JP2014235148A - Thermal conductivity evaluation system and evaluation method for the same - Google Patents

Thermal conductivity evaluation system and evaluation method for the same Download PDF

Info

Publication number
JP2014235148A
JP2014235148A JP2013118777A JP2013118777A JP2014235148A JP 2014235148 A JP2014235148 A JP 2014235148A JP 2013118777 A JP2013118777 A JP 2013118777A JP 2013118777 A JP2013118777 A JP 2013118777A JP 2014235148 A JP2014235148 A JP 2014235148A
Authority
JP
Japan
Prior art keywords
heat
thermal conductivity
heat generating
receiving member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118777A
Other languages
Japanese (ja)
Other versions
JP6405602B2 (en
Inventor
加藤 直樹
Naoki Kato
直樹 加藤
翔太 谷井
Shota Tanii
翔太 谷井
澄生 下岡
Sumio Shimooka
澄生 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2013118777A priority Critical patent/JP6405602B2/en
Publication of JP2014235148A publication Critical patent/JP2014235148A/en
Application granted granted Critical
Publication of JP6405602B2 publication Critical patent/JP6405602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation device and evaluation method usable for quantitatively evaluating thermal conductivity in a surface direction of an examination member, such as a thermal-conduction sheet.SOLUTION: A thermal conductivity evaluation device includes a heating member (A) and a heat receiving member (B) which are laminated through a heat insulating layer (C). The heating member (A) and the heat receiving member (B) have a part connectable to an examination member (D). A method evaluates thermal conductivity of the examination member (D) using the evaluation device.

Description

本発明は、熱伝導性の評価装置及びその評価方法に関する。   The present invention relates to a thermal conductivity evaluation device and an evaluation method thereof.

電子機器等の潜熱を防止する方法としては、発熱部材と受熱部材とを熱伝導性シートで接続する方法が知られている。その際の熱伝導性を評価する方法としては、例えばサーモグラフィー等を用いて前記熱伝導性シート等を観察する方法が知られている。
しかし、前記方法では、視覚的に熱伝導シートの面方向への熱伝導性を観察することができるものの、熱伝導性を定量的に評価することは困難な場合があった。
前記熱伝導性の指標となる熱伝導率を測定する方法としては、例えば加熱板と冷却熱板との間に試験体を配置する等して、前記試験体の熱伝導率を測定する方法が知られている(例えば特許文献1参照。)。
しかし、前記方法は、試験体の厚さ方向の熱伝導性を評価するものであって、前記熱伝導シートのようなものの面方向への熱伝導性を評価することは困難な場合があった。
As a method for preventing latent heat of electronic devices and the like, a method of connecting a heat generating member and a heat receiving member with a heat conductive sheet is known. As a method for evaluating the thermal conductivity at that time, for example, a method of observing the thermal conductive sheet or the like using thermography or the like is known.
However, in the above method, although the thermal conductivity in the surface direction of the thermal conductive sheet can be visually observed, it is sometimes difficult to quantitatively evaluate the thermal conductivity.
As a method of measuring the thermal conductivity that serves as an index of the thermal conductivity, for example, a method of measuring the thermal conductivity of the test body, for example, by placing a test body between a heating plate and a cooling hot plate. It is known (for example, refer to Patent Document 1).
However, the method evaluates the thermal conductivity in the thickness direction of the specimen, and it may be difficult to evaluate the thermal conductivity in the plane direction of the thermal conductive sheet. .

特開2013−88258号公報JP 2013-88258 A

本発明が解決しようとする課題は、面方向への熱伝導性を定量的に評価する際に使用可能な評価装置及び評価方法を提供することにある。   The problem to be solved by the present invention is to provide an evaluation apparatus and an evaluation method that can be used when quantitatively evaluating the thermal conductivity in the surface direction.

本発明は、発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層され、前記発熱部材(A)と受熱部材(B)とが、試験部材(D)を接続可能な部位を有することを特徴とする熱伝導性の評価装置に関するものである。
また、本発明は、発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された装置を用い、前記発熱部材(A)と受熱部材(B)とを、試験部材(D)を介して接続し、次に前記発熱部材(A)の温度を40℃〜200℃に設定した後、前記受熱部材(B)の温度(P)を測定し、前記温度(P)と、前記温度設定前の前記受熱部材(B)の初期温度(P)との温度差を算出することを特徴とする試験部材(D)の熱伝導性の評価方法に関するものである。
また、本発明は、発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された装置を用い、前記発熱部材(A)と受熱部材(B)とを、試験部材(D)を介して接続し、前記発熱部材(A)を40℃〜200℃の範囲の温度(Q)に設定した後、前記受熱部材(B)の温度(P)を測定し、前記Q及びPの温度差を算出することを特徴とする試験部材(D)の熱伝導性の評価方法に関するものである。
In the present invention, the heat generating member (A) and the heat receiving member (B) are laminated via the heat insulating layer (C), and the heat generating member (A) and the heat receiving member (B) are used as the test member (D). The present invention relates to a thermal conductivity evaluation device having a connectable portion.
Moreover, this invention uses the apparatus with which the heat generating member (A) and the heat receiving member (B) were laminated | stacked via the heat insulation layer (C), The said heat generating member (A) and a heat receiving member (B), After connecting through the test member (D), and then setting the temperature of the heat generating member (A) to 40 ° C. to 200 ° C., the temperature (P 1 ) of the heat receiving member (B) is measured, and the temperature A method for evaluating a thermal conductivity of a test member (D), characterized in that a temperature difference between (P 1 ) and an initial temperature (P 0 ) of the heat receiving member (B) before the temperature setting is calculated. It is.
Moreover, this invention uses the apparatus with which the heat generating member (A) and the heat receiving member (B) were laminated | stacked via the heat insulation layer (C), The said heat generating member (A) and a heat receiving member (B), After connecting through the test member (D) and setting the heat generating member (A) to a temperature (Q 1 ) in the range of 40 ° C. to 200 ° C., the temperature (P 1 ) of the heat receiving member (B) is measured. In addition, the present invention relates to a method for evaluating the thermal conductivity of the test member (D), wherein the temperature difference between Q 1 and P 1 is calculated.

本発明の熱伝導性の評価装置及びその評価方法であれば、熱伝導シート等の試験部材の面方向への熱伝導性を、定量的に測定することが可能であるから、例えばモバイル機器等の電子機器を構成する各種発熱部材と放熱部材との接続に使用することに適した熱伝導性シートを評価する際に好適に適用することができる。   With the thermal conductivity evaluation apparatus and the evaluation method of the present invention, it is possible to quantitatively measure the thermal conductivity in the surface direction of a test member such as a thermal conductive sheet. It can apply suitably, when evaluating the heat conductive sheet suitable for using for the connection of the various heat generating members and heat radiating member which comprise this electronic device.

熱伝導性の評価装置を側面から見た概念図である。It is the conceptual diagram which looked at the thermal conductivity evaluation apparatus from the side.

本発明の熱伝導性の評価装置は、発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層され、前記発熱部材(A)と受熱部材(B)とが、試験部材(D)を接続可能な部位を有することを特徴とする。前記評価装置であれば、例えば熱伝導性シートのような比較的薄型の試験部材(D)の、面方向への熱伝導性を、定量的に評価することができ、その評価方法の測定結果と、前記試験部材(D)を実装試験した結果とは、比較的良い一致を示す。   In the thermal conductivity evaluation apparatus of the present invention, the heat generating member (A) and the heat receiving member (B) are laminated via the heat insulating layer (C), and the heat generating member (A) and the heat receiving member (B) are combined. And having a portion to which the test member (D) can be connected. If it is the said evaluation apparatus, the thermal conductivity to a surface direction of the comparatively thin test member (D) like a heat conductive sheet can be evaluated quantitatively, and the measurement result of the evaluation method And the result of the mounting test of the test member (D) shows a relatively good agreement.

[発熱部材(A)]
前記評価装置を構成する発熱部材(A)は、試験部材(D)を所定の温度に調整可能な加熱機能を備えた部材であって、例えば熱源となりうる発熱部(a1)と、必要に応じて金属基材(a2)等の他の部材とによって構成されるものが挙げられる。
前記発熱部(a1)としては、例えば電源装置に接続されたヒーター部等が挙げられる。具体的には、耐熱性、絶縁性に優れた面状ヒーターであることが好ましい。前記面状ヒーターとしては、柔軟性、密着性に優れるシリコーンラバーヒーターを使用することが好ましく、1−130−01(アズワン製)等を使用することが好ましい。
また、前記金属基材(a2)としては、一般に熱伝導性が優れる各種金属基材を使用することができ、例えば熱伝導率が100W/m・K以上の素材である、アルミニウム(204W/m・K)、金(295W/m・K)、銀(418W/m・K)、銅(386W/m・K)、亜鉛(113W/m・K)、マグネシウム(159W/m・K)等を使用することができ、アルミニウム基材を使用することが好ましい。
前記発熱部(a1)と前記金属基材(a2)とは、直接接続されていてもよく、また、他の部材を介して接続されていてもよい。
前記発熱部(a1)と前記金属基材(a2)とを接続は、市販の熱伝導性粘着テープ等を用いて行うことができる。
また、前記発熱部材(A)には、その温度を測定可能な熱電対温度センサー(E)が設置されていることが好ましい。
[Heat generating member (A)]
The heating member (A) constituting the evaluation device is a member having a heating function capable of adjusting the test member (D) to a predetermined temperature, for example, a heating part (a1) that can be a heat source, and if necessary And those constituted by other members such as a metal substrate (a2).
Examples of the heat generating part (a1) include a heater part connected to a power supply device. Specifically, a planar heater excellent in heat resistance and insulation is preferable. As the planar heater, a silicone rubber heater excellent in flexibility and adhesion is preferably used, and 1-130-01 (manufactured by ASONE) or the like is preferably used.
In addition, as the metal substrate (a2), various metal substrates having generally excellent thermal conductivity can be used. For example, aluminum (204 W / m, which is a material having a thermal conductivity of 100 W / m · K or more).・ K), gold (295 W / m · K), silver (418 W / m · K), copper (386 W / m · K), zinc (113 W / m · K), magnesium (159 W / m · K), etc. It is preferred to use an aluminum substrate.
The heat generating part (a1) and the metal substrate (a2) may be directly connected or may be connected via another member.
The heat generating part (a1) and the metal base material (a2) can be connected using a commercially available heat conductive adhesive tape or the like.
Moreover, it is preferable that the heat generating member (A) is provided with a thermocouple temperature sensor (E) capable of measuring its temperature.

[受熱部材(B)]
前記評価装置を構成する受熱部材(B)は、前記発熱部材(A)から発せられた熱の一部を試験部材(D)を介してを受容する部材である。
前記受熱部材(B)としては、一般に熱伝導性が優れる各種金属基材を使用することができ、例えば熱伝導率が100W/m・K以上の素材である、アルミニウム(204W/m・K)、金(295W/m・K)、銀(418W/m・K)、銅(386W/m・K)、亜鉛(113W/m・K)、マグネシウム(159W/m・K)等を使用することができ、アルミニウム基材を使用することが好ましい。
前記発熱部材(A)と前記受熱部材(B)とは、同一の金属基材から構成されていても、異なる金属基材から構成されていてもよい。
また、前記受熱部材(B)には、その温度を測定可能な熱電対温度センサー(E)が設置されていることが好ましい。
[Heat receiving member (B)]
The heat receiving member (B) constituting the evaluation apparatus is a member that receives a part of heat generated from the heat generating member (A) through the test member (D).
As the heat-receiving member (B), various metal substrates having excellent thermal conductivity can be used. For example, aluminum (204 W / m · K), which is a material having a thermal conductivity of 100 W / m · K or more. , Gold (295W / m · K), Silver (418W / m · K), Copper (386W / m · K), Zinc (113W / m · K), Magnesium (159W / m · K), etc. It is preferable to use an aluminum substrate.
The heat generating member (A) and the heat receiving member (B) may be composed of the same metal base material or different metal base materials.
The heat receiving member (B) is preferably provided with a thermocouple temperature sensor (E) capable of measuring its temperature.

[断熱層(C)]
本発明の評価装置を構成する断熱層(C)は、前記発熱部材(A)と受熱部材(B)との間に設置されるものである。前記発熱部材(A)の熱は、その端部に接続された試験部材(D)を介して受熱部材(B)に移動する。前記試験部材(D)を介する経路以外の経路により、発熱部材(A)の熱が受熱部材(B)へ移動することを最小限に抑制することを目的として、前記発熱部材(A)と受熱部材(B)との間に断熱層(C)を設置する。
[Insulation layer (C)]
The heat insulation layer (C) which comprises the evaluation apparatus of this invention is installed between the said heat generating member (A) and a heat receiving member (B). The heat of the heat generating member (A) moves to the heat receiving member (B) via the test member (D) connected to the end portion. For the purpose of minimizing the heat of the heat generating member (A) from moving to the heat receiving member (B) by a route other than the route through the test member (D), the heat generating member (A) and the heat receiving member are received. A heat insulation layer (C) is installed between the member (B).

前記断熱層(C)は、前記発熱部材(A)の上部、前記受熱部材(B)の下部等の位置に、必要に応じて設置してもよい。   You may install the said heat insulation layer (C) in positions, such as the upper part of the said heat generating member (A), the lower part of the said heat receiving member (B), as needed.

前記断熱層(C)としては、例えば繊維系断熱材や発泡系断熱材等を使用することができる。
前記繊維系断熱材としては、例えばグラスウール、ロックウール、セルロースファイバー、炭化コルク、羊毛断熱材等を使用することができる。
前記発泡系断熱材としては、例えばポリエチレンフォーム、ウレタンフォーム、フェノールフォーム、ポリスチレンフォーム、発泡スチロール(EPS)、発泡ゴム、押し出しポリスチレン(XPS)等を使用することができる。
前記断熱層(C)としては、高断熱性、耐熱性、作業性に優れるため、発泡系断熱材を使用することが好ましく、ポリエチレンフォームを使用することがより好ましい。前記ポリエチレンフォームとしては、具体的にはSN−500(古河電気工業株式会社製)等を使用することができる。
As said heat insulation layer (C), a fiber type heat insulating material, a foam type heat insulating material, etc. can be used, for example.
As said fiber type heat insulating material, glass wool, rock wool, a cellulose fiber, carbonized cork, wool heat insulating material etc. can be used, for example.
Examples of the foam-based heat insulating material include polyethylene foam, urethane foam, phenol foam, polystyrene foam, polystyrene foam (EPS), foam rubber, and extruded polystyrene (XPS).
As said heat insulation layer (C), since it is excellent in high heat insulation, heat resistance, and workability | operativity, it is preferable to use a foam type heat insulating material, and it is more preferable to use a polyethylene foam. Specifically, SN-500 (Furukawa Electric Co., Ltd.) etc. can be used as the polyethylene foam.

[試験部材(D)]
本発明の評価装置及び評価方法によって面方向の熱伝導性を評価可能な試験部材(D)としては、各種部材を使用することができ、前記発熱部材(A)及び受熱部材(B)の端部に接続可能なものを使用することができる。なかでも、前記試験部材(D)としては、例えば熱伝導シート等の粘着テープのような比較的薄型の試験部材であることが好適である。
前記試験部材(D)の大きさは、前記発熱部材(A)及び受熱部材(B)の端部に接続可能な大きさであれば、特に制限されない。
[Test member (D)]
Various members can be used as the test member (D) capable of evaluating the thermal conductivity in the plane direction by the evaluation apparatus and the evaluation method of the present invention, and the ends of the heat generating member (A) and the heat receiving member (B). What can be connected to the part can be used. Especially, as said test member (D), it is suitable that it is a comparatively thin test member like adhesive tapes, such as a heat conductive sheet, for example.
The magnitude | size of the said test member (D) will not be restrict | limited especially if it is a magnitude | size which can be connected to the edge part of the said heat generating member (A) and a heat receiving member (B).

前記試験部材(D)の厚さは、その総厚が150m以下であることが好ましく、100μm以下であることが好ましく、90μm以下であることがさらに好ましい。前記粘着シートの総厚の下限値としては、45μm以上であることが好ましい。   The total thickness of the test member (D) is preferably 150 m or less, more preferably 100 μm or less, and even more preferably 90 μm or less. The lower limit of the total thickness of the pressure-sensitive adhesive sheet is preferably 45 μm or more.

前記試験部材(D)のうち、例えば熱伝導シートとしては、銅等の金属基材やグラファイト基材等の支持体の一方または両方の面に粘着剤層が設けられたもの、前記支持体の一方の面に粘着剤層を有し、他方の面に樹脂フィルム層を備えたもの等を使用することができる。本発明の評価方法では、前記試験部材(D)を湾曲させることから、前記試験部材(D)としては、湾曲させた際にひび割れなどを引き起こしにくい比較的柔軟性に優れたものであることが好ましい。   Among the test members (D), for example, as a heat conductive sheet, a metal base material such as copper or a support material such as a graphite base material provided with an adhesive layer on one or both surfaces, One having an adhesive layer on one surface and a resin film layer on the other surface can be used. In the evaluation method of the present invention, since the test member (D) is curved, the test member (D) is relatively excellent in flexibility and hardly causes cracks when bent. preferable.

前記熱伝導シートとしては、例えば剥離ライナーの表面に粘着剤を、ロールコーターやダイコーター等を用いて塗布し、その塗布層を50℃〜120℃程度の環境下で乾燥し溶媒を除去することによって粘着層を形成し、次に前記粘着剤層を、金属基材の一方または両方の面に貼合させた後、必要に応じて、前記粘着剤層が前記所定のゲル分率となるよう15℃〜50℃程度の温度で48時間〜168時間程度養生することによって製造したものを使用することができる。   As the heat conductive sheet, for example, an adhesive is applied to the surface of the release liner using a roll coater or a die coater, and the applied layer is dried in an environment of about 50 ° C. to 120 ° C. to remove the solvent. After forming the pressure-sensitive adhesive layer and then bonding the pressure-sensitive adhesive layer to one or both surfaces of the metal substrate, the pressure-sensitive adhesive layer has the predetermined gel fraction as necessary. A product produced by curing at a temperature of about 15 ° C. to 50 ° C. for about 48 hours to 168 hours can be used.

[熱電対温度センサー(E)]
前記発熱部材(A)及び受熱部材(B)に設置可能な熱電対温度センサー(E)としては、応答性の速い仕様がよく、応答時間は0.1秒以内のものを使用することができる。なかでも、作業性に優れる観点から、粘着部を有する貼付型熱電対温度センサーが好ましく使用できる。特に限定されるものではないが、粘着部は耐熱性や接着信頼性の観点から、熱硬化性エポキシ系粘着剤の仕様が好ましく使用できる。また、応答性に優れる観点から、熱接点の形状は先端開放型(先端露出型)の仕様が好ましく使用できる。例えば、理化工業株式会社製のST−50が挙げられる。作業環境に応じて、専用コネクタケーブルを用いても良い。例えば、前記熱電対温度センサーST−50の専用コネクタケーブルとしては、W−ST50A−1000−Y3が挙げられる。
[Thermocouple temperature sensor (E)]
As the thermocouple temperature sensor (E) that can be installed on the heat generating member (A) and the heat receiving member (B), a specification with a quick response is good and a response time within 0.1 seconds can be used. . Among these, from the viewpoint of excellent workability, an adhesive thermocouple temperature sensor having an adhesive portion can be preferably used. Although not particularly limited, the specification of the thermosetting epoxy pressure-sensitive adhesive can be preferably used for the pressure-sensitive adhesive part from the viewpoint of heat resistance and adhesion reliability. Further, from the viewpoint of excellent responsiveness, the specifications of the open contact type (tip exposed type) can be preferably used as the shape of the thermal contact. An example is ST-50 manufactured by Rika Kogyo Co., Ltd. A dedicated connector cable may be used according to the working environment. For example, W-ST50A-1000-Y3 is mentioned as a dedicated connector cable for the thermocouple temperature sensor ST-50.

[熱伝導性の評価方法]
本発明の熱伝導性の評価方法は、例えば発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された前記評価装置を用い、前記発熱部材(A)と受熱部材(B)との端部を、試験部材(D)を介して接続し、次に前記発熱部材(A)の温度を40℃〜200℃に設定した後、前記受熱部材(B)の温度(P)を測定し、前記温度(P)と、前記温度設定前の前記受熱部材(B)の初期温度(P)との温度差を算出する方法が挙げられる。
[Method for evaluating thermal conductivity]
The thermal conductivity evaluation method of the present invention uses, for example, the heat generating member (A) and the heat receiving member (B), the heat generating member (A) and the heat receiving member (B) stacked with a heat insulating layer (C) interposed therebetween. After connecting the end with the heat receiving member (B) via the test member (D), and then setting the temperature of the heat generating member (A) to 40 ° C. to 200 ° C., the heat receiving member (B) temperature (P 1) is measured, the temperature (P 1), a method of calculating the temperature difference between the initial temperature (P 0) of the heat-receiving member before the temperature setting (B).

上記温度(P)の測定は、前記発熱部材(A)の温度を40〜200℃の範囲に設定した後、おおむね10〜60分後に行うことが好ましい。 The temperature (P 1 ) is preferably measured approximately 10 to 60 minutes after the temperature of the heat generating member (A) is set in the range of 40 to 200 ° C.

前記温度差が、比較的大きい場合、発熱部材(A)の熱が試験部材(D)を介して受熱部材(B)に十分に移動しているといえ、その結果、試験部材(D)の熱伝導性が優れるものであると評価できる。その際、前記温度差の値をもとに、異なる材質からなる試験部材(D)の熱伝導性を比較することができる。   When the temperature difference is relatively large, it can be said that the heat of the heat generating member (A) is sufficiently transferred to the heat receiving member (B) via the test member (D). It can be evaluated that the thermal conductivity is excellent. In that case, based on the value of the said temperature difference, the thermal conductivity of the test member (D) which consists of a different material can be compared.

また、本発明の熱伝導性の他の評価方法は、例えば発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された装置を用い、前記発熱部材(A)と受熱部材(B)とを、試験部材(D)を介して接続し、前記発熱部材(A)を40℃〜200℃の範囲の温度(Q)に設定した後、前記受熱部材(B)の温度(P)を測定し、前記Q及びPの温度差を算出する方法が挙げられる。
上記温度(P)の測定は、前記発熱部材(A)の温度を40℃〜200℃の範囲の温度(Q)に設定した後、おおむね10分〜60分後に行うことが好ましい。
前記温度差が、比較的小さい場合、発熱部材(A)の熱が試験部材(D)を介して受熱部材(B)に十分に移動しているといえ、その結果、試験部材(D)の熱伝導性が優れるものであると評価できる。その際、前記温度差の値をもとに、異なる材質からなる試験部材(D)の熱伝導性を比較することができる。
In addition, another evaluation method of the thermal conductivity of the present invention uses, for example, an apparatus in which a heat generating member (A) and a heat receiving member (B) are laminated via a heat insulating layer (C), and the heat generating member (A ) And the heat receiving member (B) through the test member (D), and the heat generating member (A) is set to a temperature (Q 1 ) in the range of 40 ° C. to 200 ° C. A method of measuring the temperature (P 1 ) of B) and calculating the temperature difference between Q 1 and P 1 can be mentioned.
The temperature (P 1 ) is preferably measured approximately 10 minutes to 60 minutes after the temperature of the heat generating member (A) is set to a temperature (Q 1 ) in the range of 40 ° C. to 200 ° C.
When the temperature difference is relatively small, it can be said that the heat of the heat generating member (A) is sufficiently transferred to the heat receiving member (B) via the test member (D). It can be evaluated that the thermal conductivity is excellent. In that case, based on the value of the said temperature difference, the thermal conductivity of the test member (D) which consists of a different material can be compared.

以下に実施例及び比較例について具体的に説明をする。   Examples and comparative examples will be specifically described below.

(実施例1)
[粘着剤の調製]
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、2−エチルヘキシルアクリレート96.4質量部と、β−カルボキシエチルアクリレート2.4質量部と、アクリル酸1.2質量部と、酢酸エチル98質量部とを仕込み、攪拌下、窒素を吹き込みながら75℃まで昇温した。その後、前記反応容器に、予め酢酸エチルにて溶解したアゾビスイソブチロニトリル溶液2質量部(固形分5質量%)を添加した。
Example 1
[Preparation of adhesive]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 96.4 parts by mass of 2-ethylhexyl acrylate, 2.4 parts by mass of β-carboxyethyl acrylate, 1.2 parts by mass of acrylic acid, Then, 98 parts by mass of ethyl acetate was charged, and the temperature was raised to 75 ° C. with stirring while blowing nitrogen. Thereafter, 2 parts by mass (solid content: 5% by mass) of an azobisisobutyronitrile solution previously dissolved in ethyl acetate was added to the reaction vessel.

次に、前記反応容器内を攪拌した状態で75℃にて8時間ホールドした後、内容物を冷却し200メッシュ金網にて濾過することによって、固形分50質量%、重量平均分子量50万であるアクリル系重合体の溶剤溶液を得た。   Next, after the reaction vessel is stirred and held at 75 ° C. for 8 hours, the content is cooled and filtered through a 200-mesh wire netting, so that the solid content is 50 mass% and the weight average molecular weight is 500,000. A solvent solution of an acrylic polymer was obtained.

前記アクリル系重合体の溶剤溶液の固形分100質量部に対し、熱伝導性充填剤として水酸化アルミニウム(昭和電工株式会社製ハイジライトH−32I、平均粒径8μm)を250質量部を添加し、それらを30分間攪拌し、次に、その混合物の固形分が70質量%となるよう酢酸エチルを供給することによって、粘着剤組成物(1)を得た。   To 100 parts by mass of the solid content of the acrylic polymer solvent solution, 250 parts by mass of aluminum hydroxide (Hijilite H-32I, Showa Denko Co., Ltd., average particle size 8 μm) as a heat conductive filler was added. Then, they were stirred for 30 minutes, and then ethyl acetate was supplied so that the solid content of the mixture was 70% by mass to obtain a pressure-sensitive adhesive composition (1).

前記粘着剤組成物(1)100質量部と、エポキシ系架橋剤(三菱ガス化学株式会社製テトラッドC)の2質量%酢酸エチル溶液2質量部とを混合し、その混合物をディゾルバー攪拌機を用いて30分間攪拌混合することによって、粘着剤(1)を得た。   100 parts by mass of the pressure-sensitive adhesive composition (1) and 2 parts by mass of a 2% by mass ethyl acetate solution of an epoxy-based crosslinking agent (Tetrad C manufactured by Mitsubishi Gas Chemical Co., Ltd.) are mixed, and the mixture is dissolved using a dissolver stirrer. The pressure-sensitive adhesive (1) was obtained by stirring and mixing for 30 minutes.

[試験テープの作製]
前記粘着剤(1)を剥離ライナーの表面にロールコーターを用いて塗布し、80℃に調整したドライヤーを用い3分間乾燥させることによって、離型ライナーの表面に厚さ30μmの粘着剤層が形成し、続いて、前記粘着剤層を厚さ70μmの圧延銅箔に転写し貼り合わせた。
[Preparation of test tape]
The pressure-sensitive adhesive (1) is applied to the surface of the release liner using a roll coater and dried for 3 minutes using a dryer adjusted to 80 ° C., thereby forming a pressure-sensitive adhesive layer having a thickness of 30 μm on the surface of the release liner. Subsequently, the pressure-sensitive adhesive layer was transferred and bonded to a rolled copper foil having a thickness of 70 μm.

次に、前記貼付物を40℃環境下で72時間養生し粘着剤層付き熱伝導性シートを作製した。前記粘着剤層付き熱伝導性シートを幅30mm×長さ30mmの大きさに裁断したものを試験テープとして使用した。   Next, the patch was cured for 72 hours in a 40 ° C. environment to produce a heat conductive sheet with an adhesive layer. What cut | judged the heat conductive sheet with the said adhesive layer into the magnitude | size of width 30mm x length 30mm was used as a test tape.

[熱伝導性の評価方法]
厚さ0.5mm、幅70mm及び長さ75mmのアルミニウム板(a2−1)(JIS H4000規定のA1050)を用意し、前記アルミニウム板(a2−1)の70mm幅の辺の中間位置へ、前記試験テープの長さ方向の一方の端部を、その貼付面積が幅30mm×長さ10mmとなるように貼付し、前記試験テープの上部から200gローラーを用い1往復の荷重をかけた。
[Method for evaluating thermal conductivity]
Prepare an aluminum plate (a2-1) (A1050 defined by JIS H4000) having a thickness of 0.5 mm, a width of 70 mm, and a length of 75 mm, and to the middle position of the side of the aluminum plate (a2-1) having a width of 70 mm, One end of the test tape in the length direction was pasted so that the pasting area was 30 mm wide × 10 mm long, and a reciprocating load was applied from above the test tape using a 200 g roller.

次に、厚さ0.5mm、幅70mm及び長さ75mmのアルミニウム板(b2−1)(JIS H4000規定のA1050)を用意し、前記試験テープの他方の端部を、前記のアルミニウム板(b2−1)における幅方向の中間位置へ、その貼付面積が幅30mm及び長さ10mmとなるように貼付し、前記試験テープの上部から200gローラーを用い1往復の荷重をかけた。   Next, an aluminum plate (b2-1) (A1050 defined by JIS H4000) having a thickness of 0.5 mm, a width of 70 mm, and a length of 75 mm is prepared, and the other end of the test tape is attached to the aluminum plate (b2). It was affixed to the intermediate position in the width direction in -1) so that the affixing area was 30 mm wide and 10 mm long, and a reciprocating load was applied from above the test tape using a 200 g roller.

次に、前記アルミニウム板(a2−1)の中央に、発熱部材(a1−1)であるシリコーンラバーヒーター(アズワン製、1−130−01)を、幅50mm、長さ50mmの熱伝導性粘着テープ(信越化学工業株式会社製、TC−10SAS)にて貼り合わせた。前記熱伝導性粘着テープは、前記試験テープを貼付したアルミニウム板(a2−1)の面と同じ側の面に貼付した。   Next, in the center of the aluminum plate (a2-1), a silicone rubber heater (manufactured by ASONE, 1-130-01), which is a heat generating member (a1-1), is thermally conductive adhesive having a width of 50 mm and a length of 50 mm. It bonded together with the tape (The Shin-Etsu Chemical Co., Ltd. make, TC-10SAS). The said heat conductive adhesive tape was affixed on the surface of the same side as the surface of the aluminum plate (a2-1) which affixed the said test tape.

また、熱電対温度センサー(理化工業株式会社製、ST−50)を、アルミニウム板(a2−1)の表面、及び、アルミニウム板(b2−1)の表面に、それぞれ貼り合わせた。   Moreover, the thermocouple temperature sensor (Rika Kogyo Co., Ltd. make, ST-50) was bonded together on the surface of the aluminum plate (a2-1), and the surface of the aluminum plate (b2-1), respectively.

次に、幅80mm、長さ80mm、厚さ5mmのポリエチレンフォーム(古河電気工業株式会社製、SN−500)を、前記アルミニウム板(a2−1)と、前記アルミニウム板(b2−1)との間に置き、前記アルミニウム板(b2−1)の下に、幅80mm、長さ80mm、厚さ5mmのポリエチレンフォーム(古河電気工業株式会社製、SN−500)を設置した。   Next, a polyethylene foam (SN-500, manufactured by Furukawa Electric Co., Ltd.) having a width of 80 mm, a length of 80 mm, and a thickness of 5 mm is obtained by combining the aluminum plate (a2-1) and the aluminum plate (b2-1). In between, a polyethylene foam (manufactured by Furukawa Electric Co., Ltd., SN-500) having a width of 80 mm, a length of 80 mm, and a thickness of 5 mm was placed under the aluminum plate (b2-1).

次に、前記シリコーンラバーヒーターの上部に、熱電対温度センサーを貼り合わせた。その上に、幅50mm、長さ50mm、厚さ5mmのポリエチレンフォーム(古河電気工業株式会社製、SN−500)を設置し、その上に100gの重りを設置した。   Next, a thermocouple temperature sensor was bonded to the upper part of the silicone rubber heater. A polyethylene foam (SN-500, manufactured by Furukawa Electric Co., Ltd.) having a width of 50 mm, a length of 50 mm, and a thickness of 5 mm was installed thereon, and a 100 g weight was installed thereon.

23℃50%RH中の無風環境にて、前記アルミニウム板(a2−1)の表面温度Qが50℃になるように、前記シリコーンラバーヒーターの温度を調整した。前記表面温度Qが50℃になってから、30分経過後に、前記アルミニウム板(b2−1)の表面温度Pを測定した。続いて、前記表面温度Qと前記表面温度Pとの差を計算した。 At 23 ° C. 50% RH in windless environment, the surface temperature to Q 1 the aluminum plate (a2-1) is such that the 50 ° C., and adjusted the temperature of the silicone rubber heater. After becoming the surface temperature Q 1 is 50 ° C., after lapse of 30 minutes, to measure the surface temperature P 1 of the aluminum plate (b2-1). Then, to calculate the difference between the surface temperature Q 1 and the surface temperature P 1.

(実施例2)
[粘着剤(2)の調製]
水酸化アルミニウムを使用しないこと以外は、粘着剤(1)と同様の方法で粘着剤(2)を調製した。
粘着剤(1)の代わりに、上記粘着剤(2)を使用すること以外は、実施例1と同様の方法で試験テープを作製し、その熱伝導性を評価した。
(Example 2)
[Preparation of adhesive (2)]
A pressure-sensitive adhesive (2) was prepared in the same manner as the pressure-sensitive adhesive (1) except that aluminum hydroxide was not used.
A test tape was prepared in the same manner as in Example 1 except that the pressure-sensitive adhesive (2) was used in place of the pressure-sensitive adhesive (1), and the thermal conductivity was evaluated.

(実施例3)
厚さ70μmの圧延銅箔の代わりに、厚さ35μmの圧延銅箔を使用すること以外は、実施例1と同様の方法で試験テープを作製し、その熱伝導性を評価した。
Example 3
A test tape was prepared in the same manner as in Example 1 except that a rolled copper foil having a thickness of 35 μm was used instead of the rolled copper foil having a thickness of 70 μm, and its thermal conductivity was evaluated.

Figure 2014235148
Figure 2014235148

実施例1〜3に記載の試験テープは、いずれも優れた熱伝導性を有するものであった。表1中の「Q−P」(℃)の値に基づき、実施例1記載の試験テープが、実施例2及び3に記載の試験テープよりも優れた熱伝導性を有することがわかった。また、実施例2及び3に記載の試験テープは、同等の熱伝導性を有するものであることが分かった。 The test tapes described in Examples 1 to 3 all had excellent thermal conductivity. Based on the value of “Q 1 -P 1 ” (° C.) in Table 1, it was found that the test tape described in Example 1 had better thermal conductivity than the test tapes described in Examples 2 and 3. It was. In addition, it was found that the test tapes described in Examples 2 and 3 have equivalent thermal conductivity.

1 ポリエチレンフォーム
2 熱電対温度センサー
3 シリコーンラバーヒーター
4 熱伝導性粘着テープ
5 アルミニウム板
6 試験部材
7 アルミニウム板
8 おもり
9 直流電源装置
DESCRIPTION OF SYMBOLS 1 Polyethylene foam 2 Thermocouple temperature sensor 3 Silicone rubber heater 4 Thermal conductive adhesive tape 5 Aluminum plate 6 Test member 7 Aluminum plate 8 Weight 9 DC power supply device

Claims (13)

発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層され、前記発熱部材(A)と受熱部材(B)とが、試験部材(D)を接続可能な部位を有することを特徴とする熱伝導性の評価装置。 The heat generating member (A) and the heat receiving member (B) are laminated via the heat insulating layer (C), and the heat generating member (A) and the heat receiving member (B) can connect the test member (D). A thermal conductivity evaluation apparatus comprising: 前記発熱部材(A)が、熱源である発熱部(a1)と、金属基材(a2)とによって構成されるものである請求項1記載の評価装置。 The evaluation apparatus according to claim 1, wherein the heat generating member (A) includes a heat generating part (a1) that is a heat source and a metal base material (a2). 前金属基材(a2)がアルミニウム基材である請求項2記載の評価装置。 The evaluation apparatus according to claim 2, wherein the front metal substrate (a2) is an aluminum substrate. 前記受熱部材(B)が、熱電対温度センサー(E)の接続された金属基材(b2)である請求項1に記載の評価装置。 The evaluation apparatus according to claim 1, wherein the heat receiving member (B) is a metal substrate (b2) to which a thermocouple temperature sensor (E) is connected. 前金属基材(b2)がアルミニウム基材である請求項4記載の評価装置。 The evaluation apparatus according to claim 4, wherein the pre-metal substrate (b2) is an aluminum substrate. 発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された装置を用い、前記発熱部材(A)と受熱部材(B)とを、試験部材(D)を介して接続し、次に前記発熱部材(A)の温度を40℃〜200℃に設定した後、前記受熱部材(B)の温度(P)を測定し、前記温度(P)と、前記温度設定前の前記受熱部材(B)の初期温度(P)との温度差を算出することを特徴とする試験部材(D)の熱伝導性の評価方法。 Using a device in which the heat generating member (A) and the heat receiving member (B) are laminated via the heat insulating layer (C), the heat generating member (A) and the heat receiving member (B) are connected to the test member (D). Then, after setting the temperature of the heat generating member (A) to 40 ° C. to 200 ° C., the temperature (P 1 ) of the heat receiving member (B) is measured, and the temperature (P 1 ), A method for evaluating the thermal conductivity of the test member (D), wherein a temperature difference from the initial temperature (P 0 ) of the heat receiving member (B) before the temperature setting is calculated. 前記試験部材(D)が粘着テープである請求項6に記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 6, wherein the test member (D) is an adhesive tape. 前記発熱部材(A)が、熱源である発熱部(a1)と、金属基材(a2)とによって構成されるものである請求項6記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 6, wherein the heat generating member (A) includes a heat generating part (a1) which is a heat source and a metal substrate (a2). 前記受熱部材(B)が、熱電対温度センサー(E)の接続された金属基材(b2)である請求項6に記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 6, wherein the heat receiving member (B) is a metal substrate (b2) to which a thermocouple temperature sensor (E) is connected. 発熱部材(A)と受熱部材(B)とが、断熱層(C)を介して積層された装置を用い、前記発熱部材(A)と受熱部材(B)とを、試験部材(D)を介して接続し、前記発熱部材(A)を40℃〜200℃の範囲の温度(Q)に設定した後、前記受熱部材(B)の温度(P)を測定し、前記Q及びPの温度差を算出することを特徴とする試験部材(D)の熱伝導性の評価方法。 Using a device in which the heat generating member (A) and the heat receiving member (B) are laminated via the heat insulating layer (C), the heat generating member (A) and the heat receiving member (B) are connected to the test member (D). And the heating member (A) is set to a temperature (Q 1 ) in the range of 40 ° C. to 200 ° C., then the temperature (P 1 ) of the heat receiving member (B) is measured, and the Q 1 and thermal conductivity evaluation method of testing members (D), characterized in that to calculate the temperature difference between P 1. 前記試験部材(D)が粘着テープである請求項10に記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 10, wherein the test member (D) is an adhesive tape. 前記発熱部材(A)が、熱源である発熱部(a1)と、金属基材(a2)とによって構成されるものである請求項10記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 10, wherein the heat generating member (A) includes a heat generating part (a1) which is a heat source and a metal substrate (a2). 前記受熱部材(B)が、熱電対温度センサー(E)の接続された金属基材(b2)である請求項10に記載の熱伝導性の評価方法。 The thermal conductivity evaluation method according to claim 10, wherein the heat receiving member (B) is a metal substrate (b2) to which a thermocouple temperature sensor (E) is connected.
JP2013118777A 2013-06-05 2013-06-05 Thermal conductivity evaluation apparatus and evaluation method Active JP6405602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118777A JP6405602B2 (en) 2013-06-05 2013-06-05 Thermal conductivity evaluation apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118777A JP6405602B2 (en) 2013-06-05 2013-06-05 Thermal conductivity evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2014235148A true JP2014235148A (en) 2014-12-15
JP6405602B2 JP6405602B2 (en) 2018-10-17

Family

ID=52137951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118777A Active JP6405602B2 (en) 2013-06-05 2013-06-05 Thermal conductivity evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP6405602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117434105A (en) * 2023-10-11 2024-01-23 南通市建筑工程质量检测中心 Test piece clamping force detection mechanism of flat plate heat conductivity coefficient measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137381U (en) * 1978-03-17 1979-09-22
JP2009244084A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Apparatus and method for measuring thermal conductivity of thermally joined material
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
CN103091354A (en) * 2011-11-01 2013-05-08 电子科技大学 Method for testing film thermal conductivity
JP2013088258A (en) * 2011-10-17 2013-05-13 Nichias Corp Thermal conductivity measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137381U (en) * 1978-03-17 1979-09-22
JP2009244084A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Apparatus and method for measuring thermal conductivity of thermally joined material
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
JP2013088258A (en) * 2011-10-17 2013-05-13 Nichias Corp Thermal conductivity measurement method
CN103091354A (en) * 2011-11-01 2013-05-08 电子科技大学 Method for testing film thermal conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117434105A (en) * 2023-10-11 2024-01-23 南通市建筑工程质量检测中心 Test piece clamping force detection mechanism of flat plate heat conductivity coefficient measurement device
CN117434105B (en) * 2023-10-11 2024-04-26 南通市建筑工程质量检测中心 Test piece clamping force detection mechanism of flat plate heat conductivity coefficient measurement device

Also Published As

Publication number Publication date
JP6405602B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6168250B2 (en) Heat dissipation member, electronic device and battery
US20160279900A1 (en) Electromagnetic-wave-absorbing heat dissipation sheet
TWI705001B (en) Thermal conductive sheet, electronic device
US20160324031A1 (en) Heat sink
CN102260466A (en) Insulation heat-conducting double-sided adhesive tape and preparation method thereof
CN102792442A (en) Heat insulation/heat dissipation sheet and intra-device structure
JP5185582B2 (en) Thermally conductive sheet
TW201207606A (en) Heat radiation tape and manufacturing method thereof
JP2015021082A5 (en) Thermally peelable adhesive tape and method for cutting electronic parts
WO2018110255A1 (en) Transfer sheet
CN106463486B (en) Thermal diffusion sheet
JP6726504B2 (en) Thermal diffusion sheet
JP6405602B2 (en) Thermal conductivity evaluation apparatus and evaluation method
JP2015030238A (en) Laminate substrate, adhesive sheet and electronic apparatus
US10117355B2 (en) Heat dissipation foil and methods of heat dissipation
JP2011201942A (en) Adhesive for conductive film surface, and adhesive sheet for conductive film surface
JP6241643B2 (en) Adhesive sheet and electronic device
JP6168348B2 (en) Adhesive sheet and electronic device
JP6206606B2 (en) Composition for forming adhesive layer, adhesive layer, method for producing adhesive layer, composite material, sheet, heat radiating member, electronic device, battery, capacitor, automotive component and mechanical mechanism component
CN114806445A (en) Weather-resistant advertisement sticker
CN109959475B (en) Conductive film and film resistance strain type pressure sensor
CN220450084U (en) High heat conduction acrylic adhesive tape
CN214735512U (en) Adhesive tape for heat conduction
JP2013159097A (en) Laminated structure
CN112251155B (en) Preparation method of outdoor weather-resistant advertisement vehicle sticker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6405602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250