JP2014511820A - Bio-soluble mineral wool fiber composition and mineral wool fiber - Google Patents

Bio-soluble mineral wool fiber composition and mineral wool fiber Download PDF

Info

Publication number
JP2014511820A
JP2014511820A JP2014505070A JP2014505070A JP2014511820A JP 2014511820 A JP2014511820 A JP 2014511820A JP 2014505070 A JP2014505070 A JP 2014505070A JP 2014505070 A JP2014505070 A JP 2014505070A JP 2014511820 A JP2014511820 A JP 2014511820A
Authority
JP
Japan
Prior art keywords
mineral wool
wool fiber
composition
fiber composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014505070A
Other languages
Japanese (ja)
Other versions
JP5890515B2 (en
Inventor
ソクジェ ジュ
インシク ソク
ジョンジェ リ
ギュンヨン ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kcc Corp Co ltd
Original Assignee
Kcc Corp Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47009816&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014511820(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kcc Corp Co ltd filed Critical Kcc Corp Co ltd
Publication of JP2014511820A publication Critical patent/JP2014511820A/en
Application granted granted Critical
Publication of JP5890515B2 publication Critical patent/JP5890515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Abstract

【課題】生理的媒質に一層さらに溶解できる生溶解性ミネラルウール繊維組成物および生溶解性ミネラルウール繊維を提供すること。
【解決手段】本発明は、SiOおよびAlの合計含有量45〜67重量%、CaO、MgO、NaOおよびKOの合計含有量20.1〜50重量%、並びにその他の成分を含んでなり、既存製品の熱的特性および物性は維持するものの、より優れた生溶解性を有する、生溶解性ミネラルウール繊維組成物、およびこれを用いて製造された生溶解性ミネラルウール繊維を提供する。
【選択図】なし
A biosoluble mineral wool fiber composition and a biosoluble mineral wool fiber that can be further dissolved in a physiological medium.
The present invention provides a total content of SiO 2 and Al 2 O 3 of 45 to 67% by weight, a total content of CaO, MgO, Na 2 O and K 2 O of 20.1 to 50% by weight, and others. A biosoluble mineral wool fiber composition having a higher biosolubility, while maintaining the thermal properties and physical properties of existing products, and a biodissolvable mineral produced using the same Provide wool fiber.
[Selection figure] None

Description

本発明は、生溶解性ミネラルウール繊維組成物およびミネラルウール繊維に関する。   The present invention relates to a biosoluble mineral wool fiber composition and mineral wool fibers.

セラミック繊維、特にミネラルウール(Mineral Wool/Rock Wool/石綿)は、玄武岩、安山岩などのケイ酸塩系鉱石を、1,500〜1,700℃の高熱で溶融し、高速気流またはスピナーの高速回転力を用いて繊維化した人造鉱物繊維である。一般に、広く普及した通常のミネラルウールは、SiO30〜50重量%、Al5〜20重量%、FeO+Fe1〜15重量%、CaO15〜45重量%、およびMgO1〜20重量%を主成分として製造され、断熱性、不燃性および耐熱性に優れて保温材、断熱材、吸音材、防音材、その他の様々な用途に使われる製品である。従来では、上記の組成にて、MgOおよびFeを増加させるとともにアルカリ金属を最小化して、耐熱性に一層優れたミネラルウール製品を製造するための研究が大部分であったが、最近では、MMVF(Man−Made Vitreous Fibers)製品の微細繊維が、呼吸器を介して肺に長期間蓄積された場合、肺に疾患を引き起こす可能性についての論議が台頭し始めた。 Ceramic fibers, especially mineral wool (Mineral Wool / Rock Wool / asbestos), melt silicate ores such as basalt and andesite with high heat of 1,500 to 1,700 ° C., and high-speed air flow or high-speed rotation of spinner It is an artificial mineral fiber that is made into fiber using force. In general, widespread conventional mineral wool, SiO 2 30 to 50 wt%, Al 2 O 3 5 to 20 wt%, FeO + Fe 2 O 3 1~15 wt%, CaO15~45 wt%, and MgO1~20 weight Is a product with excellent heat insulation, nonflammability and heat resistance, and is used for various purposes such as heat insulation, heat insulation, sound absorbing material, soundproofing material. Conventionally, most of the researches for producing mineral wool products with higher heat resistance by increasing MgO and Fe 2 O 3 and minimizing alkali metals with the above composition have recently been conducted. Then, discussion began about the possibility that the fine fibers of MMVF (Man-Made Vitreous Fibers) products could cause disease in the lungs if accumulated in the lungs for a long time via the respiratory organs.

一般に、セラミック繊維は、人体の疾病と関係があるという直接証拠はないものの、破砕した繊維が呼吸により肺に吸入されて蓄積された場合、人体に害をもたらす可能性がある。しかし、生理学的媒質に対する溶解度を増加させ、蓄積された繊維を体外に排出させることで有害の可能性を最小化することができる。このような生溶解性の向上と同時に、既存のミネラルウール組成が持っている基本的な特徴、すなわち繊維化が可能でなければならず、使用中に耐熱温度が1000〜1100℃に達するように耐熱性を向上させ、且つ十分な耐久性および断熱性を有するミネラルウール組成に関する研究が盛んに行われてきた。   In general, although there is no direct evidence that ceramic fibers are associated with human illness, if crushed fibers are inhaled and accumulated in the lungs by respiration, they can cause harm to the human body. However, the potential for harm can be minimized by increasing solubility in physiological media and draining the accumulated fibers out of the body. At the same time as improving the biosolubility, the basic characteristics of the existing mineral wool composition, that is, fiberization must be possible, and the heat-resistant temperature reaches 1000-1100 ° C. during use. There has been extensive research on mineral wool compositions that have improved heat resistance and sufficient durability and thermal insulation properties.

一方、Alの含量を減少させることにより、KI(Numerical Index)値を増加させて生溶解性を高めることができることが知られている。 On the other hand, it is known that by reducing the content of Al 2 O 3 , the KI (Numerical Index) value can be increased and the biosolubility can be enhanced.

ところが、Alの組成が不可避に含まれているケイ酸塩系鉱石を塊状として使用するキュポラ(Cupola Furnace)溶融工程ではKI値を高めることに限界があり、現実的には接近することが難しい条件でしかない。これにより、Alの含量が増加してKI(Numberical Index)値が30未満、場合によっては20未満であっても生溶解性および耐水性に優れるセラミック繊維の製造が求められている。 However, there is a limit to increasing the KI value in the cupola (Cupola Furnace) melting process that uses silicate-based ores containing the composition of Al 2 O 3 unavoidably as a lump. Is only a difficult condition. Accordingly, there is a demand for the production of ceramic fibers having excellent biosolubility and water resistance even when the content of Al 2 O 3 is increased and the KI (Numerical Index) value is less than 30, and in some cases less than 20.

そこで、本発明の目的は、体内吸収の際に、より効果的に体液に溶解して容易に体外へ排出されることができる特性を有するミネラルウール繊維組成物およびミネラルウール繊維を開発し、人体に及ぼす影響を最小化することにある。   Accordingly, an object of the present invention is to develop a mineral wool fiber composition and mineral wool fiber having characteristics that can be more effectively dissolved in a body fluid and easily discharged outside the body during absorption in the body, and the human body Is to minimize the impact on

本発明の他の目的は、Alの含量が増加してKI値が低くても生溶解度に優れるミネラルウール繊維組成物及びミネラルウール繊維を提供することにある。 Another object of the present invention is to provide a mineral wool fiber composition and mineral wool fiber that are excellent in raw solubility even when the content of Al 2 O 3 is increased and the KI value is low.

本発明の別の目的は、既存のミネラルウール繊維の組成を改質して耐熱性、耐水性、熱伝導率および復元力が、従来のミネラルウール繊維の水準を維持しながら、溶解速度定数が300ng/cm・hr以上である、生溶解性に優れるミネラルウール繊維組成物を提供することにある。 Another object of the present invention is to modify the composition of an existing mineral wool fiber to maintain the heat resistance, water resistance, thermal conductivity and restoring force, while maintaining the level of conventional mineral wool fibers, while maintaining a dissolution rate constant. An object of the present invention is to provide a mineral wool fiber composition that is 300 ng / cm 2 · hr or more and has excellent biosolubility.

上記目的を達成するために、本発明のある観点によれば、SiOおよびAlの合計含有量45〜67重量%、CaO、MgO、NaOおよびKOの合計含有量20.1〜50重量%、並びにその他の成分を含む、生溶解性ミネラルウール繊維組成物が提供される。 In order to achieve the above object, according to an aspect of the present invention, the total content of SiO 2 and Al 2 O 3 is 45 to 67% by weight, and the total content of CaO, MgO, Na 2 O and K 2 O is 20 A biodissolvable mineral wool fiber composition comprising 1 to 50% by weight as well as other ingredients is provided.

ここで、本発明の溶解性ミネラルウール繊維組成物は、SiO30〜45重量%、Al15〜22重量%、酸化鉄(FeOおよびFeのうち、少なくとも1種を含む)8〜12重量%、CaO15〜30重量%、MgO5〜15重量%、RO(NaOおよびKOのうち、少なくとも1種を含む)0.1〜5重量%を含むことを特徴とする。 Here, soluble mineral wool fiber composition of the present invention, SiO 2 30-45 wt%, Al 2 O 3 15 to 22 wt%, of iron oxide (FeO and Fe 2 O 3, comprising at least one ) 8-12 wt%, CaO 15-30 wt%, MgO 5-15 wt%, R 2 O (including at least one of Na 2 O and K 2 O) 0.1-5 wt% Features.

また、本発明の生溶解性ミネラルウール繊維組成物は、前記Al17〜20重量%、RO(NaOおよびKOの少なくとも1種を含む)1〜2重量%を含むことを特徴とする。 Moreover, the biosoluble mineral wool fiber composition of the present invention comprises 17 to 20% by weight of Al 2 O 3 and 1 to 2 % by weight of R 2 O (including at least one of Na 2 O and K 2 O). It is characterized by including.

また、本発明の生溶解性ミネラルウール繊維組成物は、RO(NaOおよびKOの少なくとも1種を含む)/Alの重量比が0.5未満であることを特徴とする。 Further, the biosoluble mineral wool fiber composition of the present invention has a weight ratio of R 2 O (including at least one of Na 2 O and K 2 O) / Al 2 O 3 of less than 0.5. Features.

また、本発明の生溶解性ミネラルウール繊維組成物は、SiOおよびAlを必須として含み、Fe、CaO、MgO、NaOおよびKOのうちの3種以上を含む生溶解性ミネラルウール繊維組成物であって、人工体液に対する溶解速度定数が300ng/cm・hr以上であることを特徴とする。 The biosoluble mineral wool fiber composition of the present invention contains SiO 2 and Al 2 O 3 as essential components, and contains three or more of Fe 2 O 3 , CaO, MgO, Na 2 O and K 2 O. A biosoluble mineral wool fiber composition comprising a dissolution rate constant for an artificial body fluid of 300 ng / cm 2 · hr or more.

また、本発明の生溶解性ミネラルウール繊維組成物は、繊維延伸粘度温度と液相温度との差が80℃以上であることを特徴とする。   The biosoluble mineral wool fiber composition of the present invention is characterized in that the difference between the fiber drawing viscosity temperature and the liquidus temperature is 80 ° C. or more.

また、本発明の生溶解性ミネラルウール繊維組成物は、耐水性が0.8%以下であることを特徴とする。   The biosoluble mineral wool fiber composition of the present invention is characterized in that the water resistance is 0.8% or less.

本発明の他の観点によれば、SiOおよびAlを必須として含み、Fe、FeO、CaO、MgO、NaOおよびKOのうちの3種以上を含む生溶解性ミネラルウール繊維組成物であって、Alの含量が10重量%以上であり、式[(NaO+KO+CaO+MgO)−2×Al]の値(重量%で計算する)が20以下であり、人工体液に対する溶解速度定数が300ng/cm・hr以上である、生溶解性ミネラルウール繊維組成物が提供される。 According to another aspect of the present invention, biodissolution containing SiO 2 and Al 2 O 3 as essential, and including three or more of Fe 2 O 3 , FeO, CaO, MgO, Na 2 O and K 2 O. Mineral wool fiber composition, the content of Al 2 O 3 is 10% by weight or more, and the value of the formula [(Na 2 O + K 2 O + CaO + MgO) -2 × Al 2 O 3 ] (calculated in weight%) Is 20 or less, and a biosoluble mineral wool fiber composition having a dissolution rate constant with respect to an artificial body fluid of 300 ng / cm 2 · hr or more is provided.

本発明の別の観点によれば、前記生溶解性ミネラルウール繊維組成物を用いて製造された生溶解性ミネラルウール繊維が提供される。   According to another aspect of the present invention, a biosoluble mineral wool fiber produced using the biosoluble mineral wool fiber composition is provided.

本発明に係る生溶解性ミネラルウール繊維組成物およびこれを用いて製造された生溶解性ミネラルウール繊維は、組成の改質および最適化によって人工体液に対する生溶解度が著しく向上し人体の肺への吸入の際にも容易に溶解、除去できるため、人体に対する有害性を大幅に減少させることができるうえ、優れた耐水性を持っており、既存のロータリー(Rotary)工程に適用可能であるという利点がある。   The biosoluble mineral wool fiber composition according to the present invention and the biosoluble mineral wool fiber produced by using the composition are significantly improved in the biosolubility in artificial body fluids by the modification and optimization of the composition, and are applied to the human lungs. Because it can be easily dissolved and removed during inhalation, it can greatly reduce the harmfulness to the human body, has excellent water resistance, and can be applied to existing Rotary processes. There is.

また、生分解性能を示す既存のセラミック繊維は、KI値を高めるためにAlの含量を人為的に低くし、純度が高い比較的高価な原料を使用したが、これに対し、本発明の組成は、純度が低いAlをある程度含む低廉な原料を使用しながら、既存の製品と同等またはそれより優れた生分解性能を示すため、使用原料の幅を広めることができ、原料コストを節減することができるという利点がある。さらに、水分に対する耐久性に優れるうえ、既存の組成より低い液相温度と繊維延伸粘度温度(logη3.0)を示すため、繊維化の際に必要なエネルギーを省いてコスト節減を誘導することができる。 In addition, existing ceramic fibers exhibiting biodegradation performance have been artificially lowered in Al 2 O 3 content to increase the KI value and used relatively expensive raw materials with high purity. The composition of the invention exhibits a biodegradation performance equivalent to or better than that of existing products while using inexpensive raw materials containing some low-purity Al 2 O 3, so that the range of raw materials used can be widened. There is an advantage that raw material costs can be reduced. Furthermore, it has excellent durability against moisture and exhibits a liquidus temperature and a fiber drawing viscosity temperature (log η3.0) lower than those of existing compositions, so that it can reduce costs by omitting energy required for fiberization. it can.

以下、本発明に係る生溶解性ミネラルウール繊維組成物などを詳細に説明する。   Hereinafter, the biosoluble mineral wool fiber composition according to the present invention will be described in detail.

本発明は、SiOおよびAlを必須として含み、Fe、FeO、CaO、MgO、NaOおよびKOのうちの3種以上を含む生溶解性ミネラルウール繊維組成物を提供する。 The present invention includes a biosoluble mineral wool fiber composition containing SiO 2 and Al 2 O 3 as essential components, and containing three or more of Fe 2 O 3 , FeO, CaO, MgO, Na 2 O and K 2 O. I will provide a.

前記生溶解性ミネラルウール繊維組成物は、SiOおよびAlの合計含有量45〜67重量%、CaO、MgO、NaOおよびKOの合計含有量20.1〜50重量%、並びにその他の残余成分を含むことができる。 The biosoluble mineral wool fiber composition has a total content of SiO 2 and Al 2 O 3 of 45 to 67% by weight, and a total content of CaO, MgO, Na 2 O and K 2 O of 20.1 to 50% by weight. As well as other residual components.

前記生溶解性ミネラルウール繊維組成物は、SiO30〜45重量%、Al15〜22重量%、酸化鉄(FeOおよびFeの少なくとも1種含む)8〜12重量%、CaO15〜30重量%、MgO5〜15重量%、およびRO(NaOおよびKOの少なくとも1種含む)0.1〜5重量%を含むことができる。 The raw soluble mineral wool fibers composition, SiO 2 30-45 wt%, Al 2 O 3 15 to 22 wt%, (including at least one FeO and Fe 2 O 3) iron oxide 8-12 wt%, CaO15~30 wt%, MgO5~15 wt%, and (at least one of Na 2 O and K 2 O) R 2 O may include 0.1 to 5 wt%.

本発明は、生溶解性を向上させるものの、工程上加工性などの別の問題を引き起こすおそれがある、その他の酸化物であるP、SOなどを添加することなく、既存のミネラルウール繊維の組成中のアルミナ含量を増加させ、他の酸化物の組み合わせを介することで耐熱性などの物性の低下なしに生溶解性を増加させた新しい生溶解性ミネラルウール繊維組成物に関する。本発明に係る生溶解性ミネラルウール繊維組成物を構成成分によってさらに詳細に説明する。 The present invention improves the biosolubility, but may cause other problems such as processability in the process, and does not add other oxides such as P 2 O 5 , SO 3 and the like. The present invention relates to a new biodissolvable mineral wool fiber composition in which the alumina content in the composition of the wool fiber is increased and the biosolubility is increased without a decrease in physical properties such as heat resistance through the combination of other oxides. The biosoluble mineral wool fiber composition according to the present invention will be described in more detail by the constituent components.

まず、ミネラルウール繊維の主成分であるSiOは、ガラスの基本構造を形成する網目構造形成剤(Network Former)の役割を果たし、全体繊維組成物に対して30〜45重量%で含有することが好ましいが、仮にその含有量が30重量%未満の場合には、相対的にAlおよびアルカリ土類金属酸化物またはアルカリ金属酸化物の増加により原材料費が上昇し、このように製造された繊維は耐水性などの機械的物性に劣り、仮にその含有量が45重量%を超える場合には、溶融組成物の溶融温度および繊維延伸粘度温度が増加するため、製造された繊維は直径が大きく、繊維化が困難である。 First, SiO 2 which is the main component of mineral wool fiber plays the role of a network former that forms the basic structure of glass, and is contained at 30 to 45% by weight based on the total fiber composition. However, if the content is less than 30% by weight, the raw material cost is increased due to the relative increase of Al 2 O 3 and alkaline earth metal oxides or alkali metal oxides. The produced fiber is inferior in mechanical properties such as water resistance, and if the content exceeds 45% by weight, the melting temperature and the fiber drawing viscosity temperature of the molten composition increase. Is large, and fiberization is difficult.

網目形成酸化物であるSiOに基づいて、耐水性を有する中間酸化物であるAlを添加し、溶融温度を低くし、網目形成酸化物が作る網目に入ってガラスの性質に影響を及ぼしうる修飾酸化物としてRO(NaO、KO)、RO(CaO、MgO)などを添加することができる。 Based on the network-forming oxide SiO 2 , the water-resistant intermediate oxide Al 2 O 3 is added to lower the melting temperature and enter the network formed by the network-forming oxide, affecting the properties of the glass R 2 O (Na 2 O, K 2 O), RO (CaO, MgO) or the like can be added as a modified oxide capable of exerting the following.

中間形成酸化物であるAlは、10重量%以上30重量%以下で含有できるが、好ましくは15〜22重量%で含有される。特に、前記Alは17〜20重量%で含有できる。Alは、液相線近くのガラス溶融物の粘度を増加させてガラスの結晶化を制御し、繊維の耐水性を向上させる。特に、Alの適切な含量が生溶解性および耐熱度に多くの影響を与えるため、他の組成との適切な構成が求められる。 Al 2 O 3 which is an intermediate forming oxide can be contained in an amount of 10 wt% or more and 30 wt% or less, preferably 15 to 22 wt%. Particularly, the Al 2 O 3 may be contained at 17 to 20% by weight. Al 2 O 3 increases the viscosity of the glass melt near the liquidus, controls the crystallization of the glass, and improves the water resistance of the fiber. In particular, since an appropriate content of Al 2 O 3 has a great influence on biosolubility and heat resistance, an appropriate composition with other compositions is required.

繊維組成物中の修飾酸化物であるROは、ガラスの非架橋酸素を生成させることによりガラス溶融時の溶融を円滑に行わせる溶融剤として作用する。ここで、ROはアルカリ金属酸化物であってもよい。例えば、NaO、KOなどが挙げられる。この2種のアルカリ金属酸化物は、生溶解性を大幅に増加させるものの、繊維の耐水性には悪い影響を及ぼし、繊維のつぶれおよび復元率にも影響を与える成分である。よって、このような生溶解性、耐水性および経済的な面を考慮すると、繊維組成物中のNaO+KOの含量は0.1〜5重量%であることがよい。特に1〜2重量%であってもよい。また、RO(NaOおよびKOの少なくとも1種含む)/Alの重量比が0.5未満であってもよい。その重量比が0.5以上の場合には耐水性が低下するおそれがある。 R 2 O, which is a modified oxide in the fiber composition, acts as a melting agent that smoothly melts the glass by generating non-crosslinked oxygen in the glass. Here, R 2 O may be an alkali metal oxide. For example, Na 2 O, etc. K 2 O and the like. These two types of alkali metal oxides are components that greatly increase the biosolubility but adversely affect the water resistance of the fiber and also affect the collapse and restoration rate of the fiber. Therefore, in consideration of such biosolubility, water resistance and economical aspects, the content of Na 2 O + K 2 O in the fiber composition is preferably 0.1 to 5% by weight. In particular, it may be 1 to 2% by weight. Further, the weight ratio of R 2 O (including at least one of Na 2 O and K 2 O) / Al 2 O 3 may be less than 0.5. If the weight ratio is 0.5 or more, the water resistance may decrease.

繊維組成物中の別の修飾酸化物であるROは、製造された繊維の生溶解性を高め、ガラス溶融液の粘度を減少させて繊維化に役立つ効果がある。ここで、ROはアルカリ土類金属酸化物であってもよい。例えば、CaOとMgOが挙げられる。さらに、アルカリ金属酸化物の導入により低下する化学的耐久性を改善する効果がある。そして、MgOは、結晶化が起こる温度を減少させ、CaOより生溶解性にさらに多くの効果を与えることが可能な組成物である。このようなCaOとMgOは、繊維組成物に対してそれぞれ15〜30重量%、5〜15重量%使用できる。特に、CaOとMgOとの混合使用量が全体組成物に対して20〜45重量%であることが好ましく、仮にその含有量が20重量%未満の場合には、溶融温度の急激な上昇をもたらし、仮にその含有量が45重量%を超える場合には、繊維化温度と結晶化温度との差が減少して繊維化作業の際に結晶の生成可能性が増加するため、安定な繊維製造が困難になるという問題点が生じうる。   RO, another modified oxide in the fiber composition, has the effect of increasing the biosolubility of the manufactured fiber and reducing the viscosity of the glass melt to aid fiberization. Here, RO may be an alkaline earth metal oxide. For example, CaO and MgO can be mentioned. Furthermore, there is an effect of improving the chemical durability which is lowered by the introduction of the alkali metal oxide. MgO is a composition that can reduce the temperature at which crystallization occurs and can provide more effects on biosolubility than CaO. Such CaO and MgO can be used in an amount of 15 to 30% by weight and 5 to 15% by weight, respectively, based on the fiber composition. In particular, the mixed usage amount of CaO and MgO is preferably 20 to 45% by weight with respect to the entire composition. If the content is less than 20% by weight, the melting temperature is rapidly increased. If the content exceeds 45% by weight, the difference between the fiberizing temperature and the crystallization temperature decreases, and the possibility of forming crystals increases during the fiberizing operation. The problem of difficulty can arise.

上記の組成を満足する生溶解性ミネラルウール繊維組成物は、人工体液に対する溶解速度定数が300ng/cm・hr以上である生溶解性ミネラルウール繊維として提供されることができる。 The biosoluble mineral wool fiber composition satisfying the above composition can be provided as a biosoluble mineral wool fiber having a dissolution rate constant with respect to an artificial body fluid of 300 ng / cm 2 · hr or more.

また、繊維延伸粘度温度と液相温度との差が80℃以上であり、繊維化の際にスピナーの結晶化生成などの工程上の問題なしに安定な繊維生産が可能である。   Further, the difference between the fiber drawing viscosity temperature and the liquidus temperature is 80 ° C. or more, and stable fiber production is possible without problems in the process such as spinner crystallization during fiberization.

また、Alの含量が10重量%以上であり、式[(NaO+KO+CaO+MgO)−2×Al]の値(重量%で計算する)が20以下であり、且つ人工体液に対する溶解速度定数が300ng/cm・hr以上であってもよい。 Further, the content of Al 2 O 3 is 10% by weight or more, the value of the formula [(Na 2 O + K 2 O + CaO + MgO) −2 × Al 2 O 3 ] (calculated by weight%) is 20 or less, and artificial The dissolution rate constant for the body fluid may be 300 ng / cm 2 · hr or more.

本発明に係るガラス繊維は、通常のロータリー工程に適用して製造可能である。このように製造された本発明に係る生溶解性ガラス繊維は、既存の組成を大きく変化させることなく改質して3〜10μmの繊維平均直径を有し、人工体液に対する溶解度が高く、且つ耐水性にも優れることを特徴とする。   The glass fiber according to the present invention can be manufactured by applying to a normal rotary process. The biodissolvable glass fiber according to the present invention thus manufactured has a fiber average diameter of 3 to 10 μm, modified without greatly changing the existing composition, has high solubility in artificial body fluids, and is water resistant. It is characterized by excellent properties.

以下、実験例および比較実験例によって本発明をさらに詳細に説明する。ただし、これらの実験例および比較実験例は、本発明の理解を容易にするために例示するものであり、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and comparative experimental examples. However, these experimental examples and comparative experimental examples are illustrated to facilitate the understanding of the present invention, and do not limit the scope of the present invention.

実験例1〜6および比較実験例1〜7
下記表2(実験例)および表3(比較実験例)のような成分と含量を有するミネラルウール繊維組成物を製造し、ミネラルウール繊維組成物を溶鉱炉(smelter)で溶融させて、溶融物を内部に小さい穴が開いたスピナー(spinner)という回転装置に滴下させ、遠心力を用いて繊維を生産するロータリー工程によって、ガラス繊維を製造した。その後、得られたガラス繊維の物性を次のような方法で測定した。その結果を下記表2および表3に示す。
Experimental Examples 1-6 and Comparative Experimental Examples 1-7
A mineral wool fiber composition having the components and contents shown in Table 2 (Experimental Example) and Table 3 (Comparative Experimental Example) below is manufactured, and the mineral wool fiber composition is melted in a smelter, Glass fibers were produced by a rotary process in which fibers were produced using a centrifugal force by dropping them on a spinner having a small hole in the spinner. Then, the physical property of the obtained glass fiber was measured with the following method. The results are shown in Table 2 and Table 3 below.

1.溶解速度定数(Kdis
前記実験例および比較実験例によって製造された繊維の体液に対する溶解度を評価するために、次のような方法で人工体液の溶解速度定数を求めた。ガラス繊維の体内生溶解性は人工体液に対する繊維の溶解度を基準として評価するが、前記溶解度を基準とした体内残留時間を比較した後、次の数式1を用いて溶解速度定数(Kdis)を計算した。その結果を下記表1および表2に示す。
1. Dissolution rate constant ( Kdis )
In order to evaluate the solubility of the fibers produced in the experimental example and the comparative experimental example in the body fluid, the dissolution rate constant of the artificial body fluid was determined by the following method. The in-vivo solubility of glass fiber is evaluated based on the solubility of the fiber in the artificial body fluid. After comparing the residual time in the body based on the solubility, the dissolution rate constant (K dis ) is calculated using the following formula 1. Calculated. The results are shown in Tables 1 and 2 below.

Figure 2014511820
Figure 2014511820

式中、dは初期平均繊維径、ρは繊維の初期密度、Mは初期繊維の質量、Mは溶解して残った繊維の質量、tは実験時間をそれぞれ示す。 In the formula, d 0 is the initial average fiber diameter, ρ is the initial density of the fiber, M 0 is the mass of the initial fiber, M is the mass of the fiber remaining after dissolution, and t is the experimental time.

繊維の溶解速度を測定するために使用した人工体液(Gamble溶液)1Lに入っている組成成分の含量(g)を下記表1に示す。   Table 1 below shows the content (g) of the composition components contained in 1 L of the artificial body fluid (Gamble solution) used for measuring the dissolution rate of the fiber.

Figure 2014511820
Figure 2014511820

前記実験例および比較実験例のガラス繊維を、プラスチックフィルター支持台で固定された0.2μmのポリカーボネートメンブランフィルター(polycarbonate membrane filter)の薄い層の間に置き、前記人工体液を前記フィルターで濾過して溶解速度を測定した。実験が行われる間、継続的に人工体液の温度を37℃、流量を135mL/日に調節し、HClを用いてpHを4.5±0.1に維持した。長期間にわたっての繊維の溶解度を正確に測定するために、繊維を21日間浸出(leaching)させながら、特定の間隔(1、4、7、11、14、21日)で濾過した人工体液を誘導結合プラズマ分光分析法(ICP、Inductively Coupled Plasma Spectrometer)を用いて、溶解したイオンを分析した後、その結果を用いて前記数式1で溶解速度定数(Kdis)を求めた。 The glass fibers of the experimental example and the comparative experimental example are placed between thin layers of a 0.2 μm polycarbonate membrane filter fixed on a plastic filter support, and the artificial body fluid is filtered through the filter. The dissolution rate was measured. During the experiment, the temperature of the artificial body fluid was continuously adjusted to 37 ° C., the flow rate was adjusted to 135 mL / day, and the pH was maintained at 4.5 ± 0.1 using HCl. In order to accurately measure fiber solubility over a long period of time, induced artificial body fluids filtered at specific intervals (1, 4, 7, 11, 14, 21 days) while the fibers are leaching for 21 days The dissolved ions were analyzed using coupled plasma spectroscopy (ICP, Inductively Coupled Plasma Spectrometer), and then the dissolution rate constant (K dis ) was determined using Equation 1 using the results.

2.熱間荷重温度
一定規格のミネラルウールパッドを加熱容器に入れ、その上に単位cm当たりの重量が5gとなるように調整した荷重板および測定棒を設置し、室温にて測定棒の先端の高さをスケールで読み取って記録する。次に加熱炉を加熱し、熱電対によって炉内温度を測定する。熱電対の位置は、垂直方向では加熱容器の中央部、水平方向では加熱容器の外面から20mm離れたところとする。加熱、昇温速度は、試料の熱間収縮温度の仮定値から約200℃低い温度までは約5℃/分とし、その後は約3℃/分とする。加熱開始から10分間隔で炉内温度および測定棒の先端の高さを測定して記録する。試料の熱間収縮温度の仮定値近くではこれを3分間隔で測定する。熱膨張による測定棒自体の伸長を補正するために、予め炉内温度に対する測定棒の伸長を測定して補正曲線を作成し、これに基づいて測定棒の先端位置を補正する。
2. Hot load temperature A mineral wool pad of a certain standard is put in a heating vessel, and a load plate and a measuring rod adjusted so that the weight per unit cm 2 is 5 g are installed on the heating pad. Read the height on a scale and record it. Next, the heating furnace is heated, and the temperature in the furnace is measured by a thermocouple. The position of the thermocouple is assumed to be 20 mm away from the center of the heating container in the vertical direction and 20 mm from the outer surface of the heating container in the horizontal direction. The heating and heating rate is about 5 ° C./min from the assumed value of the hot shrinkage temperature of the sample to a temperature lower by about 200 ° C., and thereafter about 3 ° C./min. The temperature inside the furnace and the height of the tip of the measuring rod are measured and recorded at intervals of 10 minutes from the start of heating. This is measured at 3 minute intervals near the assumed hot shrink temperature of the sample. In order to correct the extension of the measuring rod itself due to thermal expansion, the extension of the measuring rod with respect to the furnace temperature is measured in advance to create a correction curve, and based on this, the tip position of the measuring rod is corrected.

厚さ収縮率は下記数式2を用いて求める。   The thickness shrinkage rate is obtained using the following formula 2.

Figure 2014511820
Figure 2014511820

A:常温で荷重板および測定棒を載置したときの試料の厚さ(mm)
B:加熱中の試料の厚さ(mm)
A: Thickness (mm) of the sample when the load plate and the measuring rod are placed at room temperature
B: Thickness of the sample during heating (mm)

測定された厚さ収縮率が10%となる温度を測定して熱間荷重温度を求める。   The temperature at which the measured thickness shrinkage rate is 10% is measured to determine the hot load temperature.

3.熱間線収縮率
(1)Slow heating method
ミネラルウール繊維の熱間線収縮率を測定するために、繊維をパッド(pad)形態の試片に製造した後、これを実験に使用した。まず、繊維220gを0.2%の澱粉溶液で十分に解繊した後、300・300nmの鋳型に鋳込み、解繊された繊維を揃えて面偏差を少なくした後、鋳型の底部から排水することにより、パッドを製造した。前記パッドを100℃のオーブンで24時間以上、十分に乾燥させた後、100×100×25mmのサイズに切断して試片を製造し、白金またはセラミックなどの十分な耐熱性を有する材料を用いて測定点を表示した後、ノギス(vernier calipers)を用いて測定点間の距離を綿密に測定し、しかる後に、前記パッドを炉(furnace)に位置させて1000℃で24時間それぞれ加熱した後、ゆっくり冷却させた。前記冷却した試片の測定点間の距離を測定して熱処理前後の測定結果を比較した。下記数式3を用いて線収縮率を計算した。
3. Hot line shrinkage rate (1) Slow heating method
In order to measure the hot linear shrinkage of mineral wool fibers, the fibers were made into pad specimens, which were used in the experiments. First, 220g of fiber is sufficiently defibrated with 0.2% starch solution, then cast into a 300 / 300nm mold, the defibrated fibers are aligned to reduce surface deviation, and then drained from the bottom of the mold. Thus, a pad was manufactured. The pad is sufficiently dried in an oven at 100 ° C. for 24 hours or more, then cut into a size of 100 × 100 × 25 mm to produce a specimen, and a material having sufficient heat resistance such as platinum or ceramic is used. After the measurement points are displayed, the distance between the measurement points is carefully measured using vernier calipers, and then the pads are placed in a furnace and heated at 1000 ° C. for 24 hours, respectively. Allowed to cool slowly. The distance between the measurement points of the cooled specimen was measured, and the measurement results before and after the heat treatment were compared. The linear shrinkage rate was calculated using Equation 3 below.

Figure 2014511820
Figure 2014511820

ここで、lは試験片マーク間の最初の距離(mm)を示し、lは加熱後の試験片マーク間の長さ(mm)を示す。 Here, l 0 represents the initial distance (mm) between the test piece marks, and l 1 represents the length (mm) between the test piece marks after heating.

(2)Hot Surface method
ミネラルウール繊維の熱間線収縮率を測定するために、繊維をパッド(Pad)形態の試片に製造した後、実験に使用した。まず、繊維220gを0.2%の澱粉溶液で十分に解繊した後、300・300mmの鋳型に鋳込み、解繊された繊維を揃えて面偏差を少なくした後、鋳型の底部から排水することにより、パッドを製造した。前記パッドを100℃のオーブンで24時間以上、十分に乾燥させた後、100×100×25mmのサイズに切断して試片を製造し、白金またはセラミックなどの十分な耐熱性を有する材料を用いて測定点を表示した後、ノギスを用いて測定点間の距離を綿密に測定し、しかる後に、前記パッドを、1000℃で加熱された炉(furnace)に位置させて1時間それぞれ加熱した後、常温で冷却させた。前記冷却した試片の測定点間の距離を測定して熱処理前後の測定結果を比較した。上記数式3を用いて線収縮率を計算した。
(2) Hot Surface method
In order to measure the hot-line shrinkage of mineral wool fibers, the fibers were produced in a pad-shaped specimen and then used in the experiment. First, 220g of fiber is sufficiently defibrated with 0.2% starch solution, then cast into a 300 / 300mm mold, the defibrated fibers are aligned to reduce surface deviation, and then drained from the bottom of the mold. Thus, a pad was manufactured. The pad is sufficiently dried in an oven at 100 ° C. for 24 hours or more, then cut into a size of 100 × 100 × 25 mm to produce a specimen, and a material having sufficient heat resistance such as platinum or ceramic is used. After the measurement points are displayed, the distance between the measurement points is carefully measured using a caliper, and then the pads are placed in a furnace heated at 1000 ° C. and heated for 1 hour, respectively. And cooled at room temperature. The distance between the measurement points of the cooled specimen was measured, and the measurement results before and after the heat treatment were compared. The linear shrinkage rate was calculated using Equation 3 above.

4.耐水性(%)
DGG重量減量方法を使用した。この方法は10g程度のガラス(360〜400μm)を100mLの蒸留水で5時間沸騰させ、急速冷却させて濾過(filtering)した後、濾液を150℃で乾燥させ、減量した重量を測定して百分率で表す方法である。
4). water resistant(%)
The DGG weight loss method was used. In this method, about 10 g of glass (360 to 400 μm) is boiled with 100 mL of distilled water for 5 hours, rapidly cooled and filtered, and then the filtrate is dried at 150 ° C., and the weight reduced is measured as a percentage. It is a method represented by.

5.液相温度(Liquidus temperature、℃)
液相温度はガラス内の結晶が生成できる最大温度として定義でき、ASTM C829−81に準拠して測定した。
5. Liquidus temperature (Liquidus temperature, ° C)
The liquidus temperature can be defined as the maximum temperature at which crystals in the glass can be produced, and was measured according to ASTM C829-81.

6.繊維延伸粘度温度(logη3.0、℃)
繊維延伸粘度温度は、ガラス溶融物の粘度が大略1000poiseとなる温度を測定することにより得られる。この温度近くで繊維化作業が行われる。
6). Fiber draw viscosity temperature (log η3.0, ° C)
The fiber drawing viscosity temperature is obtained by measuring a temperature at which the viscosity of the glass melt becomes approximately 1000 poise. The fiberizing operation is performed near this temperature.

Figure 2014511820
Figure 2014511820

Figure 2014511820
Figure 2014511820

前記表2の実験例1〜6に示すように、本発明の組成領域では、酸化アルミニウムの含量が高い理由などによりKIの値が20以下と低いものの、溶解速度定数値が300ng/cm・hr以上、具体的に溶解速度定数値が305〜417ng/cm・hrの値を示しているから、生溶解度に優れることが分かる。これは、KIの値が30以上になれば生溶解性に優れるという常識の崩壊を意味する。 As shown in Experimental Examples 1 to 6 in Table 2, in the composition region of the present invention, although the KI value is as low as 20 or less due to the high content of aluminum oxide, the dissolution rate constant value is 300 ng / cm 2 ···. More than hr, specifically, since the dissolution rate constant value shows a value of 305 to 417 ng / cm 2 · hr, it can be seen that the raw solubility is excellent. This means the collapse of common sense that the biosolubility is excellent when the value of KI is 30 or more.

比較実験例1の場合は、SiOの含量がやや高く、MgOの含量が低くて生溶解性が相対的に劣ることが分かる。 In the case of Comparative Experimental Example 1, it can be seen that the content of SiO 2 is slightly high, the content of MgO is low, and the biosolubility is relatively inferior.

また、比較実験例2の場合は、高いSiOの含量と、相対的に溶解速度定数値に役立つCaOなどの含量減少により比較的低い溶解速度定数値を示し、高いSiO含量により繊維延伸粘度温度が高くなることが分かる。これは低い繊維延伸粘度温度によりスピナーの寿命を延長することができるうえ、繊維生産工程中に問題とされる結晶の析出可能性を低くして安定な繊維生産を行うことができるようにするという観点から、欠点として作用する。 In the case of Comparative Example 2, high and the content of SiO 2, relative dissolution rate helps constant value indicates a relatively low dissolution rate constant value by content reduction such as CaO, fiber draw viscosity by high SiO 2 content It can be seen that the temperature increases. This can extend the life of the spinner with a low fiber drawing viscosity temperature, and lower the possibility of precipitation of crystals, which is a problem during the fiber production process, to enable stable fiber production. From the point of view, it acts as a drawback.

比較実験例3および4は、SiOおよびAlの含量が低いミネラルウール繊維組成物であって、溶解速度定数値は比較的高い値を持っているものの、ROおよびROの高含量により耐水性が低下し、原材料費上昇の原因となる。 Comparative Experimental Examples 3 and 4 are mineral wool fiber compositions having a low content of SiO 2 and Al 2 O 3 and have relatively high dissolution rate constant values, but high values of RO and R 2 O. The water resistance decreases depending on the content, which causes an increase in raw material costs.

比較実験例5は、Alの含量が23.42重量%であって、含量が大幅に高くなって溶解度が急激に悪くなることが分かる。また、繊維延伸粘度温度(logη3.0)と液相温度との差が80℃未満、すなわち8℃であって、ガラス組成物がスピナー内で結晶化するなど、繊維工程に悪影響を及ぼすおそれがある。 In Comparative Example 5, the content of Al 2 O 3 is 23.42% by weight, and it can be seen that the content is significantly increased and the solubility is rapidly deteriorated. In addition, the difference between the fiber drawing viscosity temperature (log η3.0) and the liquidus temperature is less than 80 ° C., that is, 8 ° C., and the glass composition may crystallize in the spinner, which may adversely affect the fiber process. is there.

比較実験例6は、Feの含量が少なく、ROの含量が5重量%を超過する特殊条件により、溶解度が急激に悪くなるものと推測される。 In Comparative Experimental Example 6, it is presumed that the solubility rapidly deteriorates due to special conditions in which the content of Fe 2 O 3 is small and the content of R 2 O exceeds 5% by weight.

比較実験例7は、ミネラルウール繊維組成物におけるRO/Al>0.5以上となって耐水性が急激に低下することが分かる。 In Comparative Experimental Example 7, it can be seen that R 2 O / Al 2 O 3 > 0.5 or more in the mineral wool fiber composition and the water resistance sharply decreases.

本発明に係るミネラルウール繊維組成物は、各酸化物の含量を適切に変化させることで物性には大きな変化を与えないものの、生溶解性および耐水性に優れる繊維を製造することができ、繊維延伸粘度温度(logη3.0)と液相温度も低いという特性を示しており、繊維化温度領域でlogη3.0と液相温度との差も80℃以上であって、繊維化の際にスピナーの結晶化生成など工程上の問題なしに安定的な繊維生産が可能である。   Although the mineral wool fiber composition according to the present invention does not give a large change in physical properties by appropriately changing the content of each oxide, a fiber excellent in biosolubility and water resistance can be produced. It shows the characteristics that the drawing viscosity temperature (log η3.0) and the liquid phase temperature are low, and the difference between the log η 3.0 and the liquid phase temperature is 80 ° C. or more in the fiberizing temperature region, and the spinner is used during fiberization. Stable fiber production is possible without any problems in the process such as crystallization of the material.

上述した実施例に説明された特徴、構造、効果などは本発明の少なくとも一つの実施例に含まれ、必ずしも一実施例にのみ限定されるものではない。ひいては、各実施例で例示された特徴、構造、効果などは実施例が属する分野における通常の知識を有する者によって別の実施例に対しても組み合わせまたは変形がなされて実施可能である。したがって、それらの組み合わせおよび変形に関する内容は本発明の範囲に含まれるものと解釈されるべきである。   Features, structures, effects, and the like described in the above-described embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. As a result, the features, structures, effects, etc., exemplified in each embodiment can be combined or modified with respect to another embodiment by a person having ordinary knowledge in the field to which the embodiment belongs. Therefore, the contents relating to the combinations and modifications should be construed as being included in the scope of the present invention.

本発明に係る生溶解性ミネラルウール繊維組成物およびこれを用いて製造された生溶解性ミネラルウール繊維は、組成の改質および最適化によって人工体液に対する生溶解度が著しく向上して人体の肺への吸入の際にも容易に溶解、除去できるため、人体に対する有害性を大幅に減少させることができるうえ、優れた耐水性を持っており、既存のロータリー(Rotary)工程に適用可能であるという利点を持っており、原料コストの節減および省エネルギーが可能であって産業的に有用である。   The biodissolvable mineral wool fiber composition according to the present invention and the biodissolvable mineral wool fiber produced using the composition are significantly improved in biosolubility in artificial body fluids by modification and optimization of the composition to the lungs of the human body. It can be easily dissolved and removed even when inhaled, so it can greatly reduce the harmfulness to the human body and has excellent water resistance and can be applied to the existing rotary process. It has advantages and is industrially useful because it can reduce raw material costs and save energy.

Claims (9)

SiOおよびAlの合計含有量45〜67重量%、CaO、MgO、NaOおよびKOの合計含有量20.1〜50重量%、並びにその他の成分を含む、生溶解性ミネラルウール繊維組成物。 The total content of 45-67 wt% of SiO 2 and Al 2 O 3, including CaO, MgO, the total content of 20.1 to 50 wt% of Na 2 O and K 2 O, as well as other components, raw solubility Mineral wool fiber composition. SiO30〜45重量%、Al15〜22重量%、酸化鉄(FeOおよびFeの少なくとも1種を含む)8〜12重量%、CaO15〜30重量%、MgO5〜15重量%、およびRO(NaOおよびKOの少なくとも1種を含む)0.1〜5重量%を含む、請求項1に記載の生溶解性ミネラルウール繊維組成物。 SiO 2 30-45 wt%, Al 2 O 3 15 to 22 wt%, iron oxide (including at least one FeO and Fe 2 O 3) 8~12 wt%, CaO15~30 wt%, MgO5~15 weight %, and R (at least one of Na 2 O and K 2 O) 2 O 0.1~5% by weight of the total composition, raw soluble mineral wool fiber composition of claim 1. 前記Al17〜20重量%、およびRO(NaOおよびKOの少なくとも1種を含む)1〜2重量%を含む、請求項1に記載の生溶解性ミネラルウール繊維組成物。 The Al 2 O 3 17 to 20 wt%, and R 2 O (Na 2 comprising at least one O and K 2 O) containing 1 to 2 wt%, raw soluble mineral wool fibers according to claim 1 Composition. O(NaOおよびKOの少なくとも1種を含む)/Alの重量比が0.5未満である、請求項1に記載の生溶解性ミネラルウール繊維組成物。 R 2 (including Na least one 2 O and K 2 O) O / weight ratio of Al 2 O 3 is less than 0.5, Raw soluble mineral wool fiber composition of claim 1. 人工体液に対する溶解速度定数が300ng/cm・hr以上である、請求項1に記載の生溶解性ミネラルウール繊維組成物。 The biosoluble mineral wool fiber composition according to claim 1, wherein the dissolution rate constant for the artificial body fluid is 300 ng / cm 2 · hr or more. 繊維延伸粘度温度と液相温度との差が80℃以上である、請求項1に記載の生溶解性ミネラルウール繊維組成物。   The biosoluble mineral wool fiber composition according to claim 1, wherein the difference between the fiber drawing viscosity temperature and the liquidus temperature is 80 ° C or higher. 耐水性が0.8%以下である、請求項1に記載の生溶解性ミネラルウール繊維組成物。   The biosoluble mineral wool fiber composition according to claim 1, wherein the water resistance is 0.8% or less. SiOおよびAlを必須として含み、Fe、FeO、CaO、MgO、NaOおよびKOのうちの3種以上を含む生溶解性ミネラルウール繊維組成物であって、
Alの含量が10重量%以上であり、式[(NaO+KO+CaO+MgO)−2×Al]の値(重量%で計算する)が20以下であり、人工体液に対する溶解速度定数が300ng/cm・hr以上である、生溶解性ミネラルウール繊維組成物。
A biosoluble mineral wool fiber composition comprising SiO 2 and Al 2 O 3 as essential, and comprising three or more of Fe 2 O 3 , FeO, CaO, MgO, Na 2 O and K 2 O,
The content of Al 2 O 3 is 10% by weight or more, the value of the formula [(Na 2 O + K 2 O + CaO + MgO) −2 × Al 2 O 3 ] (calculated by weight%) is 20 or less, and dissolution in artificial body fluids A biosoluble mineral wool fiber composition having a rate constant of 300 ng / cm 2 · hr or more.
請求項1〜8のいずれか1項の生溶解性ミネラルウール繊維組成物を用いて製造された生溶解性ミネラルウール繊維。
The biosoluble mineral wool fiber manufactured using the biosoluble mineral wool fiber composition of any one of Claims 1-8.
JP2014505070A 2011-04-12 2012-04-09 Bio-soluble mineral wool fiber composition and mineral wool fiber Active JP5890515B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0033853 2011-04-12
KR1020110033853A KR101477733B1 (en) 2011-04-12 2011-04-12 Mineral Wool Fiber Composition having improved Bio-Solubility, And Mineral Wool
PCT/KR2012/002684 WO2012141467A2 (en) 2011-04-12 2012-04-09 Biosoluble mineral-wool fiber composition, and mineral-wool fiber

Publications (2)

Publication Number Publication Date
JP2014511820A true JP2014511820A (en) 2014-05-19
JP5890515B2 JP5890515B2 (en) 2016-03-22

Family

ID=47009816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014505070A Active JP5890515B2 (en) 2011-04-12 2012-04-09 Bio-soluble mineral wool fiber composition and mineral wool fiber

Country Status (3)

Country Link
JP (1) JP5890515B2 (en)
KR (1) KR101477733B1 (en)
WO (1) WO2012141467A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295549A (en) * 2018-09-30 2019-02-01 济南火龙热陶瓷有限责任公司 A kind of biosoluble fibers and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433981B2 (en) * 2013-04-15 2018-12-05 ケーシーシー コーポレーション Composition for producing mineral wool fiber excellent in solubility in body fluid and mineral wool fiber produced thereby
KR101677847B1 (en) 2015-06-23 2016-11-21 주식회사 케이씨씨 Acoustic Absorption Panel
GB201703057D0 (en) 2017-02-24 2017-04-12 Knauf Insulation Doo Skofja Loka Mineral wool
WO2022035807A1 (en) * 2020-08-10 2022-02-17 Armstrong World Industries, Inc. Mineral fiber compositions having enhanced biopersistent properties and methods for making and using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560606A (en) * 1981-11-16 1985-12-24 Owens-Corning Fiberglas Corporation Basalt compositions and their fibers
JPH06321578A (en) * 1992-09-18 1994-11-22 Schuller Internatl Inc Glass fiber composition improved in biological solubility
JPH10509774A (en) * 1994-11-08 1998-09-22 ロックウール インターナショナル アー/エス Synthetic glass fiber
WO2000073233A1 (en) * 1999-05-28 2000-12-07 Rockwool International A/S Production of mineral fibres
JP2001515006A (en) * 1997-08-18 2001-09-18 ロックウール インターナショナル アー/エス Mineral fiber insulation
JP2001515007A (en) * 1997-08-18 2001-09-18 ロックウール インターナショナル アー/エス Roof and wall coverings
JP2001524447A (en) * 1997-12-02 2001-12-04 ロックウール インターナショナル アー/エス Briquettes for the production of mineral fibers and their use
JP2002512817A (en) * 1998-05-06 2002-05-08 イソベール・サン−ゴバン Mineral wool composition
JP2003517409A (en) * 1997-08-18 2003-05-27 ロックウール インターナショナル アー/エス Roof and wall coverings
WO2011006875A2 (en) * 2009-07-13 2011-01-20 Rockwool International A/S Mineral fibres and their use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003472B1 (en) * 1989-12-30 1994-04-22 주식회사 금강 Composition of organic fiber of alkali resistance
KR100676167B1 (en) * 2006-01-25 2007-02-01 주식회사 케이씨씨 A biodegradable ceramic fiber composition for a heat insulating material
MX2009005596A (en) * 2006-11-28 2009-06-08 Morgan Crucible Co Inorganic fibre compositions.
GB0809462D0 (en) * 2008-05-23 2008-07-02 Morgan Crucible Co Inorganic fibre compositions

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560606A (en) * 1981-11-16 1985-12-24 Owens-Corning Fiberglas Corporation Basalt compositions and their fibers
JPH06321578A (en) * 1992-09-18 1994-11-22 Schuller Internatl Inc Glass fiber composition improved in biological solubility
JPH10509774A (en) * 1994-11-08 1998-09-22 ロックウール インターナショナル アー/エス Synthetic glass fiber
JPH11501277A (en) * 1994-11-08 1999-02-02 ロックウール インターナショナル アー/エス Synthetic glass fiber
JP2001515006A (en) * 1997-08-18 2001-09-18 ロックウール インターナショナル アー/エス Mineral fiber insulation
JP2001515007A (en) * 1997-08-18 2001-09-18 ロックウール インターナショナル アー/エス Roof and wall coverings
JP2003517409A (en) * 1997-08-18 2003-05-27 ロックウール インターナショナル アー/エス Roof and wall coverings
JP2001524447A (en) * 1997-12-02 2001-12-04 ロックウール インターナショナル アー/エス Briquettes for the production of mineral fibers and their use
JP2002512817A (en) * 1998-05-06 2002-05-08 イソベール・サン−ゴバン Mineral wool composition
WO2000073233A1 (en) * 1999-05-28 2000-12-07 Rockwool International A/S Production of mineral fibres
WO2011006875A2 (en) * 2009-07-13 2011-01-20 Rockwool International A/S Mineral fibres and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295549A (en) * 2018-09-30 2019-02-01 济南火龙热陶瓷有限责任公司 A kind of biosoluble fibers and preparation method thereof

Also Published As

Publication number Publication date
KR20120116235A (en) 2012-10-22
JP5890515B2 (en) 2016-03-22
WO2012141467A3 (en) 2013-01-10
WO2012141467A2 (en) 2012-10-18
KR101477733B1 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
AU2002324024C9 (en) Biosoluble ceramic fiber composition with improved solubility in a physiological saline solution for a high temperature insulation material
JP6109802B2 (en) Salt-soluble ceramic fiber composition
EP1979284B1 (en) A biodegradable ceramic fiber composition for a heat insulating material
JP5890515B2 (en) Bio-soluble mineral wool fiber composition and mineral wool fiber
CA2790090C (en) A composition for preparing ceramic fiber and a biosoluble ceramic fiber prepared therefrom for heat insulating material at high temperature
KR101516981B1 (en) Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom
KR20130112433A (en) A composition for preparing glass wool and a biosoluble glass wool prepared therefrom
JP6433981B2 (en) Composition for producing mineral wool fiber excellent in solubility in body fluid and mineral wool fiber produced thereby
KR101531633B1 (en) A composition for preparing ceramic fiber and a saline soluble ceramic fiber prepared therefrom for heat insulating material at high temperature
AU2014246689B2 (en) Ceramic Fiber Composition Which is Soluble in Salt
KR20050104728A (en) Composition of biosoluble glass fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R150 Certificate of patent or registration of utility model

Ref document number: 5890515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250