JP2014239022A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2014239022A
JP2014239022A JP2013134299A JP2013134299A JP2014239022A JP 2014239022 A JP2014239022 A JP 2014239022A JP 2013134299 A JP2013134299 A JP 2013134299A JP 2013134299 A JP2013134299 A JP 2013134299A JP 2014239022 A JP2014239022 A JP 2014239022A
Authority
JP
Japan
Prior art keywords
electrode
power storage
negative electrode
positive electrode
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013134299A
Other languages
Japanese (ja)
Inventor
亨 永浦
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAURA ATSUKO
NAGAURA CHIEKO
Original Assignee
NAGAURA ATSUKO
NAGAURA CHIEKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAURA ATSUKO, NAGAURA CHIEKO filed Critical NAGAURA ATSUKO
Priority to JP2013134299A priority Critical patent/JP2014239022A/en
Publication of JP2014239022A publication Critical patent/JP2014239022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which, although an expensive resin separator is not necessary when an electrode surface has insulation properties, there is a risk in which a collector exposed to an electrode end is brought in contact with a counter electrode and a power storage device may cause an internal short circuit.SOLUTION: In the power storage device, either of a positive electrode and a negative electrode is an insulating electrode whose electrode surface has insulating properties, two sheets adjacent to the insulating electrode have electrode ends that is hardened by resin to be of an envelope shape, and a counter electrode is accommodated in the electrode of the envelope shape.

Description

本発明は、蓄電装置に関し、特に、蓄電装置の蓄電素子に関するものである。    The present invention relates to a power storage device, and particularly to a power storage element of a power storage device.

これまで携帯電話やノート型パソコンなどの電子機器の電源として広く普及してきたリチウムイオン電池は、近年、電気自動車や電力貯蔵用等の大型の蓄電装置(以下、二次電池およびキャパシタを総称して蓄電装置という。)への利用が期待されており、リチウムイオン電池の出力密度(W/L)の向上、価格の低減並びに安全性の向上が重要な課題となっている。    Lithium-ion batteries, which have been widely used as power sources for electronic devices such as mobile phones and notebook computers, have recently become large-scale power storage devices for electric vehicles and power storage (hereinafter collectively referred to as secondary batteries and capacitors). It is expected to be used for a power storage device), and improvement of output density (W / L), reduction of price and improvement of safety of lithium ion batteries are important issues.

蓄電装置の価格と安全性には活物質が大きく係わってくる。蓄電装置における“活物質”とは蓄電反応に直接寄与する物質であり、電気化学的な酸化還元反応に基づいて可逆的に化学変化をするものと、化学変化はしないものに分けられる。一般に化学変化(電気化学変化)に基づく活物質は、ファラデーの電気分解の法則に従うため、化学変化に基づかない活物質に比べて電気化学容量(mAh/g)が大きい。    The active material greatly affects the price and safety of the power storage device. An “active material” in a power storage device is a substance that directly contributes to a power storage reaction, and can be classified into a material that undergoes a chemical change reversibly based on an electrochemical redox reaction and a material that does not undergo a chemical change. In general, an active material based on a chemical change (electrochemical change) follows Faraday's law of electrolysis, and therefore has a larger electrochemical capacity (mAh / g) than an active material not based on a chemical change.

電気化学的な化学変化に基づく活物質を正極と負極の両極ともに使用する蓄電装置が“二次電池(または単に電池ということもある。)”である。一方、化学変化に基づかない活物質を使用する蓄電装置は“キャパシタ”と呼ばれるが、正極が負極の一方にだけ化学変化に基づく活物質を使用する蓄電装置も一般的には“キャパシタ”に分類される。    A power storage device that uses an active material based on an electrochemical chemical change for both the positive electrode and the negative electrode is a “secondary battery (or simply a battery)”. On the other hand, power storage devices that use active materials that are not based on chemical changes are called “capacitors”, but power storage devices that use active materials based on chemical changes only on one side of the negative electrode are also generally classified as “capacitors”. Is done.

キャパシタは出力密度(W/L)とサイクル特性においては二次電池を凌ぐ蓄電装置として注目されるが、エネルギー密度(Wh/L)は小さい。そこで、キャパシタのエネルギー密度(=蓄電容量)を高めるべく、化学変化に基づく活物質(例えば、TiO−B、LiTi12等)を負極に使用するハイブリッドキャパシタが提案されている(非特許文献1〜2参照)。しかし、負極の活物質容量だけを増やしても電気自動車や電力貯蔵用等に要求されるエネルギー密度には達し難く、斯かる大型の蓄電装置はどうしても二次電池に期待せざるを得ない。A capacitor is noted as a power storage device that surpasses a secondary battery in terms of output density (W / L) and cycle characteristics, but its energy density (Wh / L) is small. Therefore, in order to increase the energy density (= storage capacity) of the capacitor, a hybrid capacitor using an active material (for example, TiO 2 —B, Li 4 Ti 5 O 12, etc.) based on a chemical change as a negative electrode has been proposed ( Non-patent documents 1 and 2). However, even if only the negative electrode active material capacity is increased, it is difficult to reach the energy density required for electric vehicles, power storage, and the like, and such a large power storage device must be expected for a secondary battery.

リチウムイオン電池は正極の活物質中に存在するリチウムイオン(Li)が充電によって負極に移動し、放電では再び正極に戻るという二次電池システムである。斯かる二次電池システムは1980年以前に既に提案されており、充電状態では特定のイオンが負極(又は正極)に偏り、放電状態では逆に正極(又は負極)に偏ることから“ロッキングチェアー電池”とよばれていたが、長い間実用化には至らなかった。The lithium ion battery is a secondary battery system in which lithium ions (Li + ) present in the active material of the positive electrode move to the negative electrode by charging and return to the positive electrode again by discharging. Such a secondary battery system has already been proposed before 1980. In a charged state, a specific ion is biased to a negative electrode (or positive electrode), and in a discharged state, it is biased to a positive electrode (or negative electrode). "It was called" but has not been put into practical use for a long time. "

本願発明者らは、正極にLiCoOを使用し、負極にはカーボンを使用して、このロッキングチェアー電池を世界で最初に商品化に成功し、これを、“リチウムイオン電池”と名付けて、1990年2月にプレスリリースした。同年3月にはフロリダで開かれた第3回二次電池セミナーで、本願発明者が初めてリチウムイオン電池の優れた性能を世界に紹介したのである(非特許文献3〜4参照)。今日では、いろいろな正極材と負極材を使用するロッキングチェアー電池が、全て、リチウムイオン電池と呼ばれている。The inventors of this application succeeded in commercializing this rocking chair battery for the first time in the world using LiCoO 2 for the positive electrode and carbon for the negative electrode, and named it “Lithium ion battery”. A press release was made in February 1990. In March of the same year, at the third secondary battery seminar held in Florida, the present inventor first introduced the excellent performance of lithium ion batteries to the world (see Non-Patent Documents 3 to 4). Nowadays, all rocking chair batteries using various positive and negative electrode materials are called lithium ion batteries.

リチウムイオン電池(ロッキングチェアー電池)の価格低減においては、正極活物質をLiCoOからLiMnやLiFePO等の安価な材料に置き換えて、低価格タイプが実用化されている。また、安全性の向上に関しては、負極活物質をカーボンからセラミックス材料(例えば、TiO−B、LiTi12等)に置き換える提案がなされている(非特許文献5〜11参照)。In order to reduce the price of a lithium ion battery (rocking chair battery), a low-price type has been put into practical use by replacing the positive electrode active material with an inexpensive material such as LiMn 2 O 4 or LiFePO 4 from LiCoO 2 . Moreover, regarding the improvement of safety, proposals have been made to replace the negative electrode active material from carbon to a ceramic material (for example, TiO 2 —B, Li 4 Ti 5 O 12, etc.) (see Non-Patent Documents 5 to 11).

蓄電装置の出力密度(W/L)の向上や価格低減並びに安全性の向上などに関係するものとしては、活物質の他にもセパレーターがある。蓄電装置では対向する正極と負極はイオン電導では導通し、電子伝導では導通してはならない。そこで、一般には対向する正極と負極の間にはシート状の“セパレーター”を介在させる。リチウムイオン電池では、セパレーターとしてポリエチレン(PE)やポリプロピレン(PP)製の“セパレーター機能”を有する特殊な多孔質膜が使用されているが、斯かる樹脂製のセパレーターは価格が高く、セパレーターの使用量が電池価格に大きく影響する。なお“セパレーター機能”とは正極と負極のイオン電導の導通経路は確保しつつ、電子的導通は断つという機能である。    In addition to the active material, there are separators that relate to improvements in output density (W / L) of power storage devices, price reduction, and safety improvement. In the power storage device, the positive electrode and the negative electrode facing each other must be conducted by ion conduction and not conducted by electron conduction. Therefore, generally, a sheet-like “separator” is interposed between the positive electrode and the negative electrode facing each other. Lithium-ion batteries use a special porous membrane with a “separator function” made of polyethylene (PE) or polypropylene (PP) as the separator, but such resin separators are expensive and the use of separators The amount greatly affects the battery price. The “separator function” is a function that cuts off electronic conduction while securing a conduction path for ion conduction between the positive electrode and the negative electrode.

また、リチウムイオン電池の出力密度(W/L)を高めるためには電極面積を広くすることが有効であるが、電極面積に比例して相対的にセパレーター使用量が増えて、電池価格は高くなる。    In order to increase the output density (W / L) of a lithium ion battery, it is effective to increase the electrode area. However, the amount of separator used increases in proportion to the electrode area, and the battery price is high. Become.

リチウムイオン電池(ロッキングチェアー電池)では、作動電圧の低いシステムは、相対的に安全性は高いといえるかもしれないが、作動電圧の低い電池は相対的に蓄電容量(Wh)当たりのセパレーター使用量が増えて、電池価格が高くなる。    In lithium-ion batteries (rocking chair batteries), a system with a low operating voltage may be said to be relatively safe, but a battery with a low operating voltage is relatively used as a separator per storage capacity (Wh). Will increase the battery price.

例えば、前述のLiTi12を負極活物質とするリチウムイオン電池は高い安全性が期待されるとして注目されている(非特許文献5〜9参照)が、作動電圧はカーボンを負極活物質とする電池の2/3程度であるため、Wh当たりのセパレーター使用量は1.5倍に増える。従って、LiTi12を負極活物質とすればリチウムイオン電池の安全性は改善されても、電池価格は高くなる。For example, a lithium ion battery using the above-described Li 4 Ti 5 O 12 as a negative electrode active material has been attracting attention as being expected to have high safety (see Non-Patent Documents 5 to 9), but the operating voltage is carbon. Since it is about 2/3 of the material battery, the amount of separator used per Wh increases 1.5 times. Therefore, if Li 4 Ti 5 O 12 is used as the negative electrode active material, the battery price increases even if the safety of the lithium ion battery is improved.

更に、リチウムイオン電池の安全性を確保する上で、樹脂製セパレーターの耐熱性の低さが大きな障害となっている。リチウムイオン電池では電池の急激な発熱に繋がる内部ショート、外部ショート、過充電等は絶対に避けなければならないが、電池内部で生じる内部ショートだけは外部からコントロールすることが出来ないだけに始末が悪い。    Furthermore, in order to ensure the safety of the lithium ion battery, the low heat resistance of the resin separator is a major obstacle. Lithium-ion batteries must avoid internal shorts, external shorts, overcharging, etc., which can lead to sudden heat generation of the battery, but only internal shorts that occur inside the battery cannot be controlled from the outside. .

実際、リチウムイオン電池の発煙や発火事故は内部ショートに起因する可能性が高い。現行の樹脂製のセパレーターを使用するリチウムイオン電池では、微小の導電性異物で正極と負極が軽くショートした場合でも、ショート箇所の部分的な温度上昇によって、樹脂製のセパレーターが部分的に熱収縮して内部ショートが重症化し、電池が熱暴走して発火事故等に繋がる可能性が考えられる。    In fact, lithium ion battery smoke and fire accidents are likely due to an internal short circuit. In lithium-ion batteries that use current resin separators, even if the positive and negative electrodes are slightly short-circuited by minute conductive foreign matter, the resin separator partially heat-shrinks due to a partial increase in temperature at the short-circuited location. Then, there is a possibility that the internal short circuit becomes serious and the battery runs out of heat, resulting in a fire accident or the like.

そこで、電極表面に非電子伝導性(電子絶縁性)のセラミックス層を形成して、セパレーター機能の耐熱性をアッするという方法が提案されている(非特許文献12参照)。電極表面に形成するセラミックス層は耐熱性も高く、セラミックススラリーを電極表面に塗布して安価に形成できるので、セパレーター機能のコスト低減と耐熱性アップが同時に図れる可能性がある。    Therefore, a method has been proposed in which a non-electron conductive (electron insulating) ceramic layer is formed on the electrode surface to increase the heat resistance of the separator function (see Non-Patent Document 12). The ceramic layer formed on the electrode surface has high heat resistance and can be formed at low cost by applying a ceramic slurry to the electrode surface. Therefore, there is a possibility that the cost of the separator function can be reduced and the heat resistance can be improved at the same time.

通常、蓄電装置の電極は活物質で構成される活物質層を集電体上に形成したものであり、活物質が電子導電性であれば電極表面は電子伝導性となるし、活物質が非電子導電性であっても、通常は伝導助剤を混ぜて活物質層を形成するので、やはり電極表面は電子伝導性となる。そのため対向する正極と負極の間には“セパレーター”を介在させる必要がある。    Usually, an electrode of a power storage device has an active material layer formed of an active material formed on a current collector. If the active material is electronically conductive, the electrode surface becomes electronically conductive, Even if it is non-electron conductive, the active material layer is usually formed by mixing a conductive additive, so that the electrode surface is still electronically conductive. Therefore, it is necessary to interpose a “separator” between the positive electrode and the negative electrode facing each other.

しかし、正極か負極の一方の電極表面が電子絶縁性であれば、対向する正極と負極は直接接触していても、正極と負極の電子的導通は断たれるし、正極と負極に電解液が含浸されていれば、正極と負極のイオンの導通は確保されるので、対向する正極と負極の間には“セパレーター”を介在させなくてもセパレーター機能は備わることになる。    However, if one electrode surface of the positive electrode or the negative electrode is electronically insulative, even if the positive electrode and the negative electrode facing each other are in direct contact, the electronic conduction between the positive electrode and the negative electrode is interrupted, and the electrolyte solution is connected to the positive electrode and the negative electrode. Is impregnated, the ionic conduction between the positive electrode and the negative electrode is ensured. Therefore, a separator function is provided without interposing a “separator” between the positive electrode and the negative electrode facing each other.

電極表面を電子絶縁性とするためには、電子伝導性の電極表面には電子絶縁性のセラミックス層を形成すればよい。また、活物質が非電子導電性であれば、伝導助剤を混ぜないで活物質層を形成すれば、電極表面は電子絶縁性となる。従って、リチウムイオン電池においても正極か負極の一方の電極表面を電子絶縁性とすれば、樹脂製のセパレーターは不要であり、リチウムイオン電池の安全性の改善と価格低減が同時に叶うことになる。    In order to make the electrode surface electronically insulating, an electronically insulating ceramic layer may be formed on the surface of the electron conductive electrode. Further, if the active material is non-electron conductive, the electrode surface becomes electronically insulating if the active material layer is formed without mixing the conduction aid. Therefore, if the surface of one of the positive electrode and the negative electrode is made electronically insulating even in the lithium ion battery, a resin separator is unnecessary, and the improvement of the safety and the price reduction of the lithium ion battery can be realized at the same time.

なお、一般に、電気伝導率が10−10S/cm未満の材料が絶縁体と呼ばれており、本明細書で言う“電子絶縁性”または“非電子伝導性”とは電子伝導率が10−10S/cm未満を意味するものであり、電子伝導率が10−10S/cm以上は、通常半導体に分類される範囲(電子伝導率が10〜10−10S/cm程度)も含めて、本明細書では“電子伝導性”と言う。In general, a material having an electric conductivity of less than 10 −10 S / cm is called an insulator, and “electron insulating” or “non-electron conductive” in this specification means an electron conductivity of 10 It means less than −10 S / cm, and an electron conductivity of 10 −10 S / cm or more is usually classified as a semiconductor (electron conductivity is about 10 3 to 10 −10 S / cm). Including, it is referred to as “electron conductivity” in this specification.

安部将幸、その他、第53回電池討論会講演予稿集、P.288(2012)Masayuki Abe, others, Proceedings of the 53rd Battery Discussion Meeting, 288 (2012) 大篭義幸、その他、第53回電池討論会講演予稿集、P.292(2012)Yoshiyuki Otsuki, others, Proceedings of the 53rd Battery Discussion Meeting, 292 (2012) Nagaura、JEC Battery Newsletter No.2(Mar.−Apr.)1990Nagaura, JEC Battery Newsletter No. 2 (Mar.-Apr.) 1990 Nagaura,Progress in Batteries&Solar Cells,Vol.9,P.209、1990、Nagaura, Progress in Batteries & Solar Cells, Vol. 9, P.I. 209, 1990, 高見則雄、その他、東芝レビューVol.63 No.12(2008)Norio Takami, others, Toshiba Review Vol. 63 No. 12 (2008) 橘田晃宣、その他、第53回電池討論会講演予稿集、P.238(2012)Yoshinori Tachida, et al., Proceedings of the 53rd Battery Discussion Meeting, 238 (2012) 渋川憲太、その他、第53回電池討論会講演予稿集、P.240(2012)Kenta Shibukawa and others, Proceedings of the 53rd Battery Discussion Meeting, 240 (2012) 伊藤龍太、その他、第53回電池討論会講演予稿集、P.241(2012)Ryuta Ito, et al., Proceedings of the 53rd Battery Conference, 241 (2012) 門磨義裕、その他、第53回電池討論会講演予稿集、P.242(2012)Yoshihiro Kadoma and others, Proceedings of the 53rd Battery Conference 242 (2012) 中野善之、その他、第53回電池討論会講演予稿集、P.245(2012)Yoshiyuki Nakano, et al., Proceedings of the 53rd Battery Discussion Meeting, p. 245 (2012) 古谷泰幸、その他、第53回電池討論会講演予稿集、P.246(2012)Yasuyuki Furuya, et al., Proceedings of the 53rd Battery Discussion Meeting, p. 246 (2012) 豊田裕次郎、その他、第53回電池討論会講演予稿集、P.2(2012)Yujiro Toyoda, et al., Proceedings of the 53rd Battery Conference, 2 (2012)

正極と負極が対向してなる蓄電装置において、蓄電素子が3枚以上の電極を積み重ねた電極積層体として構成される場合には、当該蓄電素子を構成する電極は、通常、活物質層を集電体の上に連続的に形成しておいて、必要電極寸法に打ち抜いて作られる。この場合、電極表面が電子絶縁性の電極であっても電極端には電導性の集電体が露出する。    In a power storage device in which a positive electrode and a negative electrode face each other, when the power storage element is configured as an electrode stack in which three or more electrodes are stacked, the electrode constituting the power storage element usually collects an active material layer. It is formed by continuously forming on the electric body and punching to the required electrode dimensions. In this case, even if the electrode surface is an electronic insulating electrode, the conductive current collector is exposed at the electrode end.

しかし、前記電極積層体がシート状セパレーターを電極間に介在させて構成される場合であれば、シート状セパレーターを電極寸法より大きくしておけば、電極端に露出する集電体が対極と接触して蓄電装置が内部ショートするというケースは殆ど無い。    However, if the electrode laminate is configured by interposing a sheet-like separator between the electrodes, the current collector exposed at the electrode end contacts the counter electrode if the sheet-like separator is made larger than the electrode dimensions. Thus, there is almost no case where the power storage device is internally short-circuited.

しかしながら、シート状セパレーターを介在せずに正極と負極が積層されてなる電極積層体では、電極表面が電子絶縁性の電極であっても、その電極端に露出する集電体が対極と接触して蓄電装置が内部ショートする危険性がある。    However, in an electrode laminate in which a positive electrode and a negative electrode are laminated without a sheet separator, even if the electrode surface is an electronic insulating electrode, the current collector exposed at the electrode end is in contact with the counter electrode. There is a risk that the power storage device will short-circuit inside.

従って、電極表面が電子絶縁性の電極を使用する電池においても、現状では内部ショートを避けるためにシート状セパレーターを併用せざるを得ない。電極表面が電子絶縁性の電極を使用してもシート状セパレーターとの併用ではセパレーター機能のコスト低減には繋がらない。    Therefore, even in a battery using an electrode whose surface is electronically insulating, a sheet-like separator must be used together in order to avoid an internal short circuit. Even if the electrode surface uses an electronic insulating electrode, the combined use with the sheet-like separator does not lead to cost reduction of the separator function.

本発明は、以上の課題に鑑みて成されたものであり、その目的は、電極表面が電子絶縁性の電極を使用する蓄電装置において、シート状セパレーターを使用しなくても電極端に露出する集電体が対極とは接触することのない電極積層体を提供することにある。    The present invention has been made in view of the above problems, and its object is to expose the electrode surface at the electrode end without using a sheet-like separator in a power storage device using an electronically insulating electrode. An object of the present invention is to provide an electrode laminate in which a current collector is not in contact with a counter electrode.

蓄電素子が、3枚以上の電極を積み重ねた電極積層体として構成されている蓄電装置において、前記電極積層体を構成する正極と負極の少なくとも一方は、電極表面が電子絶縁性の電極であり、当該電極の隣接する2枚は、前記電極積層体においては、その電極端が樹脂で固めてられて封筒状となっており、当該封筒状の電極の中に対極となる電極が納まっていることを特徴とする。なお、以下では、電極表面が電子絶縁性の電極は「絶縁性電極」ともいう。    In the power storage device in which the power storage element is configured as an electrode laminate in which three or more electrodes are stacked, at least one of the positive electrode and the negative electrode constituting the electrode stack is an electrode whose surface is electronically insulating, In the electrode laminate, the two adjacent electrodes are in an envelope shape with the electrode ends being hardened with a resin, and the counter electrode is contained in the envelope-shaped electrode. It is characterized by. Hereinafter, an electrode whose surface is electronically insulating is also referred to as an “insulating electrode”.

本発明による蓄電装置では、蓄電素子は3枚以上の電極を積み重ねた電極積層体として構成され、斯かる電極積層体においては、電極表面が電子絶縁性である電極(正極又は負極)はその隣接する2枚が電極端を樹脂で固められて封筒状となっている。当該封筒状電極の内部は電子絶縁性の電極表面と樹脂で囲まれているため完全に電子絶縁性である。一方、対極(負極又は正極)はこの封筒状の電極の中に納まっているので、対極の電極表面や電極端面が電子伝導性であっても、正極と負極が電子的に導通することはない。従って本発明によれば、シート状セパレーターは不要であり、リチウムイオン電池の安全性の改善と価格低減が同時に叶う。    In the power storage device according to the present invention, the power storage element is configured as an electrode laminated body in which three or more electrodes are stacked, and in such an electrode laminated body, an electrode (positive electrode or negative electrode) whose electrode surface is electronically insulating is adjacent thereto. The two sheets are made into an envelope shape with the electrode ends hardened with resin. Since the inside of the envelope-shaped electrode is surrounded by an electronic insulating electrode surface and resin, it is completely electronic insulating. On the other hand, since the counter electrode (negative electrode or positive electrode) is housed in the envelope-shaped electrode, even if the electrode surface and the electrode end surface of the counter electrode are electronically conductive, the positive electrode and the negative electrode are not electrically connected. . Therefore, according to the present invention, the sheet-like separator is unnecessary, and the improvement of the safety and the price reduction of the lithium ion battery can be realized at the same time.

上記した以外の課題やその解決手段と効果は、以下の実施の形態の説明により更に詳細に説明する。    Problems other than those described above and solutions and effects thereof will be described in more detail with reference to the following embodiments.

本発明の実施に係る電極積層体の正面図である。    It is a front view of the electrode laminated body which concerns on implementation of this invention. 本発明の実施に係る電極積層体の断面図である。    It is sectional drawing of the electrode laminated body which concerns on implementation of this invention. 本発明の実施に係る電極積層体の断面図である。    It is sectional drawing of the electrode laminated body which concerns on implementation of this invention. 本発明の実施に係る蓄電装置の密封前の斜視図である。    It is a perspective view before sealing of the electrical storage apparatus which concerns on implementation of this invention. 本発明の実施に係る多層電極積層体の断面図である。    It is sectional drawing of the multilayer electrode laminated body which concerns on implementation of this invention. 本発明の実施に係る多層電極積層体の断面図である。    It is sectional drawing of the multilayer electrode laminated body which concerns on implementation of this invention. 本発明の実施に係る蓄電装置の電解液含浸前の断面図である。    It is sectional drawing before electrolyte solution impregnation of the electrical storage apparatus which concerns on implementation of this invention. 本発明の実施に係る蓄電装置の電解液含浸後の断面図である。    It is sectional drawing after electrolyte solution impregnation of the electrical storage apparatus which concerns on implementation of this invention. 本発明の実施に係る電極対の正面図である。    It is a front view of the electrode pair which concerns on implementation of this invention. 本発明の実施に係る蓄電装置の斜視図である。    It is a perspective view of the electrical storage apparatus which concerns on implementation of this invention. 従来の電極積層体の断面図である。    It is sectional drawing of the conventional electrode laminated body.

以下、本発明の実施の形態を図面に基づきさらに詳細に説明する。    Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

本発明の実施形態では、少なくとも正極か負極の一方は電極表面が電子絶縁性の電極(絶縁性電極)である。以下では、負極の電極表面が電子絶縁性で、正極の電極表面は電子伝導性である場合の一実施形態について詳細に説明する。    In an embodiment of the present invention, at least one of the positive electrode and the negative electrode is an electrode whose surface is electronically insulating (insulating electrode). Hereinafter, an embodiment in which the electrode surface of the negative electrode is electronically insulating and the electrode surface of the positive electrode is electronically conductive will be described in detail.

図1は 本発明の基本的な一実施形態に係る電極積層体10(以下、蓄電素子10ともいう。)の正面図である。図2および図3は図1に示す電極積層体10の断面図であり、図2は図1に示すC−C’における断面を、図3は図1に示すD−D’における断面をそれぞれ示している。図4は本発明の一実施形態に係る蓄電装置の電解液注入時の斜視図である。    FIG. 1 is a front view of an electrode laminate 10 (hereinafter also referred to as a power storage element 10) according to a basic embodiment of the present invention. 2 and 3 are cross-sectional views of the electrode laminate 10 shown in FIG. 1, FIG. 2 is a cross-sectional view taken along the line CC ′ shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line DD ′ shown in FIG. Show. FIG. 4 is a perspective view of the power storage device according to the embodiment of the present invention when the electrolyte is injected.

図1は本発明の基本的な一実施形態に係る電極積層体10を示すものであり、図2および図3にその断面図を示したように、1枚の正極31と2枚の負極32で構成されている。図2に示すように、正極31は活物質層2(以下、正極活物質層2ともいう。)が集電体4(以下、正極集電体4ともいう。)に密着して形成された電極であり、正極31の電極表面は電子伝導性である。一方、負極32は活物質層1(以下、負極活物質層1ともいう。)が集電体3(以下、負極集電体3ともいう。)に密着して形成された電極であり、負極32の電極表面は電子絶縁性である。    FIG. 1 shows an electrode laminate 10 according to one basic embodiment of the present invention. As shown in FIGS. 2 and 3, a single positive electrode 31 and two negative electrodes 32. It consists of As shown in FIG. 2, the positive electrode 31 is formed such that the active material layer 2 (hereinafter also referred to as the positive electrode active material layer 2) is in close contact with the current collector 4 (hereinafter also referred to as the positive electrode current collector 4). It is an electrode, and the electrode surface of the positive electrode 31 is electronically conductive. On the other hand, the negative electrode 32 is an electrode in which the active material layer 1 (hereinafter also referred to as negative electrode active material layer 1) is formed in close contact with the current collector 3 (hereinafter also referred to as negative electrode current collector 3). The electrode surface of 32 is electronically insulating.

電極表面が電子絶縁性の2枚の負極32は、図2および図3に示すように、その左右、および下部の電極端が樹脂35で固めてられて封筒状となっており、当該封筒状の負極32の中に対極となる正極31が納まっていることが特徴である。封筒状負極32の内部は電子絶縁性の電極表面と電子絶縁性の樹脂35で囲まれているため、正極31の電極表面や電極端面が電子伝導性であっても、正極31と負極32が電子的に導通することはない。    As shown in FIG. 2 and FIG. 3, the two negative electrodes 32 whose electrode surfaces are electronically insulative are formed in an envelope shape in which the left and right and lower electrode ends are solidified with a resin 35. The negative electrode 32 is characterized in that a positive electrode 31 serving as a counter electrode is accommodated. Since the inside of the envelope-shaped negative electrode 32 is surrounded by the electronic insulating electrode surface and the electronic insulating resin 35, the positive electrode 31 and the negative electrode 32 are not connected even if the electrode surface or the electrode end surface of the positive electrode 31 is electronically conductive. There is no electronic conduction.

また、図1および図2に示すように、負極32の上部の電極端は樹脂35で固めてられておらず、負極32で構成される封筒状の構造は、いわば、開封状態である。このように負極32の電極端は部分的に樹脂で固めないで開封状態としておけば、当該電極積層体10への電解液の含浸経路を確保することができる。    As shown in FIGS. 1 and 2, the upper electrode end of the negative electrode 32 is not hardened with the resin 35, and the envelope-like structure formed of the negative electrode 32 is in an open state. Thus, if the electrode end of the negative electrode 32 is not partially hardened with a resin and is opened, an electrolyte solution impregnation path to the electrode laminate 10 can be secured.

電極積層体10では、図1、図2および図3で示すように、負極32の電極端は正極31の電極端より寸法Aだけ外側に位置させているので、樹脂で固めていない電極端に露出する集電体でも正極31に接触する可能性は殆ど無い。    In the electrode laminate 10, as shown in FIGS. 1, 2, and 3, the electrode end of the negative electrode 32 is positioned outside the electrode end of the positive electrode 31 by a dimension A. There is almost no possibility that the exposed current collector contacts the positive electrode 31.

負極32に設けた電極タブの取り付け部33はいずれも負極タブ6に溶接し、正極31に設けた電極タブの取り付け部34も正極タブ7に溶接する。その後、蓄電素子10は、図4に示すように、アルミニウムとポリプロピレンのラミネートシート11と12の間に挟んで、ラミネートシートの端112aを熱融着する。図4に示すように、ラミネートシートの上部は未融着のままとしておくが、ラミネートシートの中に納まった電極積層体10は樹脂で固めていない負極32の電極端が下に位置している。    The electrode tab attachment portions 33 provided on the negative electrode 32 are all welded to the negative electrode tab 6, and the electrode tab attachment portions 34 provided on the positive electrode 31 are also welded to the positive electrode tab 7. Thereafter, as shown in FIG. 4, the storage element 10 is sandwiched between aluminum and polypropylene laminate sheets 11 and 12, and the end 112 a of the laminate sheet is heat-sealed. As shown in FIG. 4, the upper part of the laminate sheet is left unfused, but the electrode stack 10 contained in the laminate sheet has the electrode end of the negative electrode 32 not solidified with resin positioned below. .

図4に示す状態で、ラミネートシートで包まれた蓄電素子10は真空乾燥機で十分に乾燥させた後、未融着のラミネートシート開口部より電解液を注入して真空含浸法によって電解液を蓄電素子10に含浸し、その後ラミネートシート開口部を熱融着して密封すれば、本実施形態に係る蓄電装置が完成する。    In the state shown in FIG. 4, the storage element 10 wrapped with a laminate sheet is sufficiently dried with a vacuum dryer, and then injected with an electrolyte from an unfused laminate sheet opening, and the electrolyte is poured by a vacuum impregnation method. When the power storage element 10 is impregnated, and then the laminate sheet opening is heat-sealed and sealed, the power storage device according to this embodiment is completed.

以上は、電極積層体10を2枚の負極32と1枚の正極31で構成した本発明の基本的な一実施形態について説明したが、本発明は基本的には電極積層体10はn+1枚の絶縁性電極とその対極n枚で構成して実施できる(nは1以上の整数)。    The above has described a basic embodiment of the present invention in which the electrode stack 10 is composed of two negative electrodes 32 and one positive electrode 31, but the present invention basically has n + 1 electrode stacks 10. It is possible to implement with an insulating electrode of n and n counter electrodes (n is an integer of 1 or more).

例えば、n=6の場合では、電極積層体10はその断面図を図5および図6で示すように、7枚の負極32と6枚の正極31で構成される。この場合でも電極表面が電子絶縁性の7枚の負極32は、隣接するいずれの負極32もその電極端が樹脂35で固めてられて封筒状の構造が形成されており、当該封筒状構造の中に対極となる正極31が1枚ずつ納まっていることが特徴である。封筒状構造の内部はいずれも電子絶縁性の電極表面と樹脂35で囲まれているため完全に電子絶縁性であり、そこに納まったいずれの正極31も負極32と電子的に導通することはない。    For example, in the case of n = 6, the electrode laminate 10 includes seven negative electrodes 32 and six positive electrodes 31, as shown in cross-sectional views in FIGS. Even in this case, the electrode surfaces of the seven negative electrodes 32 having an electronic insulating property are such that any adjacent negative electrode 32 has its electrode end hardened with resin 35 to form an envelope-like structure. It is characterized in that one positive electrode 31 serving as a counter electrode is housed therein. The inside of the envelope-like structure is completely electronically insulating because it is surrounded by the electronically insulating electrode surface and the resin 35, and any positive electrode 31 contained therein is electrically connected to the negative electrode 32. Absent.

図5および図6で示す電極積層体10の組み立て方としては、正極31の寸法を負極32の寸法より若干(2Aだけ)小さくしておいて、図8に示すように、一枚の正極31を一枚の負極32の内側に、電極端を寸法Aだけずらして配置して、接着剤8(又は粘着剤8)によって一箇所(又は数箇所でもよい。)で接合して固定する。接合された一対の正極31と負極32においては、正極31は負極32の電極端より一定の寸法Aだけ内側に位置するという関係が確実に保たれる。    5 and FIG. 6, the positive electrode 31 is slightly smaller (by 2A) than the negative electrode 32, and as shown in FIG. Are arranged inside the single negative electrode 32 by shifting the electrode end by the dimension A, and bonded and fixed at one place (or several places) by the adhesive 8 (or adhesive 8). In the pair of the positive electrode 31 and the negative electrode 32 that are joined, the relationship that the positive electrode 31 is located inside the electrode end of the negative electrode 32 by a certain dimension A is reliably maintained.

斯かる接合状態の一対の電極対20は外側に位置する負極32の電極端だけを揃えて積層すれば、自動的に正極31は負極32の電極端より一定の寸法Aだけ内側に位置して積層される。外側に位置して揃った負極32の電極端を樹脂35で固めれば、図5および図6で示す電極積層体10を簡単に組み立てることが出来る。この場合も図5に示すように、負極32の電極端は部分的に(図5においては上部電極端)は樹脂で固めないで開封状態としておけば、当該電極積層体10への電解液の含浸経路を確保することができる。    If the pair of electrodes 20 in such a bonded state is laminated with only the electrode ends of the negative electrode 32 positioned outside, the positive electrode 31 is automatically positioned inside the electrode end of the negative electrode 32 by a certain dimension A. Laminated. If the electrode ends of the negative electrode 32 aligned on the outside are solidified with the resin 35, the electrode laminate 10 shown in FIGS. 5 and 6 can be easily assembled. Also in this case, as shown in FIG. 5, if the electrode end of the negative electrode 32 (the upper electrode end in FIG. 5) is not hardened with resin and left open, the electrolyte solution to the electrode laminate 10 is not sealed. An impregnation path can be secured.

図5および図6で示す電極積層体10のように、電極枚数を増やした電極積層体の場合にも、全ての電極のタブ取り付け部はそれぞれ正極タブと負極タブに取り付け、同じようにアルミニウムとポリプロピレンのラミネートシートの間に挟んで、ラミネートシートの端を熱融着する。このとき電極積層体10は電解液の含浸経路として確保した、樹脂で固めていない電極端を下にしてラミネートシートに納め、ラミネートシートは上端部を未融着のままとしておく。    As in the electrode laminate 10 shown in FIGS. 5 and 6, even in the case of an electrode laminate in which the number of electrodes is increased, the tab attachment portions of all the electrodes are attached to the positive electrode tab and the negative electrode tab, respectively. The end of the laminate sheet is heat-sealed between the polypropylene laminate sheets. At this time, the electrode laminate 10 is placed in a laminate sheet with the electrode end not secured by the resin, which is secured as an electrolyte solution impregnation path, and the upper end of the laminate sheet is left unfused.

ラミネートシートで包まれた蓄電素子10は密封状態ではないため、最終的にはこの段階で、真空乾燥機中で十分に乾燥させることが出来る。十分に乾燥させた蓄電素子10には電解液を含浸させて密封すれば、図9に示した本実施形態に係る蓄電装置100が完成する。図中で示すラミネートシートの熱融着部112bが最終的に密封のために熱融着したラミネートシートの端である。    Since the electricity storage element 10 wrapped with the laminate sheet is not hermetically sealed, it can finally be sufficiently dried in a vacuum dryer at this stage. When the fully dried power storage element 10 is impregnated with an electrolytic solution and sealed, the power storage device 100 according to this embodiment shown in FIG. 9 is completed. The laminate sheet heat-sealed portion 112b shown in the figure is the end of the laminate sheet that has been finally heat-sealed for sealing.

また、蓄電素子10に取り付けた電極タブ6と7には予めプラスチックテープ9を熱圧着して貼り付けているので、当該プラスチックテープ9がラミネートシートの熱融着部112aと一体化して熱融着され、負極タブ6と正極タブ7は外部に取り出されて、負極外部端子13および正極外部端子14となる。    In addition, since the plastic tape 9 is preliminarily bonded to the electrode tabs 6 and 7 attached to the electricity storage element 10 by thermocompression bonding, the plastic tape 9 is integrated with the heat-bonding portion 112a of the laminate sheet and heat-sealed. Then, the negative electrode tab 6 and the positive electrode tab 7 are taken out to become a negative electrode external terminal 13 and a positive electrode external terminal 14.

蓄電素子への電解液の含浸は、通常、真空含浸法で行うが、真空含浸法では蓄電素子を一旦真空下において、蓄電素子中の空気を抜き取り、常圧に戻したときに空気に代わって電解液を含浸せしめるというものである。しかし、従来の蓄電素子への真空含浸法による電解液の含浸では、常圧に戻したときに、再び空気も一緒に蓄電素子へ戻るために電解液の含浸効率が悪く、真空含浸工程を数回繰り返す必要があった。    The impregnation of the electrolytic solution into the electric storage element is usually performed by a vacuum impregnation method. However, in the vacuum impregnation method, the electric storage element is once under vacuum, the air in the electric storage element is extracted, and the air is replaced with air when the pressure is returned to normal pressure. It is impregnated with an electrolytic solution. However, in the conventional impregnation of the electrolytic solution into the electric storage element by the vacuum impregnation method, when the pressure is returned to normal pressure, the air is also returned to the electric storage element together with the air again. It was necessary to repeat it.

本実施形態においては、電極積層体10は電解液の含浸経路として、樹脂で固めていない電極端を下にしてラミネートシートに納められているので、図7Aに示すように、ラミネートシートの未封じ部から袋状のラミネートシート内に必要量の電解液15を注入すれば、電極積層体10への電解液の含浸経路は樹脂で固めていない電極端41bを経由する以外にない。従って真空下では蓄電素子10に含まれる空気が電極積層体10の下部41bから外部に吸引排除されるが、次に、常圧に戻されると、電極積層体10から排除された空気は樹脂で固められた電極端41aからは電極積層体10中に戻ることは出来ない。従って、電極積層体10から排除された空気に代わって、樹脂で固めていない電極端41bからのみ、電解液が効率よく電極積層体10の内部に含浸される。    In the present embodiment, the electrode laminate 10 is housed in the laminate sheet with the electrode end not solidified with resin as the electrolyte solution impregnation path, so that the laminate sheet is not sealed as shown in FIG. 7A. If a required amount of the electrolytic solution 15 is injected into the bag-shaped laminate sheet from the portion, there is no other way than the electrode end 41b not solidified by the resin. Therefore, under vacuum, the air contained in the storage element 10 is sucked out from the lower portion 41b of the electrode laminate 10 to the outside. Next, when the pressure is returned to normal pressure, the air excluded from the electrode laminate 10 is resin. It cannot return to the electrode laminated body 10 from the electrode end 41a solidified. Therefore, the electrolyte solution is efficiently impregnated inside the electrode laminate 10 only from the electrode end 41b not solidified with resin, instead of the air excluded from the electrode laminate 10.

図9に示した、本実施形態に係る蓄電装置100においては、正極31と負極32はシート状セパレーターを介さずに対向するので当然接触はするが、負極32の電極表面は電子絶縁性であるため正極31と負極32の電子的導通は断たれている。また、正極31と負極32にはそれぞれ空孔が存在し、斯かる空孔と電極接触面は電解液で充満されるので、正極31と負極32はイオン電導では導通する。つまり、対向する正極31と負極32にはセパレーター機能もしっかり備わっている。    In the power storage device 100 according to this embodiment shown in FIG. 9, the positive electrode 31 and the negative electrode 32 face each other without a sheet-like separator therebetween, but naturally contact each other, but the electrode surface of the negative electrode 32 is electronically insulating. Therefore, the electronic conduction between the positive electrode 31 and the negative electrode 32 is cut off. Further, since the positive electrode 31 and the negative electrode 32 each have a hole, and the hole and the electrode contact surface are filled with the electrolytic solution, the positive electrode 31 and the negative electrode 32 are electrically connected by ion conduction. That is, the positive electrode 31 and the negative electrode 32 facing each other have a separator function.

また、本実施形態に係る蓄電装置100においては、絶縁性電極である負極32の電極端を対向する正極31の電極端より外側に位置させた電極積層体として畜電素子10が構成されているため、絶縁性電極(負極32)の電極端から露出する集電体は正極31には接触しないので、蓄電装置の内部ショートを引き起こすことはない。    Moreover, in the electrical storage apparatus 100 which concerns on this embodiment, the livestock element 10 is comprised as an electrode laminated body which has located the electrode end of the negative electrode 32 which is an insulating electrode outside the electrode end of the positive electrode 31 which opposes. Therefore, the current collector exposed from the electrode end of the insulating electrode (negative electrode 32) does not come into contact with the positive electrode 31, and therefore does not cause an internal short circuit of the power storage device.

以上の説明は、負極の電極表面が電子絶縁性で、正極の電極表面は電子伝導性である場合の一実施形態を説明したが、本発明は正極の電極表面が電子絶縁性である実施の形態もありうる。上述の説明は、説明中の負極を正極に置き換え、正極を負極に置き換えることで、ほぼ、正極の電極表面が電子絶縁性である場合の実施形態を説明することが出来る。    Although the above description has described one embodiment in which the electrode surface of the negative electrode is electronically insulating and the electrode surface of the positive electrode is electronically conductive, the present invention is an embodiment in which the electrode surface of the positive electrode is electronically insulating. There can also be a form. The above description can describe an embodiment in which the electrode surface of the positive electrode is substantially insulative by replacing the negative electrode in the description with the positive electrode and replacing the positive electrode with the negative electrode.

因みに、従来の蓄電素子の電極構造を図10に示しているが、従来の電極積層体10では、電極寸法より大き目のシート状セパレーター5を電極間に介在させて構成するので、電極端に露出する負極の集電体3も正極の集電体4も、セパレーター5に遮られて対極と接触することは無い。しかしながら、絶縁性電極を用いる電池においても、シート状セパレーター5を併用する電極構造では、セパレーター機能の耐熱性アップは図れてもセパレーター機能のコストアップになってしまう。    Incidentally, the electrode structure of the conventional power storage element is shown in FIG. 10, but in the conventional electrode laminate 10, a sheet-like separator 5 larger than the electrode size is interposed between the electrodes, so that it is exposed at the electrode end. Neither the negative electrode current collector 3 nor the positive electrode current collector 4 is blocked by the separator 5 and comes into contact with the counter electrode. However, even in a battery using an insulating electrode, in the electrode structure in which the sheet-like separator 5 is used in combination, even if the heat resistance of the separator function can be improved, the cost of the separator function is increased.

本発明によれば、高価な樹脂製のセパレーターは使用しないので、安価で、安全性の高い二次電池が電気自動車や電力貯蔵用等の大型の蓄電装置として提供できるのでその工業的価値は大である。    According to the present invention, since an expensive resin separator is not used, an inexpensive and highly safe secondary battery can be provided as a large power storage device such as an electric vehicle or an electric power storage, and thus its industrial value is great. It is.

以下実施例により本発明をさらに詳しく説明する。    Hereinafter, the present invention will be described in more detail with reference to examples.

本実施例ではスピネル系リチウムマンガン酸化物(LiMn)を正極活物質とし、スピネル系リチウムチタン酸化物(LiTi12)を負極活物質とするリチウムイオン電池を、正極を15枚、負極を16枚使用して、図5および図6に示す電極構造を適用して実施する。In this example, a lithium ion battery using spinel-based lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode active material and spinel-based lithium titanium oxide (Li 4 Ti 5 O 12 ) as a negative electrode active material is used. The electrode structure shown in FIGS. 5 and 6 is applied using 16 sheets and 16 negative electrodes.

本実施例では正極は活物質(LiMn)に伝導助剤を混ぜて正極活物質層を構成するので、正極の電極表面は電子伝導性である。一方、負極は活物質(LiTi12)には伝導助剤を混ぜずに負極活物質層を構成するので、負極の電極表面は非電子伝導性(電子絶縁性)である。なお、LiTi12は電子伝導率が10−13S/cm程度であり非電子伝導性である。In this embodiment, the positive electrode is composed of a positive electrode active material layer by mixing a conductive additive with an active material (LiMn 2 O 4 ), so that the electrode surface of the positive electrode is electronically conductive. On the other hand, since the negative electrode constitutes the negative electrode active material layer without mixing the conductive material in the active material (Li 4 Ti 5 O 12 ), the electrode surface of the negative electrode is non-electron conductive (electronic insulating). Incidentally, Li 4 Ti 5 O 12 is a non-electron-conductive an electronic conductivity of about 10- 13 S / cm.

先ず、LiTi12は水酸化リチウム(LiOH)と二酸化チタン(TiO)を4:5のモル比でよく混合し、ペレット状に加圧成形し、ニッケルフォイルを敷き詰めたアルミナの容器に入れ、ヘリウム雰囲気中800℃で焼成して合成した。合成したLiTi12の粒径は90%が2.57μm以下、50%が1.00μm以下で、0.64μm以下が10%に粒度調整した。First, Li 4 Ti 5 O 12 is a container of alumina in which lithium hydroxide (LiOH) and titanium dioxide (TiO 2 ) are mixed well in a molar ratio of 4: 5, pressed into a pellet, and nickel foil is spread. And synthesized by firing at 800 ° C. in a helium atmosphere. The particle size of the synthesized Li 4 Ti 5 O 12 was adjusted such that 90% was 2.57 μm or less, 50% was 1.00 μm or less, and 0.64 μm or less was 10%.

調整したLiTi12の94重量部に、結着材とするPVDF(ポリフッ化ビニリデン)6重量部を溶かした溶剤と湿式混合してスラリーを用意する。このスラリーを幅200mm、厚さ0.02mmのアルミニウム箔の片面に、両端に50mmの未塗布部を残して、塗布幅100mmで均一に塗布して乾燥し、その後、もう一方の面にも同じ塗布幅で塗布して乾燥した後、ローラープレス機で厚さを0.08〜0.09mmになるように加圧して、負極活物質層が集電体に密着してなる帯状の負極を作製した。A slurry is prepared by wet-mixing 94 parts by weight of the adjusted Li 4 Ti 5 O 12 with a solvent in which 6 parts by weight of PVDF (polyvinylidene fluoride) as a binder is dissolved. This slurry was uniformly applied with a coating width of 100 mm and dried on one side of an aluminum foil having a width of 200 mm and a thickness of 0.02 mm, leaving uncoated portions of 50 mm on both ends, and then the same on the other side. After coating with a coating width and drying, a roller press is pressed to a thickness of 0.08 to 0.09 mm to produce a strip-shaped negative electrode in which the negative electrode active material layer is in close contact with the current collector. did.

斯かる帯状の負極は集電体の未塗布部を6×20mmの寸法で電極タブの取り付け部33として残し、負極活物質層の塗布面積で93×93mmのサイズにカットして最終的な負極32とした。    In such a strip-shaped negative electrode, the uncoated portion of the current collector is left as an electrode tab mounting portion 33 with a size of 6 × 20 mm, and the final negative electrode is cut into a size of 93 × 93 mm in the coated area of the negative electrode active material layer 32.

正極活物質とするLiMnは二酸化マンガンと炭酸リチウムの混合物を空気中850℃で焼成して、従来の合成法で調整した。ただしここで合成したLiMnはX線回折ではスピネル型LiMnの回折パターンとよく一致するものであるが、マンガンの価数分析から判断して、正確にはマンガンの一部がリチウムで置換されたLi1.05Mn195と考えられる。LiMnの粒径は90%が17.84μm以下、50%が4.40μm以下で、0.97μm以下が10%に粒度調整した。LiMn 2 O 4 used as the positive electrode active material was prepared by firing a mixture of manganese dioxide and lithium carbonate in air at 850 ° C. and then using a conventional synthesis method. However, the LiMn 2 O 4 synthesized here agrees well with the diffraction pattern of spinel type LiMn 2 O 4 in X-ray diffraction. Li 1.05 Mn 195 O 4 substituted with lithium is considered. The particle size of LiMn 2 O 4 was adjusted so that 90% was 17.84 μm or less, 50% was 4.40 μm or less, and 0.97 μm or less was 10%.

調整したLiMnの89重量部に、電導助材としてアセチレンブラック2重量部とグラファイト3重量部および結着材としてPVDF6重量部とともに溶剤であるN−メチルー2−ピロリドンと湿式混合してスラリーとする。このスラリーを集電体とする厚さ0.020mm、幅200mmのアルミニウム箔の片面に、両端に50mmのアルミニウム箔の未塗布部を残して塗布幅100mmで均一に塗布して乾燥し、その後、もう一方の面にも同じ塗布幅で塗布して乾燥する。その後、ローラープレス機で、厚さ0.06〜0.07mmに加圧して、正極活物質層が集電体に密着してなる帯状の正極を作製した。A slurry obtained by wet mixing with 89 parts by weight of the prepared LiMn 2 O 4 with N-methyl-2-pyrrolidone as a solvent together with 2 parts by weight of acetylene black and 3 parts by weight of graphite as a conductive aid and 6 parts by weight of PVDF as a binder. And Applying and drying uniformly with a coating width of 100 mm, leaving an uncoated portion of the aluminum foil of 50 mm on both ends on one side of an aluminum foil having a thickness of 0.020 mm and a width of 200 mm using the slurry as a current collector, Apply to the other side with the same coating width and dry. Then, it pressed with thickness 0.06-0.07mm with the roller press machine, and produced the strip | belt-shaped positive electrode by which a positive electrode active material layer closely_contact | adheres to a collector.

斯かる帯状の正極は集電体の未塗布部を10×20mmの寸法で電極タブの取り付け部34として残し、正極活物質層の塗布面積で85×85mmのサイズにカットして最終的な正極31とした。    In such a strip-like positive electrode, the uncoated portion of the current collector is left as an electrode tab attachment portion 34 with a size of 10 × 20 mm, and the final positive electrode is cut into a size of 85 × 85 mm in the coated area of the positive electrode active material layer. 31.

正極31と負極32は、図8に示すように、一枚の正極と一枚の負極を接着固定して電極対20とする。具体的には正極タブの取り付け部34の両面にエポキシ接着剤8を塗った正極31の一枚を、負極32の一枚の内側に重ねて、正極31の電極タブの取り付け部34を負極32の電極端部と接着して固定する。    As shown in FIG. 8, the positive electrode 31 and the negative electrode 32 form an electrode pair 20 by bonding and fixing one positive electrode and one negative electrode. Specifically, one of the positive electrodes 31 in which the epoxy adhesive 8 is applied to both surfaces of the positive electrode tab attachment portion 34 is overlapped on the inner side of one negative electrode 32, and the electrode tab attachment portion 34 of the positive electrode 31 is connected to the negative electrode 32. Adhere and fix to the electrode end of

次に、電極対20の15対を負極の電極端を揃えて積み重ね、最後にもう一枚の負極を重ねて16枚の負極32と15枚の正極31を積層し、負極32の電極端をエポキシ樹脂35で固めて、電極積層体10を組み立てる。こうして15対の電極対を重ねることによって、電極の積層枚数では異なるが、図5、図6に示す電極構造と同様の一体化した電極積層体10が組み上がる。この場合、図5に示すように、負極32の電極端は部分的に(図5においては上部の電極端)はエポキシ樹脂で固めないで開封状態としておくので、当該電極積層体10への電解液の含浸経路が確保される。    Next, 15 pairs of electrode pairs 20 are stacked with the negative electrode ends aligned, and finally, the other negative electrode is stacked to stack 16 negative electrodes 32 and 15 positive electrodes 31, and the negative electrode 32 electrode ends are stacked. The electrode laminate 10 is assembled by hardening with an epoxy resin 35. By stacking 15 electrode pairs in this manner, an integrated electrode stack 10 similar to the electrode structure shown in FIGS. 5 and 6 is assembled, although the number of stacked electrodes is different. In this case, as shown in FIG. 5, the electrode end of the negative electrode 32 (the upper electrode end in FIG. 5) is left open without being hardened with epoxy resin. A liquid impregnation route is secured.

この電極積層体10には、更に正極に設けた正極タブ取り付け部と、負極に設けた負極タブ取り付け部をそれぞれ正極タブと負極タブに溶接すれば、電極素子10が完成する。    The electrode element 10 is completed by welding the positive electrode tab attachment portion provided on the positive electrode and the negative electrode tab attachment portion provided on the negative electrode to the positive electrode tab and the negative electrode tab, respectively.

蓄電素子10は、図7Aに示すように、エポキシ樹脂で固めていない電極端41bを下に位置させてラミネートシートの中に納め、ラミネートシートの袋の中には1モル/LのLiPFを溶解したエチレンカーボネイト(EC)とジエチルカーボネイト(DEC)の混合溶液を電解液として注入する。注入された電解液15は、図7Aに示すように、直ちに蓄電素子10の内部には含浸されないが、真空含浸法によればエポキシ樹脂で固めていない電極端41bから、電解液15の殆どを蓄電素子の内部に含浸させることが出来る。As shown in FIG. 7A, the storage element 10 is placed in a laminate sheet with the electrode end 41b not solidified with an epoxy resin positioned below, and 1 mol / L LiPF 6 is placed in the laminate sheet bag. A mixed solution of dissolved ethylene carbonate (EC) and diethyl carbonate (DEC) is injected as an electrolyte. As shown in FIG. 7A, the injected electrolytic solution 15 is not immediately impregnated in the electric storage element 10, but most of the electrolytic solution 15 is removed from the electrode end 41b that is not hardened with an epoxy resin according to the vacuum impregnation method. The storage element can be impregnated.

その後、図7Bに示すように、ラミネートシートの未封じ部分を真空下で熱融着して密封し、図9に示す電池構造で本実施例におけるリチウムイオン電池を作製した。完成したリチウムイオン電池は24時間のエイジングの後、最初の充電は50mAの電流で、充電電圧の上限を3.0Vに設定して24時間かけて充電を行い、0.2Aの定電流で放電を行った結果、平均放電電圧は約2.5Vで、約800mAhの放電容量が得られた。    Thereafter, as shown in FIG. 7B, the unsealed portion of the laminate sheet was heat-sealed and sealed under vacuum to produce a lithium ion battery according to this example with the battery structure shown in FIG. The finished lithium-ion battery is aged for 24 hours, the first charge is 50 mA, the upper limit of the charge voltage is set to 3.0 V, the charge is charged for 24 hours, and the battery is discharged at a constant current of 0.2 A As a result, an average discharge voltage was about 2.5 V, and a discharge capacity of about 800 mAh was obtained.

この電池のエネルギー容量は約2.0Whであるが、使用した各材料の使用量に単純に材料単価(量産ベースで入手可能な材料価格)を掛けて試算した理論材料費は40.6円/セルとなり、20.3円/Whである    The energy capacity of this battery is about 2.0 Wh, but the theoretical material cost calculated by simply multiplying the amount of each material used by the material unit price (material price available on a mass production basis) is 40.6 yen / It becomes a cell and is 20.3 yen / Wh.

シート状セパレーターを必要としない本発明の実施形態はリチウムイオン電池の価格低減に極めて有効である。因みに15枚の正極と16枚の負極の間に樹脂製のセパレーターを介在させれば、セパレーターは0.52mが必要であり、市販の樹脂製セパレーターの価格(量産ベースで入手可能な材料価格)を200円/mとした場合、上記理論材料費はそれぞれ144.6円/セル、72.3円/Whとなる。Embodiments of the present invention that do not require a sheet separator are extremely effective in reducing the cost of lithium ion batteries. By the way, if a resin separator is interposed between 15 positive electrodes and 16 negative electrodes, the separator requires 0.52 m 2 , and the price of a commercially available resin separator (material price available on a mass production basis) ) Is 200 yen / m 2 , the theoretical material costs are 144.6 yen / cell and 72.3 yen / Wh, respectively.

本実施例における負極は、電子絶縁性である負極活物質(LiTi12)に伝導助剤を混ぜずに負極活物質層を構成するので、電極表面は電子絶縁性であり、シート状セパレーターを使用しなくとも対向する正極とは電子的には導通しないことは容易に分かる。しかし、負極活物質層自体が電子絶縁性なのに、何故、負極活物質(LiTi12)の充電反応が進行できるのかは以下のように理解できる。Since the negative electrode in the present example constitutes the negative electrode active material layer without mixing the conductive assistant in the negative electrode active material (Li 4 Ti 5 O 12 ) that is electronically insulating, the electrode surface is electronically insulating, It is easy to see that the positive electrode is not electrically connected to the opposing positive electrode without using a separator. However, it can be understood as follows why the negative electrode active material (Li 4 Ti 5 O 12 ) can be charged even though the negative electrode active material layer itself is electronically insulating.

つまり、負極活物質層が電子絶縁性であっても、充電に際しては、集電体に密着するLiTi12粒子は集電体より電子を受け取ることが出来るので、集電体に密着する粒子から順次充電されて、電子絶縁性のLiTi12は電子伝導性のLiTi12へと変わる。That is, even when the negative electrode active material layer is electronically insulating, the Li 4 Ti 5 O 12 particles that are in close contact with the current collector can receive electrons from the current collector during charging. Are sequentially charged from the particles to be changed, and the electron insulating Li 4 Ti 5 O 12 is changed to electron conductive Li 7 Ti 5 O 12 .

初めのLiTi12の結晶中では、全てチタンは4価(Ti4+)であるが、充電によって集電体を介して電子が供給され、電解液からはLiが供給されてLiTi12へと変われば、結晶中にはTi4+とTi3+が混在するので、結晶中のTi4+とTi3+は自由に電子のやり取りが行えるので電子伝導性となる。In the first crystals of Li 4 Ti 5 O 12 , all titanium is tetravalent (Ti 4+ ), but electrons are supplied through the current collector by charging, and Li + is supplied from the electrolyte to Li If it is changed to 7 Ti 5 O 12 , Ti 4+ and Ti 3+ coexist in the crystal, so that Ti 4+ and Ti 3+ in the crystal can exchange electrons freely and become electron conductive.

従って、負極活物質層中のLiTi12の粒子は集電体に直接密着していない粒子も、電子伝導性に変わったLiTi12粒子を介して集電体と電子伝導で導通するため、順次充電されることになる。Accordingly, the particles of Li 4 Ti 5 O 12 in the negative electrode active material layer are not directly adhered to the current collector, but the current collector and the electron are also connected via the Li 7 Ti 5 O 12 particles changed to electron conductivity. Since it conducts by conduction, it is charged sequentially.

本実施例では負極活物質層中のLiTi12量は実質充電可能容量で正極活物質層中のLiMn量を1.3倍程度上回る設計で実施しているため、充電反応に関与できるLiMnが充電され尽くした時点で、充電は終了する。In this example, the amount of Li 4 Ti 5 O 12 in the negative electrode active material layer is substantially chargeable capacity and is designed to exceed the amount of LiMn 2 O 4 in the positive electrode active material layer by about 1.3 times. When the LiMn 2 O 4 that can participate in the reaction is completely charged, the charging ends.

充電終了時にはLiTi12の約3割が未充電の状態で集電体からは最も離れた対極活物質層との境界付近に残ることになり、充電開始前では勿論のこと、充電中でも充電終了後でも、負極の電極表面には未充電状態の非電子伝導性の活物質層が常に存在してセパレーターの機能を果たすので、正極と負極の活物質層の間にはシート状セパレーターを介在させる必要はない。At the end of charging, approximately 30% of Li 4 Ti 5 O 12 remains uncharged and remains in the vicinity of the boundary with the active electrode layer farthest from the current collector. In particular, even after charging is completed, a non-electron conductive active material layer in an uncharged state is always present on the electrode surface of the negative electrode and functions as a separator. Therefore, a sheet-like separator is interposed between the positive electrode and negative electrode active material layers. There is no need to intervene.

また、本実施例では絶縁性電極である負極の電極端には伝導性の集電体が露出しているが、負極の電極端を樹脂で固めているため、また負極の電極端は対向する正極の電極端より外側に位置させて蓄電素子が構成されているため、負極の電極端から露出する集電体は正極には接触することはない。    In this embodiment, a conductive current collector is exposed at the electrode end of the negative electrode, which is an insulating electrode. However, since the electrode end of the negative electrode is hardened with resin, the electrode end of the negative electrode is opposed. Since the storage element is configured to be located outside the electrode end of the positive electrode, the current collector exposed from the electrode end of the negative electrode does not contact the positive electrode.

上記実施例では、電極積層体において、外側に位置する負極の電極端をエポキシ樹脂で固めたが、目的に叶う樹脂はこれに限定されない。    In the above embodiment, the electrode end of the negative electrode located outside in the electrode laminate is hardened with an epoxy resin, but the resin for the purpose is not limited to this.

本発明の実施形態では、少なくとも正極か負極の一方は電極表面が電子絶縁性の電極(絶縁性電極)であり、上記実施例では、電子絶縁性の負極活物質(LiTi12)に伝導助剤を混ぜずに負極活物質層を構成して、負極の電極表面を非電子伝導性(電子絶縁性)とする場合の一実施形態を示したが、他の方法、例えば電極表面に絶縁性セラミックス層を形成するなどの方法により、正極又は負極のいずれかの電極表面を非電子伝導性(電子絶縁性)とすることによって当然実施可能である。In the embodiment of the present invention, at least one of the positive electrode and the negative electrode is an electrode whose surface is electronically insulating (insulating electrode), and in the above example, an electronically insulating negative electrode active material (Li 4 Ti 5 O 12 ). Although one embodiment has been shown in which the negative electrode active material layer is formed without mixing the conductive additive to make the electrode surface of the negative electrode non-electron conductive (electronic insulating), other methods, for example, the electrode surface Of course, it is possible to make the surface of either the positive electrode or the negative electrode non-electroconductive (electronic insulating) by a method such as forming an insulating ceramic layer.

一般に有機電解液を用いる蓄電装置では、使用されるセパレーターは特殊な多孔質膜であり、価格が高い。特に対向する電極面積を大きくして出力密度を高めた蓄電装置では、電極対向面積に比例してセパレーター使用量が増えるため、セパレーター価格が材料費を大きく引き上げてしまう。本発明によれば、セパレーターは必要としないため、安全性が高く、出力密度の高い蓄電装置が安価に提供できる。    In general, in a power storage device using an organic electrolyte, the separator used is a special porous film and is expensive. In particular, in a power storage device in which the output electrode density is increased by increasing the opposing electrode area, the amount of separator used increases in proportion to the electrode opposing area, and therefore the separator price greatly increases the material cost. According to the present invention, since a separator is not required, a power storage device with high safety and high output density can be provided at low cost.

以上、本発明の一実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものであり、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。本発明の要旨を逸脱しない範囲において種々変更可能である。    Although one embodiment of the present invention has been described above, the above embodiment shows one example of application of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not. Various modifications can be made without departing from the scope of the present invention.

1 負極活物質層
2 正極活物質層
3 負極集電体
4 正極集電体
5 シート状セパレーター
6 負極タブ
7 正極タブ
8 接着剤
9 プラスチックテープ
10 蓄電素子
11、12 ラミネートシート
13 負極外部端子
14 正極外部端子
15 電解液
20 電極対
31 正極
32 負極
33 負極タブの取り付け部
34 正極タブの取り付け部
35 樹脂
41 電極積層体側面
DESCRIPTION OF SYMBOLS 1 Negative electrode active material layer 2 Positive electrode active material layer 3 Negative electrode collector 4 Positive electrode collector 5 Sheet-like separator 6 Negative electrode tab 7 Positive electrode tab 8 Adhesive 9 Plastic tape 10 Power storage element 11, 12 Laminate sheet 13 Negative electrode external terminal 14 Positive electrode External terminal 15 Electrolytic solution 20 Electrode pair 31 Positive electrode 32 Negative electrode 33 Attaching portion 34 of negative electrode tab 35 Attaching portion 35 of positive electrode tab Resin 41 Side surface of electrode laminate

Claims (4)

蓄電素子が、3枚以上の電極を積み重ねた電極積層体として構成されている蓄電装置において、前記電極積層体を構成する正極と負極の少なくとも一方は、電極表面が非電子伝導性の電極であり、当該電極の隣接する2枚は、前記電極積層体においては、その電極端が樹脂で固めてられて封筒状となっており、当該封筒状の電極の中に対極となる電極が納まっていることを特徴とする蓄電装置。    In the power storage device in which the power storage element is configured as an electrode laminate in which three or more electrodes are stacked, at least one of the positive electrode and the negative electrode constituting the electrode laminate is an electrode having a non-electron conductive surface. In the electrode laminate, the two adjacent electrodes are in the form of an envelope with the electrode ends being hardened with resin, and the electrode serving as the counter electrode is contained in the envelope-shaped electrode. A power storage device. 前記電極表面が非電子伝導性の電極はその電極端が対極の電極端より外側に位置されて前記電極積層体が構成されていることを特徴とする請求項1記載の蓄電装置。    2. The power storage device according to claim 1, wherein the electrode surface has a non-electron conductive electrode, and the electrode end is positioned outside the electrode end of the counter electrode to constitute the electrode stack. 前記封筒状の電極は、部分的に樹脂で固めない電極端を残して開封状態としておき、当該電極積層体への電解液の含浸経路を確保することを特徴とする請求項1記載の蓄電装置。    2. The power storage device according to claim 1, wherein the envelope-shaped electrode is left in an opened state, leaving an electrode end that is not partially hardened with a resin, and an electrolyte impregnation path for the electrode laminate is secured. . 蓄電素子が長方形の電極を積み重ねた電極積層体として構成されている蓄電装置において、前記電極積層体の4方向の側面のうち3方向の側面が樹脂で固めていることを特徴とする請求項3記載の蓄電装置。    4. The power storage device in which the power storage element is configured as an electrode laminate in which rectangular electrodes are stacked, wherein three side surfaces of four side surfaces of the electrode stack are solidified with resin. The power storage device described.
JP2013134299A 2013-06-10 2013-06-10 Power storage device Pending JP2014239022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134299A JP2014239022A (en) 2013-06-10 2013-06-10 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134299A JP2014239022A (en) 2013-06-10 2013-06-10 Power storage device

Publications (1)

Publication Number Publication Date
JP2014239022A true JP2014239022A (en) 2014-12-18

Family

ID=52136009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134299A Pending JP2014239022A (en) 2013-06-10 2013-06-10 Power storage device

Country Status (1)

Country Link
JP (1) JP2014239022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110130A1 (en) * 2016-12-14 2018-06-21 昭和電工株式会社 Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for producing lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110130A1 (en) * 2016-12-14 2018-06-21 昭和電工株式会社 Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for producing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4293501B2 (en) Electrochemical devices
JP3997370B2 (en) Non-aqueous secondary battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2019053862A (en) Laminated electrode body and power storage element
CN102856577A (en) Nonaqueous electrolyte secondary battery
JP5989405B2 (en) Power supply
JP5733915B2 (en) Lithium ion secondary battery
JP5761439B2 (en) Non-aqueous electrolyte secondary battery and storage circuit using the same
JP2005243455A (en) Electrochemical device
JP4009803B2 (en) Non-aqueous secondary battery
JP2017059538A (en) Laminated battery
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP2010062299A (en) Electricity storage device
JP2007087801A (en) Lithium ion secondary battery
WO2014175212A1 (en) Electricity storage device
JP2004349156A (en) Secondary battery and stacked secondary battery
JP5840429B2 (en) Lithium ion capacitor
JP2010244865A (en) Laminated battery
WO2022051879A1 (en) Electrochemical device and electronic device
JP2014212304A (en) Power storage device and method of manufacturing power storage module
JP2014239022A (en) Power storage device
JP2000306607A (en) Nonaqueous electrolyte battery
JP2019145723A (en) Lithium ion capacitor and manufacturing method thereof
WO2014175213A1 (en) Electricity storage device
JP7249991B2 (en) secondary battery