成するように除去される。しかしながら、陰極表面からの絶縁体除去の他の選択肢が存在する。陰極は、好ましくは陰極容器に充填される。本発明のいくつかの実施形態では、電解槽は、陰極容器及び陽極容器の下部により多くの電解質を追加可能にする。   It is proposed to achieve the objective by using a plasma cell having the design provided herein. The plasma electrolyzer comprises an anode and a cathode that are located in the dielectric container and interconnected via pipes at the bottom of the dielectric container. The spiral cathode is made from an electrically isolated copper wire, the electrical insulator has local breaks, the anode is flat, and the cathode and anode vessels are built-in gas pressure regulation It has a cover with a valve, the upper part of the container is connected to a gas exhaust device, and the cathode and anode containers allow the addition of electrolyte. In some embodiments of the invention, the cathodic electrical insulator is removed to form a stepped pattern having strips 4-6 mm wide spaced 20-60 mm apart. However, there are other options for removing the insulator from the cathode surface. The cathode is preferably filled in a cathode container. In some embodiments of the present invention, the electrolytic cell allows more electrolyte to be added to the cathode vessel and the lower portion of the anode vessel.

本明細書で提供される装置の作動原理は、最も近い対応物として用いられる技術的解決策の作動原理と同じである。本明細書で提供される技術的解決策は、プラズマ電気分解及びガスの同時分離による水系電解質からの水素と酸素との生成を可能にする。プラズマ電気分解は、電解質から絶縁されないその作動域のうちのいくらかだけを溶液に暴露する陰極を用いることによって達成される。これは、高温プラズマの単一の集中領域をなくし、陰極のより大きい領域にわたって熱負荷を分散させることができるようにする。   The working principle of the device provided herein is the same as the working principle of the technical solution used as the closest counterpart. The technical solution provided herein enables the generation of hydrogen and oxygen from aqueous electrolytes by plasma electrolysis and simultaneous gas separation. Plasma electrolysis is achieved by using a cathode that exposes only some of its operating range that is not insulated from the electrolyte to the solution. This eliminates a single concentrated area of the hot plasma and allows the heat load to be distributed over a larger area of the cathode.

これは、陰極上の熱負荷を劇的に低減し、その耐用年数を著しく増加させる。異なる陰極領域でのパルスプラズマ形成は、電流パルスを生じ、その平均的な大きさは、水の電気分解のために直流電圧及び電流が用いられるときに達する大きさよりもかなり小さい。これは、電気分解の電力消費を著しく削減する。   This dramatically reduces the heat load on the cathode and significantly increases its useful life. Pulsed plasma formation at different cathode regions produces a current pulse, the average magnitude of which is much smaller than the magnitude reached when DC voltage and current are used for water electrolysis. This significantly reduces the power consumption of electrolysis.

さらに、陰極と陽極とを、その溶液が小直径パイプを介して容器の下部でのみ相互接続される異なる容器に入れることで、水素と酸素とを別個に生成させることができる。   Furthermore, hydrogen and oxygen can be generated separately by placing the cathode and anode in different containers whose solutions are interconnected only through the small diameter pipe at the bottom of the container.

陰極容器の中に位置する陰極は、好ましくは螺旋形状の、ラッカーで絶縁された銅線から作製される。陰極上の均一な熱負荷分布は、好ましくは3〜5cm離間された長さ5mm未満の区間を形成するように陰極絶縁体を所々除去することによって達成される。   The cathode located in the cathode vessel is made from a copper wire, preferably helical, insulated with lacquer. A uniform heat load distribution on the cathode is achieved by removing the cathode insulator in place to form sections of less than 5 mm length, preferably spaced 3-5 cm apart.

陽極は、陽極容器の中に位置し、プレート状の形状を有する。   The anode is located in the anode container and has a plate shape.

陰極で放出された水素は、陰極容器の中の圧力を調整する弁を通って陰極容器から出て行き、酸素は、陽極容器の上部カバーの中の弁及びポートを通って出る。   Hydrogen released at the cathode exits the cathode vessel through a valve that regulates the pressure in the cathode vessel, and oxygen exits through a valve and port in the top cover of the anode vessel.

プラズマ電解槽の基本的な実施形態は以下のように設計される。プラズマ電解槽は、誘電体パイプにより下部で相互接続される、一方は陰極でありもう一方1つは陽極である2つの誘電体容器を備える。陰極容器と陽極容器は、パイプを介して共通の容器に接続され、該パイプを通ってそれらに電解質が再充填される。   The basic embodiment of the plasma electrolyzer is designed as follows. The plasma cell comprises two dielectric vessels interconnected at the bottom by dielectric pipes, one being the cathode and the other being the anode. The cathode and anode containers are connected to a common container via a pipe, through which they are refilled with electrolyte.

陰極は、ラッカーで絶縁された銅から作製され、そこから、絶縁体が、3〜5cm離間された長さ mmまでの区間を形成するように除去される。陰極は螺旋形状を有する。陽極は、プレート状の形状を有し、導電性金属から作製される。陰極容器及び陽極容器はカバーを有し、該カバーの中に、陰極容器及び陽極容器の中の圧力を調整する弁が設置される。   The cathode is made from lacquer-insulated copper, from which the insulator is removed to form sections up to 3 mm long, spaced 3-5 cm apart. The cathode has a spiral shape. The anode has a plate shape and is made of a conductive metal. The cathode container and the anode container have a cover, and a valve for adjusting the pressure in the cathode container and the anode container is installed in the cover.

水素は、水素を一般的な乾燥機に案内する弁及びパイプを通って陰極容器を出る。酸素は、酸素を一般的な乾燥機に案内する弁及びパイプを通って陽極容器を出る。   Hydrogen exits the cathode vessel through valves and pipes that guide the hydrogen to a common dryer. Oxygen exits the anode vessel through valves and pipes that guide the oxygen to a common dryer.

容器4及び容器に電解質が充填された後で、パワーがクランプに供給され、電解質が加熱され始める。ガス放出速度が徐々に上昇し、溶液の温度が限界閾値に達すると、絶縁されていない陰極表面ストリップでプラズマパルスが発生し、ガス放出速度が劇的に数十倍(by decades of times)増加して0.3〜0.5リットル/秒に達する。陰極容器及び陽極容器の適正に調整された弁により、個々の容器内の溶液を必要なレベルに維持される。電流振幅は、この期間中不規則に変化するが、その平均値は比較的低いままであり、電気が節約される。結果として陰極寿命が数十倍(by decades of times)増加する。   After the container 4 and the container are filled with electrolyte, power is supplied to the clamp and the electrolyte begins to heat up. As the gas release rate gradually increases and the solution temperature reaches a critical threshold, a plasma pulse is generated in the non-insulated cathode surface strip, and the gas release rate increases dramatically by decades (by decades of times). Reaching 0.3 to 0.5 liters / second. A properly adjusted valve in the cathode container and anode container maintains the solution in the individual containers at the required level. The current amplitude varies irregularly during this period, but its average value remains relatively low, saving electricity. As a result, the cathode lifetime increases by several decades (by decades of times).

Claims (4)

誘電体容器の中に位置し、前記誘電体容器の下部でパイプを介して相互接続される陽極及び陰極を備え、螺旋形状の前記陰極が電気的に絶縁された銅線から作製され、前記電気的な絶縁が局所的断絶部を有し、前記陽極が平坦であり、前記陰極容器及び陽極容器が組み込みガス圧力調整弁を備えたカバーを有し、前記容器の上部がガス排出装置に接続され、前記陰極容器及び陽極容器が電解質の追加を可能にする、プラズマ電解槽。   An anode and a cathode located in a dielectric container and interconnected via pipes at the bottom of the dielectric container, the spiral cathode being made from an electrically insulated copper wire, The insulation has a local break, the anode is flat, the cathode vessel and the anode vessel have a cover with a built-in gas pressure regulating valve, the upper part of the vessel is connected to a gas discharge device A plasma electrolyzer wherein the cathode vessel and anode vessel allow for the addition of electrolyte. 前記陰極電気絶縁体が、20〜60mm離間された幅4〜6mmのストリップを有する階段状のパターンを形成するように除去される、請求項1に記載のプラズマ電解槽。   The plasma electrolyzer of claim 1, wherein the cathode electrical insulator is removed to form a stepped pattern having strips of 4-6 mm wide spaced 20-60 mm apart. 前記陰極が前記陰極容器に好ましくは最大限に充填される、請求項1に記載のプラズマ電解槽。   The plasma electrolytic cell according to claim 1, wherein the cathode is preferably filled to the maximum extent in the cathode container. 前記電解槽が、前記陰極容器及び前記陽極容器の下部により多くの電解質を追加可能にする、請求項1に記載のプラズマ電解槽。   The plasma electrolytic cell according to claim 1, wherein the electrolytic cell allows more electrolyte to be added to the cathode container and the lower part of the anode container.
JP2014518479A 2011-07-05 2012-03-06 electrolytic Pending JP2014518333A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2011127344 2011-07-05
RU2011127344/07A RU2011127344A (en) 2011-07-05 2011-07-05 PLASMA ELECTROLYZER
PCT/RU2012/000164 WO2013006084A1 (en) 2011-07-05 2012-03-06 Electrolytic

Publications (1)

Publication Number Publication Date
JP2014518333A true JP2014518333A (en) 2014-07-28

Family

ID=47437269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518479A Pending JP2014518333A (en) 2011-07-05 2012-03-06 electrolytic

Country Status (8)

Country Link
US (1) US20140102887A1 (en)
EP (1) EP2729599A1 (en)
JP (1) JP2014518333A (en)
KR (1) KR20130108437A (en)
AT (1) AT512692A2 (en)
DE (1) DE112012000377T5 (en)
RU (1) RU2011127344A (en)
WO (1) WO2013006084A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633064B (en) 2017-06-05 2018-08-21 財團法人工業技術研究院 Electrolytic reduction module unit and water purification device
MY195064A (en) * 2017-06-22 2023-01-05 Kenneth Stephen Bailey The Separation of Hydrogen and Oxygen from Non-Potable Waterand the Recombining of Said Hydrogen and Oxygen to Drive a Turbine or Piston Engine
CN113026043B (en) * 2021-03-02 2022-02-11 常熟理工学院 Electrolysis equipment and application thereof
CN114506907A (en) * 2022-01-14 2022-05-17 武汉轻工大学 Active oxygen/active nitrogen enhanced oxidized electrolyzed water and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059977A (en) * 2002-07-26 2004-02-26 Tadahiko Mizuno Method and apparatus for generating hydrogen gas
JP2005529455A (en) * 2002-05-08 2005-09-29 マン トーマス チャン チャック Plasma created in fluid
JP2009054557A (en) * 2007-08-24 2009-03-12 Osamu Sakai In-liquid plasma generating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU979276A1 (en) * 1981-01-07 1982-12-07 Уфимский Нефтяной Институт Process for purifying and deconatminating industrial milk-processing effluents
JPH06262180A (en) * 1993-03-10 1994-09-20 Funai Electric Co Ltd Ionized water generator
RU2149921C1 (en) 1993-09-06 2000-05-27 Хайдроджен Текнолоджи Лтд. Updating of electrolysis systems
RU2175027C2 (en) 1999-06-03 2001-10-20 Закрытое акционерное общество "Неоэнергия" Apparatus for producing heat energy, hydrogen and oxygen
DE10150557C2 (en) * 2001-10-15 2003-12-18 Mtu Friedrichshafen Gmbh Pressure electrolyzer and method for operating such
US7169497B2 (en) * 2003-05-15 2007-01-30 The Gillette Company Electrochemical cells
RU2228390C1 (en) 2003-06-23 2004-05-10 Кубанский государственный аграрный университет Device for producing heat energy, hydrogen, and oxygen
US20080245660A1 (en) * 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture
TWI362366B (en) * 2009-12-15 2012-04-21 Ind Tech Res Inst Fluid self-electricity-generation and electroreduction module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529455A (en) * 2002-05-08 2005-09-29 マン トーマス チャン チャック Plasma created in fluid
JP2004059977A (en) * 2002-07-26 2004-02-26 Tadahiko Mizuno Method and apparatus for generating hydrogen gas
JP2009054557A (en) * 2007-08-24 2009-03-12 Osamu Sakai In-liquid plasma generating device

Also Published As

Publication number Publication date
AT512692A2 (en) 2013-10-15
KR20130108437A (en) 2013-10-02
WO2013006084A1 (en) 2013-01-10
US20140102887A1 (en) 2014-04-17
DE112012000377T5 (en) 2013-09-19
RU2011127344A (en) 2013-01-10
EP2729599A1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP2014518333A (en) electrolytic
WO2018168876A1 (en) Organic substance generation system and method for producing organic substance
WO2016134615A1 (en) Device for generating electrolyzed water vapor
CN101880888B (en) Preparation method of nickel aminosulfonate
US8043485B2 (en) Multi-pulse protocol for use with a dual voltage electrolysis apparatus
JP6438739B2 (en) Electrolysis method
WO2004097072A1 (en) Method and apparatus for producing combustible fluid
WO2010099671A1 (en) Electrolytic bath with stabilized strong electric field and constant current and electrolytic device thereof
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
RU2679224C1 (en) Thermochemical resistant anode for electrolysis of aluminum
RU117441U1 (en) PLASMA ELECTROLYZER
CN103397364A (en) Aluminum-silicon alloy surface ceramic treatment method and apparatus
CN203429271U (en) Ceramic treatment device for surface of aluminum-silicon alloy
CN209322530U (en) Electrolytic water device
JP2010202968A (en) Apparatus for generating oxyhydrogen gas
WO2008010108A2 (en) Dual voltage electrolysis apparatus and method of using same
WO2008010107A2 (en) Dual voltage, multi-composition electrode assembly for an electrolysis apparatus and method of using same
JP2007059196A (en) Power generating system
KR0170929B1 (en) Process for preparation of hydrogen by plasma dissociation of water and apparatus therefor
JP5350879B2 (en) Water electrolysis system
RU2796822C1 (en) Electrolytic-plasma method for producing gaseous hydrogen in a gas-liquid medium
JP4611345B2 (en) Water electrolysis cell, water electrolysis stack using the same, and hydrogen production apparatus
CN215481325U (en) Electrode device and oxyhydrogen machine using same
Tazmeev et al. Some specific features of heat and mass transfer of gas-discharge plasma with a liquid electrolytic cathode
WO2008146187A1 (en) Pulsed electrolysis apparatus and method of using same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150415