JP2014240465A - Production method of nitride phosphor - Google Patents

Production method of nitride phosphor

Info

Publication number
JP2014240465A
JP2014240465A JP2013123413A JP2013123413A JP2014240465A JP 2014240465 A JP2014240465 A JP 2014240465A JP 2013123413 A JP2013123413 A JP 2013123413A JP 2013123413 A JP2013123413 A JP 2013123413A JP 2014240465 A JP2014240465 A JP 2014240465A
Authority
JP
Japan
Prior art keywords
metal
precursor
oxide
alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013123413A
Other languages
Japanese (ja)
Inventor
杉山 正史
Masashi Sugiyama
正史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013123413A priority Critical patent/JP2014240465A/en
Publication of JP2014240465A publication Critical patent/JP2014240465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nitride phosphor represented by CaAlSiN:Eu by calcining a precursor alloy powder, by which a nitride phosphor is inexpensively obtained by calcining the powder in a nitrogen-containing atmosphere at normal pressure without using Eu metal that is expensive and troublesome in handling as a raw material.SOLUTION: A nitride phosphor represented by CaAlSiN:Eu is produced by subjecting Ca metal, Si metal, Al oxide and Eu oxide as raw materials and Ca metal as a reducing agent, in which the amount of the Al oxide is 1.05 to 1.3 times as much as an amount necessary for an alloy composition of the precursor, to a reduction process at a temperature of 1000°C or higher; cleaning the obtained reaction product to obtain a precursor alloy powder; and calcining the precursor alloy powder in a nitrogen-containing atmosphere at normal pressure to produce.

Description

本発明は、窒化物蛍光体の製造方法に関し、更に詳しくは、近紫外発光ダイオードや青色発光ダイオードの発光波長領域で赤色の蛍光を発する窒化物蛍光体を安価に製造する方法に関する。   The present invention relates to a method for manufacturing a nitride phosphor, and more particularly to a method for inexpensively manufacturing a nitride phosphor that emits red fluorescence in the emission wavelength region of a near-ultraviolet light emitting diode or a blue light emitting diode.

近年、白色LEDの開発が進み、白熱電灯や蛍光灯に替る照明として期待されている。従来の白色LEDは、(Y,Gd)(Al,Ga)12の組成式で知られるYAG系酸化物にCeを添加した蛍光体を、青色LEDの封止樹脂中に分散させたもの(特許文献1参照)が知られている。これらの白色LEDは、携帯電話のフロントライトや簡易照明器具などに用いられているが、色再現性や演色性が悪く、その改善が求められていた。 In recent years, the development of white LEDs has progressed, and it is expected as illumination replacing incandescent lamps and fluorescent lamps. In a conventional white LED, a phosphor in which Ce is added to a YAG-based oxide known from the composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is dispersed in a blue LED sealing resin. The thing (refer patent document 1) is known. These white LEDs are used in the front light of a mobile phone, a simple lighting device, and the like, but have poor color reproducibility and color rendering, and their improvement has been demanded.

この要請に対して、現在では、青色LEDと緑色蛍光体と赤色蛍光体を組み合わせた青色励起白色LED、紫外発光LEDと青色蛍光体と緑色蛍光体と赤色蛍光体を組み合わせた紫外線励起白色LEDが開発されている。これらの白色LEDに用いられる蛍光体のうち、赤色蛍光体としてはCaAlSiN:Eu(通常CASNと呼ばれる)に代表される窒化物蛍光体(特許文献2参照)が一般に広く用いられている。 In response to this demand, currently there are blue-excited white LEDs that combine blue LEDs, green phosphors, and red phosphors, and ultraviolet-excited white LEDs that combine ultraviolet light-emitting LEDs, blue phosphors, green phosphors, and red phosphors. Has been developed. Among these phosphors used for white LEDs, nitride phosphors represented by CaAlSiN 3 : Eu (usually called CASN) (see Patent Document 2) are widely used as red phosphors.

上記窒化物蛍光体の製造には、原料として窒化カルシウム(Ca)、窒化アルミウム(AlN)、窒化ケイ素(Si)、窒化ユーロピウム(EuN)ないしは酸化ユーロピウム(Eu)が用いられる。しかし、2価の金属窒化物である窒化カルシウム(Ca)は水分を含有する雰囲気下では不安定で、容易に水分と反応して水酸化物を生成する。そのため、大気中での取り扱いは好ましくなく、原料配合などでの取り扱いは不活性ガスで満たされたグローブボックス中など大気から遮断した状態で行う必要があった。 For the production of the nitride phosphor, as raw materials, calcium nitride (Ca 3 N 2 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), europium nitride (EuN) or europium oxide (Eu 2 O 3 ) Is used. However, divalent metal nitride calcium nitride (Ca 3 N 2 ) is unstable in an atmosphere containing moisture, and easily reacts with moisture to produce hydroxide. For this reason, handling in the atmosphere is not preferable, and handling with raw material blending and the like has to be performed in a state where it is shielded from the atmosphere, such as in a glove box filled with an inert gas.

また、上記窒化物蛍光体を製造する場合、使用される原料粉末の反応性がいずれも低いため、低温では原料の窒化物粉末間での固相反応が促進されず、目的の蛍光体が生成しないことから、1800℃以上の高温で焼成する必要があった。しかし、このような高温での焼成を行うと、窒素の脱離を伴う窒化物原料の分解反応が起こるという不都合が発生する。この窒化物原料の分解を抑制するためには、0.5MPa以上の高圧窒素ガス雰囲気中で焼成する必要があるため、高い焼成エネルギーが必要であるうえ、非常に高価な高温高圧焼成炉が必要となり、蛍光体の製造コストを上昇させる原因となっていた。   In addition, when manufacturing the above-mentioned nitride phosphor, since the reactivity of the raw material powder used is low, the solid phase reaction between the nitride powders of the raw material is not promoted at low temperatures, and the target phosphor is produced. Therefore, it was necessary to fire at a high temperature of 1800 ° C. or higher. However, when firing at such a high temperature, there arises a disadvantage that a decomposition reaction of the nitride raw material accompanied by desorption of nitrogen occurs. In order to suppress the decomposition of the nitride raw material, it is necessary to perform firing in a high-pressure nitrogen gas atmosphere of 0.5 MPa or more. Therefore, high firing energy is required and a very expensive high-temperature high-pressure firing furnace is necessary. Thus, the manufacturing cost of the phosphor is increased.

そこで、これらの問題を解決する方法として、金属を出発原料とする上記窒化物蛍光体の製造方法が提案されている(特許文献3参照)。この方法によれば、原料としてCa、Al、Si、Euの金属を用い、これらの金属を融解させて得たCaAlSiEu合金の溶湯を鋳造した後、その合金塊を粉砕して得られた合金粉末を窒素含有雰囲気中で焼成することにより、CaAlSiN:Euに代表される窒化物蛍光体を製造することができる。尚、焼成時の窒素ガス雰囲気の圧力を大気圧(窒素ガス流通)としても、窒化物蛍光体の製造が可能であるとされている。 Therefore, as a method for solving these problems, a method for producing the nitride phosphor using a metal as a starting material has been proposed (see Patent Document 3). According to this method, alloy powder obtained by using Ca, Al, Si, and Eu as raw materials, casting a molten metal of CaAlSiEu alloy obtained by melting these metals, and then pulverizing the alloy lump. Can be fired in a nitrogen-containing atmosphere to produce a nitride phosphor typified by CaAlSiN 3 : Eu. It is said that the nitride phosphor can be manufactured even when the pressure of the nitrogen gas atmosphere during firing is set to atmospheric pressure (nitrogen gas circulation).

特許第2900928号公報Japanese Patent No. 2900928 特許第3837588号公報Japanese Patent No. 3837588 特開2006−307182号公報JP 2006-307182 A

上記特許文献3に記載されたCaAlSiN:Euに代表される窒化物蛍光体の製造方法は、前駆体であるCaAlSiEu合金粉末を高圧の窒素含有雰囲気中で焼成する必要はなくなったものの、原料としてEu金属を使用するため、大気中で容易に酸化されるEu金属の取り扱いが面倒であるうえ、Eu金属が高価でコストの上昇を招くという問題があった。 The method for producing a nitride phosphor typified by CaAlSiN 3 : Eu described in Patent Document 3 does not require the precursor CaAlSiEu alloy powder to be fired in a high-pressure nitrogen-containing atmosphere. Since Eu metal is used, handling of Eu metal that is easily oxidized in the atmosphere is troublesome, and Eu metal is expensive and causes an increase in cost.

また、原料であるCa金属の沸点(1494℃)がSi金属の融点(1410℃)に近いことから、まずAl−Si合金(融点1010℃)を鋳造し、次にCa金属とEu金属を加えて融解し、目的とする前駆体のCaAlSiEu合金を鋳造する必要があった。また、得られる前駆体の合金塊を粉砕する必要があるため、工程が面倒で複雑であるという問題もあった。   Moreover, since the boiling point (1494 ° C.) of the Ca metal that is the raw material is close to the melting point (1410 ° C.) of the Si metal, an Al—Si alloy (melting point 1010 ° C.) is cast first, and then Ca metal and Eu metal are added. Therefore, it was necessary to cast the desired precursor CaAlSiEu alloy. Moreover, since it is necessary to pulverize the precursor alloy lump obtained, there is a problem that the process is troublesome and complicated.

本発明は、このような従来の状況に鑑みてなされたものであり、前駆体であるCaAlSiEu合金粉末を窒素含有雰囲気中で焼成してCaAlSiN:Euに代表される窒化物蛍光体を製造する際に、原料として高価で且つ取り扱いが面倒なEu金属を使用せず、前駆体のCaAlSiEu合金粉末を常圧の窒素含有雰囲気中で焼成して、低コストで窒化物蛍光体を製造する方法を提供することを目的とする。 The present invention has been made in view of such a conventional situation, and a precursor phosphor of CaAlSiEu is fired in a nitrogen-containing atmosphere to produce a nitride phosphor typified by CaAlSiN 3 : Eu. In this case, a method of producing a nitride phosphor at low cost by firing a precursor CaAlSiEu alloy powder in a nitrogen-containing atmosphere at a normal pressure without using an expensive and troublesome Eu metal as a raw material. The purpose is to provide.

上記目的を達成するため、本発明が提供する窒化物蛍光体の製造方法は、一般式Ca1−xAlSiN:Eu(但し、0.005≦x≦0.02)で表される窒化物蛍光体を、前駆体であるCa1−xAlSiEu合金(但し、0.005≦x≦0.02)を焼成することにより製造する方法であって、
Ca金属、Si金属、Al酸化物及びEu酸化物を原料とし且つCa金属を還元剤とし、Al酸化物の量を上記前駆体の合金組成に必要な量の1.05〜1.3倍とした原料粉末混合物を調整し、該原料粉末混合物を1000℃以上の温度で還元処理し、得られた反応生成物を洗浄することにより前駆体であるCa1−xAlSiEu合金の粉末を得た後、該前駆体合金粉末を窒素含有雰囲気中において焼成することを特徴とする。
In order to achieve the above object, a method for producing a nitride phosphor provided by the present invention includes a nitridation represented by a general formula Ca 1-x AlSiN 3 : Eu x (where 0.005 ≦ x ≦ 0.02). things phosphor, Ca 1-x AlSiEu x alloy as the precursor (where, 0.005 ≦ x ≦ 0.02) a process for producing by calcining,
Using Ca metal, Si metal, Al oxide and Eu oxide as raw materials and Ca metal as a reducing agent, the amount of Al oxide is 1.05-1.3 times the amount required for the alloy composition of the precursor. and to prepare a raw material powder mixture, the raw material powder mixture reduced at 1000 ° C. or higher, to obtain a powder of Ca 1-x AlSiEu x alloy which is a precursor by washing the reaction product obtained Thereafter, the precursor alloy powder is fired in a nitrogen-containing atmosphere.

上記本発明による窒化物蛍光体の製造方法において、上記還元剤としてのCa金属の量は、原料粉末混合物中のAl酸化物及びEu酸化物の還元に必要な量の1.0〜1.1倍であることが好ましい。   In the method for producing a nitride phosphor according to the present invention, the amount of Ca metal as the reducing agent is 1.0 to 1.1 which is an amount necessary for the reduction of Al oxide and Eu oxide in the raw material powder mixture. It is preferable that it is double.

本発明によれば、原料として安価で且つ取り扱いが容易なCa金属、Si金属、Al酸化物及びEu酸化物を用い、比較的簡単で容易な工程により前駆体であるCaAlSiEu合金の粉末を作製することができる。従って、その前駆体合金粉末を常圧の窒素含有雰囲気中で焼成することによって、CaAlSiN:Euに代表される窒化物蛍光体を簡単に且つ低コストで製造することができる。 According to the present invention, Ca metal, Si metal, Al oxide and Eu oxide, which are inexpensive and easy to handle, are used as raw materials, and a precursor CaAlSiEu alloy powder is produced by a relatively simple and easy process. be able to. Therefore, by firing the precursor alloy powder in an atmosphere containing nitrogen at normal pressure, a nitride phosphor typified by CaAlSiN 3 : Eu can be produced easily and at low cost.

実施例1及び2と、従来例1及び2で得られた各窒化物蛍光体の励起波長455nmにおける蛍光スペクトルを示すグラフである。It is a graph which shows the fluorescence spectrum in excitation wavelength 455nm of each nitride fluorescent substance obtained in Example 1 and 2 and the prior art examples 1 and 2. FIG.

本発明による窒化物蛍光体の製造方法は、一般式Ca1−xAlSiN:Eu(但し0.005≦x≦0.02、以下同じ)で表される窒化物蛍光体を、その前駆体であるCa1−xAlSiEu合金の焼成により製造する方法であって、原料であるCa金属、Si金属、Al酸化物及びEu酸化物に、還元剤として更にCa金属を添加して、原料粉末混合物を調整する原料調整工程と、得られた原料粉末混合物を1000℃以上の温度で還元処理する還元工程と、該還元工程で得られた反応生成物を洗浄して、前駆体であるCa1−xAlSiEu合金の粉末を得る洗浄工程と、該洗浄工程で得られた前駆体合金粉末を窒素含有雰囲気中において1000℃以上の温度で焼成して、窒化物蛍光体Ca1−xAlSiN:Euを得る焼成工程とからなる。 Manufacturing method of the nitride phosphor of the present invention have the general formula Ca 1-x AlSiN 3: Eu x ( where 0.005 ≦ x ≦ 0.02, hereinafter the same) of the nitride phosphor represented by, the precursor a method of manufacturing by sintering of Ca 1-x AlSiEu x alloy is body, Ca metal as a raw material, Si metal, the Al oxide and Eu oxide, further adding a Ca metal as the reducing agent, the raw material A raw material adjustment step for adjusting the powder mixture, a reduction step for reducing the obtained raw material powder mixture at a temperature of 1000 ° C. or higher, a reaction product obtained in the reduction step is washed, and the precursor Ca A cleaning process for obtaining a powder of 1-x AlSiEu x alloy, and a precursor alloy powder obtained in the cleaning process is fired in a nitrogen-containing atmosphere at a temperature of 1000 ° C. or more to obtain nitride phosphor Ca 1-x AlSiN 3: comprising a firing step to obtain a u x.

上記原料調整工程では、まず、Ca金属、Si金属、Al酸化物(Al)、Eu酸化物(Eu)の各原料粉末を所望の前駆体合金組成となるように秤量して混合すると共に、更に酸化物を還元するための還元剤としてCa金属の粉末を添加混合する。 In the raw material adjustment step, first, each raw material powder of Ca metal, Si metal, Al oxide (Al 2 O 3 ), and Eu oxide (Eu 2 O 3 ) is weighed so as to have a desired precursor alloy composition. In addition, a Ca metal powder is added and mixed as a reducing agent for reducing the oxide.

この原料調整工程においては、次工程の還元処理の際に酸化物の還元でできたCaOと原料のAlが反応して12CaO・7Alが生成するため、この12CaO・7Alの生成を見込んで、Al酸化物(Al)の量を上記前駆体のCa1−xAlSiEu合金の組成とするために必要な量よりも多めに添加する必要がある。具体的には、Al酸化物の添加量は、前駆体のCa1−xAlSiEu合金組成を得るために必要な量の1.05〜1.3倍の範囲とする。上記Al酸化物の添加量が1.05倍未満では合金を形成するAlが不足するためCa1−xAlSiEu合金のほかにCaSi合金などが生成し、また1.3倍を超えるとCaAlSi1.5などのAlが多い組成をもった合金が生成して混在することから、いずれの場合も上記単一組成の前駆体合金が得られない。 In this raw material adjustment step, CaO produced by reduction of the oxide during the reduction process in the next step reacts with the raw material Al 2 O 3 to produce 12CaO · 7Al 2 O 3, so this 12CaO · 7Al 2 in anticipation of formation of O 3, it is necessary to larger amount added than the amount required to Al oxides the amount of (Al 2 O 3) a composition of Ca 1-x AlSiEu x alloy of the precursor. Specifically, the addition amount of Al oxides, in the range of 1.05 to 1.3 times the amount necessary to obtain a Ca 1-x AlSiEu x alloy composition of the precursor. If the added amount of the Al oxide is less than 1.05 times, Al forming the alloy is insufficient, so that a CaSi alloy or the like is generated in addition to the Ca 1-x AlSiEux alloy, and if the added amount exceeds 1.3 times, CaAl 2 Since an alloy having a composition with a large amount of Al such as Si 1.5 is generated and mixed, a precursor alloy having the above-mentioned single composition cannot be obtained in any case.

また、還元剤として添加するCa金属の添加量は、少なくとも原料粉末混合物中の酸化物を還元するための理論量が必要である。尚、Ca金属は揮発しやすいため、揮発の可能性を考慮して理論量より多めに添加してもよい。ただし、還元剤としてのCa金属の添加量が多すぎると、所望とする前駆体のCa1−xAlSiEu合金組成に対してCaが多い組成を持った合金が生成するため、Ca金属の添加量は原料粉末混合物中の酸化物を還元するための理論量の1.0〜1.1倍とすることが好ましい。 Moreover, the addition amount of Ca metal added as a reducing agent needs at least the theoretical amount for reducing the oxide in a raw material powder mixture. In addition, since Ca metal tends to volatilize, you may add more than a theoretical amount in consideration of the possibility of volatilization. However, if the amount of Ca metal as a reducing agent is too large, the alloy having the composition Ca often against Ca 1-x AlSiEu x alloy composition of the precursor to produce the desired, addition of Ca metal The amount is preferably 1.0 to 1.1 times the theoretical amount for reducing the oxide in the raw powder mixture.

但し、酸化物の還元に必要なCa金属の量を算出する場合、上記のごとく12CaO・7Alが生成することを見込んで添加するAlの増量分は、酸化物の還元によってできたCaOとの反応で消費されるため、必要なCa金属量の算出の対象としない。 However, when calculating the amount of Ca metal necessary for the reduction of the oxide, the increased amount of Al 2 O 3 added in anticipation of the formation of 12CaO · 7Al 2 O 3 as described above is due to the reduction of the oxide. Since it is consumed by the reaction with CaO that has been made, it is not subject to calculation of the required amount of Ca metal.

次の還元工程においては、上記原料調整工程で調整した原料粉末混合物を、実質的に酸素が存在しない雰囲気、例えばアルゴンなどの不活性ガス雰囲気中において、1000℃以上の温度で加熱して還元処理を行う。   In the next reduction step, the raw material powder mixture prepared in the raw material preparation step is heated at a temperature of 1000 ° C. or higher in an atmosphere that is substantially free of oxygen, for example, an inert gas atmosphere such as argon. I do.

上記加熱還元処理の条件は、例えばアルゴンやヘリウムなどの不活性ガス雰囲気とし、処理温度は1000℃以上とする。処理温度が1000℃未満では酸化物の還元が十分に起こらず、反応生成物中に酸化物が残ってしまうため、前駆体であるCa1−xAlSiEu合金の形成に寄与しない。ただし、処理温度が高すぎるとCa金属が揮発して不足状態になり、酸化物が還元されずに残ってしまう場合があるため、処理温度は1200℃以下であることが好ましい。 The heat reduction treatment is performed under an inert gas atmosphere such as argon or helium, and the treatment temperature is 1000 ° C. or higher. Treatment temperature is not sufficiently reduced oxides is less than 1000 ° C., since leaves a oxide in the reaction product, it does not contribute to the formation of the Ca 1-x AlSiEu x alloy which is a precursor. However, if the treatment temperature is too high, the Ca metal volatilizes and becomes deficient, and the oxide may remain without being reduced. Therefore, the treatment temperature is preferably 1200 ° C. or lower.

その後、洗浄工程において、上記還元工程で得られた反応生成物を室温まで冷却してからイオン交換水中に投入し、撹拌とデカンテーションを数回繰り返すことによって、酸化物の還元により生成したCaOや残留還元剤などの不純物を溶解させて除去し、前駆体合金粉末を回収する。   Thereafter, in the washing step, the reaction product obtained in the reduction step is cooled to room temperature and then poured into ion-exchanged water. By repeating agitation and decantation several times, CaO produced by reduction of the oxide or Impurities such as residual reducing agent are dissolved and removed to recover the precursor alloy powder.

この水洗によって、上記還元工程でCaOとAlが反応して生成した12CaO・7Alも水中に浮遊してくるため、水洗を繰り返すことで完全に分離することができる。また、反応生成物の中には数十μmオーダーの粒子が緩く凝集した状態で存在しているものがあるが、その場合には反応生成物を乳鉢等で軽く粉砕してからイオン交換水中に投入することにより、良好な洗浄効率を得ることができる。 By this washing with water, 12CaO · 7Al 2 O 3 produced by the reaction of CaO and Al 2 O 3 in the reduction step also floats in water, and can be completely separated by repeating washing with water. In addition, some reaction products exist in a state where particles on the order of several tens of μm are loosely aggregated. In that case, the reaction product is lightly pulverized with a mortar or the like and then placed in ion-exchanged water. By introducing it, good cleaning efficiency can be obtained.

上記還元工程で得られた反応生成物は、イオン交換水による水洗中に自然に崩壊して粉末状態となる。その結果、洗浄終了後に得られる粉末は前駆体であるCa1−xAlSiEu合金の粉末であって、その粒子径はほぼ10〜20μmの範囲内にある。従って、このCa1−xAlSiEu合金の粉末は、更に粉砕工程を設ける必要なしに、そのまま次工程である焼成工程に前駆体合金粉末として供給することができる。 The reaction product obtained in the reduction step naturally collapses into a powder state during washing with ion-exchanged water. As a result, the powder obtained after completion of cleaning is a powder of Ca 1-x AlSiEu x alloy which is a precursor, the particle diameter is substantially within the range of 10 to 20 [mu] m. Thus, the powder of the Ca 1-x AlSiEu x alloy can be further without having to provide pulverizing step is supplied as a precursor alloy powder to sintering step is as the next step.

尚、洗浄工程では、上記のごとく水洗を繰り返した後、酢酸などの弱酸で酸洗することが好ましい。その場合は、酸洗した前駆体合金粉末を再度水洗した後、合金粉末を分離回収して乾燥する。また、酸洗する際のpHは4.0〜6.0の範囲にあることが好ましい。酸洗する際のpHが4.0未満では酸により前駆体の合金が溶解する可能性があり、pHが6.0を超えると酸洗の効果が十分得られない可能性があるため好ましくない。   In the washing step, it is preferable to carry out pickling with a weak acid such as acetic acid after repeating washing with water as described above. In that case, after the pickled precursor alloy powder is washed again with water, the alloy powder is separated and recovered and dried. Moreover, it is preferable that the pH at the time of pickling exists in the range of 4.0-6.0. If the pH during pickling is less than 4.0, the precursor alloy may be dissolved by the acid, and if the pH exceeds 6.0, the effect of pickling may not be obtained. .

最後に、焼成工程において、上記洗浄工程で得られた前駆体合金粉末を窒素含有雰囲気中で焼成することによって、一般式Ca1−xAlSiN:Euで表される窒化物蛍光体が得られる。焼成の際の窒素含有雰囲気は、特に加圧する必要はなく、常圧(大気圧)であってよい。 Finally, in the firing step, the precursor alloy powder obtained in the above cleaning step by firing in a nitrogen-containing atmosphere, the general formula Ca 1-x AlSiN 3: nitride phosphor represented by Eu x is obtained It is done. The nitrogen-containing atmosphere at the time of firing does not need to be particularly pressurized and may be normal pressure (atmospheric pressure).

上記窒素含有雰囲気としては、窒素ガス雰囲気のほか、窒素を含む酸素雰囲気若しくは窒素を含む大気雰囲気であってもよい。また、焼成温度及び焼成時間に特に制限はないが、所望とする窒化物蛍光体が効率よく得られる条件としては、焼成温度は1500℃〜1800℃の範囲、焼成時間は5時間〜10時間の範囲であることが好ましい。   The nitrogen-containing atmosphere may be a nitrogen gas atmosphere, an oxygen atmosphere containing nitrogen, or an air atmosphere containing nitrogen. Moreover, although there is no restriction | limiting in particular in baking temperature and baking time, As conditions for obtaining the desired nitride fluorescent substance efficiently, baking temperature is the range of 1500 degreeC-1800 degreeC, and baking time is 5 hours-10 hours. A range is preferable.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

[実施例1]
前駆体の合金組成がCa0.99AlSiEu0.01となるように、原料粉末としてCa金属:4.12g、Si金属:2.92g、Al:6.36g、Eu:0.18gと、更に還元剤としてCa金属:6.94gとを秤量し、乳鉢に入れて混合した。このとき、Alの量は、上記前駆体の合金組成とするために必要な量に対して1.2倍とした。また、還元剤として添加するCa金属の量は、原料粉末中の酸化物の還元に必要な量の1.1倍とした。
[Example 1]
The raw material powder was Ca metal: 4.12 g, Si metal: 2.92 g, Al 2 O 3 : 6.36 g, Eu 2 O 3 : so that the alloy composition of the precursor was Ca 0.99 AlSiEu 0.01. 0.18 g and Ca metal: 6.94 g as a reducing agent were weighed and mixed in a mortar. At this time, the amount of Al 2 O 3 was 1.2 times the amount necessary to obtain the alloy composition of the precursor. Further, the amount of Ca metal added as a reducing agent was 1.1 times the amount necessary for reducing the oxide in the raw material powder.

尚、12CaO・7Alが生成することを見込んで添加したAlの増量分は酸化物の還元によってできたCaOとの反応で消費されるため、この増量分は酸化物の還元に必要なCa金属量の算出において対象としない。即ち、本実施例1では、5.30gのAlがCa金属により還元され、残り1.06gのAlがCaOとの反応で消費される。 Note that the added amount of Al 2 O 3 added in anticipation of the formation of 12CaO · 7Al 2 O 3 is consumed by the reaction with CaO formed by the reduction of the oxide, so this increased amount is reduced by the reduction of the oxide. Is not included in the calculation of the amount of Ca metal required for the process. That is, in the present embodiment 1, Al 2 O 3 of 5.30g is reduced by Ca metal, is Al 2 O 3 remaining 1.06g consumed by reaction with CaO.

上記原料粉末の混合物を加熱容器に入れ、加熱容器内を真空排気した後、アルゴンガスを流しながら1150℃で5時間の加熱還元処理を行って反応生成物を得た。この反応生成物をイオン交換水中に投入して、撹拌とデカンテーションを6回繰り返して水洗した。次に、酢酸水溶液中に投入し、pH5を維持するように2mol/lの酢酸を用いてpHを調整しながら30分間撹拌して酸洗した後、脱酸のために再度イオン交換水中で水浄した。   The mixture of the raw material powders was put into a heating container, the inside of the heating container was evacuated, and then a heat reduction treatment was performed at 1150 ° C. for 5 hours while flowing an argon gas to obtain a reaction product. This reaction product was put into ion-exchanged water and washed with water by repeating stirring and decantation six times. Next, the mixture was put into an acetic acid aqueous solution, and the mixture was stirred for 30 minutes while adjusting the pH with 2 mol / l acetic acid so as to maintain the pH of 5, followed by pickling, and then again in deionized water for deoxidation. Purified.

その後、沈殿した合金粉末を回収し、乾燥して、窒化物蛍光体の前駆体となる合金粉末を得た。得られた前駆体合金粉末の組成をX線回折法により確認したところ、Ca0.99AlSiEu0.01であることが分かった。 Thereafter, the precipitated alloy powder was collected and dried to obtain an alloy powder that became a precursor of the nitride phosphor. When the composition of the obtained precursor alloy powder was confirmed by an X-ray diffraction method, it was found to be Ca 0.99 AlSiEu 0.01 .

上記の前駆体合金粉末を、常圧の窒素ガスを流しながら1600℃で5時間焼成して、窒化物蛍光体を製造した。この窒化物蛍光体についてX線回折法により組成を確認したところ、Ca0.99AlSiN:Eu0.01であることが分かった。また、この窒化物蛍光体の励起波長455nmでの蛍光スペクトルを測定した結果、図1に示すように蛍光ピーク波長650nmの蛍光を発する赤色蛍光体であることが確認された。 The precursor alloy powder was fired at 1600 ° C. for 5 hours while flowing normal pressure nitrogen gas to produce a nitride phosphor. When the composition of this nitride phosphor was confirmed by X-ray diffraction, it was found to be Ca 0.99 AlSiN 3 : Eu 0.01 . Further, as a result of measuring the fluorescence spectrum of this nitride phosphor at an excitation wavelength of 455 nm, it was confirmed that the nitride phosphor was a red phosphor emitting fluorescence with a fluorescence peak wavelength of 650 nm as shown in FIG.

[実施例2]
上記実施例1と同様に、前駆体の合金組成がCa0.99AlSiEu0.01となるように各原料粉末を秤量して混合したが、Alの量は所望の合金組成とするために必要な量に対して1.05倍とした。また、還元剤として添加するCa金属の量は、原料粉末混合物中の酸化物の還元に必要な量の1.05倍とした。
[Example 2]
As in Example 1 above, each raw material powder was weighed and mixed so that the precursor alloy composition was Ca 0.99 AlSiEu 0.01 , but the amount of Al 2 O 3 was set to the desired alloy composition. Therefore, it was set to 1.05 times the amount necessary for this. The amount of Ca metal added as a reducing agent was 1.05 times the amount necessary for reducing the oxide in the raw material powder mixture.

上記原料粉末混合物を加熱容器に入れ、加熱容器内を真空排気した後、アルゴンガスを流しながら1000℃で5時間の還元処理を行って反応生成物を得た。この反応生成物を上記実施例1と同様に洗浄処理し、得られた前駆体合金粉末を上記実施例1と同様に焼成処理して窒化物蛍光体を製造した。   The raw material powder mixture was put into a heating container, the inside of the heating container was evacuated, and then a reduction treatment was performed at 1000 ° C. for 5 hours while flowing an argon gas to obtain a reaction product. This reaction product was washed in the same manner as in Example 1, and the resulting precursor alloy powder was fired in the same manner as in Example 1 to produce a nitride phosphor.

この窒化物蛍光体の組成を上記実施例1と同様に確認したところ、Ca0.99AlSiN:Eu0.01であることが分かった。また、この窒化物蛍光体の励起波長455nmでの蛍光スペクトルを測定し、その結果を図1に示した。 The composition of this nitride phosphor was confirmed in the same manner as in Example 1 and found to be Ca 0.99 AlSiN 3 : Eu 0.01 . Further, the fluorescence spectrum of the nitride phosphor at an excitation wavelength of 455 nm was measured, and the result is shown in FIG.

[比較例1]
上記実施例1と同様に、前駆体の合金組成がCa0.99AlSiEu0.01となるように、Ca金属、Si金属、Al、Euと、還元剤としてのCa金属を秤量して混合した。ただし、Al量については、12CaO・7Alの生成を見込まず、上記前駆体の合金組成とするために必要な量とした。また、還元剤としてのCa金属の量は、酸化物の還元に必要な量の1.1倍とした。
[Comparative Example 1]
Similar to Example 1 above, Ca metal, Si metal, Al 2 O 3 , Eu 2 O 3 and Ca metal as a reducing agent so that the alloy composition of the precursor is Ca 0.99 AlSiEu 0.01. Were weighed and mixed. However, the amount of Al 2 O 3 was not required to produce 12CaO · 7Al 2 O 3 , and was an amount necessary for obtaining the alloy composition of the precursor. The amount of Ca metal as the reducing agent was 1.1 times the amount necessary for the reduction of the oxide.

上記原料粉末の混合物を加熱容器に入れ、加熱容器内を真空排気した後、アルゴンガスを流しながら1000℃で5時間の還元処理を行って反応生成物を得た。この反応生成物を上記実施例1と同様に洗浄処理し、得られた前駆体合金粉末についてX線回折法により組成を確認したところ、Ca0.99AlSiEu0.01(CaAlSi構造)のピークの他にCaSi合金のピークが観測され、単一組成の前駆体合金は得られなかった。 The mixture of the raw material powders was put into a heating container, the inside of the heating container was evacuated, and then a reduction treatment was performed at 1000 ° C. for 5 hours while flowing argon gas to obtain a reaction product. The reaction product was washed in the same manner as in Example 1 and the composition of the obtained precursor alloy powder was confirmed by X-ray diffraction. As a result, the peak of Ca 0.99 AlSiEu 0.01 (CaAlSi structure) was observed. In addition, a peak of CaSi alloy was observed, and a single composition precursor alloy was not obtained.

[比較例2]
上記実施例1と同様に、前駆体の合金組成がCa0.99AlSiEu0.01となるように、Ca金属、Si金属、Al、Euと、還元剤としてのCa金属を秤量して混合した。その際、Alの量は上記前駆体の合金組成とするために必要な量に対して1.2倍とし、還元剤としてのCa金属の量は酸化物の還元に必要な量の1.1倍とした。
[Comparative Example 2]
Similar to Example 1 above, Ca metal, Si metal, Al 2 O 3 , Eu 2 O 3 and Ca metal as a reducing agent so that the alloy composition of the precursor is Ca 0.99 AlSiEu 0.01. Were weighed and mixed. At that time, the amount of Al 2 O 3 is 1.2 times the amount necessary to obtain the alloy composition of the precursor, and the amount of Ca metal as the reducing agent is the amount necessary for the reduction of the oxide. 1.1 times.

上記原料粉末の混合物を加熱容器に入れ、加熱容器内を真空排気した後、アルゴンガスを流しながら950℃で5時間の還元処理を行って反応生成物を得た。この反応生成物を上記実施例1と同様に洗浄処理し、得られた前駆体合金粉末についてX線回折法により組成を確認したところ、CaSi合金のピークと共に、Si及びAlのピークが観測され、目的とする上記組成の前駆体合金は得られなかった。 The mixture of the raw material powders was put into a heating container, the inside of the heating container was evacuated, and then a reduction treatment was performed at 950 ° C. for 5 hours while flowing argon gas to obtain a reaction product. The reaction product was washed in the same manner as in Example 1 and the composition of the obtained precursor alloy powder was confirmed by X-ray diffraction. As a result, the peaks of Si and Al 2 O 3 were observed together with the peaks of CaSi alloy. Observed, the desired precursor alloy of the above composition was not obtained.

[従来例1]
Ca、Al、Si、Euの各窒化物を原料とし、高圧窒素雰囲気中で焼成して窒化物蛍光体を作製した。即ち、得られる窒化物蛍光体の金属元素組成比がCa:Al:Si:Eu=0.99:1.00:1.00:0.01となるように、Ca、AlN、Si及びEuNをArグローブボックス内で秤量・混合し、熱間等方加圧装置(HIP)内にセットして、1.0MPaの高圧窒素雰囲気中において1800℃で2時間の焼成を行った。
[Conventional example 1]
Using nitrides of Ca, Al, Si, and Eu as raw materials, firing was performed in a high-pressure nitrogen atmosphere to produce a nitride phosphor. That is, Ca 3 N 2 , AlN, Si so that the metal nitride composition ratio of the obtained nitride phosphor is Ca: Al: Si: Eu = 0.99: 1.00: 1.00: 0.01 3 N 4 and EuN are weighed and mixed in an Ar glove box, set in a hot isostatic press (HIP), and fired at 1800 ° C. for 2 hours in a 1.0 MPa high-pressure nitrogen atmosphere. It was.

得られた窒化物蛍光体について、上記実施例1と同様にX線回折法により組成を確認したところ、Ca0.99AlSiN:Eu0.01であることが分かった。また、この窒化物蛍光体の励起波長455nmでの蛍光スペクトルを測定し、その結果を図1に示した。 The resulting nitride phosphor, was confirmed composition by the same X-ray diffraction method as in Example 1, Ca 0.99 AlSiN 3: was found to be Eu 0.01. Further, the fluorescence spectrum of the nitride phosphor at an excitation wavelength of 455 nm was measured, and the result is shown in FIG.

[従来例2]
上記従来例1と同様にCa、Al、Si及びEuの各窒化物を原料とし、得られる窒化物蛍光体の金属元素組成比がCa:Al:Si:Eu=0.99:1.00:1.00:0.01となるようにArグローブボックス内で秤量・混合し、常圧の窒素ガスを流しながら1600℃で5時間の焼成を行った。得られた窒化物蛍光体について、励起波長455nmでの蛍光スペクトルを測定し、その結果を図1に示した。
[Conventional example 2]
As in Conventional Example 1, each of nitrides of Ca, Al, Si, and Eu is used as a raw material, and the resulting nitride phosphor has a metal element composition ratio of Ca: Al: Si: Eu = 0.99: 1.00: It was weighed and mixed in an Ar glove box so as to be 1.00: 0.01, and calcination was carried out at 1600 ° C. for 5 hours while flowing normal pressure nitrogen gas. About the obtained nitride fluorescent substance, the fluorescence spectrum in excitation wavelength 455nm was measured, and the result was shown in FIG.

以上の実施例と比較例並びに従来例から分かるように、本発明方法により得られた実施例1及び実施例2の窒化物蛍光体の発光特性は、図1から明らかなように、窒化物を原料として高温・高圧窒素雰囲気中で焼成する従来方法により製造された従来例1の窒化物蛍光体と実質的に同等である。   As can be seen from the above Examples, Comparative Examples, and Conventional Examples, the emission characteristics of the nitride phosphors of Examples 1 and 2 obtained by the method of the present invention are as shown in FIG. This is substantially the same as the nitride phosphor of Conventional Example 1 manufactured by the conventional method of firing in a high-temperature, high-pressure nitrogen atmosphere as a raw material.

従って、本発明の窒化物蛍光体の製造方法によれば、原料として安価で且つ取り扱いが容易なCa金属、Si金属、Al酸化物及びEu酸化物を用いて、比較的簡単で容易な工程により前駆体であるCaAlSiEu合金の粉末を作製することができ、更に、その前駆体合金粉末を常圧の窒素含有雰囲気中で焼成することによって、高価なEu金属や高温高圧焼成炉を用いることなく、赤色発光する窒化物蛍光体を得ることができる。   Therefore, according to the method for producing a nitride phosphor of the present invention, it is possible to use Ca metal, Si metal, Al oxide, and Eu oxide that are inexpensive and easy to handle as a raw material, by a relatively simple and easy process. The precursor CaAlSiEu alloy powder can be produced, and further, by firing the precursor alloy powder in an atmospheric pressure nitrogen-containing atmosphere, without using an expensive Eu metal or high-temperature high-pressure firing furnace, A nitride phosphor that emits red light can be obtained.

Claims (3)

一般式Ca1−xAlSiN:Eu(但し、0.005≦x≦0.02)で表される窒化物蛍光体を、前駆体であるCa1−xAlSiEu合金(但し、0.005≦x≦0.02)を焼成することにより製造する方法であって、
Ca金属、Si金属、Al酸化物及びEu酸化物を原料とし且つCa金属を還元剤とし、Al酸化物の量を上記前駆体の合金組成に必要な量の1.05〜1.3倍とした原料粉末混合物を調整し、該原料粉末混合物を1000℃以上の温度で還元処理し、得られた反応生成物を洗浄することにより前駆体であるCa1−xAlSiEu合金の粉末を得た後、該前駆体合金粉末を窒素含有雰囲気中において焼成することを特徴とする窒化物蛍光体の製造方法。
Formula Ca 1-x AlSiN 3: Eu x ( where, 0.005 ≦ x ≦ 0.02) nitride phosphor represented by, Ca 1-x AlSiEu x alloy as the precursor (0. 005 ≦ x ≦ 0.02) by firing,
Using Ca metal, Si metal, Al oxide and Eu oxide as raw materials and Ca metal as a reducing agent, the amount of Al oxide is 1.05-1.3 times the amount required for the alloy composition of the precursor. and to prepare a raw material powder mixture, the raw material powder mixture reduced at 1000 ° C. or higher, to obtain a powder of Ca 1-x AlSiEu x alloy which is a precursor by washing the reaction product obtained Thereafter, the precursor alloy powder is fired in a nitrogen-containing atmosphere.
前記還元剤としてのCa金属の量が、原料粉末混合物中のAl酸化物及びEu酸化物の還元に必要な量の1.0〜1.1倍であることを特徴とする、請求項1に記載の窒化物蛍光体の製造方法。   The amount of Ca metal as the reducing agent is 1.0 to 1.1 times the amount necessary for the reduction of Al oxide and Eu oxide in the raw material powder mixture. The manufacturing method of the nitride fluorescent substance of description. 前記還元処理の温度が1000℃以上1200℃以下であることを特徴とする、請求項1又は2に記載の窒化物蛍光体の製造方法。   3. The method for producing a nitride phosphor according to claim 1, wherein the temperature of the reduction treatment is 1000 ° C. or more and 1200 ° C. or less.
JP2013123413A 2013-06-12 2013-06-12 Production method of nitride phosphor Pending JP2014240465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123413A JP2014240465A (en) 2013-06-12 2013-06-12 Production method of nitride phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123413A JP2014240465A (en) 2013-06-12 2013-06-12 Production method of nitride phosphor

Publications (1)

Publication Number Publication Date
JP2014240465A true JP2014240465A (en) 2014-12-25

Family

ID=52139873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123413A Pending JP2014240465A (en) 2013-06-12 2013-06-12 Production method of nitride phosphor

Country Status (1)

Country Link
JP (1) JP2014240465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043761A (en) * 2015-08-28 2017-03-02 日亜化学工業株式会社 Nitride phosphor, method for producing the same, and light-emitting device
CN108546510A (en) * 2018-05-15 2018-09-18 深圳瑞欧光技术有限公司 A kind of low biohazard transparent coatings of LED lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043761A (en) * 2015-08-28 2017-03-02 日亜化学工業株式会社 Nitride phosphor, method for producing the same, and light-emitting device
KR101848556B1 (en) 2015-08-28 2018-04-12 니치아 카가쿠 고교 가부시키가이샤 Nitride phosphor and production process thereof, and light emitting device
CN108546510A (en) * 2018-05-15 2018-09-18 深圳瑞欧光技术有限公司 A kind of low biohazard transparent coatings of LED lamp

Similar Documents

Publication Publication Date Title
Kim et al. Luminescence properties of CaAlSiN3: Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders
JP6610739B2 (en) Oxynitride phosphor powder and light emitting device using the same
TW200829681A (en) Phosphor, method for production thereof, and light-emitting apparatus
JP2012046625A (en) Method of manufacturing phosphor
CN106221695A (en) The preparation method of aluminum-nitride-based fluorescent material
WO2011158608A1 (en) PRODUCTION METHOD FOR β-SIALON
JP5849961B2 (en) Method for producing nitride phosphor using co-precipitation raw material, nitride phosphor, and raw material thereof
JPWO2016021705A1 (en) Phosphor, light emitting device, image display device, and illumination device
JP5697473B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP5339976B2 (en) Orange phosphor and method for producing the same
CN105238395A (en) Silicon-based nitride red fluorescent powder, and normal pressure preparation method and applications thereof
JP2014240465A (en) Production method of nitride phosphor
JP5111181B2 (en) Phosphor and light emitting device
JP5787343B2 (en) Phosphor and light emitting device
CN110055061B (en) Red long afterglow nitride luminescent material and preparation method thereof
JP5331021B2 (en) Yellow phosphor and method for producing the same
TWI593782B (en) A synthesis method of red nitride phosphor
JP6256868B2 (en) Method for producing red silicon oxynitride phosphor
CN104277827B (en) A kind of preparation method of silicon nitrogen base Blue-green phosphor
JP5690159B2 (en) Phosphor, method for manufacturing the same, and light emitting device
CN109054816A (en) A kind of preparation method of the aluminium nitride fluorescent powder of europium ion activation
KR101374076B1 (en) Stabilization of raw powders for manufacturing alpha sialon phosphors, powder composition therefrom and manufacturing methods for alpha sialon phosphors using the same
JP6035978B2 (en) Red phosphor and method for producing the same
Kim et al. Luminescence properties of La2Si6O3N8: Eu2+ phosphors prepared by spark plasma sintering
Teng et al. Effect of strontium nitride on the properties of Sr2Si5N8: Eu2+ red phosphor