JP2014234947A - Outdoor air introduction air conditioning system - Google Patents

Outdoor air introduction air conditioning system Download PDF

Info

Publication number
JP2014234947A
JP2014234947A JP2013116966A JP2013116966A JP2014234947A JP 2014234947 A JP2014234947 A JP 2014234947A JP 2013116966 A JP2013116966 A JP 2013116966A JP 2013116966 A JP2013116966 A JP 2013116966A JP 2014234947 A JP2014234947 A JP 2014234947A
Authority
JP
Japan
Prior art keywords
outside air
heat
conditioning system
heat exchange
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013116966A
Other languages
Japanese (ja)
Other versions
JP6200211B2 (en
Inventor
洋 黒木
Hiroshi Kuroki
洋 黒木
隆一 工藤
Ryuichi Kudo
隆一 工藤
七岡 寛
Hiroshi Nanaoka
寛 七岡
瑞基 本間
Mizuki Honma
瑞基 本間
田中 宏典
Hironori Tanaka
宏典 田中
香織 藤堂
Kaori Todo
香織 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2013116966A priority Critical patent/JP6200211B2/en
Publication of JP2014234947A publication Critical patent/JP2014234947A/en
Application granted granted Critical
Publication of JP6200211B2 publication Critical patent/JP6200211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide an outdoor air introduction air conditioning system capable of implementing heat exchange at low cost using a corrugated heat transfer plate material, and preventing degradation in heat recovery efficiency if the corrugated heat transfer plate material is simply arranged.SOLUTION: A heat exchange unit 13 of an outdoor air introduction air conditioning system includes: a heat exchanger main body 14; an inlet chamber 151 that is an outdoor air introduction side; and an outlet chamber 152 that is a conditioned outdoor air supply side, and implements heat exchange between introduced outdoor air and an underfloor base concrete (geothermal layer). The heat exchanger main body 14 includes a triangular wave-shaped heat transfer plate material 14a having convex and concave portions arranged alternately; and a casing 14b covering this heat transfer plate material 14a. Two heat transfer plate materials 14a are arranged in a direction of a heat exchange channel and the convex and concave portions of the two heat transfer plate materials 14a deviate in phase.

Description

この発明は、建物の床下に設置される外気導入空調システムに関する。   The present invention relates to an outside air introduction air conditioning system installed under a floor of a building.

特許文献1には、地熱で外気を空調して室内に取り入れる地熱利用の空調システムが開示されている。この空調システムは、周囲に敷設された地中断熱材により住宅外部の地表から断熱された住宅の基礎コンクリートと、通過する空気に熱伝達する複数の熱伝達フィンを有する地熱伝達器と、前記地熱伝達器と前記基礎コンクリートとの間に設置され、前記地熱伝達器の底面より広い熱伝達板と、屋外から取り入れられた外気が前記地熱伝達器を通過して室内に取り入れられる地熱伝達経路と、屋外から取り入れられた外気が空調されずに室内に取り入れられるバイパス経路と、屋外から取り入れられた外気を前記地熱伝達経路と前記バイパス経路のいずれかに流す第一切換手段とを含んでいる。   Patent Document 1 discloses an air conditioning system using geothermal heat that air-conditions outside air with geothermal heat and takes it indoors. The air conditioning system includes a basic concrete of a house insulated from the ground surface outside the house by underground heat insulating material laid around the earth, a geothermal heat exchanger having a plurality of heat transfer fins for transferring heat to the passing air, and the geothermal heat A heat transfer plate installed between the transmitter and the foundation concrete, wider than the bottom surface of the geothermal heat exchanger, and a geothermal heat transfer path through which outside air taken from outside passes through the geothermal heat exchanger and is taken indoors; A bypass path through which the outside air taken in from outside is taken into the room without being air-conditioned, and a first switching means for flowing the outside air taken in from outside to either the geothermal heat transfer path or the bypass path.

また、上記特許文献1によれば、地熱伝達器は熱抵抗の小さい地熱伝達器台の上にその全底面を接触して設置される。上記地熱伝達器台は熱拡散率の大きい銅やアルミニウム等で作成された熱伝達板の上に設置されている。   Moreover, according to the said patent document 1, a geothermal heat exchanger is installed in contact with the whole bottom face on a geothermal heat exchanger stand with small heat resistance. The geothermal heat exchanger base is installed on a heat transfer plate made of copper, aluminum or the like having a high thermal diffusivity.

特許第3562527号Japanese Patent No. 3562527

しかしながら、上記従来の地熱利用の空調システムで用いられる地熱伝達器は複数の熱伝達フィンを有するので一般に高価であり、設置コストが高くつく欠点がある。   However, since the geothermal heat exchanger used in the conventional geothermal air conditioning system has a plurality of heat transfer fins, it is generally expensive and has a drawback of high installation cost.

この発明は、上記の事情に鑑み、波板状の熱伝導板材を用いて熱交換を低コストで行えるようにするとともに、上記波板状の熱伝導板材を単に配置した場合の熱回収効率の低下を防止できる外気導入空調システムを提供することを課題とする。   In view of the above circumstances, the present invention enables heat exchange at a low cost by using a corrugated plate-like heat conducting plate material, and improves the heat recovery efficiency when the corrugated plate-like heat conducting plate material is simply arranged. It is an object of the present invention to provide an outside air introduction air conditioning system that can prevent a decrease.

この発明の外気導入空調システムは、上記の課題を解決するために、建物の床下の空間に配置される外気導入空調システムであって、外気を導入する外気導入部と、上記外気導入部により導入された外気が通る外気流路と上記床下の地熱層との間で熱交換を行わせる熱交換部と、上記熱交換部を経て空調された外気を建物内に導く外気供給部と、を備えており、上記熱交換部は、凸部と凹部を交互に有した波板状の熱伝導板材で上記地熱層を覆うとともに上記熱伝導板材をケーシング内に収容することで複数の熱交換流路を形成しており、上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で入れ替わるかまたは混合されることを特徴とする。   In order to solve the above problems, an outside air introduction air conditioning system according to the present invention is an outside air introduction air conditioning system arranged in a space under a floor of a building, and is introduced by an outside air introduction unit for introducing outside air and the outside air introduction unit. A heat exchange section that exchanges heat between the outside air passage through which the outside air passes and the geothermal layer under the floor, and an outside air supply section that guides the outside air conditioned through the heat exchange section into the building. The heat exchanging portion covers the geothermal layer with a corrugated plate-like heat conducting plate having alternating convex portions and concave portions, and accommodates the heat conducting plate in a casing, thereby providing a plurality of heat exchanging channels. The outside air in contact with the geothermal layer below the convex part and the outside air passing above the concave part are interchanged or mixed in the middle of the heat exchange flow path. .

上記の構成であれば、上記熱交換部において、波板状の熱伝導板材で上記地熱層を覆い複数の熱交換流路を形成して熱交換が行える。そして、上記波板状の熱伝導板材は、フィンを多数有する従来の地熱伝達器に比べて安価に入手することが可能であり、低コストで熱交換が行える外気導入空調システムを実現することができる。さらに、上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で入れ替わるかまたは混合されるので、上記波板状の熱伝導板材を単に配置した場合の熱回収効率の低下を防止できる。   If it is said structure, in the said heat exchanging part, the said geothermal layer will be covered with a corrugated sheet-like heat conduction board material, and a several heat exchange flow path will be formed, and heat exchange can be performed. The corrugated plate-like heat conduction plate material can be obtained at a lower cost than a conventional geothermal heat exchanger having a large number of fins, and can realize an outside air introduction air conditioning system capable of heat exchange at a low cost. it can. Furthermore, the outside air that has contacted the geothermal layer below the convex portion and the outside air that has passed above the concave portion are interchanged or mixed in the middle of the heat exchange flow path, so that the corrugated plate-like heat conduction It is possible to prevent a decrease in heat recovery efficiency when the plate material is simply arranged.

上記外気の流路方向に複数枚の波板状の熱伝導板材が位相をずらして配置してもよい。これによれば、位相ずらし配置という簡単な構造で上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で入れ替わるかまたは混合される。また、この構成において、上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とを上記熱交換流路の途中で入れ替えるための仕切り板が上記複数枚の熱伝導板材の間に配置されていてもよい。   A plurality of corrugated plate-like heat conductive plates may be arranged with a phase shifted in the flow direction of the outside air. According to this, the outside air that has contacted the geothermal layer on the lower side of the convex portion and the outside air that has passed on the upper side of the concave portion are interchanged or mixed in the middle of the heat exchange flow path with a simple structure of phase shifting arrangement. Is done. Further, in this configuration, the partition plate for exchanging the outside air in contact with the geothermal layer below the convex portion and the outside air passing above the concave portion in the middle of the heat exchange flow path is the plurality of heats. It may be arranged between the conductive plate materials.

上記波板状の熱伝導板材の波密度が上記熱交換部の外気入口側よりも外気出口側で高くされていてもよい。これによれば、上記外気出口側での熱交換力を高めることができる。   The wave density of the corrugated plate-like heat conducting plate material may be higher on the outside air outlet side than on the outside air inlet side of the heat exchange section. According to this, the heat exchange force at the outside air outlet side can be increased.

上記波板状の熱伝導板材が2層に配置された外気入口側2層部と、上記波板状の熱伝導板材が2層に配置された外気出口側2層部と、を備え、外気が上記外気入口側2層部の下層を上記地熱層に接触しつつ通過して途中から上記外気出口側2層部の上層を通過する第1流路と、外気が上記外気入口側2層部の上層を通過して途中から上記外気出口側2層部の下層を上記地熱層に接触しつつ通過する第2流路とが形成されていてもよい。   The outside air inlet side two-layer portion in which the corrugated heat conductive plate material is arranged in two layers, and the outside air outlet side two layer portion in which the corrugated heat conduction plate material is arranged in two layers, Passes through the lower layer of the two layers on the outside air side while contacting the geothermal layer, and passes from the middle through the upper layer of the two layers on the outside air outlet side, and the outside air is formed on the two layers on the outside air inlet side. A second flow path that passes through the upper layer and passes through the lower layer of the two layers on the outside air outlet side while being in contact with the geothermal layer may be formed.

本発明の外気導入空調システムであれば、波板状の熱伝導板材を用いて熱交換を低コストで行えるとともに、上記波板状の熱伝導板材を単に配置した場合の熱回収効率の低下を防止できるという効果を奏する。   With the outside air introduction air conditioning system of the present invention, heat exchange can be performed at low cost using a corrugated plate-like heat conduction plate material, and the heat recovery efficiency when the corrugated plate-like heat conduction plate material is simply arranged can be reduced. There is an effect that it can be prevented.

本発明の外気導入空調システムが備えられた建物の概略構造を示した説明図である。It is explanatory drawing which showed schematic structure of the building provided with the external air introduction | air-conditioning system of this invention. 図1の外気導入空調システムの詳細を示した説明図である。It is explanatory drawing which showed the detail of the external air introduction | transduction air conditioning system of FIG. 図1の外気導入空調システムにおける熱交換部の詳細を示した説明図である。It is explanatory drawing which showed the detail of the heat exchange part in the external air introduction | air-conditioning system of FIG. 図1の外気導入空調システムにおける熱交換部を床下の基礎コンクリート上に設置した状態を示した説明図である。It is explanatory drawing which showed the state which installed the heat exchange part in the external air introduction | air-conditioning system of FIG. 1 on the foundation concrete under a floor. 図1の外気導入空調システムにおける他の構成例の熱交換部を基礎コンクリート上に設置した状態を示した説明図である。It is explanatory drawing which showed the state which installed the heat exchange part of the other structural example in the external air introduction | air-conditioning system of FIG. 1 on the basic concrete. 図1の外気導入空調システムにおける他の構成例の熱交換部を基礎コンクリート上に設置した状態を示した説明図である。It is explanatory drawing which showed the state which installed the heat exchange part of the other structural example in the external air introduction | air-conditioning system of FIG. 1 on the basic concrete. 同図(A)は図1の外気導入空調システムにおける他の構成例の熱交換部を示した説明図であり、同図(B)はa−a断面を簡略的に示した説明図である。1A is an explanatory view showing a heat exchanging portion of another configuration example in the outside air introduction air conditioning system of FIG. 1, and FIG. 1B is an explanatory view schematically showing a cross section aa. . 同図(A)は図7のA−A断面の概略図であり、同図(B)は図7のB−B断面の概略図であり、同図(C)は図7のC−C断面の概略図である。7A is a schematic diagram of the AA cross section of FIG. 7, FIG. 5B is a schematic diagram of the BB cross section of FIG. 7, and FIG. It is the schematic of a cross section. 同図(A)は図1の外気導入空調システムにおける他の構成例の熱交換部を示した正面側説明図であり、同図(B)は背面説明図であり、同図(C)は側面説明図であり、同図(D)は熱交換部の第1流路を示した平面説明図である。1A is a front side explanatory view showing a heat exchange part of another configuration example in the outside air introduction air conditioning system of FIG. 1, FIG. 1B is a rear side explanatory view, and FIG. It is side surface explanatory drawing, The same figure (D) is the plane explanatory drawing which showed the 1st flow path of the heat exchange part. 同図(A)は図9の熱交換部の第2流路を示した平面説明図であり、同図(B)は側面説明図である。FIG. 9A is a plan view showing a second flow path of the heat exchange section of FIG. 9, and FIG. 10B is a side view. 図1の外気導入空調システムにおける他の構成例の熱交換部を示した説明図である。It is explanatory drawing which showed the heat exchange part of the other structural example in the external air introduction | air-conditioning system of FIG.

以下、この発明の実施の形態を添付図面に基づいて説明する。
図1および図2に示すように、この発明の実施形態の外気導入空調システム1は、建物2の床5の下に配置されたダクト12内に外気を導入する外気導入部11と、熱交換部13と、上記熱交換部13を経て空調された外気を室内4に導く外気供給部16と、を備える。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1 and FIG. 2, an outside air introduction air conditioning system 1 according to an embodiment of the present invention exchanges heat with an outside air introduction unit 11 that introduces outside air into a duct 12 disposed under a floor 5 of a building 2. And an outside air supply unit 16 that guides the outside air that has been air-conditioned through the heat exchanging unit 13 to the room 4.

上記外気導入部11に接続されている外気導入パイプ11aの一端側は、床下の基礎コンクリート(地熱層)3の立ち上げ基礎部3aを貫通して屋外に出されている。上記一端側には雨水の浸入を防止するフードが設けられる。また、上記外気導入パイプ11aの他端側は粉塵や花粉を除去するフィルターボックス11bに接続されている。上記フィルターボックス11bの天板部は開閉可能な蓋部をなしており、フィルター交換が行えるようになっている。さらに、上記フィルターボックス11bの下流側にはダクトファン11cが設けられている。上記ダクトファン11cによる外気吸引によって外気が当該外気導入空調システム1内に導入される。   One end side of the outside air introduction pipe 11a connected to the outside air introduction part 11 passes through the rising foundation part 3a of the foundation concrete (geothermal layer) 3 under the floor and is taken out outdoors. A hood for preventing rainwater from entering is provided on the one end side. The other end of the outside air introduction pipe 11a is connected to a filter box 11b that removes dust and pollen. The top plate portion of the filter box 11b has a lid portion that can be opened and closed so that the filter can be replaced. Further, a duct fan 11c is provided on the downstream side of the filter box 11b. The outside air is introduced into the outside air introduction air conditioning system 1 by the outside air suction by the duct fan 11c.

上記ダクトファン11cの下流側は上記ダクト12に接続されている。このダクト12が熱伝導率の高い金属等の素材で形成されていれば、当該ダクト12自体も床下空間の空気との間で熱交換をする機能を具備することになる。もちろん、ダクト12自体にこのような熱交換機能を担わせない構成とすることもできる。   The downstream side of the duct fan 11c is connected to the duct 12. If the duct 12 is made of a material such as a metal having a high thermal conductivity, the duct 12 itself has a function of exchanging heat with the air in the underfloor space. Of course, the duct 12 itself may not have such a heat exchange function.

上記熱交換部13は、熱交換本体部14と外気導入側となる入口チャンバー151と空調外気供給側となる出口チャンバー152とからなり、導入された外気と上記床下の基礎コンクリート(地熱層)3との間で熱交換を行わせる。上記入口チャンバー151は上記ダクト12に接続され、上記出口チャンバー152は上記外気供給部16に接続されている。なお、上記基礎コンクリート3との間の熱交換は、深深度(5m〜10m)の深地熱層利用ではなく、床下地盤の表面或いは表面に近い層の地熱を利用する浅地熱層利用となるものであり、地盤掘削等にかかる費用が低減される利点がある。   The heat exchanging section 13 includes a heat exchanging body section 14, an inlet chamber 151 on the outside air introduction side, and an outlet chamber 152 on the air conditioning outside air supply side, and the introduced outside air and the foundation concrete (geothermal layer) 3 under the floor. Heat exchange with the. The inlet chamber 151 is connected to the duct 12, and the outlet chamber 152 is connected to the outside air supply unit 16. The heat exchange with the foundation concrete 3 is not the use of a deep geothermal layer at a deep depth (5 m to 10 m), but a shallow geothermal layer that uses the surface heat of the floor base plate or a layer close to the surface. Therefore, there is an advantage that the cost for ground excavation is reduced.

図3に示しているように、上記熱交換本体部14は、凸部と凹部を交互に有した三角波形状の熱伝導板材14aと、この熱伝導板材14aを覆うケーシング14bとからなる。   As shown in FIG. 3, the heat exchange main body 14 is composed of a triangular wave-shaped heat conductive plate 14a having convex portions and concave portions alternately, and a casing 14b covering the heat conductive plate material 14a.

上記熱伝導板材14aは、例えばステンレスやアルミニウム合金といった熱伝導性に優れた金属からなり、上下方向に変形可能である。そして、図4にも示しているように、上記熱伝導板材14aにおける凹部底面が上記基礎コンクリート3の表面と接するように設けられる。上記凹部の上側は上記ケーシング14bによって覆われて熱交換流路を形成し、また、上記凸部の下側は上記基礎コンクリート3による熱交換流路を形成する。   The heat conductive plate 14a is made of a metal having excellent heat conductivity, such as stainless steel or aluminum alloy, and can be deformed in the vertical direction. And as shown also in FIG. 4, it is provided so that the recessed part bottom face in the said heat conductive board | plate material 14a may contact | connect the surface of the said foundation concrete 3. As shown in FIG. The upper side of the concave portion is covered by the casing 14b to form a heat exchange channel, and the lower side of the convex portion forms a heat exchange channel by the foundation concrete 3.

上記熱伝導板材14aは、熱交換流路の方向に2枚に分割されて配置されている。そして、上記2枚の熱伝導板材14aはその凹部と凸部の位相を互いにずらして配置されており、この実施形態では上記位相を180度ずらすことで凹部と凸部の位置関係が逆になるようにしている。図3および図4に示した例であれば、上記入口チャンバー151の側に位置する1枚目の熱伝導板材14aの凸部下面側において上記基礎コンクリート3の表面に接した外気は、上記出口チャンバー152の側に位置する2枚目の熱伝導板材14aの凹部上面側または凸部下面側を通る。同様に、上記1枚目の熱伝導板材14aの凹部上面側を通る外気は、上記2枚目の熱伝導板材14aの凸部下面側を通り上記基礎コンクリート3の表面に接するかまたは凹部上面側を通る。すなわち、上記熱伝導板材14aの上記凸部の下側で上記基礎コンクリート3に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で混合される。   The heat conductive plate material 14a is divided into two pieces in the direction of the heat exchange flow path. The two heat conductive plate members 14a are arranged so that the phases of the concave portion and the convex portion are shifted from each other. In this embodiment, the positional relationship between the concave portion and the convex portion is reversed by shifting the phase by 180 degrees. I am doing so. In the example shown in FIGS. 3 and 4, the outside air in contact with the surface of the foundation concrete 3 on the lower surface side of the convex portion of the first heat conductive plate 14a located on the inlet chamber 151 side is the outlet. It passes through the upper surface side of the concave portion or the lower surface side of the convex portion of the second heat conductive plate 14a located on the chamber 152 side. Similarly, the outside air passing through the upper surface side of the concave portion of the first heat conductive plate member 14a passes through the lower surface side of the convex portion of the second heat conductive plate material 14a and comes into contact with the surface of the foundation concrete 3 or the upper surface side of the concave portion. Pass through. That is, outside air that has contacted the basic concrete 3 below the convex portion of the heat conductive plate 14a and outside air that has passed above the concave portion are mixed in the middle of the heat exchange flow path.

上記熱交換部13の周囲の縁にはフランジ部13aが形成されており、このフランジ部13aにねじ込まれたビス13bによって上記熱交換部13が上記基礎コンクリート3に固定される。さらに、上記フランジ部13aと上記基礎コンクリート3との間にパッキン(封止材)13cが介装されている。   A flange portion 13 a is formed at the peripheral edge of the heat exchange portion 13, and the heat exchange portion 13 is fixed to the foundation concrete 3 by screws 13 b screwed into the flange portion 13 a. Further, a packing (sealing material) 13 c is interposed between the flange portion 13 a and the foundation concrete 3.

上記熱伝導板材14aは、上記のように、凸部と凹部を交互に有した波板材であり、このような波板材は、フィンを多数有する地熱伝達器に比べて安価に入手することが可能である。これにより、外気導入空調システム1を低コストで構成することができる。   The heat conductive plate material 14a is a corrugated plate material having convex portions and concave portions alternately as described above, and such a corrugated plate material can be obtained at a lower cost than a geothermal transmitter having many fins. It is. Thereby, the external air introduction air conditioning system 1 can be comprised at low cost.

また、上記熱伝導板材14aは変形可能であり、その自重により、或いは上記ケーシング14bが上記基礎コンクリート3に固定されるときの押圧力により、上記ケーシング14b内の上記熱伝導板材14aにおける凹部底面が上記基礎コンクリート3の表面に密着する。すなわち、上記基礎コンクリート3に不陸があっても、上記熱伝導板材14aが変形できるので、上記熱伝導板材14aはその凹部の底側を上記地熱層の不陸の箇所に密着させることができる。   The heat conductive plate 14a can be deformed, and the bottom surface of the recess in the heat conductive plate 14a in the casing 14b is caused by its own weight or by the pressing force when the casing 14b is fixed to the foundation concrete 3. It adheres to the surface of the foundation concrete 3. That is, even if the foundation concrete 3 is uneven, since the heat conductive plate 14a can be deformed, the heat conductive plate 14a can make the bottom side of the recess closely contact the uneven portion of the geothermal layer. .

上記熱交換部13においては、波板状の上記熱伝導板材14aで上記基礎コンクリート3を覆い複数の熱交換流路を形成して熱交換が行える。そして、上記熱伝導板材14aは、フィンを多数有する従来の地熱伝達器に比べて安価に入手することが可能であり、低コストで熱交換が行える外気導入空調システムを実現することができる。さらに、上記熱伝導板材14aの上記凸部側を通った外気と上記凹部側を通った外気とが上記熱交換流路の途中で混合されるので、単に波板を用いた場合の熱回収効率の低下を防止できる。また、上記のように、複数の熱伝導板材14aが用いられると、一枚物の熱伝導板材に比べて、上記基礎コンクリート3の不陸箇所に接触し易くなるので、全体としての熱交換性能が向上する。   In the heat exchanging section 13, the foundation concrete 3 is covered with the corrugated heat conductive plate material 14a to form a plurality of heat exchanging flow paths and heat exchange can be performed. And the said heat conductive board | plate material 14a can be obtained cheaply compared with the conventional geothermal heat exchanger which has many fins, and can implement | achieve the external air introduction air conditioning system which can perform heat exchange at low cost. Furthermore, since the outside air that has passed through the convex side of the heat conducting plate 14a and the outside air that has passed through the concave side are mixed in the middle of the heat exchange flow path, the heat recovery efficiency when simply using a corrugated plate is used. Can be prevented. In addition, as described above, when a plurality of heat conduction plate members 14a are used, the heat exchange performance as a whole is facilitated because it is more likely to come into contact with the non-land portion of the foundation concrete 3 as compared with a single piece of heat conduction plate material. Will improve.

上記の例では、上記熱伝導板材14aは熱交換流路の方向に2枚配置されたが、3枚或いは4枚など、より多くの枚数を配置することも可能である。また、複数枚の熱伝導板材の波の位相を180度ずらすことに限らず、これと異なる角度ずらすようにしてもよい。   In the above example, two heat conductive plate members 14a are arranged in the direction of the heat exchange flow path, but it is also possible to arrange a larger number such as three or four. Further, the wave phases of the plurality of heat conductive plate members are not limited to be shifted by 180 degrees, but may be shifted by a different angle.

また、上記熱伝導板材14aの波板形状は三角形に限らず四角形状でもよい。この四角形状とした複数の熱伝導板材の位相を180度ずらすと、凸部と凹部がずれずに連結されて流路を形成するので、1枚目の熱伝導板材の凸部下面側において上記基礎コンクリート3の表面に接した外気は、2枚目の熱伝導板材の凹部上面側を確実に通ることになる。同様に、1枚目の熱伝導板材の凹部上面側を通る外気は、2枚目の熱伝導板材の凸部下面側を通り、確実に上記基礎コンクリート3の表面に接する。すなわち、波形を四角形状とした熱伝導板材の波の位相を180度ずらして配置すると、凸部側を通った外気と凹部側を通った外気とが上記熱交換流路の途中で入れ替わる構成となる。一方、ずらす角度を180度以外とすれば、熱伝導板材の端面に外気が接触する(当たる)構成になるので、この接触による熱交換効率の向上が見込める。   The corrugated plate shape of the heat conducting plate 14a is not limited to a triangle, but may be a quadrangular shape. If the phase of the plurality of heat conductive plate members having the quadrangular shape is shifted by 180 degrees, the convex portions and the concave portions are connected without being shifted to form a flow path. The outside air in contact with the surface of the foundation concrete 3 surely passes through the upper surface of the concave portion of the second heat conductive plate. Similarly, the outside air passing through the upper surface side of the concave portion of the first heat conductive plate material passes through the lower surface side of the convex portion of the second heat conductive plate material and reliably contacts the surface of the foundation concrete 3. That is, when the wave phase of the heat conducting plate material having a square shape is shifted by 180 degrees, the outside air passing through the convex side and the outside air passing through the concave side are switched in the middle of the heat exchange flow path. Become. On the other hand, if the angle to be shifted is other than 180 degrees, the configuration is such that the outside air comes into contact with (contacts with) the end face of the heat conducting plate material, so that improvement in heat exchange efficiency due to this contact can be expected.

図5および図6は熱交換部13における他の構成例の熱交換本体部14Aを示している。この熱交換本体部14Aは、上記熱交換本体部14において上記2枚の熱伝導板材14aの間に仕切り板14cを備えた構成である。上記仕切り板14cには複数の連通開口14dが形成されており、1枚目の熱伝導板材14aの凸部側から上記連通開口14dによって2枚目の熱伝導板材14aの凹部側に通じる熱交換流路が形成され、また1枚目の熱伝導板材14aの凹部側から上記連通開口14dによって2枚目の熱伝導板材14aの凸部側に通じる熱交換流路が形成される。すなわち、上記凸部側を通った外気と上記凹部側を通った外気とが上記熱交換流路の途中で入れ替わるようになっている。   5 and 6 show a heat exchange body 14A of another configuration example in the heat exchange unit 13. FIG. The heat exchange main body 14A has a configuration in which a partition plate 14c is provided between the two heat conductive plate members 14a in the heat exchange main body 14. A plurality of communication openings 14d are formed in the partition plate 14c, and heat exchange is performed from the convex portion side of the first heat conduction plate member 14a to the concave portion side of the second heat conduction plate member 14a through the communication opening 14d. A flow path is formed, and a heat exchange flow path is formed from the concave side of the first heat conductive plate 14a to the convex side of the second heat conductive plate 14a through the communication opening 14d. That is, the outside air that has passed through the convex portion side and the outside air that has passed through the concave portion side are interchanged in the middle of the heat exchange flow path.

このような構成であれば、1枚目の上記熱伝導板材14aの凸部下面側において上記基礎コンクリート3の表面に接した外気は、2枚目の上記熱伝導板材14aの凹部上面側を確実に通る。同様に、1枚目の上記熱伝導板材14aの凹部上面側を通る外気は、2枚目の上記熱伝導板材14aの凸部下面側を通り上記基礎コンクリート3の表面に接することができる。   With such a configuration, the outside air in contact with the surface of the foundation concrete 3 on the lower surface side of the convex portion of the first sheet of heat conductive plate 14a is surely located on the upper surface side of the concave portion of the second sheet of heat conductive plate 14a. Pass through. Similarly, the outside air passing through the upper surface side of the concave portion of the first heat conductive plate material 14a can contact the surface of the foundation concrete 3 through the lower surface side of the convex portion of the second heat conductive plate material 14a.

図7(A)および図7(B)は、上記熱交換部13における他の構成例の熱交換本体部14Bを示している。また、図8(A)は図7のA−A断面の概略図であり、図8(B)は図7のB−B断面の概略図であり、図8(C)は図7のC−C断面の概略図である。この熱交換本体部14Bは、3分割された熱伝導板材141,142,143と、これら熱伝導板材141,142,143を覆うケーシング14bとからなる。上記熱伝導板材141,142,143は、例えばステンレスやアルミニウム合金といった熱伝導性に優れた金属からなり、互いに独立して変形可能である。上記熱伝導板材141,142,143における凹部底面は上記基礎コンクリート3と接するように設けられ、凹部の上側は上記ケーシング14bによって覆われて熱交換流路を形成する。また、凸部の下側は上記基礎コンクリート3と対面して熱交換流路を形成する。   FIGS. 7A and 7B show a heat exchange main body 14 </ b> B of another configuration example in the heat exchange unit 13. 8A is a schematic diagram of the AA cross section of FIG. 7, FIG. 8B is a schematic diagram of the BB cross section of FIG. 7, and FIG. 8C is a schematic diagram of C of FIG. It is the schematic of a -C cross section. The heat exchange main body 14B is composed of three divided heat conductive plate materials 141, 142, and 143 and a casing 14b that covers these heat conductive plate materials 141, 142, and 143. The heat conductive plate materials 141, 142, and 143 are made of a metal having excellent heat conductivity, such as stainless steel or aluminum alloy, and can be deformed independently of each other. The bottom surfaces of the recesses in the heat conductive plates 141, 142, and 143 are provided in contact with the foundation concrete 3, and the upper side of the recesses is covered by the casing 14b to form a heat exchange flow path. Further, the lower side of the convex portion faces the basic concrete 3 to form a heat exchange channel.

上記熱伝導板材141と、上記熱伝導板材142と、上記熱伝導板材143は、上記入口チャンバー151から上記出口チャンバー152の方向にこの順で配置されている。上記熱伝導板材142の波密度(フィンピッチ)は上記熱伝導板材141の密度(フィンピッチ)よりも高く(短く)、上記熱伝導板材143の波密度(フィンピッチ)は上記熱伝導板材142の波密度(フィンピッチ)よりも高い(短い)。すなわち、上記熱交換部13の外気入口側に配置された熱伝導板材の波密度よりも外気口側に配置された熱伝導板材の波密度が高くなっている。   The heat conductive plate 141, the heat conductive plate 142, and the heat conductive plate 143 are arranged in this order from the inlet chamber 151 to the outlet chamber 152. The wave density (fin pitch) of the heat conductive plate member 142 is higher (shorter) than the density (fin pitch) of the heat conductive plate member 141, and the wave density (fin pitch) of the heat conductive plate member 143 is that of the heat conductive plate member 142. Higher (shorter) than wave density (fin pitch). That is, the wave density of the heat conduction plate material arranged on the outside air port side is higher than the wave density of the heat conduction plate material arranged on the outside air inlet side of the heat exchange unit 13.

このような構成においても、上記熱伝導板材141、142、143の凸部側を通った外気と凹部側を通った外気とが上記熱交換流路の途中で混合されることになる。また、外気入口側となる上記熱伝導板材141の波密度は疎となるものの、導入された外気の温度と上記基礎コンクリート3の温度との差異が大きくて単位面積当たりの熱交換率が高いので、高い熱交換力が得られる。一方、外気出口側となる上記熱伝導板材142、143においては、既に熱交換がある程度行われているので導入外気の温度は高く(或いは低く)なっており、単位面積当たりの熱交換効率が低下するものの、波密度が高い(密である)ので高い熱交換力が得られる。   Even in such a configuration, the outside air that has passed through the convex portions of the heat conducting plates 141, 142, and 143 and the outside air that has passed through the concave portions are mixed in the middle of the heat exchange flow path. Further, although the wave density of the heat conducting plate 141 on the outside air inlet side is sparse, the difference between the temperature of the introduced outside air and the temperature of the foundation concrete 3 is large, and the heat exchange rate per unit area is high. High heat exchange power can be obtained. On the other hand, in the heat conduction plate materials 142 and 143 on the outside air outlet side, since the heat exchange has already been performed to some extent, the temperature of the introduced outside air is high (or low), and the heat exchange efficiency per unit area is reduced. However, since the wave density is high (dense), a high heat exchange force can be obtained.

また、出口側の方向に上記熱伝導板材141,142,143の波密度が徐々に高くなる構造は、一律に波密度を高くするものではないので、空気抵抗の増加を抑えることができる。   Further, the structure in which the wave density of the heat conductive plate materials 141, 142, and 143 gradually increases in the direction toward the outlet side does not uniformly increase the wave density, and therefore it is possible to suppress an increase in air resistance.

図9および図10は、上記熱交換部13における他の構成例の熱交換本体部14Cを示している。この熱交換本体部14Cは下層と上層の2層構造に仕切られている。図9(A)は上記熱交換本体部14Cの正面側を示しており、同図(B)は背面側を示している。また、同図(C)は側面を示しており、同図(D)は図9の熱交換部の第1流路を示している。さらに、図10(A)は図9の熱交換部の第2流路を示しており、同図(B)は側面を示している。また、上記図において、第1流路を構成する熱伝導板材144は実線で、第2流路を構成する熱伝導板材145は点線で示している。さらに、上記基礎コンクリート3と接触する状態の外気は黒矢印で示し、接触しない状態の外気は白矢印で示している。   FIG. 9 and FIG. 10 show a heat exchange main body 14 </ b> C of another configuration example in the heat exchange unit 13. The heat exchange main body 14C is partitioned into a two-layer structure of a lower layer and an upper layer. FIG. 9A shows the front side of the heat exchange main body 14C, and FIG. 9B shows the back side. Moreover, the figure (C) has shown the side, and the figure (D) has shown the 1st flow path of the heat exchange part of FIG. Furthermore, FIG. 10 (A) shows the second flow path of the heat exchanging part of FIG. 9, and FIG. 10 (B) shows the side surface. Moreover, in the said figure, the heat conductive board material 144 which comprises a 1st flow path is shown with the continuous line, and the heat conductive board material 145 which comprises a 2nd flow path is shown with the dotted line. Further, the outside air in contact with the foundation concrete 3 is indicated by a black arrow, and the outside air not in contact is indicated by a white arrow.

上記熱交換本体部14Cの外気入口側には、平面視で三角形状をなす上記熱伝導板材144および上記熱伝導板材145が積層配置されており、上記熱伝導板材144による流路と上記熱伝導板材145による流路が立体交差する。同様に、上記熱交換本体部14Cの外気出口側には、平面視で三角形状をなす上記熱伝導板材144および上記熱伝導板材145が積層配置されており、上記熱伝導板材144による流路と上記熱伝導板材145による流路が立体交差する。さらに、上記外気出口側では、上記熱伝導板材144と上記熱伝導板材145の上下配置が逆になっている。また、上記熱伝導板材144および上記熱伝導板材145が三角形状で積層配置される箇所以外の箇所は特に何も設けていない空間になっている。   The heat conduction plate member 144 and the heat conduction plate member 145 having a triangular shape in plan view are laminated on the outside air inlet side of the heat exchange main body 14C, and the flow path and the heat conduction by the heat conduction plate member 144 are arranged. The flow paths by the plate material 145 are three-dimensionally crossed. Similarly, the heat conduction plate member 144 and the heat conduction plate member 145 having a triangular shape in a plan view are laminated on the outside air outlet side of the heat exchange main body 14C, and the flow path by the heat conduction plate member 144 is The flow paths formed by the heat conductive plate material 145 cross each other. Furthermore, the top and bottom arrangement of the heat conductive plate member 144 and the heat conductive plate member 145 is reversed on the outside air outlet side. Further, a location other than the location where the heat conductive plate material 144 and the heat conductive plate material 145 are stacked in a triangular shape is a space where nothing is provided.

上記第1流路では、外気は上記外気入口側の上記三角形状をなす部分において下層側に位置する上記熱伝導板材144と上記基礎コンクリート3との間を通過した後に、上記外気出口側の上記三角形状をなす部分において上層側に位置する上記熱伝導板材144による流路を通る。一方、上記第2流路では、外気は、上記外気入口側の上記三角形状をなす部分において上層側に位置する上記熱伝導板材145による流路を通過した後に、上記外気出口側の上記三角形状をなす部分において下層側に位置する上記熱伝導板材145と上記基礎コンクリート3との間を通ることになる。すなわち、上記熱交換本体部14Cでは、波板状の熱伝導板材144、145が2層に配置された外気入口側2層部と、上記波板状の熱伝導板材144、145が2層に配置された外気出口側2層部と、を備え、外気が上記外気入口側2層部の下層を通過して途中から上記外気出口側2層部の上層を通過する上記第1流路と、外気が上記外気入口側2層部の上層を通過して途中から上記外気出口側2層部の下層を通過する上記第2流路とが形成されている。   In the first flow path, outside air passes between the heat conductive plate 144 located on the lower layer side and the foundation concrete 3 in the triangular portion on the outside air inlet side, and then the outside air on the outside air outlet side. It passes through the flow path by the heat conductive plate 144 located on the upper layer side in a triangular portion. On the other hand, in the second flow path, outside air passes through the flow path formed by the heat conductive plate member 145 located on the upper layer side in the triangular portion on the outside air inlet side, and then the triangular shape on the outside air outlet side. It passes between the said heat conductive board | plate material 145 and the said foundation concrete 3 which are located in the lower layer side in the part which comprises. That is, in the heat exchanging main body 14C, the corrugated plate-like heat conducting plates 144, 145 are arranged in two layers, and the outside air inlet side two-layer portion and the corrugated plate-like heat conducting plates 144, 145 are arranged in two layers. An outside air outlet side two-layer portion, and the first flow path through which the outside air passes through the lower layer of the outside air inlet side two layer portion and passes through the upper layer of the outside air outlet side two layer portion midway, The second flow path is formed in which the outside air passes through the upper layer of the two layers on the outside air inlet side and passes through the lower layer of the two layers on the outside air outlet side.

このような構成においては、立体交差する上記第1流路と第2流路において前半或いは後半のどちらかで導入外気が必ず上記基礎コンクリート3との間で熱交換できるようになる。   In such a configuration, the introduced outside air can surely exchange heat with the foundation concrete 3 in either the first half or the second half in the first and second flow paths intersecting three-dimensionally.

図11は、上記熱交換部13における他の構成例の熱交換本体部14Dを示している。この熱交換本体部14Dは例えば凸部と凹部を交互に有する1枚の四角波形状の熱伝導板材146を備える。上記熱伝導板材146の縦面部には、複数の貫通孔146aが形成されており、上記貫通孔146aは隣り合う凸部側の流路と凹部側の流路を貫通して繋ぐように機能する。上記貫通孔146aは、波板の状態で形成することもできるが、パンチングメタル板で波板を形成すれば、上記貫通孔146aの形成が簡単に行える。   FIG. 11 shows a heat exchange main body 14D of another configuration example of the heat exchange unit 13. The heat exchange main body 14D includes, for example, a single square wave heat conductive plate 146 having convex portions and concave portions. A plurality of through-holes 146a are formed in the vertical surface portion of the heat conductive plate 146, and the through-holes 146a function so as to penetrate through and connect adjacent flow paths on the convex side and flow path on the concave side. . The through hole 146a can be formed in a corrugated state, but if the corrugated sheet is formed of a punching metal plate, the through hole 146a can be easily formed.

上記熱交換本体部14Dにおいては、上記熱伝導板材146の凸部下面側で上記基礎コンクリート3の表面に接した外気は、基本的にはそのまま上記出口チャンバー152の方向に進み、同様に、上記熱伝導板材146の凹部上面側とケーシング14bとの間を通る外気も基本的にはそのまま上記出口チャンバー152の方向に進むが、上記貫通孔146aが形成されていることで、上記凸部側の流路を流れる気流と上記凹部側の流路を流れる気流の一部が混ざり合うことになる。   In the heat exchange main body 14D, the outside air in contact with the surface of the foundation concrete 3 on the lower surface side of the convex portion of the heat conducting plate 146 basically proceeds in the direction of the outlet chamber 152 as it is, The outside air that passes between the upper surface of the concave portion of the heat conductive plate 146 and the casing 14b also basically proceeds in the direction of the outlet chamber 152 as it is, but the through hole 146a is formed so that A part of the airflow flowing through the channel and the part of the airflow flowing through the channel on the concave side are mixed.

ここで、上記熱交換本体部14Dの周辺部よりも中央部の方で放熱面積が少ないため、例えば夏場における熱交換では熱交換本体部14Dの中央部で温度が上昇しやすい。このため、上記熱交換本体部14Dの下の基礎コンクリート3においても中央部が高温になりやすい。   Here, since the heat radiation area is smaller in the central portion than in the peripheral portion of the heat exchange main body portion 14D, for example, in heat exchange in summer, the temperature tends to rise in the central portion of the heat exchange main body portion 14D. For this reason, also in the basic concrete 3 under the said heat exchange main-body part 14D, a center part tends to become high temperature.

上記のように、上記熱伝導板材146に上記貫通孔146aが形成されていると、上記熱交換本体部14Dの周辺部の空気と中央部の空気とが混ざり合うので、中央部での温度上昇を低減し、上記のような温度ムラを解消しやすくなる。   As described above, when the through hole 146a is formed in the heat conductive plate 146, the air in the peripheral part of the heat exchange main body part 14D and the air in the central part are mixed, so the temperature rises in the central part. And it becomes easy to eliminate the temperature unevenness as described above.

上記四角波形状の熱伝導板材146に代えて三角波形状の熱伝導板材を用いる構造においても上記貫通孔146aを形成して気流を混合することができる。   Even in a structure using a triangular wave-shaped heat conductive plate instead of the square-wave heat conductive plate 146, the through-hole 146a can be formed to mix the airflow.

なお、上記熱交換部13を経て空調された外気を室内に導く外気供給部16は、このような空調外気を直接に室内4に導入するものに限らず、予冷給気としてエアコンディショナーを介してさらに空調して室内4に供給するようになっていてもよい。   Note that the outside air supply unit 16 that guides the outside air that has been air-conditioned through the heat exchanging unit 13 to the room is not limited to the one that directly introduces the air-conditioned outside air into the room 4, but as a precooling air supply via an air conditioner. Further, air conditioning may be performed to supply the room 4.

また、冬場においては、上記基礎コンクリート3内の熱を上記熱交換部13内の外気に与えることもできる。ただし、そのまま暖房に使えるほど温かくはないので、暖房装置の予熱給気として利用するのが望ましい。   In winter, the heat in the foundation concrete 3 can be given to the outside air in the heat exchange unit 13. However, since it is not warm enough to be used for heating as it is, it is desirable to use it as preheating air supply for the heating device.

また、外気導入空調システム1において、上記ダクト12が直線的に配置されることに限らず、蛇行状に配置されるようにしてもよい。また、空調された外気の吹き出し口は、居室に限らず廊下などに設けてもよい。また、上記外気導入空調システム1の点検のために、上記蓋5aとは別の箇所に床下へのアクセスを可能にする蓋を設けてもよい。   Moreover, in the outside air introduction air conditioning system 1, the duct 12 is not limited to be linearly arranged, and may be arranged in a meandering manner. Further, the air-conditioned outside air outlet may be provided not only in the living room but also in the hallway. Moreover, you may provide the lid | cover which enables access to the under floor in the location different from the said lid | cover 5a for the inspection of the said external air introduction air conditioning system 1. FIG.

また、建物2の中央部分の床下の方が周囲縁側よりも温度が安定しているので、上記熱交換部13は建物2の中央部分の床下に配置されるのが望ましい。   Moreover, since the temperature under the floor of the central part of the building 2 is more stable than the peripheral edge side, it is desirable that the heat exchanging part 13 is arranged under the floor of the central part of the building 2.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

1 外気導入空調システム
11 外気導入部
12 ダクト
13 熱交換部
14、14A、14B、14C 熱交換本体部
14a 熱伝導板材
14b ケーシング
14c 仕切り板
14d 連通開口
141 熱伝導板材
142 熱伝導板材
143 熱伝導板材
144 熱伝導板材
145 熱伝導板材
151 入口チャンバー
152 出口チャンバー
16 外気供給部
2 建物
3 基礎コンクリート
4 室内
5 床
DESCRIPTION OF SYMBOLS 1 Outside air introduction air-conditioning system 11 Outside air introduction part 12 Duct 13 Heat exchange part 14, 14A, 14B, 14C Heat exchange main-body part 14a Thermal conduction board material 14b Casing 14c Partition plate 14d Communication opening 141 Thermal conduction board material 142 Thermal conduction board material 143 Thermal conduction board material 144 Heat conduction plate 145 Heat conduction plate 151 Inlet chamber 152 Outlet chamber 16 Outside air supply part 2 Building 3 Foundation concrete 4 Indoor 5 Floor

Claims (6)

建物の床下の空間に配置される外気導入空調システムであって、外気を導入する外気導入部と、上記外気導入部により導入された外気が通る外気流路と上記床下の地熱層との間で熱交換を行わせる熱交換部と、上記熱交換部を経て空調された外気を建物内に導く外気供給部と、を備えており、
上記熱交換部は、凸部と凹部を交互に有した波板状の熱伝導板材で上記地熱層を覆うとともに上記熱伝導板材をケーシング内に収容することで複数の熱交換流路を形成しており、
上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で入れ替わるかまたは混合されることを特徴とする外気導入空調システム。
An outside air introduction air conditioning system arranged in a space under the floor of a building, between an outside air introduction portion for introducing outside air, an outside air flow path through which the outside air introduced by the outside air introduction portion passes, and the geothermal layer under the floor A heat exchanging unit that performs heat exchange, and an outside air supply unit that guides outside air that has been air-conditioned through the heat exchanging unit, into the building,
The heat exchanging portion covers the geothermal layer with a corrugated plate-like heat conducting plate having alternating convex portions and concave portions and houses the heat conducting plate in a casing to form a plurality of heat exchanging flow paths. And
The outside air introduction air conditioning system characterized in that outside air that has contacted the geothermal layer below the convex portion and outside air that has passed above the concave portion are interchanged or mixed in the middle of the heat exchange flow path.
請求項1に記載の外気導入空調システムにおいて、上記外気の流路方向に複数枚の波板状の熱伝導板材が位相をずらして配置されていることを特徴とする外気導入空調システム。   The outside air introduction air conditioning system according to claim 1, wherein a plurality of corrugated plate-like heat conduction plates are arranged with a phase shifted in a flow direction of the outside air. 請求項2に記載の外気導入空調システムにおいて、上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とを上記熱交換流路の途中で入れ替えるための仕切り板が上記複数枚の熱伝導板材の間に配置されていることを特徴とする外気導入空調システム。   The outside air introduction air conditioning system of Claim 2 WHEREIN: The partition plate for replacing the external air which contacted the said geothermal layer under the said convex part, and the external air which passed through the upper side of the said recessed part in the middle of the said heat exchange flow path Is arranged between the plurality of heat conductive plate members. 請求項1〜請求項3のいずれか1項に記載の外気導入空調システムにおいて、上記波板状の熱伝導板材の波密度が上記熱交換部の外気入口側よりも外気出口側で高くされていることを特徴とする外気導入空調システム。   The outside air introduction air conditioning system according to any one of claims 1 to 3, wherein the wave density of the corrugated plate-like heat conduction plate material is higher on the outside air outlet side than the outside air inlet side of the heat exchange unit. Outside air introduction air conditioning system characterized by 請求項1に記載の外気導入空調システムにおいて、上記波板状の熱伝導板材に貫通孔が形成されており、上記貫通孔によって上記凸部の下側で上記地熱層に接触した外気と上記凹部の上側を通った外気とが上記熱交換流路の途中で混合されることを特徴とする外気導入空調システム。   The outside air introduction air conditioning system according to claim 1, wherein a through hole is formed in the corrugated plate-like heat conductive plate material, and the outside air that contacts the geothermal layer below the convex portion by the through hole and the concave portion. The outside air introduction air conditioning system, wherein the outside air passing through the upper side of the air is mixed in the middle of the heat exchange flow path. 請求項1に記載の外気導入空調システムにおいて、上記波板状の熱伝導板材が2層に配置された外気入口側2層部と、上記波板状の熱伝導板材が2層に配置された外気出口側2層部と、を備え、外気が上記外気入口側2層部の下層を上記地熱層に接触しつつ通過して途中から上記外気出口側2層部の上層を通過する第1流路と、外気が上記外気入口側2層部の上層を通過して途中から上記外気出口側2層部の下層を上記地熱層に接触しつつ通過する第2流路とが形成されていることを特徴とする外気導入空調システム。   The outside air introduction air conditioning system according to claim 1, wherein the corrugated plate-like heat conduction plate is arranged in two layers, the outside air inlet side two-layer portion, and the corrugated plate-like heat conduction plate is arranged in two layers. A first flow in which the outside air passes through the lower layer of the outer air inlet side two-layer portion while contacting the geothermal layer and passes through the upper layer of the outer air outlet side two-layer portion from the middle. And a second flow path through which the outside air passes through the upper layer of the outer air inlet side two-layer portion and passes through the lower layer of the outer air outlet side two-layer portion while being in contact with the geothermal layer. An air conditioning system that introduces outside air.
JP2013116966A 2013-06-03 2013-06-03 Outside air introduction air conditioning system Active JP6200211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116966A JP6200211B2 (en) 2013-06-03 2013-06-03 Outside air introduction air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116966A JP6200211B2 (en) 2013-06-03 2013-06-03 Outside air introduction air conditioning system

Publications (2)

Publication Number Publication Date
JP2014234947A true JP2014234947A (en) 2014-12-15
JP6200211B2 JP6200211B2 (en) 2017-09-20

Family

ID=52137790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116966A Active JP6200211B2 (en) 2013-06-03 2013-06-03 Outside air introduction air conditioning system

Country Status (1)

Country Link
JP (1) JP6200211B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508565A (en) * 1993-07-05 1997-09-02 パッキンオックス Method and apparatus for controlling reaction temperature
JP3562527B1 (en) * 2004-02-24 2004-09-08 三上 征宏 Geothermal air conditioning system
US20110061832A1 (en) * 2009-09-17 2011-03-17 Albertson Luther D Ground-to-air heat pump system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508565A (en) * 1993-07-05 1997-09-02 パッキンオックス Method and apparatus for controlling reaction temperature
JP3562527B1 (en) * 2004-02-24 2004-09-08 三上 征宏 Geothermal air conditioning system
US20110061832A1 (en) * 2009-09-17 2011-03-17 Albertson Luther D Ground-to-air heat pump system

Also Published As

Publication number Publication date
JP6200211B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
EP2192369A2 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
US20100089556A1 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
AU2012363660B2 (en) Heat exchanger plate and a fill pack of heat exchanger plates
JP6200211B2 (en) Outside air introduction air conditioning system
CN103673233A (en) Hot air heat recovery unit
KR100803376B1 (en) Heat exchange device
JP2014163626A (en) Outside air introduction air conditioning system
CN201081593Y (en) Heat exchange plate and air heat exchanger utilizing the heat exchange plate
JP6017245B2 (en) Outside air introduction air conditioning system
JP2015124940A (en) Heat storage structure and house using the same
JP5960507B2 (en) Building
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP4933748B2 (en) Solar system
CN207741189U (en) Water-borne formula industry cold and warm air heating radiator
JP6028214B2 (en) Heat exchange element and heat exchange type ventilation equipment using it
CN201819595U (en) Heat pipe exchanger and combination thereof
CN204902020U (en) Heat sink
JP4955474B2 (en) Heat collector, ventilation system and house
CN214619768U (en) Geothermal heating system for prefabricated house
TWI775708B (en) thermal insulation structure
CN216448370U (en) Counter-flow heat exchanger for corner position of heat exchange pipeline
KR102366805B1 (en) Thermal Storage Slim Heat Exchanger Module for Heat Exchange Ventilation System
CN207686025U (en) A kind of disconnected cold bridge air layer structure of modular architectural
JP5302435B2 (en) Heat collector
KR20170124794A (en) Hybrid economizer heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R150 Certificate of patent or registration of utility model

Ref document number: 6200211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250