JP2014230056A - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP2014230056A
JP2014230056A JP2013107685A JP2013107685A JP2014230056A JP 2014230056 A JP2014230056 A JP 2014230056A JP 2013107685 A JP2013107685 A JP 2013107685A JP 2013107685 A JP2013107685 A JP 2013107685A JP 2014230056 A JP2014230056 A JP 2014230056A
Authority
JP
Japan
Prior art keywords
crystal
plane
crystal piece
range
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013107685A
Other languages
Japanese (ja)
Other versions
JP6108955B2 (en
Inventor
泰昭 石田
Yasuaki Ishida
泰昭 石田
康平 笹岡
Kohei Sasaoka
康平 笹岡
岩田 浩一
Koichi Iwata
浩一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2013107685A priority Critical patent/JP6108955B2/en
Publication of JP2014230056A publication Critical patent/JP2014230056A/en
Application granted granted Critical
Publication of JP6108955B2 publication Critical patent/JP6108955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a crystal oscillator which prevents vibration energy from leaking.SOLUTION: A crystal oscillator includes: a rectangular crystal piece having a predetermined thickness; a convex part provided on a principal surface of the crystal piece; an excitation electrode provided on the crystal piece to cover the convex part; and a pair of connection terminals connected to the excitation electrode and provided at end parts of the crystal piece. On a side surface in a side where m-plane of the crystal piece appears, m-plane being a crystal plane of the crystal and a plane perpendicular to R-plane are formed. In a first range from corners of the crystal piece where the connection terminals are provided to a portion where the convex part is not provided, a rate of a region being m-plane occupying in a thickness direction of the crystal piece is 0.7-0.8, and in a second range from a portion where the convex part is provided to the other corner of the crystal piece, the rate of the region being m-plane occupying in the thickness direction thereof is 0.5.

Description

本発明は、水晶デバイスに用いられる水晶振動素子に関する。   The present invention relates to a crystal resonator element used in a crystal device.

従来より、水晶デバイスには水晶片に励振電極となる金属膜を設けて構成された水晶振動素子が用いられている。
この水晶片は、ATカットの水晶ウェハをエッチングすることで形成することができる。
ATカットの水晶ウェハは、人工水晶を切断して設けられる板材であって、水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸側を向く面をX軸まわりにθ°回転させて新たに設定されるX軸、Y´軸、Z´軸、のうちY軸を向いていた面がY´軸を向いた状態で切断されて得られる。
切断された水晶ウェハは、表面が研磨されて所定の厚さTで仕上げられている。
このような水晶ウェハは、両主面にマスクが設けられ、水晶片とする位置と外周枠の部分と水晶片同士又は外周枠を繋ぐ接続部以外が開口した状態となっている。
この状態で、水晶ウェハをウェットエッチングすると、水晶ウェハの厚み方向に貫通した貫通部が形成される。
この貫通部は、水晶振動素子の側面となり、所定の時間、ウェットエッチングすることによってm面及びR面と直交する面とが形成される(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a quartz crystal element in which a quartz crystal is provided with a metal film serving as an excitation electrode is used for a quartz crystal device.
This crystal piece can be formed by etching an AT-cut crystal wafer.
An AT-cut quartz wafer is a plate material obtained by cutting an artificial quartz crystal. Of the X-axis, Y-axis, and Z-axis that are crystal axes of the quartz, the surface facing the Y-axis side is θ ° around the X-axis. Of the X-axis, Y′-axis, and Z′-axis that are newly set by rotation, the surface that faces the Y-axis is cut in a state that faces the Y′-axis.
The cut quartz wafer has a surface polished and finished to a predetermined thickness T.
Such a crystal wafer is provided with masks on both main surfaces, and is open except for the position of the crystal piece, the outer peripheral frame portion, and the crystal pieces or the connection portion connecting the outer peripheral frames.
When the crystal wafer is wet-etched in this state, a penetrating portion penetrating in the thickness direction of the crystal wafer is formed.
This penetrating portion serves as a side surface of the crystal resonator element, and a surface orthogonal to the m-plane and the R-plane is formed by wet etching for a predetermined time (see, for example, Patent Document 1).

特開2011−193175号公報JP 2011-193175 A

従来より水晶振動素子は、水晶片に設けられた励振電極で生じた振動エネルギーを例えば水晶片の外縁で閉じ込めるのが理想とされる。しかしながら、水晶片が小さく設計されて水晶デバイスとされたときに、励振電極で生じた振動エネルギーが水晶片で閉じ込められずに漏れる恐れがあった。   Conventionally, it is ideal for a crystal resonator element to confine vibration energy generated by an excitation electrode provided on a crystal piece, for example, at the outer edge of the crystal piece. However, when the crystal piece is designed to be a small crystal device, vibration energy generated in the excitation electrode may leak without being confined by the crystal piece.

そこで、本発明では、前記した問題を解決し、振動エネルギーの漏れを防ぐ水晶振動素子を提供することを目的とする。   Accordingly, an object of the present invention is to provide a crystal resonator element that solves the above-described problems and prevents leakage of vibration energy.

前記課題を解決するため、本発明は、水晶振動素子であって、所定の厚みを有する矩形形状の水晶片と、この水晶片の主面に設けられる凸部と、この凸部を覆って前記水晶片に設けられる励振電極と、前記励振電極と接続し前記水晶片の端部に設けられる2つ一対の接続端子と、を備え、前記水晶片のm面が形成される側の側面において、水晶の結晶面であるm面とR面と直交する面とが形成されており、前記接続端子が設けられる水晶片の隅部から前記凸部が設けられていないまでの第一範囲においてm面となる領域の厚み方向に占める割合が0.7〜0.8となり、前記凸部が設けられている部分から水晶片の他の端部までの第二範囲においてm面となる領域の厚み方向に占める割合が0.5となって構成されることを特徴とする。   In order to solve the above problems, the present invention provides a crystal resonator element, a rectangular crystal piece having a predetermined thickness, a protrusion provided on a main surface of the crystal piece, and covering the protrusion An excitation electrode provided on the crystal piece, and two pairs of connection terminals connected to the excitation electrode and provided at an end portion of the crystal piece, on a side surface on the side where the m-plane of the crystal piece is formed, In the first range from the corner of the crystal piece where the connection terminal is provided to the m-plane which is the crystal plane of the crystal and the plane orthogonal to the R-plane, the m-plane is not provided. The ratio in the thickness direction of the region to be 0.7 to 0.8, and the thickness direction of the region that becomes the m-plane in the second range from the portion where the convex portion is provided to the other end of the crystal piece It is characterized in that it is configured with a ratio of 0.5 to 0.5.

また、本発明は、前記凸部が楕円形状となっていることを特徴とする。また、本発明は、前記凸部が前記水晶片の両主面に設けられており、一方の主面に設けられる凸部が他方の主面に設けられる凸部と大きさが異なるように設けられていることを特徴とする。   Moreover, the present invention is characterized in that the convex portion has an elliptical shape. In the present invention, the convex portion is provided on both main surfaces of the crystal piece, and the convex portion provided on one main surface is provided so that the size is different from the convex portion provided on the other main surface. It is characterized by being.

このような水晶振動素子によれば、水晶片のm面が形成される側の側面において、水晶の結晶面であるm面とR面と直交する面とが形成されており、接続端子が設けられる水晶片の隅部から凸部が設けられていないまでの第一範囲においてm面となる領域の厚み方向に占める割合が0.7〜0.8となり、凸部が設けられている部分から水晶片の他の端部までの第二範囲においてm面となる領域の厚み方向に占める割合が0.5となって構成されるので、接続端子側での振動エネルギーのエネルギー閉じ込めが大きくなり、振動漏れを防ぐことができる。   According to such a crystal resonator element, the m-plane which is the crystal plane of the crystal and the plane orthogonal to the R-plane are formed on the side surface of the crystal piece on which the m-plane is formed, and the connection terminal is provided. The ratio of the area that becomes the m-plane in the thickness direction in the first range from the corner of the crystal piece to which the convex portion is not provided is 0.7 to 0.8, and from the portion where the convex portion is provided In the second range up to the other end of the crystal piece, the ratio of the area that becomes the m-plane in the thickness direction is 0.5, so that the energy confinement of vibration energy on the connection terminal side is increased, Vibration leakage can be prevented.

また、このような水晶振動素子によれば、凸部が楕円形状となっているので、励振電極で発生する振動の伝播の速さに近似した形状となるので、凸部での不要振動の発生を防ぐことができる。また、凸部が水晶片の両主面に設けられ、一方の主面に設けられる凸部が他方の主面に設けられる凸部と大きさが異なるように設けられているので、凸部での振動エネルギーの閉じ込めを大きくすることができる。   Further, according to such a crystal resonator element, since the convex portion has an elliptical shape, the shape approximates the speed of propagation of vibration generated by the excitation electrode, and therefore, unnecessary vibration is generated at the convex portion. Can be prevented. Further, the convex portions are provided on both main surfaces of the crystal piece, and the convex portions provided on one main surface are provided so as to be different in size from the convex portions provided on the other main surface. The vibrational energy confinement can be increased.

本発明の実施形態に係る水晶振動素子の一例を示す平面図である。It is a top view which shows an example of the crystal vibration element which concerns on embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 本発明の実施形態に係る水晶振動素子と従来の水晶振動素子とのCI値を比較した図である。It is the figure which compared the CI value of the crystal oscillation element which concerns on embodiment of this invention, and the conventional crystal oscillation element.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために誇張して図示している。また、水晶片に対して最も広い平面とこの平面と並行となる面を主面とし、この主面を囲む面を側面とする。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state. Further, the widest plane with respect to the crystal piece and a plane parallel to the plane are defined as main surfaces, and a surface surrounding the main surface is defined as a side surface.

図1に示すように、本発明の実施形態に係る水晶振動素子10は、水晶片11、凸部12、励振電極13、接続端子14とから主に構成されている。   As shown in FIG. 1, the crystal resonator element 10 according to the embodiment of the present invention mainly includes a crystal piece 11, a convex portion 12, an excitation electrode 13, and a connection terminal 14.

凸部12は、図1及び図2に示すように、後述する水晶片11の主面の面中心に設けられる。また、この凸部12は楕円形状となっており、楕円中心が水晶片11の主面の面中心に一致し、楕円の長径が水晶片11の長辺と並行となるように設けられている。
ここで、水晶片11の一方の主面に設けられる凸部12は、他方の主面に設けられる凸部12と大きさが異なるように設けられている。例えば、図2及び図3に示すように、形状は同じ楕円形状となっているが、一方の主面に設けられる凸部12の楕円形状は、他方の主面に設けられる凸部の楕円形状よりも平面積が小さく形成されている。
The convex part 12 is provided in the surface center of the main surface of the crystal piece 11 mentioned later, as shown in FIG.1 and FIG.2. Further, the convex portion 12 has an elliptical shape, and is provided such that the center of the ellipse coincides with the surface center of the main surface of the crystal piece 11 and the major axis of the ellipse is parallel to the long side of the crystal piece 11. .
Here, the convex part 12 provided in one main surface of the crystal piece 11 is provided so that a magnitude | size may differ from the convex part 12 provided in the other main surface. For example, as shown in FIG. 2 and FIG. 3, the shape is the same elliptical shape, but the elliptical shape of the convex portion 12 provided on one main surface is the elliptical shape of the convex portion provided on the other main surface. The plane area is smaller than that.

励振電極13は、図1及び図2に示すように、楕円形状となっており凸部12を覆って水晶片11に設けられる。この励振電極13は、水晶片11の両主面に対向するように設けられている。また、楕円形状の励振電極13は、水晶片11の長辺と楕円の長径とが平行となるように水晶片11に設けられる。   As shown in FIGS. 1 and 2, the excitation electrode 13 has an elliptical shape and is provided on the crystal piece 11 so as to cover the convex portion 12. The excitation electrode 13 is provided to face both main surfaces of the crystal piece 11. The elliptical excitation electrode 13 is provided on the crystal piece 11 so that the long side of the crystal piece 11 and the major axis of the ellipse are parallel to each other.

接続端子14は、図1に示すように、2つ一対で用いられ、励振電極13と接続し水晶片11の一方の端部に設けられる。一方の接続端子14は、水晶片11の一方の主面に設けられた励振電極13と接続し、他方の接続端子14は、水晶片11の他方の主面に設けられた励振電極13と接続している。   As shown in FIG. 1, the connection terminals 14 are used in pairs, and are connected to the excitation electrode 13 and provided at one end of the crystal piece 11. One connection terminal 14 is connected to the excitation electrode 13 provided on one main surface of the crystal piece 11, and the other connection terminal 14 is connected to the excitation electrode 13 provided on the other main surface of the crystal piece 11. doing.

水晶片11は、図1に示すように、所定の厚みを有する矩形形状に形成されている。この水晶片11は、例えば、接続端子14が設けられる端部から反対側の端部までの方向をX軸方向とし、このX軸方向と直交する方向をZ軸方向としており、Z軸方向が水晶片11の幅W寸法となっている。
このX軸方向と平行でありZ軸方向と直交する水晶片11の側面には、m面が形成されている。このm面が形成される側の側面において、水晶の結晶面であるm面とR面と直交する面とが形成されている。
このm面及びR面と直交する面は、板状に形成された水晶ウェハをウェットエッチングすることで形成される。
As shown in FIG. 1, the crystal piece 11 is formed in a rectangular shape having a predetermined thickness. In this crystal piece 11, for example, the direction from the end where the connection terminal 14 is provided to the opposite end is the X-axis direction, and the direction orthogonal to the X-axis direction is the Z-axis direction. The width W of the crystal piece 11 is set.
An m-plane is formed on the side surface of the crystal piece 11 that is parallel to the X-axis direction and orthogonal to the Z-axis direction. On the side surface on which the m-plane is formed, an m-plane that is a crystal plane of quartz and a plane orthogonal to the R-plane are formed.
The plane orthogonal to the m-plane and the R-plane is formed by wet-etching a crystal wafer formed in a plate shape.

ここで、m面が形成される水晶片11の側面において、接続端子14が設けられる水晶片11の隅部から凸部12が設けられていないまでの範囲を第一範囲D1とし、凸部12が設けられている部分から水晶片11の他の端部までの範囲を第二範囲D2とする。
第一領域D1は、最も外側に位置する凸部12の先端から水晶片の一方の隅部までの範囲であって、凸部12が形成されていない平面部分を指す。
第二領域D2は、第一領域D1の境界の基準となった最も外側に位置する凸部12の先端から水晶片11の他方の隅部までの範囲であって、最も外側に位置する凸部12と他の水晶片11の平面部分とを指す。
Here, on the side surface of the crystal piece 11 on which the m-plane is formed, the range from the corner of the crystal piece 11 where the connection terminal 14 is provided to the convex portion 12 is not provided as the first range D1, and the convex portion 12 A range from the portion where the is provided to the other end of the crystal piece 11 is defined as a second range D2.
1st area | region D1 is a range from the front-end | tip of the convex part 12 located in the outermost side to one corner part of a crystal piece, Comprising: The plane part in which the convex part 12 is not formed is pointed out.
The second region D2 is a range from the tip of the outermost convex portion 12 serving as a reference for the boundary of the first region D1 to the other corner of the crystal piece 11, and is the outermost convex portion. 12 and the plane portion of the other crystal piece 11.

このとき、図1〜図3に示すように、m面は、第一範囲D1と第二範囲D2とで側面に占める割合が異なっている。
まず、接続端子14が設けられる水晶片11の隅部から凸部12が設けられていないまでの第一範囲D1において、m面F1aは、水晶片11の厚みを「1」としたとき、m面F1aとなる領域の厚み方向に占める割合が0.7〜0.8となっている。
At this time, as shown in FIGS. 1-3, the ratio which occupies for the m surface differs in the 1st range D1 and the 2nd range D2.
First, in the first range D1 from the corner of the crystal piece 11 where the connection terminal 14 is provided to when the convex portion 12 is not provided, the m-plane F1a is m when the thickness of the crystal piece 11 is “1”. The ratio of the region to be the surface F1a in the thickness direction is 0.7 to 0.8.

つまり、水晶片11の当該側面を正面から見たとき、m面F1a及びR面と直交する面F2aは厚みの方向に分割された状態で視認できる。この厚み方向に分割された状態において、水晶片11の厚みを「1」としたとき、m面F1aが厚み方向に占める割合を0.7〜0.8となっている。   That is, when the side surface of the crystal piece 11 is viewed from the front, the m-plane F1a and the surface F2a orthogonal to the R-plane can be visually recognized in a state of being divided in the thickness direction. In the state divided in the thickness direction, when the thickness of the crystal piece 11 is “1”, the ratio of the m-plane F1a in the thickness direction is 0.7 to 0.8.

また凸部12が設けられている部分から水晶片11の他の端部までの第二範囲D2において、m面F1bは、水晶片11の厚みを「1」としたとき、m面F1bとなる領域の厚み方向に占める割合が0.5となっている。   In the second range D2 from the portion where the convex portion 12 is provided to the other end of the crystal piece 11, the m-plane F1b becomes the m-plane F1b when the thickness of the crystal piece 11 is “1”. The ratio of the area in the thickness direction is 0.5.

つまり、水晶片11の当該側面を正面から見たとき、m面F1b及びR面と直交する面F2bは厚みの方向に分割された状態で視認できる。この厚み方向に分割された状態において、水晶片11の厚みを「1」としたとき、m面F1bが厚み方向に占める割合を0.5となっている。   That is, when the side surface of the crystal piece 11 is viewed from the front, the m-plane F1b and the surface F2b orthogonal to the R-plane can be viewed in a state of being divided in the thickness direction. In the state divided in the thickness direction, when the thickness of the crystal piece 11 is “1”, the ratio of the m-plane F1b in the thickness direction is 0.5.

したがって、このような第一範囲D1におけるm面F1aは、第二範囲D2のm面F1bよりも面積が広いため、エネルギー閉じ込めの効果を大きくすることができる。
また第一範囲D1が水晶片11の接続端子14が設けられる側にしてm面F1aが他のm面F1bよりも広くしたことで接続端子14からの振動漏れを防ぎつつ第一範囲D1のm面F1aでエネルギー閉じ込めを大きくしてさらに振動漏れを防ぐことができる。
Therefore, since the m-plane F1a in the first range D1 has a larger area than the m-plane F1b in the second range D2, the effect of energy confinement can be increased.
In addition, since the first range D1 is on the side where the connection terminal 14 of the crystal piece 11 is provided and the m-plane F1a is wider than the other m-plane F1b, m in the first range D1 is prevented while preventing vibration leakage from the connection terminal 14. By enlarging the energy confinement at the surface F1a, vibration leakage can be further prevented.

次に、本発明の実施形態に係る水晶振動素子10は、以下のようにして製造することができる。   Next, the crystal resonator element 10 according to the embodiment of the present invention can be manufactured as follows.

まず、水晶ウェハについて説明する。
ATカットの水晶ウェハは、人工水晶を切断して設けられる板材であって、水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸側を向く面をX軸まわりにθ°回転させて新たに設定されるX軸、Y´軸、Z´軸、のうちY軸を向いていた面がY´軸を向いた状態で切断されて得られる。切断された水晶ウェハは、表面が研磨されて所定の厚さT(μm)で仕上げられている。
なお、X軸及びZ´軸と並行となる平面を主面とする。
First, a quartz wafer will be described.
An AT-cut quartz wafer is a plate material obtained by cutting an artificial quartz crystal. Of the X-axis, Y-axis, and Z-axis that are crystal axes of the quartz, the surface facing the Y-axis side is θ ° around the X-axis. Of the X-axis, Y′-axis, and Z′-axis that are newly set by rotation, the surface that faces the Y-axis is cut in a state that faces the Y′-axis. The cut quartz wafer has a surface polished and finished with a predetermined thickness T (μm).
A plane parallel to the X axis and the Z ′ axis is a main surface.

水晶ウェハに凸部を有する水晶片を設ける方法は種々提案されているが、例えば、以下のように水晶ウェハに凸部を有する水晶片を設ける。   Various methods for providing a crystal piece having a convex portion on a crystal wafer have been proposed. For example, a crystal piece having a convex portion is provided on a crystal wafer as follows.

まず、水晶ウェハに耐食膜を設け、耐食膜の上にフォトレジスト膜を設ける。
水晶片となる部分を残して隣り合う水晶片となる部分の間が貫通したマスクを水晶ウェハに重ねて露光・現像を行う。感光したフォトレジストを剥離し、露出した耐食膜を除去する。水晶ウェハの表面が露出した状態で、ウェットエッチングにより露出部分を所定の厚さまで除去する。
First, a corrosion resistant film is provided on a quartz wafer, and a photoresist film is provided on the corrosion resistant film.
Exposure / development is carried out by superposing a mask having a portion between the adjacent crystal pieces, with the crystal wafer remaining, leaving a portion to be the crystal piece on the crystal wafer. The exposed photoresist is peeled off and the exposed corrosion-resistant film is removed. With the surface of the quartz wafer exposed, the exposed portion is removed to a predetermined thickness by wet etching.

残されたフォトレジストを剥離した後に、再度、フォトレジストを水晶ウェハに設け、凸部となる部分を残して水晶片の形状に対応させた貫通部を有するマスクを水晶ウェハに重ねて露光・現像を行う。感光したフォトレジストを剥離し、露出した耐食膜を除去する。水晶ウェハの表面が露出するので、ウェットエッチングにより露出部分を所定の厚さまで除去する。これにより、水晶ウェハには、凸部を有した水晶片となる部分が複数設けられた状態となる。このときの水晶片のX軸と平行になる側面には、m面及びR面と直交する面とが設けられた状態となっており、厚み方向におけるm面の占める割合が0.5となっている。
つまり、水晶片の厚み方向におけるm面の占める割合が0.5となるまでウェットエッチングを行う。
After removing the remaining photoresist, the photoresist is again applied to the crystal wafer, and a mask having a penetrating part corresponding to the shape of the crystal piece is left on the crystal wafer, leaving a portion to be a projection, and exposure and development are performed. I do. The exposed photoresist is peeled off and the exposed corrosion-resistant film is removed. Since the surface of the quartz wafer is exposed, the exposed portion is removed to a predetermined thickness by wet etching. As a result, the quartz wafer is provided with a plurality of portions to be quartz pieces having convex portions. At this time, the side surface parallel to the X axis of the crystal piece is provided with a surface that is orthogonal to the m-plane and the R-plane, and the proportion of the m-plane in the thickness direction is 0.5. ing.
That is, wet etching is performed until the ratio of the m-plane in the thickness direction of the crystal piece becomes 0.5.

この状態で、第二範囲となる部分にフォトレジストを設け、再度、ウェットエッチングを行う。
これにより、水晶ウェハの露出する部分である第一範囲の部分の水晶ウェハの表面が除去されてm面の面積が広がっていく。厚み方向におけるm面の占める割合が0.7〜0.8となったところでウェットエッチングを終わらせる。
In this state, a photoresist is provided in the second range, and wet etching is performed again.
As a result, the surface of the quartz wafer in the first range, which is the exposed portion of the quartz wafer, is removed, and the area of the m-plane increases. Wet etching is terminated when the ratio of the m-plane in the thickness direction becomes 0.7 to 0.8.

その後、励振電極と接続端子の形状に対応したパターンを有するマスクを水晶片が設けられた水晶ウェハに重ねて、スパッタや蒸着により、励振電極と接続端子とを水晶片に設けて水晶振動素子とする。
水晶ウェハからそれぞれの水晶振動素子を折り取り、個々の水晶振動素子とする。
このように、本発明の実施形態に係る水晶振動素子は、容易に製造することができる。
Thereafter, a mask having a pattern corresponding to the shape of the excitation electrode and the connection terminal is superimposed on the crystal wafer provided with the crystal piece, and the excitation electrode and the connection terminal are provided on the crystal piece by sputtering or vapor deposition, To do.
Each crystal resonator element is folded from the crystal wafer to obtain individual crystal resonator elements.
Thus, the crystal resonator element according to the embodiment of the present invention can be easily manufactured.

なお、本発明は、適宜変更が可能である。
例えば、水晶片に設けられる凸部12は、水晶片11の一方の主面のみに形成されていても良いし、水晶片11の両主面に設けられる凸部12の大きさを同じ形状で同じ平面積で設けても、本発明の実施形態と同様の効果を奏する。
In addition, this invention can be changed suitably.
For example, the convex portion 12 provided on the crystal piece 11 may be formed only on one main surface of the crystal piece 11, and the size of the convex portion 12 provided on both main surfaces of the crystal piece 11 is the same shape. Even if they are provided with the same plane area, the same effects as in the embodiment of the present invention can be obtained.

次に、実施例について、説明する。
この実施例では、水晶片のW寸法を所定の範囲で変更した時のCI値(クリスタルインピーダンス値)を促成した結果を確認している。各W寸法においてCI値が低い値ほど良好な状態とすることができる。
Next, examples will be described.
In this embodiment, the result of promoting the CI value (crystal impedance value) when the W dimension of the crystal piece is changed within a predetermined range is confirmed. In each W dimension, the lower the CI value, the better.

実施例1は、本発明の実施形態に係る水晶振動素子であって、水晶片の両主面に大きさが異なる凸部が設けられ、第一範囲の水晶片の厚み方向におけるm面の占める割合が0.75、第二範囲の水晶片の厚み方向におけるm面の占める割合が0.5となっている水晶振動素子である(図1参照)。   Example 1 is a crystal resonator element according to an embodiment of the present invention, in which convex portions having different sizes are provided on both main surfaces of a crystal piece, and the m plane occupies the thickness direction of the crystal piece in the first range. This is a crystal resonator element in which the ratio is 0.75, and the ratio of the m-plane in the thickness direction of the quartz piece in the second range is 0.5 (see FIG. 1).

図4に示すように、実施例1の水晶振動素子は、W寸法が628μm〜632μm,646μ〜650μmの範囲でCI値が300Ωを下回った。また、W寸法が634μm〜638μmの範囲において、636μmでCI値が約600Ωとなる山形の分布となった。また、W寸法が638μm〜642μmの範囲でCI値が400Ωを下回った。また、W寸法が642μm〜646μmの範囲において、644μmでCI値が約700Ωとなる山形の分布となった。   As shown in FIG. 4, in the quartz resonator element of Example 1, the CI value was less than 300Ω in the range of W dimension from 628 μm to 632 μm and from 646 μm to 650 μm. Further, in the range of W dimension from 634 μm to 638 μm, the distribution was mountain-shaped with a CI value of about 600Ω at 636 μm. Further, the CI value was less than 400Ω in the range of W dimension from 638 μm to 642 μm. In addition, in the range of W dimension from 642 μm to 646 μm, the distribution was mountain-shaped with a CI value of about 700Ω at 644 μm.

比較例1は、水晶片の両主面に大きさが異なる凸部が設けられ、第一範囲及び第二範囲の水晶片の厚み方向におけるm面の占める割合が0.5となっている水晶振動素子である。   Comparative Example 1 is a crystal in which convex portions having different sizes are provided on both main surfaces of the crystal piece, and the ratio of the m-plane in the thickness direction of the crystal piece in the first range and the second range is 0.5. It is a vibration element.

図4に示すように、比較例1の水晶振動素子は、W寸法が628μm〜650μmの範囲でCI値が安定せずばらけた分布となった。また、各W寸法において、CI値が実施例1のCI値を下回ることがなかった。   As shown in FIG. 4, the quartz resonator element of Comparative Example 1 had a distribution in which the CI value was unstable and varied in the range of W dimension from 628 μm to 650 μm. In each W dimension, the CI value did not fall below the CI value of Example 1.

このように、実施例1の水晶振動素子は、従来の水晶振動素子よりも低いCI値とすることができた。   Thus, the quartz resonator element of Example 1 was able to have a lower CI value than the conventional quartz resonator element.

10 水晶振動素子
11 水晶片
12 凸部
13 励振電極
14 接続端子
D1 第一範囲
D2 第二範囲
F1a,F1b m面
F2a,F2b R面に直交する面
DESCRIPTION OF SYMBOLS 10 Crystal resonator element 11 Crystal piece 12 Convex part 13 Excitation electrode 14 Connection terminal D1 1st range D2 2nd range F1a, F1b m surface F2a, F2b Surface orthogonal to R surface

Claims (3)

所定の厚みを有する矩形形状の水晶片と、
この水晶片の主面に設けられる凸部と、
この凸部を覆って前記水晶片に設けられる励振電極と、
前記励振電極と接続し前記水晶片の端部に設けられる2つ一対の接続端子と、
を備え、
前記水晶片のm面が形成される側の側面において、
水晶の結晶面であるm面とR面と直交する面とが形成されており、
前記接続端子が設けられる水晶片の隅部から前記凸部が設けられていないまでの第一範囲においてm面となる領域の厚み方向に占める割合が0.7〜0.8となり、
前記凸部が設けられている部分から水晶片の他の端部までの第二範囲においてm面となる領域の厚み方向に占める割合が0.5となって構成されることを特徴とする水晶振動素子。
A rectangular crystal piece having a predetermined thickness;
A convex portion provided on the main surface of the crystal piece;
An excitation electrode provided on the crystal piece covering the convex portion;
A pair of connection terminals connected to the excitation electrode and provided at an end of the crystal piece;
With
In the side surface on which the m-plane of the crystal piece is formed,
The m plane which is the crystal plane of quartz and the plane orthogonal to the R plane are formed,
The ratio in the thickness direction of the region that becomes the m-plane in the first range from the corner of the crystal piece where the connection terminal is provided to the projection is not provided is 0.7 to 0.8,
The quartz crystal is characterized in that the ratio of the area that becomes the m-plane in the thickness direction in the second range from the portion where the convex portion is provided to the other end of the crystal piece is 0.5. Vibration element.
前記凸部が楕円形状となっていることを特徴とする請求項1に記載の水晶振動素子。   The quartz crystal resonator element according to claim 1, wherein the convex portion has an elliptical shape. 前記凸部が前記水晶片の両主面に設けられており、一方の主面に設けられる凸部が他方の主面に設けられる凸部と大きさが異なるように設けられていることを特徴とする請求項1又は請求項2に記載の水晶振動素子。   The convex portions are provided on both main surfaces of the crystal piece, and the convex portions provided on one main surface are provided so as to be different in size from the convex portions provided on the other main surface. The crystal resonator element according to claim 1 or 2.
JP2013107685A 2013-05-22 2013-05-22 Crystal oscillator Active JP6108955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107685A JP6108955B2 (en) 2013-05-22 2013-05-22 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107685A JP6108955B2 (en) 2013-05-22 2013-05-22 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2014230056A true JP2014230056A (en) 2014-12-08
JP6108955B2 JP6108955B2 (en) 2017-04-05

Family

ID=52129538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107685A Active JP6108955B2 (en) 2013-05-22 2013-05-22 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP6108955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167073A1 (en) * 2015-04-15 2016-10-20 日本電波工業株式会社 At cut quartz piece and quartz vibrator
JP2020120190A (en) * 2019-01-21 2020-08-06 京セラ株式会社 Crystal element, crystal device, and electronic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131220A (en) * 1980-02-06 1981-10-14 Siemens Ag Resonance plate capable of exciting thickness slide vibration
US5304459A (en) * 1990-04-27 1994-04-19 Seiko Epson Corporation At-cut crystal oscillating reed and method of etching the same
JP2002271167A (en) * 2001-03-09 2002-09-20 Citizen Watch Co Ltd Piezoelectric device element and its fabricating method
JP2008067345A (en) * 2006-08-09 2008-03-21 Epson Toyocom Corp At cut quartz crystal resonator element and method for manufacturing the same
JP2009130586A (en) * 2007-11-22 2009-06-11 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric device, and method of manufacturing piezoelectric vibration chip
JP2011097369A (en) * 2009-10-29 2011-05-12 Kyocera Kinseki Corp Crystal oscillation element
JP2011193292A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Crystal vibration piece
JP2011193175A (en) * 2010-03-12 2011-09-29 Seiko Instruments Inc Crystal vibration plate and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131220A (en) * 1980-02-06 1981-10-14 Siemens Ag Resonance plate capable of exciting thickness slide vibration
US5304459A (en) * 1990-04-27 1994-04-19 Seiko Epson Corporation At-cut crystal oscillating reed and method of etching the same
JP2002271167A (en) * 2001-03-09 2002-09-20 Citizen Watch Co Ltd Piezoelectric device element and its fabricating method
JP2008067345A (en) * 2006-08-09 2008-03-21 Epson Toyocom Corp At cut quartz crystal resonator element and method for manufacturing the same
JP2009130586A (en) * 2007-11-22 2009-06-11 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric device, and method of manufacturing piezoelectric vibration chip
JP2011097369A (en) * 2009-10-29 2011-05-12 Kyocera Kinseki Corp Crystal oscillation element
JP2011193175A (en) * 2010-03-12 2011-09-29 Seiko Instruments Inc Crystal vibration plate and method for manufacturing the same
JP2011193292A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Crystal vibration piece

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167073A1 (en) * 2015-04-15 2016-10-20 日本電波工業株式会社 At cut quartz piece and quartz vibrator
JP2016208066A (en) * 2015-04-15 2016-12-08 日本電波工業株式会社 At-cut crystal piece and crystal oscillator
CN107431474A (en) * 2015-04-15 2017-12-01 日本电波工业株式会社 AT-cut crystal piece and quartz crystal unit
US10637437B2 (en) 2015-04-15 2020-04-28 Nihon Dempa Kogyo Co., Ltd. At-cut crystal element and crystal resonator
CN107431474B (en) * 2015-04-15 2020-08-11 日本电波工业株式会社 AT-cut crystal piece and crystal oscillator
JP2020120190A (en) * 2019-01-21 2020-08-06 京セラ株式会社 Crystal element, crystal device, and electronic apparatus
JP7093316B2 (en) 2019-01-21 2022-06-29 京セラ株式会社 Crystal elements, crystal devices and electronic devices

Also Published As

Publication number Publication date
JP6108955B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
TWI639302B (en) At-cut crystal element, crystal resonator and crystal unit
JP6350784B2 (en) Method for manufacturing quartz vibrating piece
TWI516023B (en) Process for manufacturing crystal resonator
JP2017050751A (en) Crystal oscillator
KR20150121585A (en) Quartz Vibrator and manufacturing method of the same
JP6108955B2 (en) Crystal oscillator
US20190207584A1 (en) Crystal oscillating element, crystal oscillation device, and method of manufacturing crystal oscillating element
JPWO2005008888A1 (en) Tuning fork type vibrating piece, tuning fork type vibrator, and method for manufacturing tuning fork type vibrating piece
JP6061651B2 (en) Crystal oscillator
JP6483371B2 (en) Crystal resonator element and crystal resonator element
TWI710149B (en) Crystal resonator
JP2004120556A (en) Tuning fork type vibration piece and tuning fork type oscillator
JP5719056B1 (en) Piezoelectric vibrating piece, piezoelectric vibrator, and method of manufacturing piezoelectric vibrating piece
JP2009105509A (en) Method of manufacturing face crystal oscillator piece
JP2009094844A (en) Crystal oscillator piece
JP7396858B2 (en) Piezoelectric device and its manufacturing method
JP5541377B2 (en) Crystal resonator element, crystal resonator and electronic component
JP2014023134A (en) Tuning fork type bending crystal vibrator, and method of manufacturing the same
US20150145381A1 (en) Quartz vibrator and manufacturing method thereof
JP6166433B2 (en) Crystal oscillator
JP2016174328A (en) Wafer manufacturing method and wafer
JP6000724B2 (en) Crystal oscillator
JP5908630B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator, and method of manufacturing piezoelectric vibrating piece
JP5918067B2 (en) Crystal oscillator
JP5908629B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator, and method of manufacturing piezoelectric vibrating piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6108955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350