JP2014230382A - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
JP2014230382A
JP2014230382A JP2013107823A JP2013107823A JP2014230382A JP 2014230382 A JP2014230382 A JP 2014230382A JP 2013107823 A JP2013107823 A JP 2013107823A JP 2013107823 A JP2013107823 A JP 2013107823A JP 2014230382 A JP2014230382 A JP 2014230382A
Authority
JP
Japan
Prior art keywords
motor
current
speed
command signal
correction bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013107823A
Other languages
Japanese (ja)
Inventor
浩二 野田
Koji Noda
浩二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013107823A priority Critical patent/JP2014230382A/en
Publication of JP2014230382A publication Critical patent/JP2014230382A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a motor drive device capable of properly driving a motor by surely reading a current flowing to phase coils of the motor without distorting an output current of an inverter and also without varying an effective value of the output current of the inverter.SOLUTION: A current flowing to a motor is detected, a speed of the motor is estimated from the detected current, and a command value is generated of which the level is changed in accordance with a difference between the estimated speed and a target speed and which has the same effective value as the case where there is no correction bias, while including the correction bias required for detecting the current. A pulse width modulation signal based on the command signal is generated as a drive signal for a switching element of an inverter.

Description

本発明の実施形態は、永久磁石同期モータを駆動するモータ駆動装置に関する。   Embodiments described herein relate generally to a motor driving apparatus that drives a permanent magnet synchronous motor.

複数の相巻線を有するステータおよび複数の永久磁石を有するロータからなる永久磁石同期モータ(ブラシレスDCモータともいう)が知られている。この永久磁石同期モータを駆動するモータ駆動装置は、モータへの駆動電力を出力するインバータを備え、モータの各相巻線に流れる電流を検出し、その検出電流に基づいてモータの速度(ロータ速度;角速度)を推定し、この推定速度が目標速度となるようインバータのスイッチングを制御するいわゆるセンサレス・ベクトル制御を行う。   There is known a permanent magnet synchronous motor (also referred to as a brushless DC motor) including a stator having a plurality of phase windings and a rotor having a plurality of permanent magnets. The motor drive device that drives the permanent magnet synchronous motor includes an inverter that outputs drive power to the motor, detects the current flowing through each phase winding of the motor, and based on the detected current, the motor speed (rotor speed) ; Angular velocity) is estimated, and so-called sensorless vector control is performed to control switching of the inverter so that the estimated speed becomes the target speed.

インバータのスイッチング制御に際しては、推定速度と目標速度との差に応じてレベルが変化する二相通電用の二相変調波信号(または三相通電用の三相正弦波信号)を指令信号として生成し、その指令信号のレベルと三角波信号(キャリア信号)のレベルとの比較に基づき、インバータのスイッチング素子に対するオン,オフ駆動用のPWM(Pulse Width Modulation)信号を生成する。   During inverter switching control, a two-phase modulated wave signal for two-phase energization (or a three-phase sine wave signal for three-phase energization) whose level changes according to the difference between the estimated speed and the target speed is generated as a command signal Then, based on the comparison between the level of the command signal and the level of the triangular wave signal (carrier signal), a PWM (Pulse Width Modulation) signal for on / off driving of the switching element of the inverter is generated.

電流検出手段として例えばシャント抵抗がインバータに設けられ、そのシャント抵抗に生じる電圧がアナログ/ディジタル変換(A/D変換)されて電流値として読取られる。   As the current detecting means, for example, a shunt resistor is provided in the inverter, and a voltage generated in the shunt resistor is subjected to analog / digital conversion (A / D conversion) and read as a current value.

特開2010−68653号公報JP 2010-68653 A

1つのシャント抵抗によって各相巻線の電流を検出する1シャント電流検出方式では、モータの負荷が低い場合に、電流レベルの低い領域において、PWM信号のON期間が短くなり、モータ電流を読み取る事ができるタイミングが短く、電流値読み取りのためのA/D変換のサンプリングやA/D変換の時間が確保できず、結果的にモータ電流の検出ができなくなる期間が生じる。電流値の読取りができないと、モータの適正な駆動が困難となる。   In the single shunt current detection method in which the current of each phase winding is detected by one shunt resistor, when the motor load is low, the ON period of the PWM signal is shortened and the motor current is read in a low current level region. The timing at which the current can be detected is short, the time for A / D conversion sampling and A / D conversion for reading the current value cannot be secured, and as a result, a period in which the motor current cannot be detected occurs. If the current value cannot be read, it is difficult to drive the motor properly.

対策として、PWM信号のON期間を長くなるように指令信号に一定の補正バイアスを付加することが行われるが、そうすると、インバータの出力電流に歪が生じたり、インバータの出力電流の実効値が変動してしまうという問題がある。   As a countermeasure, a constant correction bias is added to the command signal so as to lengthen the ON period of the PWM signal. However, if this is done, distortion occurs in the output current of the inverter or the effective value of the output current of the inverter fluctuates. There is a problem of end up.

本発明の実施形態の目的は、インバータの出力電流に歪みを生じることなく、インバータの出力電流の実効値に変動を生じることもなく、モータの各相巻線に流れる電流を確実に読取ってモータを適正に駆動できるモータ駆動装置を提供することである。   An object of an embodiment of the present invention is to read the current flowing through each phase winding of the motor without causing distortion in the output current of the inverter and without changing the effective value of the output current of the inverter. It is providing the motor drive device which can drive appropriately.

請求項1のモータ駆動装置は、インバータおよび制御部を有する。インバータは、複数のスイッチング素子を有し、これらスイッチング素子のオン,オフによりモータへの駆動電力を出力する。制御部は、前記モータに流れる電流を検出し、この検出電流から前記モータの速度を推定し、この推定速度と目標速度との差に応じてレベルが変化し且つ前記電流の検出に必要な補正バイアスを含みながらその補正バイアスがない場合と同じ実効値を持つ指令信号を生成し、この指令信号に基づくパルス幅変調信号を前記スイッチング素子に対する駆動信号として生成する。   The motor drive apparatus according to claim 1 includes an inverter and a control unit. The inverter has a plurality of switching elements, and outputs driving power to the motor when these switching elements are turned on and off. The control unit detects the current flowing through the motor, estimates the speed of the motor from the detected current, the level changes according to the difference between the estimated speed and the target speed, and correction necessary for detecting the current A command signal having the same effective value as that in the case of including the bias but without the correction bias is generated, and a pulse width modulation signal based on the command signal is generated as a drive signal for the switching element.

第1実施形態の制御回路の構成を示す図。The figure which shows the structure of the control circuit of 1st Embodiment. 第1実施形態における第1指令信号(二相変調波信号)の波形を示す図。The figure which shows the waveform of the 1st command signal (two-phase modulated wave signal) in 1st Embodiment. 第1実施形態の第1指令信号と三角波信号との比較により得られるPWM信号および母線流れる電流の波形を示す図。The figure which shows the waveform of the PWM signal obtained by the comparison with the 1st command signal and triangular wave signal of 1st Embodiment, and the electric current which flows through a bus-line. 第1実施形態における第2指令信号(二相変調波信号)の波形を第1指令信号の波形と対比して示す図。The figure which shows the waveform of the 2nd command signal (two-phase modulated wave signal) in 1st Embodiment in contrast with the waveform of a 1st command signal. 第1実施形態の第2指令信号と三角波信号との比較により得られるPWM信号および母線電流の波形を示す図。The figure which shows the waveform of the PWM signal and bus current which are obtained by the comparison with the 2nd command signal and triangular wave signal of 1st Embodiment. 第1実施形態における補正ゲインの求め方を説明するための図。The figure for demonstrating how to obtain | require the correction gain in 1st Embodiment. 第1実施形態における第1および第2指令信号が三相正弦波信号である場合の指令信号の波形を変形例として示す図。The figure which shows the waveform of the command signal when the 1st and 2nd command signal in 1st Embodiment is a three-phase sine wave signal as a modification. 第2実施形態の制御回路の構成を示す図。The figure which shows the structure of the control circuit of 2nd Embodiment. 第2実施形態における第1指令信号(三相正弦波信号)の波形を示す図。The figure which shows the waveform of the 1st command signal (three-phase sine wave signal) in 2nd Embodiment.

[1]以下、第1実施形態について図面を参照して説明する。
図1に示すように、商用交流電源1の交流電圧をダイオードブリッジ2および平滑コンデンサ3からなる整流回路4で直流電圧に変換する。この直流電圧をスイッチング回路10のスイッチングにより所定周波数の交流電圧に変換し、その交流電圧を永久磁石同期モータ20へ駆動電力として供給する。これら整流回路4およびスイッチング回路10により、インバータを構成している。
[1] A first embodiment will be described below with reference to the drawings.
As shown in FIG. 1, an AC voltage of a commercial AC power supply 1 is converted into a DC voltage by a rectifier circuit 4 including a diode bridge 2 and a smoothing capacitor 3. The DC voltage is converted into an AC voltage having a predetermined frequency by switching of the switching circuit 10, and the AC voltage is supplied to the permanent magnet synchronous motor 20 as driving power. The rectifier circuit 4 and the switching circuit 10 constitute an inverter.

スイッチング回路10は、直流電圧の印加方向に沿って上流側および下流側の関係となるU相用の一対のスイッチング素子11a,11bの直列回路、直流電圧の印加方向に沿って上流側および下流側の関係となるV相用の一対のスイッチング素子12a,12bの直列回路、直流電圧の印加方向に沿って上流側および下流側の関係となるW相用の一対のスイッチング素子13a,13bの直列回路を有し、これら直列回路における各スイッチング素子の相互接続点が出力端子となる。このスイッチング回路10の母線(負側ライン)に、電流検出手段としてシャント抵抗14を挿入接続する。スイッチング素子としては、例えばMOSFETやIGBTを用いる。   The switching circuit 10 includes a series circuit of a pair of U-phase switching elements 11a and 11b that are in an upstream and downstream relationship along a DC voltage application direction, and an upstream side and a downstream side along a DC voltage application direction. A series circuit of a pair of switching elements 12a, 12b for V-phase that has the relationship of, and a series circuit of a pair of switching elements 13a, 13b for W-phase that have an upstream and downstream relationship along the direction in which the DC voltage is applied The interconnection point of each switching element in these series circuits is an output terminal. A shunt resistor 14 is inserted and connected as a current detecting means to the bus line (negative line) of the switching circuit 10. As the switching element, for example, MOSFET or IGBT is used.

永久磁石同期モータ20は、入力端子21、複数の相巻線Lu,Lv,Lwを有するステータ(電機子)22、複数例えば4つの永久磁石を4極として埋設したロータ(回転子)23を有する。相巻線Lu,Lv,Lwのそれぞれ一端が入力端子21を介してスイッチング回路10の3つの出力端子に接続され、相巻線Lu,Lv,Lwの他端が中性点として相互接続される。   The permanent magnet synchronous motor 20 includes an input terminal 21, a stator (armature) 22 having a plurality of phase windings Lu, Lv, and Lw, and a rotor (rotor) 23 in which a plurality of, for example, four permanent magnets are embedded as four poles. . One end of each of the phase windings Lu, Lv, Lw is connected to the three output terminals of the switching circuit 10 via the input terminal 21, and the other end of the phase windings Lu, Lv, Lw is interconnected as a neutral point. .

ロータ23の位置は、電気角基準の0度〜360度(=0度)の位置、または空間ベクトルの第1〜第6セクションで表わすことができる。電気角90度〜150度の位置は、空間ベクトルの第1セクション(0度〜60度)に相当する。電気角150度〜210度の位置は、空間ベクトルの第2セクション(60度〜120度)に相当する。電気角210度〜270度の位置は、空間ベクトルの第3セクション(120度〜180度)に相当する。電気角270度〜330度の位置は、空間ベクトルの第4セクション(180度〜240度)に相当する。電気角330度〜30度の位置は空間ベクトルの第5セクション(240度〜300度)に相当する。電気角30度〜90度の位置は、空間ベクトルの第6セクション(300度〜360度)に相当する。   The position of the rotor 23 can be represented by a position of 0 degrees to 360 degrees (= 0 degrees) of the electrical angle reference or the first to sixth sections of the space vector. A position with an electrical angle of 90 to 150 degrees corresponds to the first section (0 to 60 degrees) of the space vector. The position of the electrical angle of 150 degrees to 210 degrees corresponds to the second section (60 degrees to 120 degrees) of the space vector. The position of electrical angle 210 degrees to 270 degrees corresponds to the third section (120 degrees to 180 degrees) of the space vector. The position of electrical angle 270 to 330 degrees corresponds to the fourth section (180 to 240 degrees) of the space vector. The electrical angle of 330 to 30 degrees corresponds to the fifth section (240 to 300 degrees) of the space vector. The position of the electrical angle of 30 degrees to 90 degrees corresponds to the sixth section (300 degrees to 360 degrees) of the space vector.

センサレス・ベクトル制御部30は、永久磁石同期モータ20の相巻線Lu,Lv,Lwに流れる電流をシャント抵抗14に生じる電圧から検出し、その検出電流に基づいて永久磁石同期モータ20の速度(ロータ速度;角速度)を推定し、この推定速度が目標速度となるようスイッチング回路10のスイッチングを制御するいわゆるセンサレス・ベクトル制御を行うもので、電流検出部31、速度推定部32、速度制御部33、PWM信号生成部34を有する。   The sensorless vector control unit 30 detects the current flowing through the phase windings Lu, Lv, Lw of the permanent magnet synchronous motor 20 from the voltage generated in the shunt resistor 14, and based on the detected current, the speed of the permanent magnet synchronous motor 20 ( Rotor speed (angular speed) is estimated, and so-called sensorless vector control is performed to control switching of the switching circuit 10 so that the estimated speed becomes a target speed. The current detection unit 31, the speed estimation unit 32, and the speed control unit 33 , A PWM signal generator 34 is provided.

電流検出部31は、シャント抵抗14に生じる電圧をアナログ/ディジタル変換(A/D変換)して読取ることにより、相巻線Lu,Lv,Lwに流れる電流(母線電流)を検出する。   The current detection unit 31 detects the current (bus current) flowing through the phase windings Lu, Lv, and Lw by reading the voltage generated in the shunt resistor 14 by analog / digital conversion (A / D conversion).

速度推定部32は、電流検出部31の検出電流に基づく演算により永久磁石同期モータ20の速度(ロータ速度;角速度)を推定する。   The speed estimation unit 32 estimates the speed (rotor speed; angular speed) of the permanent magnet synchronous motor 20 by calculation based on the current detected by the current detection unit 31.

速度制御部33は、主要な機能として次の(1)〜(3)の手段を有する。
(1)永久磁石同期モータ20の負荷が所定値以上であるか所定値未満であるかを電流検出部31の検出電流から判定する判定手段。
The speed control unit 33 includes the following means (1) to (3) as main functions.
(1) A determination unit that determines whether the load of the permanent magnet synchronous motor 20 is greater than or equal to a predetermined value or less than a predetermined value from the detected current of the current detection unit 31.

(2)上記判定手段の判定結果が所定値以上の場合、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化する第1指令信号I1u,I1v,I1wを生成する第1生成手段。   (2) When the determination result of the determination means is equal to or greater than a predetermined value, the frequency changes according to the detection current of the current detection unit 31, and the difference between the estimated speed of the speed estimation unit 32 and the target speed input from the outside First generation means for generating first command signals I1u, I1v, I1w whose levels change in response.

(3)上記判定手段の判定結果が所定値未満の場合、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と上記目標速度との差に応じてレベルが変化し且つ電流検出部31の電流検出に必要な補正バイアスIbiasを低レベル側に含みながらその補正バイアスがない場合と同じ実効値を持つ第2指令信号I2u,I2v,I2wを生成する第2生成手段。この第2指令信号I2u,I2v,I2wは、第1指令信号I1u,I1v,I1wに補正バイアスIbiasを付加するとともにこの補正バイアスIbiasを付加する前と同じ実効値となるための条件を考慮した所定の補正ゲインGain_hosei(=I2/I1)で補正することにより、得ることができる。なお、I1は、第1指令信号I1u,I1v,I1wに基づくインバータ出力の最大値を、I2は、第2指令信号I2u,I2v,I2wに基づくインバータ出力の最大値から固定値である補正バイアスIbias分差し引いた値を表わしている。   (3) When the determination result of the determination means is less than a predetermined value, the frequency changes according to the current detected by the current detector 31 and the level depends on the difference between the estimated speed of the speed estimator 32 and the target speed. A second generation that generates second command signals I2u, I2v, and I2w having the same effective value as the case where the correction bias Ibias necessary for current detection of the current detection unit 31 is included on the low level side and there is no correction bias. means. The second command signals I2u, I2v, I2w are predetermined in consideration of conditions for adding the correction bias Ibias to the first command signals I1u, I1v, I1w and having the same effective value as before adding the correction bias Ibias. Can be obtained by correcting with the correction gain Gain_hosei (= I2 / I1). Note that I1 is a maximum value of the inverter output based on the first command signals I1u, I1v, I1w, and I2 is a correction bias Ibias that is a fixed value from the maximum value of the inverter output based on the second command signals I2u, I2v, I2w. It represents the value after subtraction.

PWM信号生成部34は、速度制御部33で生成された第1または第2指令信号のレベルと三角波信号(キャリア信号)のレベルとの比較に基づくパルス幅変調(Pulse Width Modulation)により、スイッチング回路10の各スイッチング素子に対するオン,オフ駆動用のパルス幅変調信号(PWM信号という)を生成する。   The PWM signal generation unit 34 uses a pulse width modulation based on a comparison between the level of the first or second command signal generated by the speed control unit 33 and the level of the triangular wave signal (carrier signal) to generate a switching circuit. Pulse width modulation signals (referred to as PWM signals) for on / off driving for each of the ten switching elements are generated.

作用を説明する。   The operation will be described.

永久磁石同期モータ20の負荷が所定値以上の場合、速度制御部33は、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化する第1指令信号(二相変調波信号)I1u,I1v,I1wを生成する。   When the load of the permanent magnet synchronous motor 20 is equal to or greater than a predetermined value, the speed control unit 33 changes the frequency according to the detection current of the current detection unit 31 and the estimated speed of the speed estimation unit 32 and the target speed input from the outside. The first command signals (two-phase modulated wave signals) I1u, I1v, and I1w that change in level according to the difference are generated.

第1指令信号I1u,I1v,I1wは、三相正弦波信号を変調することにより得られるもので、図2に示すように、三相正弦波信号の周期(=2π)の1/3(=2π/3)に相当する期間がスイッチング休止期間として零レベルを保つ波形を有し、互いに位相角が120度ずれた信号である。   The first command signals I1u, I1v, and I1w are obtained by modulating a three-phase sine wave signal. As shown in FIG. 2, 1/3 of the period (= 2π) of the three-phase sine wave signal (= A period corresponding to 2π / 3) has a waveform that maintains a zero level as a switching pause period, and is a signal whose phase angle is shifted by 120 degrees.

PWM信号生成部34は、図3に示すように、第1指令信号I1u,I1v,I1wのレベルと三角波信号(キャリア信号)Ioのレベルとの比較に基づくパルス幅変調により、スイッチング回路10の各スイッチング素子に対するオン,オフ駆動用のU相用PWM信号,V相用PWM信号,W相用PWM信号をそれぞれ生成する。   As shown in FIG. 3, the PWM signal generation unit 34 performs each of the switching circuit 10 by pulse width modulation based on a comparison between the levels of the first command signals I1u, I1v, I1w and the level of the triangular wave signal (carrier signal) Io. A U-phase PWM signal, a V-phase PWM signal, and a W-phase PWM signal for on / off driving of the switching element are generated.

これらPWM信号に応じてスイッチング回路10の各スイッチング素子がオン,オフする。これにより、永久磁石同期モータ20の相巻線Lu,Lv,Lwに電流が流れる。この電流はスイッチング回路10のシャント抵抗14を通り、そのシャント抵抗14に電圧が生じる。   In response to these PWM signals, the switching elements of the switching circuit 10 are turned on and off. Thereby, a current flows through the phase windings Lu, Lv, Lw of the permanent magnet synchronous motor 20. This current passes through the shunt resistor 14 of the switching circuit 10, and a voltage is generated in the shunt resistor 14.

電流検出部31は、シャント抵抗14に生じる電圧をA/D変換して読取ることにより、相巻線Lu,Lv,Lwに流れる電流(母線電流)を検出する。この場合、図3に破線で示すように、電流検出のためのA/D変換(処理時間tx)は、電流レベルの変化に十分に追従する状態となる。よって、相巻線Lu,Lv,Lwに流れる電流を確実に検出することができる。   The current detector 31 detects the current (bus current) flowing through the phase windings Lu, Lv, Lw by A / D converting and reading the voltage generated in the shunt resistor 14. In this case, as indicated by a broken line in FIG. 3, the A / D conversion (processing time tx) for current detection sufficiently follows the change in the current level. Therefore, the current flowing through the phase windings Lu, Lv, Lw can be reliably detected.

ただし、1つのシャント抵抗14によって相巻線Lu,Lv,Lwの電流を検出する1シャント電流検出方式の場合、永久磁石同期モータ20の負荷が所定値未満のとき、電流レベルの低い領域(図2に点々で示す領域)つまり電気角90度の位置(空間ベクトルの第6セクションと第1セクションの境界)・電気角210度の位置(空間ベクトルの第2セクションと第3セクションの境界)・電気角330度の位置(空間ベクトルの第2セクションと第3セクションの境界)において、電流検出のためのA/D変換が電流レベルの変化に追従できず、電流値の読取りができなくなる。読取りができないと、モータの適切な駆動が困難となる。   However, in the case of the one shunt current detection method in which the current of the phase windings Lu, Lv, and Lw is detected by one shunt resistor 14, when the load of the permanent magnet synchronous motor 20 is less than a predetermined value, the current level is low (see FIG. 2), that is, the position at an electrical angle of 90 degrees (the boundary between the sixth section and the first section of the space vector), the position at the electrical angle of 210 degrees (the boundary between the second section and the third section of the space vector), At the position of the electrical angle of 330 degrees (the boundary between the second section and the third section of the space vector), the A / D conversion for current detection cannot follow the change in the current level, and the current value cannot be read. If reading is not possible, it becomes difficult to drive the motor properly.

そこで、永久磁石同期モータ20の負荷が所定値未満と低い場合、速度制御部33は、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化し且つ電流検出部31の電流検出に必要な補正バイアスIbiasを低レベル側に含みながらその補正バイアスIbiasがない状態と同じ実効値を持つ第2指令信号(二相変調波信号)I2u,I2v,I2wを生成する。   Therefore, when the load of the permanent magnet synchronous motor 20 is low and less than the predetermined value, the speed control unit 33 changes the frequency according to the detection current of the current detection unit 31 and inputs the estimated speed of the speed estimation unit 32 from the outside. The second command having the same effective value as the state in which the level changes according to the difference from the target speed and the correction bias Ibias necessary for the current detection of the current detection unit 31 is included on the low level side but the correction bias Ibias is not present. Signals (two-phase modulated wave signals) I2u, I2v, and I2w are generated.

第2指令信号I2u,I2v,I2wは、第1指令信号I1u,I1v,I1wに補正バイアスIbiasを付加するとともに実効値の同一条件を考慮した所定の補正ゲインGain_hosei(=I2/I1)で補正することにより得られるもので、図4に示すように、電流レベルの低い領域(点々で示す領域)つまり電気角90度の位置(空間ベクトルの第6セクションと第1セクションの境界)・電気角210度の位置(空間ベクトルの第2セクションと第3セクションの境界)・電気角330度の位置(空間ベクトルの第2セクションと第3セクションの境界)において、低レベル側に補正バイアスIbiasを付加した波形を有する。また、第2指令信号I2u,I2v,I2wの波形は、上限レベルが第1指令信号I1u,I1v,I1wの上限レベルよりも低くなり、下限レベルが第1指令信号I1u,I1v,I1wの下限レベルよりも高くなる。   The second command signals I2u, I2v, and I2w are corrected with a predetermined correction gain Gain_hosei (= I2 / I1) that adds the correction bias Ibias to the first command signals I1u, I1v, and I1w and considers the same effective value condition. As shown in FIG. 4, a region having a low current level (a region indicated by dots), that is, a position at an electrical angle of 90 degrees (a boundary between the sixth section and the first section of the space vector) and an electrical angle 210. Correction bias Ibias was added on the low level side at the position of degrees (boundary between the second section and the third section of the space vector) and the position of electrical angle 330 degrees (boundary between the second section and the third section of the space vector) Has a waveform. The waveforms of the second command signals I2u, I2v, I2w are such that the upper limit level is lower than the upper limit level of the first command signals I1u, I1v, I1w, and the lower limit level is the lower limit level of the first command signals I1u, I1v, I1w. Higher than.

PWM信号生成部34は、図5に示すように、第2指令信号I2u,I2v,I2wのレベルと三角波信号(キャリア信号)Ioのレベルとの比較に基づくパルス幅変調により、スイッチング回路10の各スイッチング素子に対するオン,オフ駆動用のU相用PWM信号,V相用PWM信号,W相用PWM信号をそれぞれ生成する。   As shown in FIG. 5, the PWM signal generation unit 34 performs each of the switching circuit 10 by pulse width modulation based on a comparison between the level of the second command signals I2u, I2v, I2w and the level of the triangular wave signal (carrier signal) Io. A U-phase PWM signal, a V-phase PWM signal, and a W-phase PWM signal for on / off driving of the switching element are generated.

これらPWM信号に応じてスイッチング回路10の各スイッチング素子がオン,オフする。これにより、永久磁石同期モータ20の相巻線Lu,Lv,Lwに電流が流れる。この電流はスイッチング回路10のシャント抵抗14を通り、そのシャント抵抗14に電圧が生じる。   In response to these PWM signals, the switching elements of the switching circuit 10 are turned on and off. Thereby, a current flows through the phase windings Lu, Lv, Lw of the permanent magnet synchronous motor 20. This current passes through the shunt resistor 14 of the switching circuit 10, and a voltage is generated in the shunt resistor 14.

この場合、補正バイアスIbiasを低レベル側に含む第2指令信号I2u,I2v,I2wによってPWM信号を生成するので、たとえ永久磁石同期モータ20の負荷が所定値未満と低い状況であっても、電流検出部31の電流検出のためのA/D変換(処理時間tx)を図5に破線で示すように電流レベルの変化に十分に追従させることができる。よって、相巻線Lu,Lv,Lwに流れる電流を確実に検出することができ、永久磁石同期モータ20を適正に駆動することができる。   In this case, since the PWM signal is generated by the second command signals I2u, I2v, and I2w including the correction bias Ibias on the low level side, even if the load of the permanent magnet synchronous motor 20 is as low as less than a predetermined value, the current The A / D conversion (processing time tx) for detecting the current of the detection unit 31 can sufficiently follow the change in the current level as indicated by a broken line in FIG. Therefore, the current flowing through the phase windings Lu, Lv, Lw can be reliably detected, and the permanent magnet synchronous motor 20 can be driven appropriately.

補正バイアスIbiasの値は、第1指令信号I1u,I1v,I1wの振幅の例えば10%〜20%であって、電流検出部31の電流検出のためのA/D変換(処理時間tx)を電流レベルの変化に十分に追従させることのできる値を予め確かめた上で選定している。   The value of the correction bias Ibias is, for example, 10% to 20% of the amplitude of the first command signals I1u, I1v, I1w, and the current detection unit 31 performs A / D conversion (processing time tx) for current detection. A value that can sufficiently follow the level change is selected after checking in advance.

しかも、第2指令信号I2u,I2v,I2wは、補正バイアスIbiasがない第1指令信号I1u,I1v,I1wと同じ実効値を持つので、たとえ補正バイアスIbiasを付加していても、スイッチング回路10の出力電流に歪が生じることはなく、スイッチング回路10の出力電流の実効値に変動を生じることもない。出力電流に歪が生じないので、不快な周期音の発生を回避できる。第2指令信号I2u,I2v,I2wの上限レベルが第1指令信号I1u,I1v,I1wの上限レベルよりも低くなるが、実効値は同じなので、モータ駆動性能が低下することもない。   In addition, since the second command signals I2u, I2v, I2w have the same effective value as the first command signals I1u, I1v, I1w without the correction bias Ibias, even if the correction bias Ibias is added, The output current is not distorted, and the effective value of the output current of the switching circuit 10 is not changed. Since distortion does not occur in the output current, generation of unpleasant periodic sounds can be avoided. Although the upper limit levels of the second command signals I2u, I2v, and I2w are lower than the upper limit levels of the first command signals I1u, I1v, and I1w, since the effective values are the same, the motor drive performance is not deteriorated.

補正ゲインGain_hoseiまたは補正バイアスIbiasについては、そのいずれか一方を予め決めておき、図6に示すように、本来のインバータが出力すべき第1指令信号の1周期分の実効値と補正バイアスIbiasを加えて新たに生成する第2指令信号の実効値が同じになるように他方を算出により求める。   One of the correction gain Gain_hosei and the correction bias Ibias is determined in advance, and as shown in FIG. 6, the effective value and the correction bias Ibias for one cycle of the first command signal to be output by the original inverter are obtained. In addition, the other is calculated so that the effective value of the newly generated second command signal is the same.

なお、第1および第2指令信号が二相変調波信号である場合を例に説明したが、図7に示す三相正弦波信号である場合も同様に実施できる。   Although the case where the first and second command signals are two-phase modulated wave signals has been described as an example, the case where the first and second command signals are three-phase sine wave signals shown in FIG.

ここで、補正ゲインGain_hoseiまたは補正バイアスIbiasの求め方について説明する。   Here, how to obtain the correction gain Gain_hosei or the correction bias Ibias will be described.

(1)指令信号が二相変調波信号である場合について、電気角90度〜210度を代表に検討する。   (1) In the case where the command signal is a two-phase modulated wave signal, the electrical angle of 90 degrees to 210 degrees is considered as a representative.

(1―a)先に補正ゲインGain_hosei(=I2/I1)を決めてから補正バイアスIbiasを求める場合;I1は、第1指令信号を生成する際に、インバータの出力すべき値によって定まっている。なお、第1指令信号及び第2指令信号から補正バイアスIbiasを差し引いた信号によるインバータの出力はいずれも正弦波を前提とする。   (1-a) When determining the correction bias Ibias after determining the correction gain Gain_hosei (= I2 / I1) first; I1 is determined by the value to be output from the inverter when the first command signal is generated . The output of the inverter based on the signal obtained by subtracting the correction bias Ibias from the first command signal and the second command signal is assumed to be a sine wave.

補正バイアスIbiasを付加しない第1指令信号I1u,I1v,I1wの実効値(左辺)と、補正バイアスIbiasを付加した第2指令信号I2u,I2v,I2wの実効値(右辺)とを等しいとおく。

Figure 2014230382
The effective values (left side) of the first command signals I1u, I1v, I1w without the correction bias Ibias are set equal to the effective values (right side) of the second command signals I2u, I2v, I2w with the correction bias Ibias added.
Figure 2014230382

次に上式の両辺をそれぞれ二乗し、加法定理を用いて展開して整理する。

Figure 2014230382
Next, square both sides of the above equation and expand and arrange them using the addition theorem.
Figure 2014230382

数2の式の左辺を展開すると以下となる。なお、以後の数式中、大文字「C」は、積分定数を表している。

Figure 2014230382
When the left side of the formula 2 is expanded, the following is obtained. In the following formulas, the capital letter “C” represents an integral constant.
Figure 2014230382

同様に数2の式の右辺は、

Figure 2014230382
Similarly, the right side of Equation 2 is
Figure 2014230382

数3の式と数4の式を両辺に組み込み、さらに左辺を右辺に移項すると、

Figure 2014230382
Incorporating Equation 3 and Equation 4 on both sides and moving the left side to the right side,
Figure 2014230382

数5の最後の式に示す補正バイアスIbiasの2次方程式における各係数a,b,cは、

Figure 2014230382
The coefficients a, b, c in the quadratic equation of the correction bias Ibias shown in the last equation of Formula 5 are
Figure 2014230382

数5の式を2次方程式の解の公式で解くと補正バイアスIbias>0の条件からIbiasは次式となる。ここで、補正ゲインGain_hosei(=I2/I1)を予め決めているため、数6の式の各係数を算出すれば、補正バイアスIbiasが求まる。

Figure 2014230382
When Equation 5 is solved by a quadratic equation formula, Ibias is obtained from the condition that the correction bias Ibias> 0. Here, since the correction gain Gain_hosei (= I2 / I1) is determined in advance, the correction bias Ibias can be obtained by calculating each coefficient of the equation (6).
Figure 2014230382

なお、各数式の変形の際に使用する公式を、以下に示す。

Figure 2014230382
The formulas used when transforming each mathematical formula are shown below.
Figure 2014230382

(1−b)先に補正バイアスIbiasを決めてから補正ゲインGain_hosei(=I2/I1)を求める場合;数5の式の両辺をI1の2乗で割る。

Figure 2014230382
(1-b) When the correction gain Gain_hosei (= I2 / I1) is obtained after the correction bias Ibias is determined first; both sides of the formula 5 are divided by the square of I1.
Figure 2014230382

数9の最後の方程式は、補正ゲインGain_hosei(I2/I1)の2次方程式となるため、補正ゲインGain_hoseiは、2次方程式の解の公式及びGain_hosei>0より次のようになる。なお、ここで、(I2/I1)の2次方程式の各係数を、a,b,cとする。

Figure 2014230382
Since the last equation of Equation 9 is a quadratic equation of the correction gain Gain_hosei (I2 / I1), the correction gain Gain_hosei is as follows from the formula of the solution of the quadratic equation and Gain_hosei> 0. Here, the coefficients of the quadratic equation (I2 / I1) are a, b, and c.
Figure 2014230382

(2)続いて、もとの指令信号、すなわち、補正バイアスIbiasを付加しない第1指令信号I1が三相正弦波信号である場合の補正バイアスIbias及び補正ゲインGain_hosei(=I2/I1)の関係について検討する。   (2) Subsequently, the relationship between the correction bias Ibias and the correction gain Gain_hosei (= I2 / I1) when the original command signal, that is, the first command signal I1 to which the correction bias Ibias is not added is a three-phase sine wave signal. To consider.

(2―a)補正バイアスIbiasを付加しない第1指令信号I1u,I1v,I1wの実効値(左辺)と、補正バイアスIbiasを付加した第2指令信号I2u,I2v,I2wの実効値(右辺)とを等しいとおく。なお、補正バイアスIbiasは、正負のいずれの方向においても波形をかさ上げするためのものであり、第1指令信号I1が正の範囲では+、負の範囲では−となるように付加される。

Figure 2014230382
(2-a) The effective value (left side) of the first command signals I1u, I1v, I1w without the correction bias Ibias, and the effective value (right side) of the second command signals I2u, I2v, I2w with the correction bias Ibias added Are equal. The correction bias Ibias is for raising the waveform in both positive and negative directions, and is added so that the first command signal I1 is + in the positive range and-in the negative range.
Figure 2014230382

次に上式の両辺を二乗して等しいとおく。

Figure 2014230382
Next, square both sides of the above formula and make them equal.
Figure 2014230382

ここで、数12の式の左辺は、

Figure 2014230382
Here, the left side of the equation (12) is
Figure 2014230382

続いて右辺1項は、

Figure 2014230382
Next, the first term on the right side is
Figure 2014230382

また、右辺2項は、

Figure 2014230382
Also, the two terms on the right side are
Figure 2014230382

右辺=右辺1項+右辺2項なので、

Figure 2014230382
Since the right side = 1 term on the right side + 2 terms on the right side,
Figure 2014230382

右辺=左辺なので、

Figure 2014230382
Since the right side = left side,
Figure 2014230382

となる。続いて、上式を用いて、補正ゲインGain_hosei(=I2/I1)または補正バイアスIbiasを求める。 It becomes. Subsequently, the correction gain Gain_hosei (= I2 / I1) or the correction bias Ibias is obtained using the above equation.

(2―b)先に補正ゲインGain_hosei(=I2/I1)を決めてから補正バイアスIbiasを求める場合;
上式を補正バイアスIbiasで整理すると、下式に示す補正バイアスIbiasの2次方程式となる。

Figure 2014230382
(2-b) When determining the correction bias Ibias after determining the correction gain Gain_hosei (= I2 / I1) first;
When the above equation is arranged by the correction bias Ibias, the quadratic equation of the correction bias Ibias shown in the following equation is obtained.
Figure 2014230382

補正バイアスIbiasは、2次方程式の解の公式より次のようになる。

Figure 2014230382
The correction bias Ibias is as follows from the formula of the solution of the quadratic equation.
Figure 2014230382

Ibias>0の条件から次式でIbiasが決まる。

Figure 2014230382
From the condition of Ibias> 0, Ibias is determined by the following equation.
Figure 2014230382

(2―c)先に補正バイアスIbiasを決めてから補正ゲインGain_hosei(=I2/I1)を求める場合;数18の最初の式の両辺をI2の二乗で割ると、

Figure 2014230382
(2-c) When determining the correction gain Gain_hosei (= I2 / I1) after determining the correction bias Ibias first; dividing both sides of the first expression of Equation 18 by the square of I2,
Figure 2014230382

各係数a,b,cを以下とすると、

Figure 2014230382
If each coefficient a, b, c is
Figure 2014230382

補正ゲインGain_hoseiは、2次方程式の解の公式及び補正ゲインGain_hosei>0の条件から次式となる。

Figure 2014230382
The correction gain Gain_hosei is expressed by the following equation based on the formula of the solution of the quadratic equation and the condition of the correction gain Gain_hosei> 0.
Figure 2014230382

以上のとおり、三相変調及び二相変調のいずれの変調方式を用いても、補正バイアスIbiasを付加しない場合の実効値と補正バイアスIbiasを加えた場合の実効値とを同じにする補正バイアスIbiasと補正ゲインGain_hoseiの関係が得られる。したがって、必要な補正バイアスIbiasまたは補正ゲインGain_hoseiのいずれか一方を定めれば、他方は計算にて算出が可能となる。   As described above, the correction bias Ibias in which the effective value when the correction bias Ibias is not added and the effective value when the correction bias Ibias is added is the same regardless of which of the three-phase modulation and the two-phase modulation methods is used. And the correction gain Gain_hosei. Accordingly, if one of the necessary correction bias Ibias and the correction gain Gain_hosei is determined, the other can be calculated.

[2]第2実施形態について説明する。   [2] A second embodiment will be described.

この実施形態では、モータの各巻線毎に電流検出用のシャント抵抗を設ける。図8に示すように、スイッチング回路10において、U相用のスイッチング素子11a,11bの直列回路と母線(負側ライン)との接続間に電流検出手段としてシャント抵抗14uを挿入接続し、V相用のスイッチング素子12a,12bの直列回路と母線(負側ライン)との接続間に電流検出手段としてシャント抵抗14vを挿入接続し、W相用のスイッチング素子13a,13bの直列回路と母線(負側ライン)との接続間に電流検出手段としてシャント抵抗14wを挿入接続する。   In this embodiment, a shunt resistor for current detection is provided for each winding of the motor. As shown in FIG. 8, in the switching circuit 10, a shunt resistor 14u is inserted and connected as a current detecting means between the series circuit of the U-phase switching elements 11a and 11b and the bus (negative side line). A shunt resistor 14v is inserted and connected as a current detecting means between the connection of the series circuit of switching elements 12a and 12b and the bus (negative line), and the series circuit of the W-phase switching elements 13a and 13b and the bus (negative) The shunt resistor 14w is inserted and connected as a current detecting means between the connection to the side line).

電流検出部31は、シャント抵抗14u,14v,14wに生じる電圧をそれぞれアナログ/ディジタル変換(A/D変換)して読取ることにより、相巻線Lu,Lv,Lwに流れる電流(母線電流)をそれぞれ検出する。   The current detection unit 31 reads the voltages generated in the shunt resistors 14u, 14v, and 14w by analog / digital conversion (A / D conversion), respectively, thereby reading currents (bus currents) flowing through the phase windings Lu, Lv, and Lw. Detect each.

速度制御部33は、主要な機能として次の(11)〜(13)の手段を有する。
(11)永久磁石同期モータ20の負荷が所定値以上であるか所定値未満であるかを電流検出部31の検出電流から判定する判定手段。
The speed control unit 33 includes the following means (11) to (13) as main functions.
(11) A determination unit that determines from the detected current of the current detection unit 31 whether the load of the permanent magnet synchronous motor 20 is greater than or equal to a predetermined value.

(12)上記判定手段の判定結果が所定値未満の場合、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化する第1指令信号I1u,I1v,I1wを生成する第1生成手段。   (12) When the determination result of the determination means is less than the predetermined value, the frequency changes according to the detection current of the current detection unit 31, and the difference between the estimated speed of the speed estimation unit 32 and the target speed input from the outside First generation means for generating first command signals I1u, I1v, I1w whose levels change in response.

(13)上記判定手段の判定結果が所定値以上の場合、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と上記目標速度との差に応じてレベルが変化し且つ電流検出部31の電流検出に必要な補正バイアスIbiasを低レベル側に含みながらその補正バイアスがない場合と同じ実効値を持つ第2指令信号I2u,I2v,I2wを生成する第2生成手段。この第2指令信号I2u,I2v,I2wは、第1指令信号I1u,I1v,I1wを所定の補正ゲインGain_hosei(=I2/I1)で補正することにより、得ることができる。   (13) When the determination result of the determination means is equal to or greater than a predetermined value, the frequency changes according to the detection current of the current detection unit 31, and the level changes according to the difference between the estimated speed of the speed estimation unit 32 and the target speed. A second generation that generates second command signals I2u, I2v, and I2w having the same effective value as the case where the correction bias Ibias necessary for current detection of the current detection unit 31 is included on the low level side and there is no correction bias. means. The second command signals I2u, I2v and I2w can be obtained by correcting the first command signals I1u, I1v and I1w with a predetermined correction gain Gain_hosei (= I2 / I1).

他の構成は、第1実施形態と同じである。   Other configurations are the same as those of the first embodiment.

作用を説明する。   The operation will be described.

永久磁石同期モータ20の負荷が所定値未満と低い場合、速度制御部33は、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化する第1指令信号(三相正弦波信号)I1u,I1v,I1wを生成する。この第1指令信号I1u,I1v,I1wの波形を図9に示す。   When the load of the permanent magnet synchronous motor 20 is as low as less than a predetermined value, the speed controller 33 changes the frequency according to the detected current of the current detector 31 and the estimated speed of the speed estimator 32 and the target input from the outside. First command signals (three-phase sine wave signals) I1u, I1v, and I1w whose levels change according to the difference from the speed are generated. The waveforms of the first command signals I1u, I1v, I1w are shown in FIG.

複数のシャント抵抗14u,14v,14wによって相巻線Lu,Lv,Lwの電流を検出する3シャント電流検出方式では、永久磁石同期モータ20の負荷が所定値以上の場合、電流レベルの正側および負側のそれぞれ高い領域(図9に点々で示す領域)において、電流検出のためのA/D変換が電流レベルの変化に追従できず、電流値の読取りができなくなる。   In the three-shunt current detection method in which the currents of the phase windings Lu, Lv, and Lw are detected by a plurality of shunt resistors 14u, 14v, and 14w, when the load of the permanent magnet synchronous motor 20 is equal to or greater than a predetermined value, In each of the negative high areas (areas indicated by dots in FIG. 9), A / D conversion for current detection cannot follow the change in the current level, and the current value cannot be read.

そこで、永久磁石同期モータ20の負荷が所定値以上と高い場合、速度制御部33は、電流検出部31の検出電流に応じて周波数が変化し且つ速度推定部32の推定速度と外部から入力される目標速度との差に応じてレベルが変化し且つ電流検出部31の電流検出に必要な補正バイアスIbiasを正側レベルおよび負側レベルのそれぞれ高い側に含みながらその補正バイアスIbiasがない状態と同じ実効値を持つ第2指令信号(三相変調波信号)I2u,I2v,I2wを生成する。   Therefore, when the load of the permanent magnet synchronous motor 20 is as high as a predetermined value or higher, the speed control unit 33 changes the frequency according to the detection current of the current detection unit 31 and inputs the estimated speed of the speed estimation unit 32 from the outside. The level changes according to the difference from the target speed and the correction bias Ibias necessary for the current detection of the current detection unit 31 is included on the higher side of the positive level and the negative level, but the correction bias Ibias is not present. Second command signals (three-phase modulated wave signals) I2u, I2v, and I2w having the same effective value are generated.

第2指令信号I2u,I2v,I2wは、具体的には、第1指令信号I1u,I1v,I1wを所定の補正ゲインGain_hosei(=I2/I1)で補正することにより得られる。   Specifically, the second command signals I2u, I2v, and I2w are obtained by correcting the first command signals I1u, I1v, and I1w with a predetermined correction gain Gain_hosei (= I2 / I1).

このように、補正バイアスIbiasを含む第2指令信号I2u,I2v,I2wによってPWM信号を生成するので、たとえ永久磁石同期モータ20の負荷が所定値以上と高い状況であっても、電流検出部31の電流検出のためのA/D変換(処理時間tx)は、電流レベルの変化に十分に追従する状態となる。よって、相巻線Lu,Lv,Lwに流れる電流を確実に検出することができ、永久磁石同期モータ20を適正に駆動することができる。   As described above, since the PWM signal is generated by the second command signals I2u, I2v, and I2w including the correction bias Ibias, even if the load of the permanent magnet synchronous motor 20 is high as a predetermined value or higher, the current detection unit 31 The A / D conversion (processing time tx) for current detection sufficiently follows the change in the current level. Therefore, the current flowing through the phase windings Lu, Lv, Lw can be reliably detected, and the permanent magnet synchronous motor 20 can be driven appropriately.

しかも、第2指令信号I2u,I2v,I2wは、補正バイアスIbiasがない第1指令信号I1u,I1v,I1wと同じ実効値を持つので、たとえ補正バイアスIbiasを付加していても、スイッチング回路10の出力電流に歪が生じることはなく、スイッチング回路10の出力電流の実効値に変動を生じることもない。   In addition, since the second command signals I2u, I2v, I2w have the same effective value as the first command signals I1u, I1v, I1w without the correction bias Ibias, even if the correction bias Ibias is added, The output current is not distorted, and the effective value of the output current of the switching circuit 10 is not changed.

なお、第1および第2指令信号が三相正弦波信号である場合を例に説明したが、二相変調波信号である場合も同様に実施できる。   In addition, although the case where the first and second command signals are three-phase sine wave signals has been described as an example, the case where the first and second command signals are two-phase modulated wave signals can be similarly implemented.

[変形例]
なお、上記実施形態及び変形例においては、モータに流れる電流からモータの速度を推定し、この推定速度と目標速度との差に応じてレベルが変化する指令信号を生成したが、指令信号の生成において、推定速度と目標速度との差のみでなく、目標速度の大きさも加味して指令信号を生成してもよい。
[Modification]
In the above embodiment and the modification, the motor speed is estimated from the current flowing through the motor, and the command signal whose level changes according to the difference between the estimated speed and the target speed is generated. The command signal may be generated in consideration of not only the difference between the estimated speed and the target speed but also the magnitude of the target speed.

また、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形例は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Moreover, the said embodiment and modification are shown as an example and are not intending limiting the range of invention. These novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalent scope thereof.

1…商用交流電源、2…ダイオードブリッジ、3…平滑コンデンサ、4…整流回路、10…スイッチング回路、11a,11b,12a,12b,13a,13b…スイッチング素子)、20…永久磁石同期モータ、21…入力端子、22…ステータ、Lu,Lv,Lw…相巻線、23…ロータ、23a…ロータ軸、M1,M2…永久磁石、31,32,33…電流センサ、40…コントロールユニット、41…主制御部、42…記憶部、50…センサレス・ベクトル制御部、51…電流検出部、52…速度推定演算部、53…積分部、54…減算部、55…速度制御部、56…演算部、57,58…、減算部、61…電流制御部、62…電流制御部、63…PWM信号生成部   DESCRIPTION OF SYMBOLS 1 ... Commercial AC power source, 2 ... Diode bridge, 3 ... Smoothing capacitor, 4 ... Rectifier circuit, 10 ... Switching circuit, 11a, 11b, 12a, 12b, 13a, 13b ... Switching element), 20 ... Permanent magnet synchronous motor, 21 ... input terminal, 22 ... stator, Lu, Lv, Lw ... phase winding, 23 ... rotor, 23a ... rotor shaft, M1, M2 ... permanent magnet, 31,32,33 ... current sensor, 40 ... control unit, 41 ... Main control unit, 42 ... storage unit, 50 ... sensorless vector control unit, 51 ... current detection unit, 52 ... speed estimation calculation unit, 53 ... integration unit, 54 ... subtraction unit, 55 ... speed control unit, 56 ... calculation unit , 57, 58..., Subtraction unit, 61... Current control unit, 62... Current control unit, 63.

Claims (5)

複数のスイッチング素子を有し、これらスイッチング素子のオン,オフによりモータへの駆動電力を出力するインバータと、
前記モータに流れる電流を検出し、この検出電流から前記モータの速度を推定し、この推定速度と目標速度との差に応じてレベルが変化し且つ前記電流の検出に必要な補正バイアスを含みながらその補正バイアスがない場合と同じ実効値を持つ指令信号を生成し、この指令信号に基づくパルス幅変調信号を前記スイッチング素子に対する駆動信号として生成する制御部と、
を備えることを特徴とするモータ駆動装置。
An inverter that has a plurality of switching elements, and outputs driving power to the motor by turning these switching elements on and off;
The current flowing through the motor is detected, the speed of the motor is estimated from the detected current, the level changes according to the difference between the estimated speed and the target speed, and the correction bias necessary for detecting the current is included. A control unit that generates a command signal having the same effective value as that without the correction bias, and generates a pulse width modulation signal based on the command signal as a drive signal for the switching element;
A motor drive device comprising:
前記制御部は、前記推定速度と前記目標速度との差に応じてレベルが変化し且つ前記補正バイアスを含まない指令信号を所定の補正ゲインで補正することにより、前記推定速度と前記目標速度との差に応じてレベルが変化し且つ前記電流の検出に必要な補正バイアスを含みながらその補正バイアスがない場合と同じ実効値を持つ指令信号を生成する、
ことを特徴とする請求項1記載のモータ駆動装置。
The control unit corrects a command signal whose level changes according to a difference between the estimated speed and the target speed and does not include the correction bias with a predetermined correction gain, thereby obtaining the estimated speed and the target speed. Generating a command signal having the same effective value as that in the case where the level changes according to the difference and includes the correction bias necessary for the detection of the current but without the correction bias.
The motor driving apparatus according to claim 1.
前記制御部は、前記補正ゲインを前記生成済みの指令信号の実効値または前記検出電流の実効値に基づいて算出する、
ことを特徴とする請求項2記載のモータ駆動装置。
The control unit calculates the correction gain based on an effective value of the generated command signal or an effective value of the detected current.
The motor driving apparatus according to claim 2, wherein
前記インバータに設けた1つのシャント抵抗を備え、
前記制御部は、前記シャント抵抗に生じる電圧から前記モータに流れる電流を検出し、この検出電流から前記モータの速度を推定し、前記モータの負荷が所定値以上の場合は前記推定速度と前記目標速度との差に応じてレベルが変化する第1指令信号を生成し、前記モータの負荷が前記所定値未満の場合は前記推定速度と前記目標速度との差に応じてレベルが変化し且つ前記電流の検出に必要な補正バイアスを低レベル側に含みながらその補正バイアスがない場合と同じ実効値を持つ第2指令信号を生成し、これら第1または第2指令信号に基づくパルス幅変調信号を前記スイッチング素子に対する駆動信号として生成する、
ことを特徴とする請求項1記載のモータ駆動装置。
One shunt resistor provided in the inverter;
The control unit detects a current flowing through the motor from a voltage generated in the shunt resistor, estimates a speed of the motor from the detected current, and when the load of the motor is equal to or greater than a predetermined value, the estimated speed and the target Generating a first command signal whose level changes according to the difference from the speed, and when the load of the motor is less than the predetermined value, the level changes according to the difference between the estimated speed and the target speed; and A second command signal having the same effective value as that in the case where the correction bias necessary for detecting the current is included on the low level side and there is no correction bias is generated, and a pulse width modulation signal based on the first or second command signal is generated. Generating a drive signal for the switching element;
The motor driving apparatus according to claim 1.
前記インバータに設けた複数のシャント抵抗を備え、
前記制御部は、前記各シャント抵抗に生じる電圧から前記モータに流れる電流を検出し、この検出電流から前記モータの速度を推定し、前記モータの負荷が所定値未満の場合は前記推定速度と前記目標速度との差に応じてレベルが変化する第1指令信号を生成し、前記モータの負荷が前記所定値以上の場合は前記推定速度と目標速度との差に応じてレベルが変化し且つ前記電流の検出に必要な補正バイアスを高レベル側に含みながらその補正バイアスがない場合と同じ実効値を持つ第2指令信号を生成し、これら第1または第2指令信号に基づくパルス幅変調信号を前記スイッチング素子に対する駆動信号として生成する、
ことを特徴とする請求項1記載のモータ駆動装置。
A plurality of shunt resistors provided in the inverter;
The control unit detects a current flowing through the motor from a voltage generated in each shunt resistor, estimates a speed of the motor from the detected current, and when the load of the motor is less than a predetermined value, the estimated speed and the A first command signal whose level changes according to a difference from a target speed is generated, and when the load of the motor is equal to or greater than the predetermined value, the level changes according to the difference between the estimated speed and the target speed, and the A second command signal having the same effective value as that in the case where the correction bias necessary for detecting the current is included on the high level side but without the correction bias is generated, and a pulse width modulation signal based on the first or second command signal is generated. Generating a drive signal for the switching element;
The motor driving apparatus according to claim 1.
JP2013107823A 2013-05-22 2013-05-22 Motor drive device Pending JP2014230382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107823A JP2014230382A (en) 2013-05-22 2013-05-22 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107823A JP2014230382A (en) 2013-05-22 2013-05-22 Motor drive device

Publications (1)

Publication Number Publication Date
JP2014230382A true JP2014230382A (en) 2014-12-08

Family

ID=52129759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107823A Pending JP2014230382A (en) 2013-05-22 2013-05-22 Motor drive device

Country Status (1)

Country Link
JP (1) JP2014230382A (en)

Similar Documents

Publication Publication Date Title
JP6583000B2 (en) Control device for rotating electrical machine
JP5122505B2 (en) Power conversion apparatus and control method thereof
CN109478854B (en) Power conversion device
KR101685968B1 (en) Inverter apparatus
JP2016021800A (en) Position estimation device, motor drive control device, and position estimation method
CN108432122B (en) Motor control device and control method for motor control device
WO2014024460A1 (en) Motor control apparatus
JP2018046628A (en) Brushless DC motor control device and brushless DC motor device
JP5170505B2 (en) Motor control device
JP2006230049A (en) Motor control device and motor current detector
JP5790390B2 (en) AC motor control device and control method
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JPWO2015133520A1 (en) Motor equipment
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
US20160156294A1 (en) Motor driving module
JP2010068581A (en) Electric motor drive unit
JP6407175B2 (en) Power converter control device
JP5808210B2 (en) Motor control device and motor control method
JP2019057981A (en) Motor control integrated circuit
JP2019205269A (en) Motor drive device
JP2018126021A (en) Motor controller
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP2014230382A (en) Motor drive device
JP6116449B2 (en) Electric motor drive control device
WO2020105106A1 (en) Alternating current rotating electrical machine control device