JP2014229839A - Powder-compact magnetic core, and manufacturing method thereof - Google Patents

Powder-compact magnetic core, and manufacturing method thereof Download PDF

Info

Publication number
JP2014229839A
JP2014229839A JP2013110376A JP2013110376A JP2014229839A JP 2014229839 A JP2014229839 A JP 2014229839A JP 2013110376 A JP2013110376 A JP 2013110376A JP 2013110376 A JP2013110376 A JP 2013110376A JP 2014229839 A JP2014229839 A JP 2014229839A
Authority
JP
Japan
Prior art keywords
powder
glass
magnetic
magnetic powder
crystallization temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013110376A
Other languages
Japanese (ja)
Other versions
JP6403940B2 (en
Inventor
昌明 綱川
Masaaki Tsunakawa
昌明 綱川
泰雄 大島
Yasuo Oshima
泰雄 大島
功太 赤岩
Kota Akaiwa
功太 赤岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2013110376A priority Critical patent/JP6403940B2/en
Publication of JP2014229839A publication Critical patent/JP2014229839A/en
Application granted granted Critical
Publication of JP6403940B2 publication Critical patent/JP6403940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a powder-compact magnetic core which delivers an excellent performance in view of any of the standard deviation of the density, the magnetic property and the hardness; and a method for manufacturing such a powder-compact magnetic core.SOLUTION: A method for manufacturing a powder-compact magnetic core comprises the steps of: mixing powder of a magnetic material, powder of glass having a transition point lower than a crystallization temperature of the magnetic material powder, and a binding resin together; press-compacting the resultant mixture at a room temperature; and performing a heat treatment on the resultant compact at a temperature lower than the crystallization temperature of the magnetic material powder in a non-reducing atmosphere. The difference between the transition point of the glass powder, and the crystallization temperature of the magnetic material is 50°C or more. The difference between a crystallization temperature of the glass and the crystallization temperature of the magnetic material powder is 50°C or less. The quantity of the mixed glass is in a range of 0.5-5 wt% of that of the magnetic material powder. It is preferable to decide the quantity of the mixed glass according to the magnetic permeability of the powder-compact magnetic core to be manufactured. Further, it is preferable that the glass powder has a particle diameter of 0.5-5 μm. In mixing the magnetic material powder and the glass powder, a lubricative resin may be added thereto.

Description

本発明は、平滑用チョークコイル等に使用される圧粉磁心及びその製造方法に関する。   The present invention relates to a dust core used for a smoothing choke coil or the like and a method for manufacturing the same.

スイッチング電源等の出力波形を平滑するために、チョークコイルが使用されている。各種電子機器の高性能化・多機能化に伴い、それに使用されるチョークコイルの磁心においても、大電流でも特性変化の小さいものが要求されている。具体的には、優れた直流重畳特性と低損失特性を有する磁心が求められている。この種の磁心としては、従来から、フェライト磁心や圧粉磁心が使用されている。中でも、非晶質軟磁性粉末(アモルファス軟磁性粉末)から作製された圧粉磁心は、直流重畳特性に優れ、損失が少ない特性を有している。   A choke coil is used to smooth the output waveform of a switching power supply or the like. As various electronic devices become more sophisticated and multifunctional, the choke coil magnetic core used therein is required to have a small characteristic change even at a large current. Specifically, a magnetic core having excellent direct current superposition characteristics and low loss characteristics is required. Conventionally, ferrite cores and dust cores have been used as this type of magnetic core. Among these, a dust core made of amorphous soft magnetic powder (amorphous soft magnetic powder) has excellent DC superposition characteristics and low loss characteristics.

これらの非晶質軟磁性粉末(以下、軟磁性粉末という)を用いて圧粉磁心とするためには、軟磁性粉末を低融点ガラスと結着性樹脂などと混合し、その混合物を常温あるいは高温下で圧縮成形した後、得られた成形体に対して熱処理を行う。特許文献1の方法は、成形時に、金型と軟磁性粉末を高温にして成形体を製造する。特許文献2の方法は、軟磁性粉末を低融点ガラスと結着性樹脂などと混合して、室温で成形体を製造する。   In order to obtain a powder magnetic core using these amorphous soft magnetic powders (hereinafter referred to as soft magnetic powders), the soft magnetic powder is mixed with a low-melting glass and a binder resin and the mixture is mixed at room temperature or After compression molding at a high temperature, the obtained molded body is subjected to heat treatment. In the method of Patent Document 1, a molded body is produced by forming a mold and soft magnetic powder at a high temperature during molding. In the method of Patent Document 2, a soft magnetic powder is mixed with a low-melting glass and a binder resin to produce a molded body at room temperature.

特開平10−212503号公報Japanese Patent Laid-Open No. 10-212503 特開2001−73062号公報JP 2001-73062 A

しかしながら、特許文献1及び2においては、ガラスの物性値や、それに基づく効果については詳細に書かれていない。製造された圧粉磁心の磁気特性も、透磁率のみしか評価しておらず、鉄損については全く述べていない。これらの従来技術においては、低損失・高強度な圧粉磁心を得ることはできなかった。   However, Patent Documents 1 and 2 do not describe in detail the physical properties of glass and the effects based thereon. The magnetic properties of the produced dust core are also evaluated only for magnetic permeability, and no iron loss is described. In these prior arts, it was not possible to obtain a dust core with low loss and high strength.

本発明は、磁性体粉末と、転移点が前記磁性体粉末の結晶化温度より低いガラス粉末とが混合されてなる圧粉磁心において、前記ガラス粉末の転移点が、前記磁性体粉末の結晶化温度と50℃以上差を有し、前記ガラス粉末の結晶化温度が、前記磁性体粉末の結晶化温度と50℃以下の差を有していることを特徴とする。   The present invention provides a powder magnetic core in which a magnetic powder and a glass powder having a transition point lower than the crystallization temperature of the magnetic powder are mixed, and the transition point of the glass powder is the crystallization of the magnetic powder. The glass powder has a difference of 50 ° C. or more, and the crystallization temperature of the glass powder has a difference of 50 ° C. or less with the crystallization temperature of the magnetic powder.

本発明において、磁性体粉末は、非晶質軟磁性粉末としても良い。ガラスの混合量が、磁性体粉末の0.5wt%〜5wt%の範囲であって、製造する圧粉磁心の透磁率に合わせてガラスの混合量を決定することができる。磁性体粉末とともに混合するガラス粉末の粒径は、0.5μm〜5μmとすることができる。また、磁性体粉末とガラス粉末とともに結着性樹脂も混合することができ、その結着性樹脂をメチルフェニル系シリコーン樹脂とすることができる。磁性体粉末とガラス粉末を混合するに当たり、潤滑性樹脂を添加しても良い。   In the present invention, the magnetic powder may be an amorphous soft magnetic powder. The mixing amount of the glass is in the range of 0.5 wt% to 5 wt% of the magnetic powder, and the mixing amount of the glass can be determined according to the permeability of the dust core to be manufactured. The particle size of the glass powder mixed with the magnetic powder can be set to 0.5 μm to 5 μm. In addition, a binder resin can be mixed together with the magnetic powder and the glass powder, and the binder resin can be a methylphenyl silicone resin. In mixing the magnetic powder and the glass powder, a lubricating resin may be added.

また、本発明は、上記のような圧粉磁心を製造する製造方法も一態様とする。本発明の製造方法は、磁性体粉末と、転移点が前記磁性体粉末の結晶化温度より低いガラス粉末とを混合し、加圧成形した後、前記磁性体粉末の結晶化温度より低い温度で熱処理を行う圧粉磁心の製造方法において、前記ガラス粉末の転移点が、前記磁性体粉末の結晶化温度と50℃以上差を有し、かつ、前記ガラス粉末の結晶化温度が、前記磁性体粉末の結晶化温度と50℃以下の差を有していることを特徴とする。前記加圧成形は、5℃〜80℃で行っても良く、前記熱処理は、非還元雰囲気中で行っても良い。   Moreover, this invention also makes the manufacturing method which manufactures the above powder magnetic cores as one aspect | mode. In the production method of the present invention, a magnetic powder and a glass powder having a transition point lower than the crystallization temperature of the magnetic powder are mixed and pressed, and then at a temperature lower than the crystallization temperature of the magnetic powder. In the method of manufacturing a powder magnetic core for performing a heat treatment, the transition point of the glass powder has a difference of 50 ° C. or more from the crystallization temperature of the magnetic powder, and the crystallization temperature of the glass powder is the magnetic substance It has a difference from the crystallization temperature of the powder to 50 ° C. or less. The pressure molding may be performed at 5 ° C. to 80 ° C., and the heat treatment may be performed in a non-reducing atmosphere.

圧粉磁心の損失(コアロス)を低減するには、主に渦電流損失を低減すればよい。本発明によれば、磁性体粉末に低融点ガラスと結着性樹脂を混合し、磁性体粉末の周囲をガラスでコーティングすることにより、渦電流損失を低減し、低損失、高透磁率、直流重畳特性に優れ、かつ高強度な圧粉磁心を提供できる。特に、本発明では、成形体に対する熱処理温度を、ガラス粉末の転移点から50℃以上乖離し、かつ、ガラス粉末の結晶化温度から50℃以下の差に収めることで、ガラスの粘性低下及びガラスの流動性を利用して、熱処理後の成形体の強度向上を可能とする。   In order to reduce the loss (core loss) of the dust core, eddy current loss may be mainly reduced. According to the present invention, low melting point glass and binder resin are mixed with magnetic powder, and the periphery of the magnetic powder is coated with glass, thereby reducing eddy current loss, low loss, high magnetic permeability, and direct current. It is possible to provide a dust core having excellent superposition characteristics and high strength. In particular, in the present invention, the heat treatment temperature for the molded body is 50 ° C. or more away from the transition point of the glass powder, and within the difference of 50 ° C. or less from the crystallization temperature of the glass powder. It is possible to improve the strength of the molded body after the heat treatment by utilizing the fluidity.

実施例における軟磁性粉末の結晶化温度と、ガラスの転移点および結晶化温度との乖離を示すグラフ。The graph which shows the deviation of the crystallization temperature of the soft-magnetic powder in an Example, and the transition point and crystallization temperature of glass. 実施例における熱処理温度と透磁率との関係を示すグラフ。The graph which shows the relationship between the heat processing temperature and magnetic permeability in an Example. 実施例における熱処理温度とコアロスとの関係を示すグラフ。The graph which shows the relationship between the heat processing temperature and core loss in an Example. 実施例における直流重畳特性を示すグラフ。The graph which shows the direct current | flow superimposition characteristic in an Example. 実施例における熱処理前のガラス粉末の状態の写真。The photograph of the state of the glass powder before the heat processing in an Example. 実施例における熱処理後のガラス粉末の状態の写真。The photograph of the state of the glass powder after the heat processing in an Example. 実施例における熱処理後の圧環強度の結果を示すグラフ。The graph which shows the result of the crushing strength after the heat processing in an Example.

(1)磁性体粉末
磁性体粉末としては、純鉄粉や非晶質軟磁性粉末(以下、単に「軟磁性粉末」という。
)が使用できる。軟磁性粉末としては、Fe系(Fe−Si−B―Cr系)の合金アトマイズ粉、粉砕粉が挙げられる。例えば、Fe系の合金粉末として、Si成分が6.7%、B成分が2.5%、Cr成分が2.5%、C成分が0.75%、残り成分がFeのものを使用できる。
(1) Magnetic powder As the magnetic powder, pure iron powder or amorphous soft magnetic powder (hereinafter simply referred to as “soft magnetic powder”).
) Can be used. Examples of the soft magnetic powder include Fe-based (Fe-Si-B-Cr-based) alloy atomized powder and pulverized powder. For example, as an Fe-based alloy powder, a Si component of 6.7%, a B component of 2.5%, a Cr component of 2.5%, a C component of 0.75%, and the remaining component of Fe can be used. .

他に、軟磁性粉末としては、FeBPN(NはCu,Ag,Au,Pt,Pdから選ばれる1種以上の元素)が使用できる。軟磁性粉末は、水アトマイズ法、ガスアトマイズ法、水・ガスアトマイズ法により製造されるものを使用できるが、特に、水アトマイズ法によるものが好ましい。理由は、水アトマイズ法はアトマイズ時に急冷するため、結晶化しにくいからである。   In addition, FeBPN (N is one or more elements selected from Cu, Ag, Au, Pt, and Pd) can be used as the soft magnetic powder. As the soft magnetic powder, those produced by a water atomizing method, a gas atomizing method, or a water / gas atomizing method can be used, and those by a water atomizing method are particularly preferable. The reason is that the water atomization method is rapidly cooled at the time of atomization, so that it is difficult to crystallize.

磁性体粉末の平均粒径は30〜100μmが好ましい。磁性体粉末の結晶化開始温度は、通常、約450℃前後である。磁性体粉末としては、ガラス転移温度Tgが結晶化温度Txより低く、過冷却液体領域を示す金属ガラスであることが望ましい。これは、金属ガラスとすることにより、結晶磁気異方性が抑制されるため、コア損失を抑制できるからである。磁歪が大きく、透磁率は外部応力の影響を受けやすい。   The average particle size of the magnetic powder is preferably 30 to 100 μm. The crystallization start temperature of the magnetic powder is usually about 450 ° C. The magnetic powder is preferably a metallic glass having a glass transition temperature Tg lower than the crystallization temperature Tx and showing a supercooled liquid region. This is because the core loss can be suppressed because the magnetocrystalline anisotropy is suppressed by using metallic glass. Magnetostriction is large and magnetic permeability is easily affected by external stress.

(2)ガラス
ガラスは、ビスマス系、リン酸系、アルカリ系、バナジウム系の低融点ガラスを使用する。その他に、軟化点が磁性体粉末の結晶化温度以下のガラスを使用することができる。軟化点が磁性体粉末の結晶化温度以下のガラスを使用することで、ガラスが軟化する温度まで加熱した場合でも、磁性体粉末の結晶化による磁気特性の低減を防止することができる。
(2) Glass As the glass, bismuth-based, phosphoric acid-based, alkali-based, or vanadium-based low-melting glass is used. In addition, a glass having a softening point equal to or lower than the crystallization temperature of the magnetic powder can be used. By using a glass whose softening point is equal to or lower than the crystallization temperature of the magnetic powder, even when the glass is heated to a temperature at which the glass is softened, it is possible to prevent a reduction in magnetic properties due to the crystallization of the magnetic powder.

特に、本発明では、ガラスとして、転移点が磁性体粉末の結晶化開始温度よりも約50℃程度低く、かつ、磁性体粉末の結晶化温度とガラスの結晶化温度と差が50℃以下であるものを使用する。これは、ガラス転移点と熱処理温度との乖離が大きいことにより、ガラスの軟化が進んでガラスの粘度が低くなり、かつ、ガラスの結晶化温度が磁性体粉末の結晶化温度に近いことから、流動性が増加し、磁性体粉末間で流動しやすくなり、磁性体粉末のコーティング性が増すためである。磁性体粉末間の空隙にガラスが充填されることにより、機械的強度をアップさせることもできる。また、磁性体粉末に圧縮応力がかからないよう、熱膨張係数の低いものが良い。さらに、一般的に、ガラスは高温にすることで、高強度になる性質を持つが、本発明においては、磁性体粉末を使用するため、温度に制約が生じる。本発明に適するガラスとしては、ビスマス系のガラス(Bi・B)などが挙げられる。 In particular, in the present invention, as glass, the transition point is about 50 ° C. lower than the crystallization start temperature of the magnetic powder, and the difference between the crystallization temperature of the magnetic powder and the crystallization temperature of the glass is 50 ° C. or less. Use something. This is because the difference between the glass transition point and the heat treatment temperature is large, the softening of the glass proceeds and the viscosity of the glass decreases, and the crystallization temperature of the glass is close to the crystallization temperature of the magnetic powder. This is because the fluidity is increased, the fluidity of the magnetic powder is easily increased, and the coating property of the magnetic powder is increased. Mechanical strength can be increased by filling the gaps between the magnetic powders with glass. In addition, it is preferable that the magnetic powder has a low thermal expansion coefficient so that a compressive stress is not applied to the magnetic powder. Furthermore, generally, glass has a property of increasing strength by increasing the temperature, but in the present invention, since magnetic powder is used, temperature is limited. Examples of the glass suitable for the present invention include bismuth-based glass (Bi 2 O 3 .B 2 O 3 ).

ガラスの混合量は、所望の透磁率に合わせて設定する。ただし、磁性体粉末に対するガラスの混合量が少ないと、磁性体粉末間のコーティングが充分でなくなるため、渦電流損失が大きくなってしまう。ガラスの混合量が多いと、磁性体粉末の透磁率の低下につながるとともに、磁性体粉末同士が凝集してしまい、十分な磁気特性が確保できない。例えば、磁性体粉末の0.5wt%〜5wt%程度の範囲から、要望の透磁率に合わせてガラスの混合量を決定する。   The mixing amount of the glass is set according to the desired magnetic permeability. However, if the amount of glass mixed with the magnetic powder is small, the coating between the magnetic powders is not sufficient, and eddy current loss increases. When the mixing amount of glass is large, the magnetic permeability of the magnetic powder is reduced and the magnetic powders are aggregated, so that sufficient magnetic properties cannot be secured. For example, from the range of about 0.5 wt% to 5 wt% of the magnetic powder, the glass mixing amount is determined in accordance with the desired magnetic permeability.

ガラスは、粉末として磁性体粉末に混合される。ガラス粉末の粒径(D50/平均粒径)は、5μm以下、特に、0.5〜1.5μmが好ましい。ガラス粉末の粒径が5μmを超えると、転移点が高くなり、粘度が低下しない。   Glass is mixed with the magnetic powder as a powder. The particle size (D50 / average particle size) of the glass powder is preferably 5 μm or less, particularly preferably 0.5 to 1.5 μm. When the particle size of the glass powder exceeds 5 μm, the transition point increases and the viscosity does not decrease.

(3)結着性樹脂
結着性樹脂は、磁性体粉末とガラス粉末の混合粉に添加する。結着性樹脂としては、常温で磁性体粉末とガラス粉末の混合物を加圧した場合に、ある程度緻密化された状態の成形体が得られ、しかも、その成形体に過大な力が加わらない限り、所定の形状を維持することのできる程度の粘性のある樹脂を用いる。
(3) Binder Resin The binder resin is added to the mixed powder of magnetic powder and glass powder. As a binder resin, when a mixture of magnetic powder and glass powder is pressurized at room temperature, a compact that has been densified to some extent is obtained, and as long as no excessive force is applied to the compact. A resin having a viscosity capable of maintaining a predetermined shape is used.

例として、シリコーン系樹脂、ワックスなどが挙げられる。シリコーン系の樹脂としては、メチルフェニル系シリコーン樹脂が好ましい。メチルフェニル系シリコーン樹脂の添加量は、磁性体粉末に対して0.75〜2.0wt%が適量である。これよりも少なければ成形体の強度が不足して、割れが発生する。これより多いと、密度低下による最大磁束密度の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。   Examples include silicone resins and waxes. As the silicone resin, methylphenyl silicone resin is preferable. An appropriate amount of the methylphenyl silicone resin added is 0.75 to 2.0 wt% with respect to the magnetic powder. If it is less than this, the strength of the molded product will be insufficient and cracks will occur. If it is more than this, there arises a problem that the maximum magnetic flux density is decreased due to the decrease in density and the magnetic characteristics are decreased due to an increase in hysteresis loss.

その他の結着性樹脂として、アクリル酸共重合樹脂(EAA)エマルジョンを使用することができる。混合するアクリル酸共重合樹脂(EAA)エマルジョンの添加量は合金粉末に対して0.5〜2.0wt%であり、その場合の乾燥温度と乾燥時間は、80℃〜150℃で2時間である。アクリル酸共重合樹脂(EAA)エマルジョンの代りに、PVA(ポリビニルアルコール)水溶液(12%水溶液)を使用しても良い。PVA(ポリビニルアルコール)水溶液(12%水溶液)の添加量は、磁性体粉末に対して0.5〜3.0wt%が適量である。   As other binder resin, an acrylic acid copolymer resin (EAA) emulsion can be used. The addition amount of the acrylic acid copolymer resin (EAA) emulsion to be mixed is 0.5 to 2.0 wt% with respect to the alloy powder, and the drying temperature and drying time in that case are 80 ° C. to 150 ° C. for 2 hours. is there. Instead of the acrylic acid copolymer resin (EAA) emulsion, an aqueous PVA (polyvinyl alcohol) solution (12% aqueous solution) may be used. An appropriate amount of PVA (polyvinyl alcohol) aqueous solution (12% aqueous solution) is 0.5 to 3.0 wt% with respect to the magnetic powder.

(4)潤滑性樹脂
潤滑性樹脂として、ステアリン酸及びその金属塩ならびにエチレンビスステアラマイドなどのワックスが使用できる。これらを混合することにより、粉末同士の滑りを良くすることができるので、混合時の密度を向上させ成形密度を高くすることができる。さらに、成形時の上パンチの抜き圧低減、金型と粉末の接触によるコア壁面の縦筋の発生を防止することが可能である。潤滑性樹脂の添加量は、磁性体粉末に対して、0.1wt%〜1.0wt%程度が好ましく、一般的には、0.5wt%程度である。
(4) Lubricating resin As the lubricating resin, stearic acid and its metal salt, and waxes such as ethylene bisstearamide can be used. By mixing these, it is possible to improve the sliding between the powders, so that the density during mixing can be improved and the molding density can be increased. Furthermore, it is possible to reduce the punching pressure of the upper punch during molding and to prevent the vertical stripes on the core wall surface from being generated due to the contact between the mold and the powder. The addition amount of the lubricating resin is preferably about 0.1 wt% to 1.0 wt% with respect to the magnetic powder, and is generally about 0.5 wt%.

(5)製造方法
本実施形態の圧粉磁心の製造方法は、次のような各工程を有する。
(a)磁性体粉末と、低融点ガラスを混合する工程。
(b)混合工程で得られた混合物に対して、結着性樹脂を添加する工程。
(c)結着性樹脂添加工程を経た混合物を、加圧して成形体を作製する成形工程。
(d)成形工程によって得られた成形体を加熱する熱処理工程。
(5) Manufacturing method The manufacturing method of the powder magnetic core of this embodiment has the following steps.
(A) A step of mixing magnetic powder and low-melting glass.
(B) A step of adding a binder resin to the mixture obtained in the mixing step.
(C) A molding step for producing a molded body by pressurizing the mixture that has undergone the binder resin addition step.
(D) A heat treatment step for heating the molded body obtained by the molding step.

以下、各工程について、詳細に説明する。
(a)ガラスの混合工程
混合工程では、例えば、平均粒径が30〜100μmの磁性体粉末に対して、その0.5wt%〜5wt%ガラス粉末を添加して混合する。例えば、前記の混合物を、V型混合機を使用して2時間程度混合する。
Hereinafter, each step will be described in detail.
(A) Glass mixing step In the mixing step, for example, 0.5 wt% to 5 wt% glass powder is added to and mixed with the magnetic powder having an average particle size of 30 to 100 µm. For example, the above mixture is mixed for about 2 hours using a V-type mixer.

(b)結着性樹脂の添加工程
磁性体粉末とガラス粉末の混合物に対して、磁性体粉末に対して0.75〜2.0wt%の結着性樹脂と、0.1〜1.0wt%の潤滑性樹脂を添加して、更に混合する。前記(a)のガラス粉末の混合と、(b)の結着性樹脂及び潤滑性樹脂の混合を同時に行うことも可能である。
(B) Binder resin addition step 0.75 to 2.0 wt% of the binder resin and 0.1 to 1.0 wt% of the magnetic powder with respect to the mixture of the magnetic powder and the glass powder. % Lubricating resin is added and further mixed. It is also possible to simultaneously mix the glass powder (a) and the binder resin and the lubricating resin (b).

結着性樹脂の添加工程において、シランカップリング剤を加えることもできる。シランカップリング剤を使用した場合は、結着性樹脂の分量を少なくすることができる。相性の良いシランカップリング剤の種類としては、アミノ系のシランカップリング剤を使用することができ、特に、γ-アミノプロピルトリエトキシシランが良い。結着性樹脂に対するシランカップリング剤の添加量は、0.25wt%〜1.0wt%が好ましい。結着性樹脂にこの範囲のシランカップリング剤を添加することで、成形された圧粉磁心の密度の標準偏差、磁気特性、強度特性を向上させることができる。   In the step of adding the binder resin, a silane coupling agent can also be added. When a silane coupling agent is used, the amount of the binder resin can be reduced. As the type of silane coupling agent having good compatibility, an amino silane coupling agent can be used, and γ-aminopropyltriethoxysilane is particularly preferable. The amount of the silane coupling agent added to the binder resin is preferably 0.25 wt% to 1.0 wt%. By adding a silane coupling agent in this range to the binder resin, the standard deviation of density of the molded dust core, magnetic characteristics, and strength characteristics can be improved.

(c)成形工程
成形工程では、結着性樹脂を添加した混合物を金型内に充填して、加圧成形する。その場合、金型温度は常温が好ましいが、80℃までの範囲であっても構わない。すなわち、ここでの常温とは、5℃〜35℃までの範囲をいうが、5℃〜80℃の範囲であっても構わない。成形圧力は、例えば、1300〜1700MPaである。
(C) Molding step In the molding step, the mixture to which the binder resin has been added is filled into a mold and pressure-molded. In that case, the mold temperature is preferably room temperature, but may be in the range up to 80 ° C. That is, the normal temperature here means a range from 5 ° C. to 35 ° C., but may be a range from 5 ° C. to 80 ° C. The molding pressure is, for example, 1300 to 1700 MPa.

(d)熱処理工程
成形体に対する熱処理は、大気雰囲気などの非還元雰囲気で行う。非還元雰囲気としては大気中以外に、100%窒素ガスなどの不活性ガス雰囲気中でも良い。例えば、成形体を、大気中で、350℃の温度で、2時間加熱し、その後、窒素雰囲気に切り換えて、470℃で、2時間加熱することもできる。非還元雰囲気での熱処理により、水素によるガラスの還元を防止し、コーティング膜の絶縁性の劣化を防ぐことができると共に、ガラス中の酸素を失うことなく、本来のガラスの性質を保ち、磁性体粉末の周囲をコーティングする機能を果たす。
(D) Heat treatment step The heat treatment for the molded body is performed in a non-reducing atmosphere such as an air atmosphere. The non-reducing atmosphere may be in an inert gas atmosphere such as 100% nitrogen gas in addition to the air. For example, the molded body can be heated in the atmosphere at a temperature of 350 ° C. for 2 hours, and then switched to a nitrogen atmosphere and heated at 470 ° C. for 2 hours. Heat treatment in a non-reducing atmosphere prevents the glass from being reduced by hydrogen, prevents the coating film from deteriorating in insulation, and maintains the original glass properties without losing oxygen in the glass. Serves to coat the periphery of the powder.

熱処理温度は、400℃〜440℃が好ましく、加熱時間は2〜4時間程度である。このような温度と加熱時間を保持する理由は、磁性体粉末の結晶化温度以下の状態で、しかも、圧粉磁心を環状に成形した場合に必要とする圧環強度を確保するためである。一方、熱処理温度を上げ過ぎると、磁性体粉末の結晶化が進み、透磁率が低下し、鉄損(ヒステリシス損)が増加する。そのため、400℃〜440℃の温度を保持することは、鉄損の増加を抑制するために効果的である。   The heat treatment temperature is preferably 400 ° C. to 440 ° C., and the heating time is about 2 to 4 hours. The reason for maintaining such a temperature and heating time is to ensure the crushing strength required when the powder magnetic core is formed into a ring shape in a state of not higher than the crystallization temperature of the magnetic substance powder. On the other hand, if the heat treatment temperature is raised too much, the crystallization of the magnetic powder proceeds, the magnetic permeability decreases, and the iron loss (hysteresis loss) increases. Therefore, maintaining a temperature of 400 ° C. to 440 ° C. is effective for suppressing an increase in iron loss.

本発明の実施例を、表1〜表3、図1〜図7を参照して、以下に説明する。   Examples of the present invention will be described below with reference to Tables 1 to 3 and FIGS.

(1)測定項目
測定項目として、透磁率と鉄損を次のような手法により測定した。透磁率は、作成された各圧粉磁心に1次巻線(10ターン)を施し、インピーダンスアナライザーを使用することで、100kHz、0.5Vにおけるインダクタンスから算出した。
(1) Measurement items As measurement items, permeability and iron loss were measured by the following methods. The magnetic permeability was calculated from the inductance at 100 kHz and 0.5 V by applying a primary winding (10 turns) to each dust core produced and using an impedance analyzer.

鉄損については、各圧粉磁心に1次巻線(15ターン)及び2次巻線(3ターン)を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8232)を用いて、周波数100kHz、最大磁束密度Bm=0.05Tの条件下で鉄損を算出した。この算出は、鉄損の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損係数、渦電流損失係数を算出することで行った。   For iron loss, the primary winding (15 turns) and the secondary winding (3 turns) are applied to each dust core, and a BH analyzer (Iwatsu Measurement Co., Ltd .: SY-8232), which is a magnetic measurement device, is used. The iron loss was calculated under the conditions of a frequency of 100 kHz and a maximum magnetic flux density Bm = 0.05T. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve by the following method (1) to (3) by the least square method.

Pc=Kh×f+Ke×f…(1)
Ph=Kh×f…(2)
Pe=Ke×f…(3)
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
Pc = Kh × f + Ke × f 2 (1)
Ph = Kh × f (2)
Pe = Ke × f 2 (3)
Pc: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

強度については、圧環強度をJIS2507に従って測定を行った。   Regarding the strength, the crushing strength was measured according to JIS 2507.

(2)サンプルの作製方法
特性比較で使用する試料は、下記のように作製した。
平均粒経45μm、結晶化温度450℃のFe−Si−BのFe系非晶質軟磁性粉末に、各種、転移点、粒径が異なるビスマス系ガラスを1.5wt%、ステアリン酸リチウム(潤滑剤)を0.3wt%混合し、有機バインダー(シリコーン樹脂)2.0wt%混合して、150℃で乾燥し、目開き850μmの篩を通したものに、さらにステアリン酸リチウム(潤滑剤)を0.3wt%混合して、造粒粉末を作製した。
(2) Sample preparation method The sample used for the characteristic comparison was prepared as follows.
Fe-Si-B Fe-based amorphous soft magnetic powder having an average grain size of 45 μm and a crystallization temperature of 450 ° C., 1.5 wt% of bismuth-based glass having various transition points and particle sizes, lithium stearate (lubricating Agent) is mixed with 0.3 wt%, organic binder (silicone resin) is mixed with 2.0 wt%, dried at 150 ° C., passed through a sieve with an opening of 850 μm, and lithium stearate (lubricant) is further added. A granulated powder was prepared by mixing 0.3 wt%.

これを常温にて1700MPaの圧力で成形体を作成し、大気雰囲気中400℃、420℃、440℃、460℃、480℃の温度で2時間の熱処理を行った。   A molded body was produced from this at a normal temperature and a pressure of 1700 MPa, and heat-treated at 400 ° C., 420 ° C., 440 ° C., 460 ° C., and 480 ° C. for 2 hours in the air atmosphere.

ここでのガラスの混合量は、前述の通り、軟磁性粉末へのコーティング量を規定するものであって、1.5wt%に限定するものではない。これは、前にも述べたとおり、ガラスの混合量が少ないと、軟磁性粉末へのコーティングが充分でなくなるため、渦電流損失が大きくなってしまい、また、ガラスの混合量が多いと、軟磁性粉末の透磁率の低下につながるとともに、軟磁性粉末同士が凝集してしまう虞れがあるため十分な磁気特性が確保できない。ガラスの混合量は要望の透磁率に合わせて決めれば良い。   As described above, the mixing amount of the glass here defines the coating amount on the soft magnetic powder, and is not limited to 1.5 wt%. As described above, if the glass mixing amount is small, the coating onto the soft magnetic powder becomes insufficient, resulting in an increase in eddy current loss. In addition to a decrease in the magnetic permeability of the magnetic powder, there is a possibility that the soft magnetic powders may be aggregated, so that sufficient magnetic properties cannot be ensured. What is necessary is just to determine the mixing amount of glass according to a desired magnetic permeability.

(3)測定結果
表1および図1に使用したガラス粉末を示す。各ガラス粉末は転移点、結晶化温度、粒径(D50)および線膨張係数が異なっているものを使用した。表1に、これらの数値、並びに、使用した軟磁性粉末の結晶化温度と、ガラスの転移点および結晶化温度との乖離を数値化して示し、図1に、その乖離をグラフ化して示す。
(3) Measurement results Table 1 and FIG. 1 show the glass powder used. Each glass powder used had a different transition point, crystallization temperature, particle size (D50), and linear expansion coefficient. Table 1 shows numerical values of these numerical values and the crystallization temperature of the used soft magnetic powder, and the glass transition point and crystallization temperature. FIG. 1 shows the graph of the divergence.

各ガラス材を使用したときの磁気特性(透磁率とコアロス)を図2、表3および図3に示す。なお、これらに記載の比較例Xは、ガラスを混合しない圧粉磁心の例を示している。透磁率を示す図2から、比較例X(なし)、ガラスを使用した比較例1(A材)、実施例1(D材)および実施例2(E材)の4例が、400〜460℃で50以上の高透磁率を示し、かつその変化は小さいことが分かる。また、比較例3(C材)は、これら4例と変化の程度は同程度であるが、これらより低透磁率を示す。比較例2(B材)は、さらに低透磁率を示していることが分かる。   The magnetic properties (permeability and core loss) when using each glass material are shown in FIG. 2, Table 3, and FIG. In addition, the comparative example X described in these shows an example of a dust core in which glass is not mixed. From FIG. 2 showing the magnetic permeability, Comparative Example X (none), Comparative Example 1 (A material) using glass, Example 1 (D material), and Example 2 (E material) are 400 to 460. It can be seen that a high magnetic permeability of 50 or more at ° C. and the change is small. Moreover, although the comparative example 3 (C material) has the same degree of change as these four examples, it shows a lower magnetic permeability than these. It turns out that the comparative example 2 (B material) has shown the low magnetic permeability further.

表2は、各ガラス材における各熱処理温度に対するコアロスのデータであり、図3は、これをグラフ化したものである。なお、コアロスは、ヒステリシス損と渦電流損失の分離が難しいため、全コアロスを示している。
Table 2 shows data of core loss with respect to each heat treatment temperature in each glass material, and FIG. 3 is a graph of this. The core loss indicates the total core loss because it is difficult to separate the hysteresis loss and the eddy current loss.

図3から、比較例1〜3に比べ、実施例1および2は、420℃〜440℃でコアロスが低下しており、ガラスのよる絶縁コーティングが充分に機能していることが分かる。比較例、実施例とも400℃〜440℃に比べ、460℃、480℃で、透磁率の低下、コアロスの増加が確認された。これは、460℃、480℃では軟磁性粉末が結晶化しているためである。   From FIG. 3, compared with Comparative Examples 1-3, Examples 1 and 2 show that the core loss is reduced at 420 ° C. to 440 ° C., and that the insulating coating made of glass functions sufficiently. In both the comparative example and the example, a decrease in magnetic permeability and an increase in core loss were confirmed at 460 ° C. and 480 ° C. compared to 400 ° C. to 440 ° C. This is because the soft magnetic powder is crystallized at 460 ° C. and 480 ° C.

軟磁性粉末の結晶化温度以下の熱処理により、特に透磁率の低下およびコアロスの増加が確認できないのは、実施例1と2である。   In Examples 1 and 2, it is not possible to confirm particularly a decrease in magnetic permeability and an increase in core loss due to the heat treatment below the crystallization temperature of the soft magnetic powder.

一方、比較例2は、転移点が337℃であり、50℃以上熱処理温度との乖離はあるものの、ガラスの結晶化温度が熱処理温度から50℃を超えて乖離している。そのため、ガラスが一部しか溶解せず、それにより表3に示すように、密度が上がらず、かつ図4に示すように、直流重畳特性も低下していると考えられる。また、比較例3は、実施例1及び2と同程度に密度が上がっているが、コアロスが大きい。これは、ガラスの結晶化温度が熱処理温度と大きく乖離しているため、比較的粘度が高く、薄く均一な膜になっていないためと考えられる。すなわち、見かけ上の密度は高く、ガラスは溶解していることが推察されるが、ガラス自体のコーティング状態としてはムラがある状態であり、そのムラがコアロスに現れていると考えられる。   On the other hand, in Comparative Example 2, the transition point is 337 ° C. and there is a deviation from the heat treatment temperature of 50 ° C. or more, but the glass crystallization temperature is different from the heat treatment temperature by more than 50 ° C. Therefore, only a part of the glass is melted, so that the density does not increase as shown in Table 3, and the direct current superposition characteristics are also lowered as shown in FIG. In Comparative Example 3, the density is increased to the same extent as in Examples 1 and 2, but the core loss is large. This is presumably because the glass crystallization temperature is significantly different from the heat treatment temperature, so that the viscosity is relatively high and the film is not thin and uniform. That is, the apparent density is high and it is inferred that the glass is melted, but the coating state of the glass itself is uneven, and it is considered that the unevenness appears in the core loss.

軟磁性粉末の熱処理温度に対し、ガラス転移点が50℃以上乖離している比較例2は、ガラス転移点が熱処理温度と50℃以上乖離はしているものの、粒径が5.0μmと他に比べて大きいため、結晶化温度が高い。そのため、ガラス転移点と熱処理温度が大きく乖離していても、流動性が向上せず、コーティングの厚さが大きくなっている。これは、表3の密度および図4の直流重畳特性からも推測される。   In Comparative Example 2 in which the glass transition point deviates by 50 ° C. or more from the heat treatment temperature of the soft magnetic powder, although the glass transition point deviates from the heat treatment temperature by 50 ° C. or more, the particle size is 5.0 μm, etc. Therefore, the crystallization temperature is high. Therefore, even if the glass transition point and the heat treatment temperature are greatly deviated, the fluidity is not improved and the thickness of the coating is increased. This is also inferred from the density in Table 3 and the DC superposition characteristics in FIG.

図5および図6に、加熱処理前後の各ガラス材単体の状態の写真を示す。図5は、熱処理前の状態を示し、図6は、熱処理後の状態を示す。各ガラス粉末の量を5ccとした。熱処理条件は、熱処理温度を450℃、熱処理時間を2時間、雰囲気を大気雰囲気とした。撮影された比較例1〜3、実施例1および2は、全てガラス転移点が熱処理温度との間で50℃以上乖離しているが、図6から、ガラス結晶化温度との乖離が大きい比較例1及び2は溶解せず、比較的乖離が小さい比較例3、実施例1及び2は溶解していることが分かる。比較例2は粒径が大きいため、結晶化温度が高いと考えられる。なお、比較例1は比較例2よりも粒径が小さいものの結晶化温度が高いのは、ガラスの組成によるものと考えられる。   FIG. 5 and FIG. 6 show photographs of the state of each glass material before and after the heat treatment. FIG. 5 shows a state before the heat treatment, and FIG. 6 shows a state after the heat treatment. The amount of each glass powder was 5 cc. The heat treatment conditions were a heat treatment temperature of 450 ° C., a heat treatment time of 2 hours, and an atmosphere of air. In Comparative Examples 1 to 3 and Examples 1 and 2 photographed, the glass transition point deviates from the heat treatment temperature by 50 ° C. or more, but from FIG. 6, the comparison with the glass crystallization temperature is large. It can be seen that Examples 1 and 2 are not dissolved, and Comparative Example 3 and Examples 1 and 2 with relatively small divergence are dissolved. Since Comparative Example 2 has a large particle size, it is considered that the crystallization temperature is high. In Comparative Example 1, although the particle size is smaller than that in Comparative Example 2, the higher crystallization temperature is considered to be due to the glass composition.

図7に、熱処理温度が440℃の時のコア強度のグラフを示す。図7から、熱処理温度とガラス結晶化温度との乖離が小さいほど、強度が大きくなる傾向が確認できる。これは、前述の通り、ガラスが十分に溶融していることで、強度が高くなったことと推測される。磁気特性を無視して考えれば、全ガラスとも同一傾向になっていることからも、容易に理解できる。

FIG. 7 shows a graph of the core strength when the heat treatment temperature is 440 ° C. From FIG. 7, it can be confirmed that the smaller the difference between the heat treatment temperature and the glass crystallization temperature, the greater the strength. As described above, this is presumed that the strength is increased because the glass is sufficiently melted. If the magnetic properties are ignored, it can be easily understood from the fact that all glasses have the same tendency.

Claims (14)

磁性体粉末と、転移点が前記磁性体粉末の結晶化温度より低いガラス粉末とが混合されてなる圧粉磁心において、
前記ガラス粉末の転移点が、前記磁性体粉末の結晶化温度と50℃以上差を有し、
前記ガラス粉末の結晶化温度が、前記磁性体粉末の結晶化温度と50℃以下の差を有していることを特徴とする圧粉磁心。
In a powder magnetic core obtained by mixing magnetic powder and glass powder having a transition point lower than the crystallization temperature of the magnetic powder,
The transition point of the glass powder has a difference of 50 ° C. or more from the crystallization temperature of the magnetic powder,
The dust core according to claim 1, wherein a crystallization temperature of the glass powder has a difference of 50 ° C. or less from a crystallization temperature of the magnetic powder.
前記磁性体粉末は、非晶質軟磁性粉末であることを特徴とする請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein the magnetic powder is an amorphous soft magnetic powder. 前記ガラス粉末の混合量が、前記磁性体粉末の0.5wt%〜5wt%の範囲であることを特徴とする請求項1又は請求項2に記載の圧粉磁心。   The dust core according to claim 1 or 2, wherein a mixing amount of the glass powder is in a range of 0.5 wt% to 5 wt% of the magnetic powder. 前記ガラス粉末の粒径が、0.5μm〜5μmであることを特徴とする請求項1から請求項3のいずれか1項に記載の圧粉磁心。   4. The dust core according to claim 1, wherein a particle size of the glass powder is 0.5 μm to 5 μm. 前記磁性体粉末と前記ガラス粉末に加え、結着性樹脂が混合されていることを特徴とする請求項1から請求項4のいずれか1項に記載の圧粉磁心。   The dust core according to any one of claims 1 to 4, wherein a binder resin is mixed in addition to the magnetic powder and the glass powder. 前記結着性樹脂がメチルフェニル系シリコーン樹脂であることを特徴とする請求項5に記載の圧粉磁心。   The dust core according to claim 5, wherein the binder resin is a methylphenyl silicone resin. 磁性体粉末と、転移点が前記磁性体粉末の結晶化温度より低いガラス粉末とを混合し、加圧成形した後、前記磁性体粉末の結晶化温度より低い温度で熱処理を行う圧粉磁心の製造方法において、
前記ガラス粉末の転移点が、前記磁性体粉末の結晶化温度と50℃以上差を有し、かつ、前記ガラス粉末の結晶化温度が、前記磁性体粉末の結晶化温度と50℃以下の差を有していることを特徴とする圧粉磁心の製造方法。
Magnetic powder and glass powder having a transition point lower than the crystallization temperature of the magnetic powder are mixed, pressed, and then heat treated at a temperature lower than the crystallization temperature of the magnetic powder. In the manufacturing method,
The transition point of the glass powder has a difference of 50 ° C. or more from the crystallization temperature of the magnetic powder, and the crystallization temperature of the glass powder is a difference of 50 ° C. or less from the crystallization temperature of the magnetic powder. A method for producing a powder magnetic core, comprising:
前記磁性体粉末は、非晶質軟磁性粉末であることを特徴とする請求項7に記載の圧粉磁心の製造方法。   The method of manufacturing a dust core according to claim 7, wherein the magnetic powder is an amorphous soft magnetic powder. 前記加圧成形は、5℃〜80℃で行うことを特徴とする請求項7又は請求項8に記載の圧粉磁心の製造方法。   The method for manufacturing a dust core according to claim 7 or 8, wherein the pressure molding is performed at 5 to 80 ° C. 前記熱処理は、非還元雰囲気中で行うことを特徴とする請求項7から請求項9のいずれか1項に記載の圧粉磁心の製造方法。   The method for manufacturing a dust core according to any one of claims 7 to 9, wherein the heat treatment is performed in a non-reducing atmosphere. 前記ガラス粉末の混合量が、前記磁性体粉末の0.5wt%〜5wt%の範囲であって、製造する圧粉磁心の透磁率に合わせてガラス粉末の混合量を決定することを特徴とする請求項7から請求項10のいずれか1項に記載の圧粉磁心の製造方法。   The mixing amount of the glass powder is in the range of 0.5 wt% to 5 wt% of the magnetic powder, and the mixing amount of the glass powder is determined in accordance with the permeability of the dust core to be manufactured. The manufacturing method of the powder magnetic core of any one of Claims 7-10. 前記ガラス粉末の粒径が、0.5μm〜5μmであることを特徴とする請求項7から請求項11のいずれか1項に記載の圧粉磁心の製造方法。   The method for producing a dust core according to any one of claims 7 to 11, wherein a particle diameter of the glass powder is 0.5 µm to 5 µm. 前記磁性体粉末と前記ガラス粉末を混合するに当たり、結着性樹脂を添加することを特徴とする請求項7から請求項12のいずれか1項に記載の圧粉磁心の製造方法。   The method for producing a dust core according to any one of claims 7 to 12, wherein a binder resin is added when mixing the magnetic powder and the glass powder. 磁性体粉末とガラス粉末を混合するに当たり、潤滑性樹脂を添加することを特徴とする請求項7から請求項13のいずれか1項に記載の圧粉磁心の製造方法。   The method for producing a dust core according to any one of claims 7 to 13, wherein a lubricating resin is added in mixing the magnetic powder and the glass powder.
JP2013110376A 2013-05-24 2013-05-24 Powder magnetic core and manufacturing method thereof Active JP6403940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110376A JP6403940B2 (en) 2013-05-24 2013-05-24 Powder magnetic core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110376A JP6403940B2 (en) 2013-05-24 2013-05-24 Powder magnetic core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014229839A true JP2014229839A (en) 2014-12-08
JP6403940B2 JP6403940B2 (en) 2018-10-10

Family

ID=52129400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110376A Active JP6403940B2 (en) 2013-05-24 2013-05-24 Powder magnetic core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6403940B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163008A (en) * 2015-03-05 2016-09-05 Necトーキン株式会社 Powder magnetic core, method of manufacturing powder magnetic core, and heat generation suppression method
CN106891000A (en) * 2015-12-21 2017-06-27 北京中科三环高技术股份有限公司 Tile-shaped magnet mould, magnet forming method and motor magnet
CN106890999A (en) * 2015-12-21 2017-06-27 北京中科三环高技术股份有限公司 A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core
WO2018193745A1 (en) * 2017-04-19 2018-10-25 アルプス電気株式会社 Dust core, method for manufacturing dust core, inductor, and electronic/electric device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212503A (en) * 1996-11-26 1998-08-11 Kubota Corp Compact of amorphous soft magnetic alloy powder and its production
JP2000211946A (en) * 1999-01-20 2000-08-02 Nippon Electric Glass Co Ltd Method for mounting electron gun on neck glass
JP2002170707A (en) * 2000-12-04 2002-06-14 Daido Steel Co Ltd Dust core having high electric resistance and its manufacturing method
JP2006005173A (en) * 2004-06-17 2006-01-05 Toyota Central Res & Dev Lab Inc Insulation coating, powder for magnetic core, dust core, and manufacturing methods thereof
JP2006176817A (en) * 2004-12-21 2006-07-06 Seiko Epson Corp Method for producing formed body and formed body
JP2009032739A (en) * 2007-07-24 2009-02-12 Nissan Motor Co Ltd Soft magnetic material and manufacturing method of the same
JP2009212385A (en) * 2008-03-05 2009-09-17 Sumitomo Electric Ind Ltd Composite soft magnetic material, powder magnetic core, and method of producing composite soft magnetic material
JP2010018482A (en) * 2008-07-10 2010-01-28 Tdk Corp Ferrite, and manufacturing method thereof
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP2010177271A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Powder magnetic core material and method of manufacturing the same
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
JP2011038133A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method for producing the same
JP2011054924A (en) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd Dust core and method for manufacturing the same
WO2012014886A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 Alkali-free cover glass composition, and light extracting member using same
JP2013079412A (en) * 2011-10-03 2013-05-02 Hitachi Metals Ltd Method for producing metal powder, metal powder, and dust core
JP2013516378A (en) * 2009-12-31 2013-05-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Thin, fine, fully dense glass-ceramic seal for SOFC stacks

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212503A (en) * 1996-11-26 1998-08-11 Kubota Corp Compact of amorphous soft magnetic alloy powder and its production
JP2000211946A (en) * 1999-01-20 2000-08-02 Nippon Electric Glass Co Ltd Method for mounting electron gun on neck glass
JP2002170707A (en) * 2000-12-04 2002-06-14 Daido Steel Co Ltd Dust core having high electric resistance and its manufacturing method
JP2006005173A (en) * 2004-06-17 2006-01-05 Toyota Central Res & Dev Lab Inc Insulation coating, powder for magnetic core, dust core, and manufacturing methods thereof
JP2006176817A (en) * 2004-12-21 2006-07-06 Seiko Epson Corp Method for producing formed body and formed body
JP2009032739A (en) * 2007-07-24 2009-02-12 Nissan Motor Co Ltd Soft magnetic material and manufacturing method of the same
JP2009212385A (en) * 2008-03-05 2009-09-17 Sumitomo Electric Ind Ltd Composite soft magnetic material, powder magnetic core, and method of producing composite soft magnetic material
JP2010018482A (en) * 2008-07-10 2010-01-28 Tdk Corp Ferrite, and manufacturing method thereof
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP2010177271A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Powder magnetic core material and method of manufacturing the same
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
JP2011038133A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method for producing the same
JP2011054924A (en) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd Dust core and method for manufacturing the same
JP2013516378A (en) * 2009-12-31 2013-05-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Thin, fine, fully dense glass-ceramic seal for SOFC stacks
WO2012014886A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 Alkali-free cover glass composition, and light extracting member using same
JP2013079412A (en) * 2011-10-03 2013-05-02 Hitachi Metals Ltd Method for producing metal powder, metal powder, and dust core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163008A (en) * 2015-03-05 2016-09-05 Necトーキン株式会社 Powder magnetic core, method of manufacturing powder magnetic core, and heat generation suppression method
CN106891000A (en) * 2015-12-21 2017-06-27 北京中科三环高技术股份有限公司 Tile-shaped magnet mould, magnet forming method and motor magnet
CN106890999A (en) * 2015-12-21 2017-06-27 北京中科三环高技术股份有限公司 A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core
WO2018193745A1 (en) * 2017-04-19 2018-10-25 アルプス電気株式会社 Dust core, method for manufacturing dust core, inductor, and electronic/electric device

Also Published As

Publication number Publication date
JP6403940B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5208881B2 (en) Powder magnetic core and manufacturing method thereof
JP6026293B2 (en) Powder magnetic core and manufacturing method thereof
JP6339776B2 (en) Soft magnetic powder, core and manufacturing method thereof
JP5715614B2 (en) Powder magnetic core and manufacturing method thereof
CN108140462B (en) Dust core material, dust core, and method for producing same
TWI585787B (en) Powder core
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP2009302420A (en) Dust core and manufacturing method thereof
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
JP6346412B2 (en) Soft magnetic powder, core and manufacturing method thereof
JP6042792B2 (en) Soft magnetic powder, core, low-noise reactor, and core manufacturing method
JP2015005581A (en) Powder-compact magnetic core, and method for manufacturing the same
JP5053195B2 (en) Powder magnetic core and manufacturing method thereof
JP6403940B2 (en) Powder magnetic core and manufacturing method thereof
JP2008277775A (en) Dust core and its manufacturing method
JP4908546B2 (en) Powder magnetic core and manufacturing method thereof
JP5107993B2 (en) Powder magnetic core and manufacturing method thereof
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
TW201738908A (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
TW201712699A (en) Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
TWI596624B (en) Soft magnetic metal powder and dust core
JP2011038133A (en) Powder magnetic core and method for producing the same
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP2015201481A (en) Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6403940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150