JP2014506627A - Copper alloy material for seawater and method for producing the same - Google Patents

Copper alloy material for seawater and method for producing the same Download PDF

Info

Publication number
JP2014506627A
JP2014506627A JP2013552452A JP2013552452A JP2014506627A JP 2014506627 A JP2014506627 A JP 2014506627A JP 2013552452 A JP2013552452 A JP 2013552452A JP 2013552452 A JP2013552452 A JP 2013552452A JP 2014506627 A JP2014506627 A JP 2014506627A
Authority
JP
Japan
Prior art keywords
seawater
alloy material
copper alloy
copper
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013552452A
Other languages
Japanese (ja)
Other versions
JP5911891B2 (en
Inventor
イン ダル キム
ドン ウー イ
テ ヒョン キム
ジ ホン イ
Original Assignee
プンサン コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46602924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014506627(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by プンサン コーポレイション filed Critical プンサン コーポレイション
Publication of JP2014506627A publication Critical patent/JP2014506627A/en
Application granted granted Critical
Publication of JP5911891B2 publication Critical patent/JP5911891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

本発明は、海水用銅合金材及びその製造方法に関し、より具体的には、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる海水用銅合金材及びその製造方法に関する。前記銅合金材は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができる。The present invention relates to a copper alloy material for seawater and a method for producing the same, and more specifically, 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0 The present invention relates to a copper alloy material for seawater composed of 1 wt% to 5 wt% nickel (Ni) and the remaining amount of copper (Cu) and a method for producing the same. The copper alloy material may further include one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1% by weight or less.

Description

本発明は、海水用銅合金材、その製造方法及び前記海水用銅合金材で製造された海水構造物に関する。より具体的に、本発明は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる海水用銅合金材、その製造方法及び前記海水用銅合金材で製造された海水構造物に関する。また、前記海水用銅合金材は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができる。   The present invention relates to a copper alloy material for seawater, a method for producing the same, and a seawater structure manufactured using the copper alloy material for seawater. More specifically, the present invention relates to 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel (Ni ), And a remaining amount of copper (Cu), a manufacturing method thereof, and a seawater structure manufactured with the seawater copper alloy material. The seawater copper alloy material may further include one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1 wt% or less. it can.

一般に、魚類を養殖するためには、鉄などの金属で製造されたり、ナイロン、ポリプロピレン、ポリエチレンなどの化学繊維で製造される養殖網が使用されている。   In general, in order to cultivate fish, an aquaculture net made of a metal such as iron or a chemical fiber such as nylon, polypropylene or polyethylene is used.

しかし、このような鉄製養殖網(以下、鉄網という)や、化学繊維で製造される養殖網(以下、化繊網という)では、貝類又は藻類などの海洋生物が付着しやすいので、養殖網の網目が塞がれて潮水の流れが悪くなり、その結果、養殖場内の酸素や水中栄養物の普及が不足し、養殖魚の生産性又は養殖収率が低下する。また、養殖網は、海水の潮流及び台風などの予期せぬ状況でも網を保存しなければならないので、十分な素材強度を有することが要求されるが、化繊網の場合、金属網に比べて強度が弱いという短所がある。   However, in such an aquaculture net made of iron (hereinafter referred to as an iron net) or an aquaculture net manufactured using chemical fibers (hereinafter referred to as a chemical fiber net), marine organisms such as shellfish or algae are likely to adhere. The mesh is blocked and the flow of tidal water is deteriorated. As a result, the spread of oxygen and aquatic nutrients in the farm is insufficient, and the productivity or the yield of farmed fish is reduced. In addition, aquaculture nets must preserve the net even in unexpected situations such as seawater tides and typhoons, so it is required to have sufficient material strength. There is a disadvantage that the strength is weak.

一方、金属網の場合も、海水に存在する塩分などのイオン成分によって腐食が発生するので、十分な耐海水腐食性を備えなければならないが、既存の鉄網の場合、海水によって容易に腐食するという短所があった。また、その他の金属網の場合、素材自体が高価な金属を含むと、高費用によって経済性が問題となるので、低費用で製造できる素材のものが好まれる。   On the other hand, in the case of metal mesh, corrosion occurs due to ionic components such as salinity present in seawater, so it must have sufficient seawater corrosion resistance, but in the case of existing iron mesh, it is easily corroded by seawater. There was a disadvantage. In the case of other metal nets, if the material itself contains an expensive metal, the cost becomes a problem due to the high cost.

このような状況の中で、最近登場した銅合金素材の養殖網は、銅イオンに起因した抗菌特性によって海洋生物の付着を抑制できるので、養殖網の網目が塞がる現象を減少させることができ、養殖魚の生産性又は養殖収率の低下による高費用の問題をある程度は改善できるが、依然として、十分な強度、耐海水腐食性、及び防汚性などの特性を同時に備えるとともに、素材自体の費用が低廉な銅合金材の開発が必要な状況である。   In such a situation, the recently developed aquaculture net of copper alloy material can suppress the adhesion of marine organisms due to the antibacterial properties caused by copper ions, so it can reduce the phenomenon that the mesh of the aquaculture net is blocked, Although the high cost problem due to the productivity of farmed fish or the decline in the yield of farming can be improved to some extent, it still has sufficient strength, seawater corrosion resistance, and antifouling properties at the same time, and the cost of the material itself is low. The development of inexpensive copper alloy materials is necessary.

特許文献1は、Cu―Al―Ni系銅合金を開示しているが、これは、強度の面で海水用構造物として使用するのに不十分であり、また、相対的に高価なNiを使用するので、銅合金素材自体の経済性が比較的低い。また、特許文献2は、Cu―Al―Zn―Mn―Fe系銅合金を開示しているが、アルミニウム含量が5重量%〜5.3重量%、亜鉛含量が10重量%〜20重量%であり、十分な加工性を確保しにくく、鉄を2重量%〜4重量%含んでいるので、海水に対する十分な耐食性を確保しにくい。   Patent Document 1 discloses a Cu—Al—Ni-based copper alloy, which is insufficient in terms of strength to be used as a seawater structure, and relatively expensive Ni is used. Since it is used, the economics of the copper alloy material itself is relatively low. Patent Document 2 discloses a Cu—Al—Zn—Mn—Fe-based copper alloy having an aluminum content of 5 wt% to 5.3 wt% and a zinc content of 10 wt% to 20 wt%. In addition, it is difficult to ensure sufficient workability, and since iron is contained in an amount of 2% to 4% by weight, it is difficult to ensure sufficient corrosion resistance against seawater.

したがって、海水用銅合金材として使用するためには、十分な強度、高い軟性及び低い脆性を含む優れた機械的特性を有すると同時に、海水でも高い耐腐食性及び防汚性の特性を備えており、経済的に低廉な費用の新たな銅合金材の開発が要求されている。   Therefore, for use as a copper alloy material for seawater, it has excellent mechanical properties including sufficient strength, high softness and low brittleness, as well as high corrosion resistance and antifouling properties even in seawater. Therefore, development of a new copper alloy material that is economically inexpensive is required.

韓国公開特許第1993―0019841号Korean Published Patent No. 1993-0019841 韓国公開特許第1999―002539号Korean Published Patent No. 1999-002539

そこで、本発明は、十分な強度を含む優れた機械的特性を有し、防汚性及び耐海水腐食性に優れた海水用銅合金材を提供しようとする。また、本発明は、上述した銅合金材を製造する方法及び前記海水用銅合金材で製造された海水構造物を提供しようとする。   Then, this invention tends to provide the copper alloy material for seawater which has the outstanding mechanical characteristics including sufficient intensity | strength, and was excellent in antifouling property and seawater corrosion resistance. Moreover, this invention tends to provide the seawater structure manufactured with the method and the said copper alloy material for seawater which manufacture the copper alloy material mentioned above.

したがって、本発明は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる海水用銅合金材に関する。また、前記海水用銅合金材は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができる。   Thus, the present invention includes 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel (Ni), and The present invention relates to a copper alloy material for seawater made of the remaining amount of copper (Cu). The seawater copper alloy material may further include one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1 wt% or less. it can.

また、本発明の銅合金材は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)の含量比で鋳塊を製造する段階;前記の収得された鋳塊に600℃〜900℃で30分〜12時間熱処理(annealing)を行った後、熱間押出(hot extruding)及び引抜(drawing)を行う段階;前記の熱間押出及び引抜が行われた生成物に室温への急冷(quenching)を行った後、冷間引抜(cold drawing)を行う段階;前記の冷間引抜が行われた生成物に500℃〜800℃で30分〜10時間熱処理を行う段階;及び前記の熱処理が行われた生成物に冷間引抜を行う段階;を含む銅合金材の製造方法によって製造される。前記製造方法において、前記鋳塊は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができる。また、前記製造方法において、最終冷間引抜における最終引抜率は10%〜90%の範囲である。   Further, the copper alloy material of the present invention comprises 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel ( Ni) and a step of producing an ingot with a content ratio of copper (Cu) in the remaining amount; after the obtained ingot is annealed at 600 ° C. to 900 ° C. for 30 minutes to 12 hours, Performing hot extruding and drawing; after the hot extruding and drawing product has been quenched to room temperature, cold drawing is performed. Performing a heat treatment on the cold-drawn product at 500 ° C. to 800 ° C. for 30 minutes to 10 hours; and performing a cold-drawing on the heat-treated product. Including copper alloy material Manufactured by the manufacturing method. In the manufacturing method, the ingot further includes one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1% by weight or less. it can. Moreover, in the said manufacturing method, the final drawing rate in the last cold drawing is the range of 10%-90%.

また、本発明の銅合金材は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる海水用銅合金材で製造される海水構造物に関する。前記海水構造物は養殖網であり得る。   Further, the copper alloy material of the present invention comprises 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel ( The present invention relates to a seawater structure manufactured from a copper alloy material for seawater made of Ni) and the remaining amount of copper (Cu). The seawater structure may be an aquaculture net.

本発明は、優れた機械的特性を有し、防汚性及び耐海水腐食性に優れた海水用銅合金材を提供することができる。また、本発明は、上述した銅合金材を製造する方法を提供することができる。   The present invention can provide a copper alloy material for seawater having excellent mechanical properties and excellent antifouling properties and seawater corrosion resistance. Moreover, this invention can provide the method of manufacturing the copper alloy material mentioned above.

本発明の実施例及び比較例に係る銅合金材試験片を試料として脱亜鉛特性を試験した結果を光学顕微鏡で観察したものである。The result of having tested the dezincing characteristic using the copper alloy material test piece which concerns on the Example and comparative example of this invention as a sample was observed with the optical microscope. 本発明の実施例及び比較例に係る銅合金材試験片を試料として海水浸漬実験を行った結果を示すもので、浸漬してから20日経過したときに銅合金から出る銅イオンによって生じる浸漬海水の色変化を観察した写真である。図2において、開発品#1は、実施例1によって製造される試料に対する実験結果を意味し、開発品#6は、実施例6によって製造される試料に対する実験結果を意味し、比較例#1は比較例1の試料、比較例#2は比較例2の試料に対する実験結果を意味する。The result which performed the seawater immersion experiment using the copper alloy material test piece which concerns on the Example and comparative example of this invention as a sample is shown, and the immersion seawater produced by the copper ion which comes out of a copper alloy when 20 days pass after being immersed It is the photograph which observed the color change of. In FIG. 2, the developed product # 1 means the experimental result for the sample manufactured according to Example 1, the developed product # 6 means the experimental result for the sample manufactured according to Example 6, and the comparative example # 1. Means the experimental results for the sample of Comparative Example 1 and Comparative Example # 2 for the sample of Comparative Example 2. 本発明の実施例及び比較例に係る銅合金材試験片を試料として海水浸漬実験を行った結果を示すもので、浸漬してから20日経過したときに浸漬した試験片の色相を観察した結果を示す。The result which performed the seawater immersion experiment using the copper alloy material test piece which concerns on the Example and comparative example of this invention as a sample is shown, The result of having observed the hue of the test piece immersed when 20 days passed since immersion. Indicates.

本明細書において、海水用銅合金材とは、通常、長時間海水内に一部又は全部を浸漬して使用するための銅合金素材をいい、例えば、養殖用魚網などである。   In this specification, the copper alloy material for seawater generally refers to a copper alloy material for use by immersing a part or all of it in seawater for a long time, such as a fish net for aquaculture.

本発明は、海水用銅合金材として、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる銅合金材に関する。   The present invention provides a seawater copper alloy material of 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel. The present invention relates to a copper alloy material made of (Ni) and the remaining amount of copper (Cu).

本発明に係る銅合金材において、亜鉛(Zn)は、銅合金材の重量を基準にして25重量%〜40重量%で含まれる。前記亜鉛は、銅金属組織内に合金化されることによって収得される銅合金材の強度及び硬度特性を改善し、耐熱性を向上させる。前記銅合金材において、亜鉛が25重量%未満である場合、十分な硬度の確保が難しく、亜鉛に対する銅の使用量が増加するにつれて経済性が低下し、亜鉛の含量が40重量%を超えると、収得される銅合金材内で材料の脆性を示す2相であるベータ(β)相が増加することによって軟性が低下するので、加工時に材料の亀裂(crack)が発生するなどの問題がある。本発明に係る銅合金材において、亜鉛は、望ましくは35重量%〜40重量%の範囲で含ませることができる。   In the copper alloy material according to the present invention, zinc (Zn) is contained at 25 wt% to 40 wt% based on the weight of the copper alloy material. The zinc improves the strength and hardness characteristics of a copper alloy material obtained by being alloyed in a copper metal structure, and improves heat resistance. In the copper alloy material, when zinc is less than 25% by weight, it is difficult to ensure sufficient hardness, the economy decreases as the amount of copper used with respect to zinc increases, and the zinc content exceeds 40% by weight. In the obtained copper alloy material, since the softness is lowered by increasing the beta (β) phase, which is a two-phase material showing brittleness of the material, there is a problem that a crack of the material is generated at the time of processing. . In the copper alloy material according to the present invention, zinc can be desirably contained in the range of 35 wt% to 40 wt%.

本発明に係る銅合金材において、マンガン(Mn)は、銅合金材の重量を基準にして0.5重量%〜10重量%の範囲で含まれる。上述したように、銅合金材内の亜鉛含量の増加によってベータ(β)相が増加することによって軟性が低下するが、前記マンガンは、このような軟性低下を改善する役割をする。前記マンガンの含量が0.5重量%未満である場合、マンガンの添加による軟性改善効果が十分に示されなく、前記マンガンの含量が10重量%を超えると、材料の脆性が示される。   In the copper alloy material according to the present invention, manganese (Mn) is contained in the range of 0.5 wt% to 10 wt% based on the weight of the copper alloy material. As described above, the softness is lowered due to the increase of the beta (β) phase due to the increase of the zinc content in the copper alloy material, and the manganese plays a role in improving the softness reduction. When the manganese content is less than 0.5% by weight, the effect of improving the softness due to the addition of manganese is not sufficiently exhibited. When the manganese content exceeds 10% by weight, the brittleness of the material is exhibited.

本発明に係る銅合金材において、ニッケル(Ni)は、銅合金材の重量を基準にして0.1重量%〜5重量%の範囲で含まれる。前記ニッケルは、収得される銅合金材の硬度を向上させる役割をする。前記ニッケルの含量が0.1重量%未満である場合、硬度が十分に向上せず、前記ニッケルの含量が5重量%を超える場合、硬度の増加が鈍化され、5重量%以上にニッケルを添加しても著しい硬度の増加が行われないので、高価なニッケルの添加量が増加するほど経済性が著しく低下する。   In the copper alloy material according to the present invention, nickel (Ni) is included in the range of 0.1 wt% to 5 wt% based on the weight of the copper alloy material. The nickel serves to improve the hardness of the obtained copper alloy material. When the nickel content is less than 0.1% by weight, the hardness is not sufficiently improved, and when the nickel content exceeds 5% by weight, the increase in hardness is slowed and nickel is added to 5% by weight or more. However, since the hardness is not significantly increased, the economic efficiency is significantly lowered as the amount of expensive nickel added is increased.

本発明に係る銅合金材において、銅(Cu)は主成分である。銅は、上述したその他成分の含量比になるように残部量で含有される。   In the copper alloy material according to the present invention, copper (Cu) is a main component. Copper is contained in the remaining amount so as to be the content ratio of the other components described above.

また、前記海水用銅合金材において、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができ、前記元素が含まれる量だけ残部量で含まれる銅の添加量が減少する。前記の追加される元素は、収得される銅合金材の硬度及び耐軟化性を阻害させないと同時に、耐海水腐食性及びイオン溶出量の面でも悪影響がなく、上述した本発明の銅合金材と同等又は類似する効果を示す。   The seawater copper alloy material may further include one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1 wt% or less. The amount of copper added in the remaining amount is reduced by the amount containing the element. The added element does not hinder the hardness and softening resistance of the obtained copper alloy material, and at the same time, there is no adverse effect on the seawater corrosion resistance and ion elution amount, and the copper alloy material of the present invention described above. Shows equivalent or similar effects.

また、前記銅合金材は、銅合金材の特性に影響を及ぼさない範囲内で極微量の不純物を含むことができる。したがって、海水用銅合金材は、As、Ti、S、Cr、Nb及びSbからなるグループより選ばれる一つ以上の元素を0.1重量%以下の極微量でさらに含むことができる。前記不純物は、通常の銅合金材の製造過程で添加され得るものであり、極微量で含まれるので、本発明に係る銅合金材の特性に大きな影響を及ぼさないと見なされる。   Moreover, the said copper alloy material can contain a trace amount impurity in the range which does not affect the characteristic of a copper alloy material. Therefore, the copper alloy material for seawater can further contain one or more elements selected from the group consisting of As, Ti, S, Cr, Nb, and Sb in a trace amount of 0.1 wt% or less. The impurities can be added during the production process of a normal copper alloy material, and are contained in a very small amount. Therefore, it is considered that the impurities do not significantly affect the characteristics of the copper alloy material according to the present invention.

一方、海水構造物として金属材を使用する場合、海水中の塩分成分によって腐食が進められるので、使用される金属材の耐海水腐食性の特性が非常に重要である。本発明に係る銅合金材は、海水用構造物を製造して海水で使用するとき、従来の鉄を含む銅合金材の場合、海水に容易に腐食反応促進物を形成するのに比べて、耐海水腐食性を著しく改善することができる。   On the other hand, when a metal material is used as the seawater structure, the corrosion is promoted by a salt component in the seawater. Therefore, the seawater corrosion resistance characteristic of the metal material used is very important. When the copper alloy material according to the present invention is used in seawater to produce a structure for seawater, in the case of a copper alloy material containing conventional iron, compared to easily forming a corrosion reaction accelerator in seawater, Seawater corrosion resistance can be significantly improved.

また、本発明に係る銅合金材から溶出される銅イオンの作用によって海水用構造物への海洋生物の付着が防止されると同時に、前記海水用構造物が浸漬された海水域が滅菌又は殺菌されるので、該当の海水域の防汚性も全般的に改善される。上述した銅イオンの一般的な防汚性は既に公知となっており、例えば、国際銅協会(CDA、Copper Development Association)のウェブサイト(http://www.copper.org/antimicrobial/homepage.html)から銅イオンの抗菌特性を確認することができる。   In addition, adhesion of marine organisms to the seawater structure is prevented by the action of copper ions eluted from the copper alloy material according to the present invention, and at the same time, the seawater area in which the seawater structure is immersed is sterilized or sterilized. Therefore, the antifouling property of the corresponding sea area is also improved in general. The general antifouling properties of the above-mentioned copper ions are already known, and for example, the International Copper Association (CDA, Copper Development Association) website (http://www.copper.org/antimicrobial/homepage.html). ) Can confirm the antibacterial properties of copper ions.

一方、銅合金材で製造される海水用構造物において上述した防汚性特性を十分に確保するためには、純銅の銅イオン溶出量を基準にして銅合金材の銅イオンの溶出量が60%以上確保されるべきであると知られている。銅イオン溶出量が純銅の銅イオン溶出量の60%未満である場合、汚染防止の役割を確実に行うことができない。したがって、測定の結果、純銅の海水からの銅イオン溶出量は約693mg/m/日であるので、銅合金材の海水からの一日の銅イオン溶出量が415.8mg/m/日以上であるときに十分な抗菌特性を示し得ることが分かる。本発明に係る銅合金材は、後述する実施例から分かるように、銅イオン溶出量が、純銅の銅イオン溶出量に対して60%以上である。 On the other hand, in order to sufficiently ensure the above-described antifouling property in the structure for seawater produced with a copper alloy material, the elution amount of copper ions in the copper alloy material is 60 based on the elution amount of copper ions in pure copper. It is known that more than% should be secured. When the copper ion elution amount is less than 60% of the pure copper copper ion elution amount, the role of preventing contamination cannot be reliably performed. Therefore, as a result of the measurement, the copper ion elution amount from the seawater of pure copper is about 693 mg / m 2 / day, so the daily copper ion elution amount from the seawater of the copper alloy material is 415.8 mg / m 2 / day. It can be seen that sufficient antimicrobial properties can be exhibited when the above is true. As can be seen from the examples described later, the copper alloy material according to the present invention has a copper ion elution amount of 60% or more with respect to the copper ion elution amount of pure copper.

本発明に係る銅合金材の強度は、硬度及び耐軟化性で測定することができる。銅合金材の硬度は、製造工程で熱処理を行った後の圧下率によって差があり、本発明に係る銅合金材は、熱処理直後に約10%〜30%の加工圧下率で加工するとき、硬度範囲が120〜160Hvであることを基準にする。前記範囲内に含まれる場合、養殖網などの海水用構造物で要求される十分な強度を有すると見なすことができる。耐軟化性の場合、加工率を相対的にさらに高め、最大70%圧下された銅合金材を400℃の熱処理炉に装入し、30分維持させた後で硬度を測定したもので、約95〜120Hvの範囲に含まれなければならない。   The strength of the copper alloy material according to the present invention can be measured by hardness and softening resistance. The hardness of the copper alloy material varies depending on the rolling reduction after the heat treatment in the manufacturing process, and the copper alloy material according to the present invention is processed at a working rolling reduction of about 10% to 30% immediately after the heat treatment, Based on the hardness range of 120 to 160 Hv. When it falls within the above range, it can be considered to have sufficient strength required for seawater structures such as aquaculture nets. In the case of softening resistance, the processing rate is further increased, the copper alloy material reduced by a maximum of 70% is placed in a heat treatment furnace at 400 ° C., and the hardness is measured after being maintained for 30 minutes. Must be included in the range of 95-120 Hv.

本発明に係る海水用銅合金材の製造方法
本発明に係る海水用銅合金材は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)の含量比で鋳塊を作る段階、前記の収得された鋳塊に600℃〜900℃で30分〜12時間熱処理を行った後、熱間押出及び引抜を行う段階、前記の熱間押出及び引抜が行われた生成物に室温への急冷を行った後、冷間引抜を行う段階、前記の冷間引抜が行われた生成物に500℃〜800℃で30分〜10時間熱処理を行う段階、及び前記の熱処理が行われた生成物に冷間引抜を行う段階を含む方法によって製造される。
Manufacturing method of seawater copper alloy material according to the present invention The seawater copper alloy material according to the present invention comprises 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn). Forming an ingot with a content ratio of 0.1% to 5% by weight of nickel (Ni) and the remaining amount of copper (Cu), the obtained ingot at 600 ° C. to 900 ° C. for 30 minutes. A step of performing hot extrusion and drawing after performing heat treatment for ~ 12 hours, a step of performing cold drawing after rapidly cooling the product subjected to the hot extrusion and drawing to room temperature, It is manufactured by a method comprising a step of heat-treating a product subjected to cold drawing at 500 ° C. to 800 ° C. for 30 minutes to 10 hours, and a step of performing cold drawing on the product subjected to the heat treatment. .

上述した本発明に係る海水用銅合金材の製造方法において、まず、鋳塊(ビレット又はインゴット)は、25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)の含量比で金型鋳造によって製造される。前記鋳塊は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含むことができる。   In the method for producing a copper alloy material for seawater according to the present invention described above, first, the ingot (billet or ingot) is composed of 25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt%. Manufactured by mold casting at a content ratio of manganese (Mn), 0.1 wt% to 5 wt% nickel (Ni), and the remaining amount of copper (Cu). The ingot may further include one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1% by weight or less.

前記の収得された鋳塊に連続焼鈍炉で600℃〜900℃の温度で30分〜12時間熱処理を行った後で熱間押出を行い、線状又は棒状に引抜を行う。前記熱処理は、600℃以下で実施する場合、十分な熱処理効果を得ることができなく、金属組織内の再結晶化が難しくなり、過度な熱間負荷が発生し、900℃以上で実施する場合、金属組織内の粗大組織の成長によって異常組織が発生する。また、前記熱処理は、30分以下で行われる場合、金属組織の軟化が十分に行われなく、12時間以上行われる場合、金属組織が過度に軟化され、生産性が低下するという問題がある。   The obtained ingot is subjected to heat treatment at a temperature of 600 ° C. to 900 ° C. for 30 minutes to 12 hours in a continuous annealing furnace, and then hot extrusion is performed to draw in a linear or rod shape. When the heat treatment is performed at 600 ° C. or lower, sufficient heat treatment effect cannot be obtained, recrystallization in the metal structure becomes difficult, excessive hot load is generated, and the heat treatment is performed at 900 ° C. or higher. An abnormal structure is generated by the growth of a coarse structure in the metal structure. In addition, when the heat treatment is performed in 30 minutes or less, the metal structure is not sufficiently softened. When the heat treatment is performed for 12 hours or more, the metal structure is excessively softened and productivity is lowered.

その後、前記の収得された熱処理が行われた生成物を急冷で室温(約21℃〜30℃)に冷却された後、冷間引抜を行う。   Thereafter, the obtained heat-treated product is rapidly cooled to room temperature (about 21 ° C. to 30 ° C.) and then cold drawn.

続いて、前記段階で収得される生成物に500℃〜800℃で30分〜10時間熱処理を実施する。前記熱処理段階は、ベル型焼鈍炉又はバッチ焼鈍炉で実施することができる。上述した段階で既に1回熱処理された生成物は、相対的に低い温度で再結晶化されるので、熱処理温度は500℃〜800℃の範囲である。前記熱処理段階において、500℃以下では、金属組織内の再結晶化が難しいという問題があり、800℃以上では、過度に高い温度による粗大組織の成長によって異常組織が発生し、生産性が低下する。前記熱処理時間が30分以下の条件では、組織の軟化が十分に行われなく、12時間を超える場合は、金属組織が過度に軟化され、生産性が低下するという問題がある。   Subsequently, the product obtained in the above step is subjected to heat treatment at 500 ° C. to 800 ° C. for 30 minutes to 10 hours. The heat treatment step can be performed in a bell-type annealing furnace or a batch annealing furnace. Since the product already heat-treated once in the above-described stage is recrystallized at a relatively low temperature, the heat treatment temperature is in the range of 500 ° C to 800 ° C. In the heat treatment stage, when the temperature is 500 ° C. or lower, there is a problem that recrystallization in the metal structure is difficult. . When the heat treatment time is 30 minutes or less, the structure is not sufficiently softened. When the heat treatment time exceeds 12 hours, the metal structure is excessively softened and the productivity is lowered.

続いて、前記の収得された生成物に冷間引抜を行う。前記冷間引抜段階における引抜率は10%〜90%の範囲である。前記引抜率が10%より低いと十分な機械的強度を確保しにくく、前記引抜率が90%超過であると、過多な加工率によって冷間圧下率が限界に到逹するという問題がある。前記引抜率に到逹したり、最終的に製造しようとする製品の目的に応じて特別に目的とする引抜率の範囲に到逹するために、前記熱処理段階及び冷間引抜段階を繰り返して実施することができる。   Subsequently, the product obtained is cold drawn. The drawing rate in the cold drawing step is in the range of 10% to 90%. When the drawing rate is lower than 10%, it is difficult to secure sufficient mechanical strength, and when the drawing rate is over 90%, there is a problem that the cold rolling reduction reaches the limit due to an excessive processing rate. The heat treatment step and the cold drawing step are repeated in order to reach the drawing rate or to reach a special drawing rate range depending on the purpose of the product to be finally manufactured. can do.

実施例1〜14
本発明に係る銅合金材を製造するために、下記の表1に示した化学組成を有するように鋳塊をそれぞれ製造し、600℃で6時間熱処理を行った後で熱間押出を行い、1.5mmの厚さに引抜を行った。収得される生成物に室温への急冷を行った後で冷間引抜を行い、600℃で1時間熱処理を行い、収得される試験片を切断し、熱処理直後から最大30%の圧下率で冷間引抜を行うことによって最終試料を収得した。
Examples 1-14
In order to produce the copper alloy material according to the present invention, ingots were produced so as to have the chemical compositions shown in Table 1 below, and after heat treatment at 600 ° C. for 6 hours, hot extrusion was performed, Drawing was performed to a thickness of 1.5 mm. The obtained product is rapidly cooled to room temperature, then cold drawn, heat treated at 600 ° C. for 1 hour, the obtained specimen is cut, and cooled immediately after the heat treatment at a maximum reduction rate of 30%. The final sample was obtained by thinning out.

比較例1〜3
比較例1の試料は、三菱(日本)で商業的に入手した伸銅製品(UR30)で、比較例2の試料は6:4の割合の黄銅で、比較例3の試料は純銅である。
Comparative Examples 1-3
The sample of Comparative Example 1 is a copper product (UR30) commercially obtained from Mitsubishi (Japan), the sample of Comparative Example 2 is brass at a ratio of 6: 4, and the sample of Comparative Example 3 is pure copper.

実験例
前記製造例によって収得された実施例1〜14の試料と比較例1〜3の試料を試験片とし、各銅合金材の機械的特性、防汚性特性及び耐海水腐食性特性を確認するために、硬度、耐軟化性、脱亜鉛腐食性、イオン溶出特性、及び耐海水腐食性の試験を実施した。
Experimental Example Using the samples of Examples 1 to 14 and Comparative Examples 1 to 3 obtained by the above manufacturing examples as test pieces, the mechanical characteristics, antifouling characteristics and seawater corrosion resistance characteristics of each copper alloy material were confirmed. In order to achieve this, tests of hardness, softening resistance, dezincification corrosion resistance, ion elution characteristics, and seawater corrosion resistance were conducted.

硬度を確認するために、マイクロビッカース硬度計を使用して試験を実施し、その結果は表2に示した。   In order to confirm the hardness, a test was carried out using a micro Vickers hardness tester, and the results are shown in Table 2.

耐軟化性を確認するために、加工率を相対的にさらに高め、最大70%圧下された材料を400℃の熱処理炉に装入した後、30分維持させてから取り出し、マイクロビッカース硬度計を使用して減少した硬度を測定し、その結果は表2に示した。下記の表2によると、実施例1〜14の試料の場合、約98〜119Hvの範囲に含まれる。   In order to confirm the softening resistance, the processing rate is further increased, and after the material reduced by a maximum of 70% is charged into a heat treatment furnace at 400 ° C., it is maintained for 30 minutes and then taken out. The reduced hardness used was measured and the results are shown in Table 2. According to Table 2 below, the samples of Examples 1 to 14 are included in the range of about 98 to 119 Hv.

脱亜鉛腐食性を確認するために、各試験片を75℃のCuCl水溶液内に24時間浸漬させてから取り出し、腐食の深さを観察できるように切断面を研磨した後でエッチングし、光学顕微鏡で腐食深さを測定し、その結果は、それぞれ表2及び図1に示した。実施例1〜14に係る試料の場合、比較例1に係る試料に比べて脱亜鉛腐食性が著しく改善されることを確認することができた。 In order to confirm the dezincification corrosion property, each test piece was immersed in a 75 ° C. CuCl 2 aqueous solution for 24 hours and then taken out, and the cut surface was polished so that the depth of corrosion could be observed, and then etched. The corrosion depth was measured with a microscope, and the results are shown in Table 2 and FIG. In the case of the samples according to Examples 1 to 14, it was possible to confirm that the dezincification corrosion property was remarkably improved as compared with the sample according to Comparative Example 1.

耐海水腐食性を確認するために、KS D9502塩水噴霧試験方法を適用して試験を実施し、蒸留水に塩化ナトリウムを溶かして製造した塩水を使用した。塩水噴霧装置内に試片を装着した後、一定時間の間隔で24時間噴霧した後、試片を取り出してから表面腐食特性を観察し、その結果を表2に示した。表記法は、自体肉眼検査基準にしたがって、腐食程度を○:良好、△:不十分、X:不良に区分した。   In order to confirm seawater corrosion resistance, the test was carried out by applying the KS D9502 salt spray test method, and salt water produced by dissolving sodium chloride in distilled water was used. After mounting the specimen in the salt spray device, spraying it for 24 hours at regular intervals, then taking out the specimen and observing the surface corrosion characteristics, the results are shown in Table 2. According to the notation method, the degree of corrosion was classified into ○: good, Δ: insufficient, and X: poor according to the naked eye inspection standard.

海水内での銅イオン溶出特性を確認するために、海水200mlが入ったビーカーに各試験片を24時間浸漬した後、浸漬液の銅イオン溶出量を測定し、その結果は表2に示した。純銅の場合、銅イオン溶出量は693mg/m/日で、純銅の銅イオン溶出量の60%は415.8mg/m/日である。実施例1〜14に係る試料の場合、いずれも純銅の銅イオン溶出量の60%は415.8mg/m/日以上のイオン溶出量を示すので、十分な防汚性を備えたことを確認することができる。 In order to confirm the copper ion elution characteristics in seawater, each test piece was immersed in a beaker containing 200 ml of seawater for 24 hours, and then the copper ion elution amount of the immersion liquid was measured. The results are shown in Table 2. . In the case of pure copper, the copper ion elution amount is 693 mg / m 2 / day, and 60% of the copper ion elution amount of pure copper is 415.8 mg / m 2 / day. In the case of the samples according to Examples 1 to 14, since 60% of the copper ion elution amount of pure copper showed an ion elution amount of 415.8 mg / m 2 / day or more, it was provided with sufficient antifouling property. Can be confirmed.

前記実験の結果、実施例1〜14に係る試料の場合、比較例1〜3に係る試料に比べて脱亜鉛腐食性が遥かに良好であり、耐海水腐食性判定の結果においても全て良好な特性を示した。また、実施例1〜14に係る試料の銅イオン溶出量は、純銅の銅イオン溶出量を基準にして60%(415.8mg/m/日)以上であり、防汚性のために要求される条件を全て満足した。 As a result of the experiment, in the case of the samples according to Examples 1 to 14, the dezincification corrosion property is much better than the samples according to Comparative Examples 1 to 3, and all the results of the seawater corrosion resistance determination are also good. The characteristics are shown. Moreover, the copper ion elution amount of the sample which concerns on Examples 1-14 is 60% (415.8 mg / m < 2 > / day) or more on the basis of the copper ion elution amount of pure copper, and is requested | required for antifouling property All the conditions to be satisfied were satisfied.

一方、図2の結果を見ると、海水に浸漬したときの色変化を確認することができる。実施例1の試料及び実施例6の試料をそれぞれビーカーに添加し、これを‘開発品#1'及び‘開発品#6'と表記した。開発品#1及び開発品#6は、透明であるため色変化を肉眼で確認することはできなかったが、比較例1の試料及び比較例2の試料を添加した‘比較例#1'及び‘比較例#2'の場合は、海水の色が青く変わったことを確認することができる。また、図3は、浸漬してから20日経過した後、浸漬した試験片を取り出してか色を観察した結果を示し、実施例1の試料及び実施例6の試料は、浸漬前と何ら相違点も観察できないが、比較例1の試料は青色に変わり、比較例2の試料は、部分的に腐食が進められて灰色に変わったことを確認することができる。   On the other hand, when the result of FIG. 2 is seen, the color change when immersed in seawater can be confirmed. The sample of Example 1 and the sample of Example 6 were added to a beaker, respectively, and these were denoted as “developed product # 1” and “developed product # 6”. Since the developed product # 1 and the developed product # 6 were transparent, the color change could not be confirmed with the naked eye. However, the samples of Comparative Example 1 and Comparative Example 2 were added with “Comparative Example # 1” and In the case of “Comparative Example # 2”, it can be confirmed that the color of the seawater has turned blue. Moreover, FIG. 3 shows the result of taking out the immersed test piece and observing the color after 20 days have passed since the immersion, and the sample of Example 1 and the sample of Example 6 are different from those before immersion. Although the point cannot be observed, it can be confirmed that the sample of Comparative Example 1 turns blue, and the sample of Comparative Example 2 partially turns corrosive and turns gray.

Claims (7)

25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)からなる海水用銅合金材。   25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel (Ni), and the remaining amount of copper (Cu ) Copper alloy material for seawater. 前記銅合金材は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含む、請求項1に記載の海水用銅合金材。   2. The copper alloy material according to claim 1, further comprising one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1 wt% or less. Copper alloy material for seawater. 25重量%〜40重量%の亜鉛(Zn)、0.5重量%〜10重量%のマンガン(Mn)、0.1重量%〜5重量%のニッケル(Ni)、及び残部量の銅(Cu)の含量比で鋳塊を製造する段階、
前記の収得された鋳塊に600℃〜900℃で30分〜12時間熱処理を行った後、熱間押出及び引抜を行う段階、
前記の熱間押出及び引抜が行われた生成物に室温への急冷を行い、冷間引抜を行う段階、
前記の冷間引抜が行われた生成物に500℃〜800℃で30分〜10時間熱処理を行う段階、及び
前記の熱処理が行われた生成物に冷間引抜を行う段階を含む、海水用銅合金材の製造方法。
25 wt% to 40 wt% zinc (Zn), 0.5 wt% to 10 wt% manganese (Mn), 0.1 wt% to 5 wt% nickel (Ni), and the remaining amount of copper (Cu ) To produce an ingot with a content ratio of
The obtained ingot is subjected to heat treatment at 600 ° C. to 900 ° C. for 30 minutes to 12 hours, followed by hot extrusion and drawing,
Rapid cooling to room temperature on the hot-extruded and drawn product, and cold drawing,
Including a step of subjecting the cold-drawn product to heat treatment at 500 ° C. to 800 ° C. for 30 minutes to 10 hours, and a step of cold-drawing the product subjected to the heat treatment A method for producing a copper alloy material.
前記鋳塊は、Sn、Al、Si、Co、Fe、P、Mg、Pb及びCaからなるグループより選ばれる一つ以上の元素を1重量%以下の量でさらに含む、請求項3に記載の海水用銅合金材の製造方法。   4. The ingot according to claim 3, wherein the ingot further includes one or more elements selected from the group consisting of Sn, Al, Si, Co, Fe, P, Mg, Pb, and Ca in an amount of 1 wt% or less. Manufacturing method of copper alloy material for seawater. 最終引抜率は10%〜90%である、請求項3又は4に記載の海水用銅合金材の製造方法。   The method for producing a copper alloy material for seawater according to claim 3 or 4, wherein the final drawing rate is 10% to 90%. 請求項1又は請求項2による海水用銅合金材で製造される海水構造物。   The seawater structure manufactured with the copper alloy material for seawater by Claim 1 or Claim 2. 前記海水構造物は養殖網である、請求項6に記載の海水構造物。   The seawater structure according to claim 6, wherein the seawater structure is an aquaculture net.
JP2013552452A 2011-02-01 2011-05-11 Copper alloy material for seawater and method for producing the same Active JP5911891B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0009997 2011-02-01
KR1020110009997A KR101260912B1 (en) 2011-02-01 2011-02-01 Copper alloy for sea water and method of producing same
PCT/KR2011/003449 WO2012105731A1 (en) 2011-02-01 2011-05-11 Copper alloy material for seawater and method for preparing same

Publications (2)

Publication Number Publication Date
JP2014506627A true JP2014506627A (en) 2014-03-17
JP5911891B2 JP5911891B2 (en) 2016-04-27

Family

ID=46602924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552452A Active JP5911891B2 (en) 2011-02-01 2011-05-11 Copper alloy material for seawater and method for producing the same

Country Status (7)

Country Link
EP (1) EP2670875B1 (en)
JP (1) JP5911891B2 (en)
KR (1) KR101260912B1 (en)
CN (1) CN103403201A (en)
AU (1) AU2011357615A1 (en)
CL (1) CL2013002197A1 (en)
WO (1) WO2012105731A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181051B1 (en) * 2013-10-21 2020-11-19 주식회사 대창 A improved durability structure for catching anchovies
KR101519075B1 (en) * 2013-12-03 2015-05-21 (주)신동 Electromagnetic wave shielding Fe-Cu wire, rod and Manufacturing method for the same
CN103757480B (en) * 2014-01-10 2016-05-11 滁州学院 Complicated cupronickel alloy material of a kind of seawater corrosion resistance and preparation method thereof
CN103740977B (en) * 2014-01-16 2016-01-20 九星控股集团有限公司 A kind of corrosion-resistant White Copper Tubes and preparation method thereof
CN105018782B (en) * 2015-07-23 2017-09-26 宁波博威合金板带有限公司 A kind of copper alloy of the silicon containing cobalt
CN106119746B (en) * 2016-07-30 2018-10-30 山西晋投玄武岩开发有限公司 A kind of corrosion-resistant basalt fibre enhancing copper-base alloy composite material
CN106191519B (en) * 2016-08-15 2018-06-01 北京金鹏振兴铜业有限公司 Hexa-atomic complex brass alloy
WO2018088721A1 (en) * 2016-11-08 2018-05-17 주식회사 대창 Copper alloy for culture fish net having improved corrosion resistance and method for manufacturing same copper alloy
KR101796191B1 (en) 2017-01-17 2017-11-09 주식회사 풍산 Copper alloy with excellent antibiosis, discoloration-resistance and formability, and method for producing same
CN107460367B (en) * 2017-08-29 2019-08-09 河南科技大学 A kind of copper alloy and preparation method thereof of the resistance to abrasion of seawater corrosion containing sand
KR102616847B1 (en) * 2019-03-27 2023-12-26 주식회사 대창 Copper alloy wire for fish farming net
CN110863123A (en) * 2019-11-29 2020-03-06 常熟市常氏瓶钳有限公司 Copper alloy formula for manufacturing bottle tongs
KR102265115B1 (en) * 2021-02-24 2021-06-15 주식회사 풍산 Cu-Zn based alloy material with excellent corrosion resistance and discoloration resistance and method of producing same
CN114107728B (en) * 2021-10-11 2023-03-24 中铝洛阳铜加工有限公司 Marine corrosion-resistant copper alloy material for deep and distant marine aquaculture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141540A (en) * 1979-04-23 1980-11-05 Mitsubishi Metal Corp Copper alloy for culture crawl
JPS63100144A (en) * 1986-05-23 1988-05-02 Nippon Mining Co Ltd Copper alloy excellent in corrosion resistance
JPS63213628A (en) * 1987-03-02 1988-09-06 Nippon Mining Co Ltd Copper alloy for fuse
JPH06184679A (en) * 1992-12-18 1994-07-05 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPH10121168A (en) * 1996-10-15 1998-05-12 Sanpo Shindo Kogyo Kk Copper-base alloy
JP2007332466A (en) * 2004-08-10 2007-12-27 Sanbo Copper Alloy Co Ltd Copper alloy and structure for use in seawater using the same
JP2012532759A (en) * 2009-07-08 2012-12-20 ベルケンホフ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sheet brazing aid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868276A (en) 1958-10-18 1961-05-17 Eugen Vaders Improvements in or relating to bearing metal alloys
US3778236A (en) * 1972-03-29 1973-12-11 Olin Corp Plated copper base alloy article
JPS59159957A (en) * 1983-02-28 1984-09-10 Mitsubishi Metal Corp High-strength cu alloy with superior resistance to corrosion due to sea water and superior hot workability
US4631171A (en) * 1985-05-16 1986-12-23 Handy & Harman Copper-zinc-manganese-nickel alloys
JP3280250B2 (en) * 1996-11-26 2002-04-30 三宝伸銅工業株式会社 Fish culture nets and fish culture cages
KR100219963B1 (en) * 1997-06-20 1999-09-01 민병권 Copper alloy with weatherproof
DE19802246C1 (en) * 1998-01-22 1999-07-29 Wieland Werke Ag Use of a copper-zinc-nickel-manganese-aluminum alloy
KR100390591B1 (en) * 1999-05-05 2003-07-07 올린 코포레이션 Copper alloy with a golden visual appearance
DE102007063643B4 (en) * 2007-06-28 2012-07-26 Wieland-Werke Ag Copper-zinc alloy, method of manufacture and use
US20100061884A1 (en) * 2008-09-10 2010-03-11 Pmx Industries Inc. White-colored copper alloy with reduced nickel content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141540A (en) * 1979-04-23 1980-11-05 Mitsubishi Metal Corp Copper alloy for culture crawl
JPS63100144A (en) * 1986-05-23 1988-05-02 Nippon Mining Co Ltd Copper alloy excellent in corrosion resistance
JPS63213628A (en) * 1987-03-02 1988-09-06 Nippon Mining Co Ltd Copper alloy for fuse
JPH06184679A (en) * 1992-12-18 1994-07-05 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPH10121168A (en) * 1996-10-15 1998-05-12 Sanpo Shindo Kogyo Kk Copper-base alloy
JP2007332466A (en) * 2004-08-10 2007-12-27 Sanbo Copper Alloy Co Ltd Copper alloy and structure for use in seawater using the same
JP2012532759A (en) * 2009-07-08 2012-12-20 ベルケンホフ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sheet brazing aid

Also Published As

Publication number Publication date
EP2670875A4 (en) 2014-08-13
CL2013002197A1 (en) 2014-02-28
CN103403201A (en) 2013-11-20
EP2670875B1 (en) 2016-11-02
EP2670875A1 (en) 2013-12-11
KR101260912B1 (en) 2013-05-06
AU2011357615A1 (en) 2013-08-01
KR20120088978A (en) 2012-08-09
JP5911891B2 (en) 2016-04-27
WO2012105731A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5911891B2 (en) Copper alloy material for seawater and method for producing the same
US9702027B2 (en) Copper alloy
CN1693502A (en) Environmental protection, healthy new type leadless easy cutting corrosion resistant low boron calcium brass alloy
KR20160030518A (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
KR20160025786A (en) Copper alloy for use in sea water with high abrasion resistance, method for producing the same and sea water structrue made therefrom
JP4266039B2 (en) Method for producing lead-free free-cutting brass alloy
JP2013133529A (en) Lead-free brass alloy for hot working
KR101301290B1 (en) Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability
KR101796191B1 (en) Copper alloy with excellent antibiosis, discoloration-resistance and formability, and method for producing same
JPH01177327A (en) Free cutting copper-based alloy showing silver-white
US11172659B2 (en) Wire material consisting of a copper alloy, mesh and breeding cage for aquaculture
KR102452654B1 (en) Alloy material with antibacterial activity
JP4184357B2 (en) Lead-free free-cutting brass alloy and method for producing the same
JP7183285B2 (en) Materials processed from copper alloy
JP6258113B2 (en) Method for producing antibacterial titanium alloy material
US11578388B2 (en) Lead-free copper-zinc alloy that can withstand the marine environment
JP3732305B2 (en) Copper base alloy having excellent corrosion resistance, hot workability and stress corrosion cracking resistance, and method for producing the copper base alloy
RU2752094C1 (en) Titanium alloy and method for production thereof
JPH03104845A (en) Manufacture of high strength phosphor bronze having good bendability
TW200915349A (en) Cu-Ni-Si-Co based copper alloy for electronic material and its production method
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
WO2011121798A1 (en) Lead-free free-machining brass alloy
JP2012062563A (en) Cu-zn series copper alloy sheet material and manufacturing method of the same
CN116897211A (en) Phosphor bronze alloy and article using same
JP2013057116A (en) Copper alloy for electric and electronic part and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5911891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250