JP2014228987A - Article cooling system and automatic vending machine including the same - Google Patents

Article cooling system and automatic vending machine including the same Download PDF

Info

Publication number
JP2014228987A
JP2014228987A JP2013106874A JP2013106874A JP2014228987A JP 2014228987 A JP2014228987 A JP 2014228987A JP 2013106874 A JP2013106874 A JP 2013106874A JP 2013106874 A JP2013106874 A JP 2013106874A JP 2014228987 A JP2014228987 A JP 2014228987A
Authority
JP
Japan
Prior art keywords
heating
heat pump
temperature
heat exchanger
pump operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013106874A
Other languages
Japanese (ja)
Other versions
JP6155466B2 (en
Inventor
勇人 山内
Isato Yamauchi
勇人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013106874A priority Critical patent/JP6155466B2/en
Publication of JP2014228987A publication Critical patent/JP2014228987A/en
Application granted granted Critical
Publication of JP6155466B2 publication Critical patent/JP6155466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an article cooling system and an automatic vending machine including the same capable of power saving during heating operation using a heater and a heat pump.SOLUTION: When heating a left storage A in a heat pump operation mode, an operation control means controls a four-way valve 92 to switch a refrigeration cycle to a refrigerant flow path for heat pump operation, and controls an inverter compressor 71 to operate so that the temperature in a center storage B and a right storage C, which are set to be cooled by inner heat exchangers 51B and 51C to be a controlled temperature, and controls the power supply to a heater 62A disposed in a left storage A, which is set to be heated to be a set temperature. The control temperature of the center storage B and the right storage C, which are set in cooling mode, is controlled to be lower than the temperature when the left storage A, which is set in a heating mode, is not heated by the heat pump operation. With this, the operation efficiency of the inverter compressor 71 is increased.

Description

本発明は、ヒートポンプ運転による加温とヒータによる加温とが可能な庫内を有する物品冷却装置とそれを備えた自動販売機に関するものである。   The present invention relates to an article cooling apparatus having an interior capable of heating by a heat pump operation and heating by a heater, and a vending machine including the same.

一般に缶入り飲料等の冷却または加温された商品を販売する自動販売機では、圧縮機と共に冷凍サイクルを構成する庫内熱交換器で冷却された空気やヒータにより加温された空気を庫内ファンにより庫内で循環させて庫内の商品を冷却または加温している。   In general, in vending machines that sell cooled or heated products such as canned beverages, the air cooled by the internal heat exchanger that constitutes the refrigeration cycle together with the compressor or the air heated by the heater is stored in the storage The product in the store is cooled or heated by circulating in the store with a fan.

昨今、冷却または加温された商品を販売する自動販売機で、冷却設定の庫内を冷やす際に吸収した熱を加温設定の庫内の加温に利用するヒートポンプ加温が普及してきており、ヒータ単独加温に比べて、省エネルギーを実現している。   In recent years, heat pump heating that uses the heat absorbed when cooling the interior of the cooling setting in the vending machine that sells cooled or heated products has become widespread. , Energy saving is realized compared to heating by heater alone.

このヒートポンプ加温を利用した自動販売機としては、冷却庫に設置した蒸発器に凝縮した冷媒を供給するための凝縮器を加熱庫と機械室とに設置し、さらに、蒸発器に凝縮した冷媒を供給する冷媒流路に、与えられた開度指令に応じて開度を変更することにより通過する冷媒の流量を調整する可変流量制御弁を設け、冷却庫の庫内温度があらかじめ設定した温度域の温度となるように、加熱庫に設置した凝縮器または機械室に設置した凝縮器から可変流量制御弁を経由して蒸発器に冷媒を供給し、蒸発器の運転時間および停止時間を測定するとともに、加熱庫に設置した凝縮器の運転時間および停止時間を測定する庫内運転オン/オフ時間測定手段と、庫内運転オン/オフ時間測定手段が測定した蒸発器の運転時間および停止時間、凝縮器の運転時間および停止時間から蒸発器の運転率と凝縮器の運転率とを求める運転率演算手段と、運転率演算手段が求めた蒸発器の運転率と凝縮器の運転率とが一致するように、可変流量制御弁の開度を補正する弁開度補正手段とを備えたものがある(例えば、特許文献1参照)。   As a vending machine using this heat pump heating, a condenser for supplying refrigerant condensed to an evaporator installed in a refrigerator is installed in a heating chamber and a machine room, and further, refrigerant condensed in an evaporator A variable flow rate control valve that adjusts the flow rate of the refrigerant that passes by changing the opening degree according to a given opening degree command is provided in the refrigerant flow path that supplies The refrigerant is supplied to the evaporator via the variable flow control valve from the condenser installed in the heating chamber or the condenser installed in the machine room, so that the temperature of the heater reaches the temperature, and the operation time and stop time of the evaporator are measured. In addition, the internal operation on / off time measuring means for measuring the operation time and stop time of the condenser installed in the heating chamber, and the operation time and stop time of the evaporator measured by the internal operation on / off time measuring means ,Condenser The operation rate calculation means for obtaining the operation rate of the evaporator and the operation rate of the condenser from the operation time and the stop time, and the operation rate of the evaporator obtained by the operation rate calculation means and the operation rate of the condenser are matched. And a valve opening correction means for correcting the opening of the variable flow control valve (see, for example, Patent Document 1).

特開2012−27783号公報JP 2012-27783 A

しかしながら、上記特許文献1に記載の従来の自動販売機では、蒸発器の運転率と凝縮器の運転率が一致するように可変流量制御弁の開度を補正しているため、節電設定(加温商品温度は通常より低く、冷却商品温度は通常より高く設定する)された場合、蒸発器の運転率と凝縮器の運転率が減ることになる。   However, in the conventional vending machine described in Patent Document 1, the opening degree of the variable flow control valve is corrected so that the operation rate of the evaporator and the operation rate of the condenser coincide with each other. If the warm product temperature is set lower than normal and the cooled product temperature is set higher than normal), the operation rate of the evaporator and the operation rate of the condenser are reduced.

ヒータ加温とヒートポンプ加温の両方を加温に用いる自動販売機では、ヒートポンプ加温の寄与率を増やしてヒータ加温の寄与率を減らすことで、冷却と加温の全体としての省エネルギーを図っている。   In vending machines that use both heater heating and heat pump heating for heating, the contribution rate of heat pump heating is increased to reduce the contribution rate of heater heating, thereby reducing the overall energy consumption of cooling and heating. ing.

しかし、蒸発器の運転率が減ることになれば圧縮機の運転率も減り、その分ヒートポンプ加温による寄与率も減ることになる。   However, if the operating rate of the evaporator is reduced, the operating rate of the compressor is also reduced, and the contribution rate due to heating of the heat pump is also reduced accordingly.

そのため、ヒータ加温の寄与率が増えて冷却と加温の全体で増エネルギーになる場合があるという課題を有していた。   For this reason, there is a problem that the contribution ratio of the heater heating is increased, and there is a case where the whole energy is increased by cooling and heating.

本発明は、上記従来の課題を解決するものであり、加温時にヒートポンプ加温による寄与率を増やして、全体として省エネルギーを図ることができる物品冷却装置とそれを備えた自動販売機を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an article cooling apparatus and a vending machine equipped with the article cooling apparatus that can increase the contribution rate by heating the heat pump during heating and can save energy as a whole. For the purpose.

上記目的を達成するために、本発明は、1台の圧縮機と複数の庫内にそれぞれ配置された庫内熱交換器と庫外に配置された庫外熱交換器とを用いて冷却運転用の冷媒流路とヒートポンプ運転用の冷媒流路とに切替可能な冷凍サイクルを構成し、ヒートポンプ運転で加温設定の庫内を加温する時に、運転制御手段が、前記冷凍サイクルをヒートポンプ運転用の冷媒流路に切替えた上で前記庫内熱交換器により冷却される冷却設定の庫内の温度が制御温度になるように前記圧縮機の運転を制御し、前記庫内熱交換器により加温される加温設定の庫内の温度が加温設定温度になるように、前記庫内熱交換器により加温される加温設定の庫内に配置されたヒータへの通電を制御する物品冷却装置において、前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げるのである。   In order to achieve the above object, the present invention is a cooling operation using one compressor, an in-compartment heat exchanger disposed in each of a plurality of warehouses, and an outside heat exchanger disposed outside the warehouse. Refrigeration cycle that can be switched between a refrigerant flow path for heat pump and a refrigerant flow path for heat pump operation, and when heating the interior of the heating set in the heat pump operation, the operation control means operates the refrigeration cycle in the heat pump operation. The operation of the compressor is controlled so that the temperature in the cooling-set chamber that is cooled by the internal heat exchanger after being switched to the refrigerant flow path becomes the control temperature, and the internal heat exchanger Control energization to the heaters arranged in the heating setting chamber heated by the internal heat exchanger so that the temperature in the heating setting chamber heated becomes the heating setting temperature. In the article cooling apparatus, the operation control means adds heat pump operation. Within compartment configuration when heated, it is to increase the operation ratio of the compressor than when no warming in the warehouse of warmed set at the heat pump operation.

これにより、ヒートポンプ加温による寄与率が増えて(ヒータ加温による寄与率が減って)、全体としての省エネルギーを図ることができる。   Thereby, the contribution rate by heat pump heating increases (the contribution rate by heater heating decreases), and the energy saving as a whole can be aimed at.

本発明は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることにより、ヒートポンプ加温による寄与率が増えて(ヒータ加温による寄与率が減って)、全体としての省エネルギーを図ることができる。   According to the present invention, when the interior of the heating set is heated by the heat pump operation, the operation rate of the compressor is increased by increasing the operation rate of the compressor than when the heating set interior is not heated by the heat pump operation. The contribution rate increases (contribution rate due to heater heating decreases), and energy saving as a whole can be achieved.

本発明の実施の形態1における物品冷却装置を備えた自動販売機の本体内部構造を示す概略構成図1 is a schematic configuration diagram showing an internal structure of a main body of a vending machine including an article cooling device according to Embodiment 1 of the present invention. 同実施の形態の自動販売機の冷凍サイクルの構成図Configuration diagram of refrigeration cycle of vending machine of the embodiment 同実施の形態の自動販売機の制御系を示すブロック図Block diagram showing the control system of the vending machine of the embodiment 同実施の形態の自動販売機の制御を示すフローチャートFlowchart showing the control of the vending machine of the embodiment 本発明の実施の形態2における物品冷却装置を備えた自動販売機の制御を示すフローチャートThe flowchart which shows control of the vending machine provided with the article | item cooling device in Embodiment 2 of this invention. 同実施の形態の自動販売機の別の制御を示すフローチャートThe flowchart which shows another control of the vending machine of the embodiment

第1の発明は、1台の圧縮機と複数の庫内にそれぞれ配置された庫内熱交換器と庫外に配置された庫外熱交換器とを用いて冷却運転用の冷媒流路とヒートポンプ運転用の冷媒流路とに切替可能な冷凍サイクルを構成し、ヒートポンプ運転で加温設定の庫内を加温する時に、運転制御手段が、前記冷凍サイクルをヒートポンプ運転用の冷媒流路に切替えた上で前記庫内熱交換器により冷却される冷却設定の庫内の温度が制御温度になるように前記圧縮機の運転を制御し、前記庫内熱交換器により加温される加温設定の庫内の温度が加温設定温度になるように、前記庫内熱交換器により加温される加温設定の庫内に配置されたヒータへの通電を制御する物品冷却装置であって、前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とする。   According to a first aspect of the present invention, there is provided a refrigerant flow path for cooling operation using one compressor, an internal heat exchanger disposed in each of a plurality of warehouses, and an external heat exchanger disposed outside the warehouse. When a refrigeration cycle that can be switched to a refrigerant flow path for heat pump operation is configured and the interior of the heating set is heated by heat pump operation, the operation control means converts the refrigeration cycle into a refrigerant flow path for heat pump operation. After the switching, the operation of the compressor is controlled so that the inside temperature of the cooling set cooled by the inside heat exchanger becomes the control temperature, and the heating heated by the inside heat exchanger An article cooling apparatus for controlling energization to a heater arranged in a heating setting chamber heated by the internal heat exchanger so that a temperature in the setting chamber becomes a heating setting temperature. The operation control means heats the interior of the heating set by heat pump operation. In, characterized in that to increase the operation ratio of the compressor than when no warming in the warehouse of warmed set at the heat pump operation.

上記構成において、運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも圧縮機の運転率を上げるので、ヒートポンプ運転による加温の寄与率が増えてヒータによる加温の寄与率が減ること
になる。
In the above configuration, the operation control means increases the operation rate of the compressor when heating the interior of the heating set in the heat pump operation than when not heating the interior of the heating set in the heat pump operation. The contribution ratio of heating by operation increases, and the contribution ratio of heating by heater decreases.

この場合、加温の消費電力量の減少量は、冷却の消費電力量の増加量より大きいので、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   In this case, since the amount of decrease in power consumption for heating is larger than the amount of increase in power consumption for cooling, the power consumption as a whole can be reduced (energy saving).

第2の発明は、特に第1の発明における前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも、前記冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に前記庫内熱交換器により冷却される冷却設定の庫内の制御温度を下げることにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とする。   In the second aspect of the invention, in particular, when the operation control means in the first aspect of the invention heats the interior of the heating setting in the heat pump operation, than in the case of not heating the interior of the heating setting in the heat pump operation, When the refrigerant cycle for the heat pump operation is used as the refrigeration cycle, the inside of the heating chamber is heated by the heat pump operation by lowering the control temperature in the cooling chamber that is cooled by the internal heat exchanger. The operation rate of the compressor is increased more than when not.

ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも、冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に庫内熱交換器により冷却される冷却設定の庫内の制御温度を下げると、サーモオン時間(圧縮機が運転している時間)が長くなってサーモオフ時間(圧縮機が停止している時間)が短くなるので、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも圧縮機の運転率を上げことができる。   When the inside of the heating chamber is heated by the heat pump operation, the internal heat exchange is performed when the refrigeration cycle is used as the refrigerant flow path for the heat pump operation, rather than when the heating chamber is not heated by the heat pump operation. If you lower the control temperature inside the cooler set to cool by the compressor, the thermo-on time (time the compressor is operating) becomes longer and the thermo-off time (time the compressor is stopped) becomes shorter. When the inside of the heating chamber is warmed by the heat pump operation, the operation rate of the compressor can be increased more than when the heating chamber is not warmed by the heat pump operation.

したがって、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the inside of the heating chamber with the heat pump operation, the contribution rate of heating by the heat pump operation increases and the contribution rate of heating by the heater decreases, reducing the overall power consumption (energy saving) Can be planned).

第3の発明は、特に第1の発明に加えて、前記庫内熱交換器により冷却または加温された空気を循環させる回転数可変の庫内ファンを各庫内に備え、前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも、前記冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に前記庫内熱交換器により冷却される冷却設定の庫内の前記庫内ファンの回転数を高回転数にする(回転数を上げる、回転数を高くする)ことにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とする。   According to a third invention, in addition to the first invention, in addition to the first invention, the operation control means includes an internal fan having a variable number of revolutions for circulating the air cooled or heated by the internal heat exchanger. However, when heating the interior of the heating set in the heat pump operation, when the refrigerant cycle for the heat pump operation is used as the refrigerant flow path, rather than not heating the interior of the heating set in the heat pump operation. By setting the number of rotations of the internal fan in the cooling set cooled by the internal heat exchanger to a high number of rotations (increasing the number of rotations, increasing the number of rotations) The operation rate of the compressor is increased as compared with the case where the interior is not heated.

上記構成により、庫内熱交換器で冷却される冷却設定の庫内の庫内ファンの回転数が上がると、庫内熱交換器と庫内ファンから離れた庫内の上部の領域にまで冷気(庫内熱交換器で冷却された空気)が循環し、庫内の庫内熱交換器と庫内ファンに近い庫内の下部領域のみの部分冷却から庫内のほぼ全体の冷却になり、その分、庫内における冷気(庫内熱交換器で冷却された空気)の循環量(循環領域、循環サイクルの長さ)の増加により、庫内温度検知手段が検知する庫内温度がサーモオフ設定温度または下限温度に到達するまでに要する時間が長くなるので、圧縮機の運転率が上がる。   With the above configuration, when the number of rotations of the internal fan in the refrigerator set for cooling that is cooled by the internal heat exchanger increases, the cool air reaches the upper area in the internal compartment away from the internal heat exchanger and the internal fan. (Air cooled by the internal heat exchanger) circulates, from the partial cooling of only the lower area in the warehouse close to the internal heat exchanger and the internal fan in the warehouse, to almost the entire cooling in the warehouse, Accordingly, the internal temperature detected by the internal temperature detection means is set to thermo-off by increasing the circulation amount (circulation zone, length of the circulation cycle) of cold air (air cooled by the internal heat exchanger) in the internal storage. Since the time required to reach the temperature or the lower limit temperature becomes longer, the operation rate of the compressor increases.

したがって、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the inside of the heating chamber with the heat pump operation, the contribution rate of heating by the heat pump operation increases and the contribution rate of heating by the heater decreases, reducing the overall power consumption (energy saving) Can be planned).

さらに、庫内熱交換器と庫内ファンが配置される庫内の下部領域から上部領域まで冷却販売する商品を収納した庫内が冷却されることにより、蓄冷効果が増えて、冷たい商品を提供する機会(適温に冷却された商品を販売できる数)を増やすことができる。   In addition, by cooling the inside of the warehouse that stores products that are cooled and sold from the lower area to the upper area in the warehouse where the internal heat exchanger and internal fan are placed, the cold storage effect is increased and cold products are provided. Opportunities (the number of products that can be sold to a suitable temperature) can be increased.

第4の発明は、特に第1の発明に加えて、前記庫外熱交換器に外気を送風する庫外ファンを備え、前記庫外熱交換器が、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温される加温設定の庫内の前記庫内熱交換器で凝縮した冷媒を外気との熱交換により冷却し、前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温
する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記庫外ファンの回転数を低回転数にすることにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とする。
In addition to the first invention, the fourth invention is provided with an outside fan that blows outside air to the outside heat exchanger, and the outside heat exchanger has a heating pump set in a heating chamber. When heating, the refrigerant condensed in the internal heat exchanger in the heating setting chamber heated by the heat pump operation is cooled by heat exchange with the outside air, and the operation control means is heated by the heat pump operation. When heating the interior of the set chamber, the temperature of the outside fan is set to a lower number of rotations than when not heating the interior of the heating chamber with the heat pump operation. The operation rate of the compressor is increased as compared with the case where the inside is not heated.

上記構成において、庫外熱交換器は、ヒートポンプ運転で加温設定の庫内を加温する時に、加温設定の庫内の庫内熱交換器から流出して冷却設定の庫内の庫内熱交換器に向かって流れる冷媒を外気との熱交換により冷却するが、この庫外熱交換器に送風する庫外ファンの回転数が下がると、庫外熱交換器を通過して熱交換する外気の送風量が減るので、庫外熱交換器での冷媒と外気との熱交換量が減り、庫外熱交換器から流出して冷却設定の庫内の庫内熱交換器に流入する冷媒の温度(冷却設定の庫内の庫内熱交換器での冷媒の蒸発温度)が上がる。   In the above configuration, the external heat exchanger flows out of the internal heat exchanger in the heating setting chamber when the inside of the heating setting chamber is heated by the heat pump operation, and the inside of the cooling setting internal chamber The refrigerant flowing toward the heat exchanger is cooled by heat exchange with the outside air. When the number of rotations of the external fan that blows air to the external heat exchanger decreases, the refrigerant passes through the external heat exchanger and exchanges heat. Since the amount of outside air blown is reduced, the amount of heat exchange between the refrigerant and the outside air in the outside heat exchanger is reduced, and the refrigerant flows out of the outside heat exchanger and flows into the inside heat exchanger in the cooling set. (The evaporating temperature of the refrigerant in the internal heat exchanger in the cooling set) increases.

その結果、冷却設定の庫内の庫内熱交換器において互いに熱交換する冷媒と空気との温度差が小さくなり、冷却設定の庫内の庫内熱交換器の冷却能力が低下するので、冷却設定の庫内の庫内温度検知手段が検知する庫内温度がサーモオフ設定温度または下限温度に到達するまでに要する時間が長くなって、圧縮機の運転率が上がる。   As a result, the temperature difference between the refrigerant and air that exchange heat with each other in the internal heat exchanger in the cooling setting chamber is reduced, and the cooling capacity of the internal heat exchanger in the cooling setting chamber is reduced. The time required for the internal temperature detected by the internal temperature detecting means in the set internal chamber to reach the thermo-off set temperature or the lower limit temperature is increased, and the operating rate of the compressor is increased.

したがって、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the inside of the heating chamber with the heat pump operation, the contribution rate of heating by the heat pump operation increases and the contribution rate of heating by the heater decreases, reducing the overall power consumption (energy saving) Can be planned).

さらに、冷却設定の庫内の庫内熱交換器での冷媒の蒸発温度が上がることで冷凍サイクルの効率が上がり、冷却の消費電力量も減らすことができ、更なる省エネルギーを達成することができる。   Furthermore, the efficiency of the refrigeration cycle is increased by increasing the evaporation temperature of the refrigerant in the internal heat exchanger in the refrigerator set for cooling, and the power consumption for cooling can be reduced, thereby achieving further energy saving. .

第5の発明は、特に第1から第4の発明における前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温している時に、ヒートポンプ運転で加温される加温設定の庫内の温度が前記ヒータによる加温を停止させる加温停止温度より所定温度だけ低い温度に到達すると、前記圧縮機の回転数を下げることを特徴とするものであり、第1から第4の発明における作用効果に加えて、ヒートポンプ運転で加温される加温設定の庫内の温度がヒータによる加温を停止させる加温停止温度より高くなるのを抑制できる。   According to a fifth aspect of the invention, in particular, when the operation control means in the first to fourth aspects of the invention is heating the inside of the heating setting chamber by the heat pump operation, the heating setting chamber is heated by the heat pump operation. When the internal temperature reaches a temperature lower than a heating stop temperature at which heating by the heater is stopped by a predetermined temperature, the rotational speed of the compressor is reduced, and the first to fourth inventions In addition to the operational effects, it is possible to suppress the temperature in the heating-set chamber heated by the heat pump operation from becoming higher than the heating stop temperature at which heating by the heater is stopped.

第6の発明は、特に第1から第5の発明における前記運転制御手段が、ヒートポンプ運転で加温設定の庫内を加温している時に、ヒートポンプ運転で加温される加温設定の庫内の温度が前記ヒータによる加温を停止させる加温停止温度より所定温度だけ低い温度に到達すると、前記圧縮機から吐出された冷媒を加温設定の庫内の前記庫内熱交換器で凝縮させるヒートポンプ運転用の冷媒流路から前記圧縮機から吐出された冷媒を加温設定の庫内の前記庫内熱交換器で凝縮させずに前記庫外熱交換器に流して前記庫外熱交換器で凝縮させる冷却運転用の冷媒流路へと前記冷凍サイクルの冷媒流路を切り替えることを特徴とする。   In a sixth aspect of the invention, in particular, when the operation control means in the first to fifth aspects of the invention is heating the inside of the heating setting chamber in the heat pump operation, the heating setting chamber is heated in the heat pump operation. When the internal temperature reaches a temperature that is lower than the heating stop temperature for stopping the heating by the heater by a predetermined temperature, the refrigerant discharged from the compressor is condensed by the internal heat exchanger in the internal heating chamber. The refrigerant discharged from the compressor from the refrigerant flow path for heat pump operation is flown to the external heat exchanger without being condensed by the internal heat exchanger in the heating-set storage, and the external heat exchange is performed. The refrigerant flow path of the refrigeration cycle is switched to a refrigerant flow path for cooling operation that is condensed in a cooler.

これにより、ヒートポンプ運転で加温される加温設定の庫内の温度がヒータによる加温を停止させる加温停止温度より所定温度だけ低い温度に到達すると、ヒートポンプ運転をやめて冷却運転を行うので、ヒートポンプ運転で加温される加温設定の庫内の温度がヒータによる加温を停止させる加温停止温度より高くなるのを抑制でき、ヒートポンプ運転で増加していた冷却の消費電力量の増加分を減らすことができる。   As a result, when the temperature in the heating setting chamber heated by the heat pump operation reaches a temperature lower than the heating stop temperature for stopping the heating by the heater by a predetermined temperature, the heat pump operation is stopped and the cooling operation is performed. The increase in the power consumption of cooling that has been increased in the heat pump operation can be suppressed from becoming higher than the heating stop temperature that stops the heating by the heater, which is heated in the heat pump operation. Can be reduced.

なお、ヒートポンプ運転用の冷媒流路から冷却運転用の冷媒流路に冷凍サイクルの冷媒流路を切り替えた時に、加温設定の庫内の庫内熱交換器には冷媒を流さない(加温設定の庫内の庫内熱交換器で冷媒を蒸発させない)ものとする。   In addition, when the refrigerant flow path of the refrigeration cycle is switched from the refrigerant flow path for heat pump operation to the refrigerant flow path for cooling operation, the refrigerant is not flown into the internal heat exchanger in the heating set (heating) It is assumed that the refrigerant is not evaporated by the in-compartment heat exchanger.

第7の発明は、特に第1から第6の発明の物品冷却装置を備えた自動販売機であり、第1から第6の発明の作用効果を有する自動販売機を得ることができる。   The seventh invention is a vending machine provided with the article cooling device of the first to sixth inventions in particular, and can obtain a vending machine having the effects of the first to sixth inventions.

以下、本発明の物品冷却装置とそれを備えた自動販売機の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Embodiments of an article cooling apparatus and a vending machine including the same according to the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における物品冷却装置を備えた自動販売機の本体内部構造を示す概略構成図であり、図2は同実施の形態の自動販売機の冷凍サイクルの構成図であり、図3は同実施の形態の自動販売機の制御系を示すブロック図であり、図4は同実施の形態の自動販売機の制御を示すフローチャートである。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing an internal structure of a main body of a vending machine provided with an article cooling apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of a refrigeration cycle of the vending machine according to the same embodiment. FIG. 3 is a block diagram showing a control system of the vending machine of the embodiment, and FIG. 4 is a flowchart showing control of the vending machine of the embodiment.

図1に示すように、本発明の実施の形態1における物品冷却装置を備えた自動販売機21は、断熱隔壁22により左右に区画された左庫内A、中庫内B、右庫内Cを備え、それぞれに販売する商品を収納する商品収納コラム23A,23B,23Cを有する。各商品収納コラム23A,23B,23C内には、それぞれコラム内の温度(庫内温度)を測定するためのコラム内温度センサ41A,41B,41Cを有する。   As shown in FIG. 1, the vending machine 21 provided with the article cooling device according to the first embodiment of the present invention includes a left warehouse A, a middle warehouse B, and a right warehouse C that are partitioned by a heat insulating partition wall 22. And has product storage columns 23A, 23B, and 23C for storing products to be sold. Each product storage column 23A, 23B, 23C has column temperature sensors 41A, 41B, 41C for measuring the temperature in the column (internal temperature).

また、自動販売機21は、自動販売機21の周囲温度を検出するための外気温度センサ100と、自動販売機全体を制御するためのコントローラ27、圧縮機等の冷却装置及び商品排出機構等が内蔵された機構部26を備えている。   The vending machine 21 includes an outside temperature sensor 100 for detecting the ambient temperature of the vending machine 21, a controller 27 for controlling the entire vending machine, a cooling device such as a compressor, a product discharge mechanism, and the like. A built-in mechanism 26 is provided.

図2に示すように、左庫内Aに対しては、左庫内Aの空気を冷却または加温する庫内熱交換器51A、左庫内Aの空気を左庫内A内で循環させる庫内ファン61A、通電時に発熱して左庫内Aの空気を加温するヒータ62A、左庫内Aの空気を冷却する時に庫内熱交換器51Aに流入する液冷媒を絞り膨張させるキャピラリチューブ93A、キャピラリチューブ93Aを介して庫内熱交換器51Aに冷媒を流す流さないを切替えるための電磁弁81A、左庫内Aの空気を加温する時に庫内熱交換器51Aから流出する液冷媒を絞り膨張させるキャピラリチューブ93D、左庫内Aの空気を庫内熱交換器51Aにより加温する時にインバータ圧縮機71から吐出された高温高圧の冷媒が庫内熱交換器51Aで凝縮し左庫内Aの空気を庫内熱交換器51Aにより加温しないときにインバータ圧縮機71から吐出された高温高圧の冷媒が庫内熱交換器51Aを経由せずに庫外熱交換器81で凝縮するように冷凍サイクルの冷媒流路を切替える四方弁92、庫内熱交換器51Aの温度を検出する庫内熱交換器温度センサ101Aが設けられている。   As shown in FIG. 2, for the left warehouse A, the internal heat exchanger 51 </ b> A that cools or warms the air in the left warehouse A, and the air in the left warehouse A is circulated in the left warehouse A. The internal fan 61A, the heater 62A that generates heat when energized and heats the air in the left internal chamber A, and the capillary tube that squeezes and expands the liquid refrigerant flowing into the internal heat exchanger 51A when the air in the left internal chamber A is cooled. 93A, solenoid valve 81A for switching whether the refrigerant flows through the internal heat exchanger 51A via the capillary tube 93A, liquid refrigerant flowing out of the internal heat exchanger 51A when the air in the left internal A is heated When the air in the left chamber A is heated by the internal heat exchanger 51A, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 condenses in the internal heat exchanger 51A and is left. Heat exchange inside the air inside A The refrigerant flow path of the refrigeration cycle is switched so that the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 is condensed in the external heat exchanger 81 without passing through the internal heat exchanger 51A when not heated by the 51A. An in-compartment heat exchanger temperature sensor 101A for detecting the temperature of the four-way valve 92 and the in-compartment heat exchanger 51A is provided.

なお、庫内熱交換器51Aは、左庫内Aの空気を庫内熱交換器51Aにより冷却する冷却運転のときに冷媒が流れて蒸発器として機能する配管と、左庫内Aの空気を庫内熱交換器51Aにより加温するヒートポンプ運転のときに冷媒が流れて凝縮器として機能する配管とに分割されている。   It should be noted that the internal heat exchanger 51A uses the piping in which the refrigerant flows and functions as an evaporator during the cooling operation for cooling the air in the left internal warehouse A by the internal heat exchanger 51A, and the air in the left internal warehouse A. The refrigerant flows into a pipe that functions as a condenser when the heat pump is heated by the internal heat exchanger 51A.

また、中庫内Bに対しては、中庫内Bの空気を冷却する庫内熱交換器51B、中庫内Bの空気を中庫内B内で循環させる庫内ファン61B、通電時に発熱して中庫内Bを加温するヒータ62B、中庫内Bの空気を冷却する時に庫内熱交換器51Bに流入する液冷媒を絞り膨張させるキャピラリチューブ93B、キャピラリチューブ93Bを介して庫内熱交換器51Bに冷媒を流す流さないを切替えるための三方弁94、庫内熱交換器51Bの温度を検出する庫内熱交換器温度センサ101Bが設けられている。   Further, for the inside B, the inside heat exchanger 51B that cools the air inside the inside B, the inside fan 61B that circulates the air inside the inside B inside the inside B, and heat generation when energized. Then, the heater 62B that heats the inside B, the capillary tube 93B that squeezes and expands the liquid refrigerant that flows into the inside heat exchanger 51B when the air inside the inside B is cooled, and the inside through the capillary tube 93B A three-way valve 94 for switching whether or not the refrigerant flows through the heat exchanger 51B and an in-compartment heat exchanger temperature sensor 101B for detecting the temperature of the in-compartment heat exchanger 51B are provided.

また、右庫内Cに対しては、右庫内Cの空気を冷却する庫内熱交換器51C、右庫内C
の空気を右庫内Cで循環させる庫内ファン61C、三方弁94から庫内熱交換器51Bを経由せずに庫内熱交換器51Cに流れる液冷媒を絞り膨張させるキャピラリチューブ93C、庫内熱交換器51Cの温度を検出する庫内熱交換器温度センサ101Cが設けられている。
Also, for the right warehouse C, the warehouse heat exchanger 51C for cooling the air in the right warehouse C, the right warehouse C
The internal fan 61C for circulating the air in the right warehouse C, the capillary tube 93C for constricting and expanding the liquid refrigerant flowing from the three-way valve 94 to the internal heat exchanger 51C without passing through the internal heat exchanger 51B, An internal heat exchanger temperature sensor 101C for detecting the temperature of the heat exchanger 51C is provided.

また、機構部26(庫外の機械室)には、庫外熱交換器81と、庫外熱交換器81に送風する庫外ファン82と、庫外熱交換器81の温度を検知するための庫外熱交換器温度センサ102が設けられている。なお、庫外熱交換器81は、2つに分割されており、蒸発器として作用するときと凝縮器として作用するときとで冷媒が流れる経路を分けている。   In addition, the mechanism unit 26 (a machine room outside the warehouse) detects the temperature of the outside heat exchanger 81, the outside fan 82 that blows air to the outside heat exchanger 81, and the temperature of the outside heat exchanger 81. The external heat exchanger temperature sensor 102 is provided. Note that the external heat exchanger 81 is divided into two, and the path through which the refrigerant flows is divided between when it acts as an evaporator and when it acts as a condenser.

なお、左庫内A用の冷凍サイクルは、インバータ圧縮機71と、庫外熱交換器81と、電磁弁81A,81B,81Cと、四方弁92と、キャピラリチューブ93A,93D,93Eと庫内熱交換器51Aとが環状に連接された構成である。   Note that the refrigeration cycle for the left chamber A includes an inverter compressor 71, an external heat exchanger 81, electromagnetic valves 81A, 81B, 81C, a four-way valve 92, capillary tubes 93A, 93D, 93E, and an internal chamber. The heat exchanger 51A is connected in a ring shape.

そして、左庫内Aを冷却する場合は、インバータ圧縮機71から吐出された高温高圧の冷媒が、四方弁92を経由して、庫外熱交換器81で凝縮し、左庫内Aの冷却時は電磁弁81Cが閉じているために電磁弁81C側には流れずに電磁弁81A側と三方弁94側とに分流し、電磁弁81A側に流れた冷媒が、電磁弁81Aを経由してキャピラリチューブ93Aで減圧され、庫内熱交換器51Aで蒸発し、インバータ圧縮機71に戻る。   When cooling the left chamber A, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 is condensed in the external heat exchanger 81 via the four-way valve 92, and the left chamber A is cooled. At that time, since the solenoid valve 81C is closed, the refrigerant does not flow to the solenoid valve 81C side but is divided into the solenoid valve 81A side and the three-way valve 94 side, and the refrigerant flowing to the solenoid valve 81A side passes through the solenoid valve 81A. The pressure is reduced by the capillary tube 93A, evaporated by the internal heat exchanger 51A, and returned to the inverter compressor 71.

なお、庫外熱交換器81から三方弁94側に流れた冷媒は、三方弁94の状態により、三方弁94からキャピラリチューブ93B側に流出して、キャピラリチューブ93Bで減圧され、庫内熱交換器51Bと庫内熱交換器51Cで蒸発して、庫内熱交換器51Aで蒸発した冷媒と合流してインバータ圧縮機71に戻る場合と、三方弁94からキャピラリチューブ93C側に流出して、キャピラリチューブ93Cで減圧され、キャピラリチューブ93Bと庫内熱交換器51Bを流れることなく庫内熱交換器51Cで蒸発して、庫内熱交換器51Aで蒸発した冷媒と合流してインバータ圧縮機71に戻る場合とがある。   The refrigerant flowing from the external heat exchanger 81 to the three-way valve 94 side flows out from the three-way valve 94 to the capillary tube 93B side according to the state of the three-way valve 94, and is depressurized by the capillary tube 93B. When the refrigerant evaporates in the heat exchanger 51B and the internal heat exchanger 51C, merges with the refrigerant evaporated in the internal heat exchanger 51A and returns to the inverter compressor 71, the three-way valve 94 flows out to the capillary tube 93C side, The pressure is reduced by the capillary tube 93C, evaporates in the internal heat exchanger 51C without flowing through the capillary tube 93B and the internal heat exchanger 51B, merges with the refrigerant evaporated in the internal heat exchanger 51A, and is combined with the inverter compressor 71. May return to

なお、電磁弁81Bは、キャピラリチューブ93Dと四方弁92との間の配管と、庫内熱交換器51A,51Cから流出した冷媒が合流してインバータ圧縮機71に戻る配管とをつなぐ配管に設けられて常に開いており、左庫内Aの空気を庫内熱交換器51Aにより加温するヒートポンプ運転時に冷媒が流れる庫内熱交換器51Aからキャピラリチューブ93Dを経由して冷媒を回収している。   The solenoid valve 81B is provided in a pipe connecting the pipe between the capillary tube 93D and the four-way valve 92 and the pipe where the refrigerant flowing out of the internal heat exchangers 51A and 51C merges and returns to the inverter compressor 71. The refrigerant is recovered through the capillary tube 93D from the internal heat exchanger 51A in which the refrigerant flows during the heat pump operation in which the air in the left warehouse is heated by the internal heat exchanger 51A. .

また、左庫内Aを庫内熱交換器51Aにより加温するヒートポンプ運転で加温する場合は、インバータ圧縮機71から吐出された高温高圧の冷媒が、四方弁92を経由して、庫内熱交換器51Aで凝縮し、キャピラリチューブ93Dで減圧され、再び四方弁92を経由して、庫外熱交換器81でさらに凝縮し、電磁弁81Cが開いている場合は電磁弁81A及び三方弁94側と電磁弁81C側とに分流し、電磁弁81C側に流れた冷媒は、電磁弁81Cを経由してキャピラリチューブ93Eで減圧され、庫外熱交換器81で蒸発し、インバータ圧縮機71に戻る。   In addition, when the left chamber A is heated by a heat pump operation that heats the left chamber A by the internal heat exchanger 51A, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 passes through the four-way valve 92 to When condensed by the heat exchanger 51A, depressurized by the capillary tube 93D, and again condensed by the external heat exchanger 81 via the four-way valve 92, and when the electromagnetic valve 81C is open, the electromagnetic valve 81A and the three-way valve The refrigerant that has been divided into the 94 side and the solenoid valve 81C side and has flowed to the solenoid valve 81C side is decompressed by the capillary tube 93E via the solenoid valve 81C, evaporated by the external heat exchanger 81, and the inverter compressor 71. Return to.

なお、電磁弁81C側に流れずに電磁弁81A及び三方弁94側に流れた冷媒は、左庫内Aの加温時は電磁弁81Aが閉じているために三方弁94側にのみ流れ、中庫内Bをヒータ62Bで加温する場合または中庫内Bが所定下限温度まで冷却された場合は、三方弁94からキャピラリチューブ93C側に流出して、キャピラリチューブ93Cで減圧され、キャピラリチューブ93Bと庫内熱交換器51Bを流れることなく庫内熱交換器51Cで蒸発して、インバータ圧縮機71に戻る。また、中庫内Bを冷却する場合は、三方弁94からキャピラリチューブ93B側に流出して、キャピラリチューブ93Bで減圧され、庫内熱交換器51Bと庫内熱交換器51Cで蒸発して、インバータ圧縮機71に戻る。   Note that the refrigerant that has flowed to the solenoid valve 81A and the three-way valve 94 side without flowing to the solenoid valve 81C side flows only to the three-way valve 94 side because the solenoid valve 81A is closed when the left chamber A is heated, When the inside B is heated by the heater 62B or when the inside B is cooled to a predetermined lower limit temperature, it flows out from the three-way valve 94 to the capillary tube 93C, and is depressurized by the capillary tube 93C. The refrigerant evaporates in the internal heat exchanger 51C without flowing through 93B and the internal heat exchanger 51B, and returns to the inverter compressor 71. Further, when the inside B is cooled, it flows out from the three-way valve 94 to the capillary tube 93B, is depressurized by the capillary tube 93B, is evaporated by the inside heat exchanger 51B and the inside heat exchanger 51C, Return to the inverter compressor 71.

なお、右庫内Cを冷却せずに(庫内熱交換器51Cで冷媒を蒸発させずに)左庫内Aを庫内熱交換器51Aにより加温するヒートポンプ運転で加温する場合は、電磁弁81Cを開けるが、庫内熱交換器51Bと庫内熱交換器51Cのうち少なくとも庫内熱交換器51Cで冷媒を蒸発させるために庫外熱交換器81で冷媒を蒸発させる必要がない場合は電磁弁81Cを閉じる。   In addition, when heating the left warehouse A without heating the right warehouse C (without evaporating the refrigerant in the warehouse heat exchanger 51C) by the heat pump operation that heats the warehouse heat exchanger 51A, The electromagnetic valve 81C is opened, but it is not necessary to evaporate the refrigerant in the external heat exchanger 81 in order to evaporate the refrigerant in at least the internal heat exchanger 51C of the internal heat exchanger 51B and the internal heat exchanger 51C. In this case, the solenoid valve 81C is closed.

また、中庫内Bと右庫内Cの兼用の冷凍サイクルは、インバータ圧縮機71と四方弁92と庫外熱交換器81と三方弁94とキャピラリチューブ93Cと庫内熱交換器51Cとが順次環状に連接され、さらに、庫内熱交換器51Bの冷媒の入口側がキャピラリチューブ93Bを介して三方弁94のもう一つの出口側に接続され、庫内熱交換器51Bの冷媒の出口側がキャピラリチューブ93Cと庫内熱交換器51Cとの間の冷媒配管に接続された構成である。   In addition, the refrigeration cycle for both the inner warehouse B and the right warehouse C includes an inverter compressor 71, a four-way valve 92, an external heat exchanger 81, a three-way valve 94, a capillary tube 93C, and an internal heat exchanger 51C. The refrigerant is sequentially connected in an annular manner, and the refrigerant inlet side of the internal heat exchanger 51B is connected to the other outlet side of the three-way valve 94 via the capillary tube 93B, and the refrigerant outlet side of the internal heat exchanger 51B is connected to the capillary. It is the structure connected to the refrigerant | coolant piping between the tube 93C and the internal heat exchanger 51C.

そして、中庫内Bと右庫内Cを同時に冷却する場合は、インバータ圧縮機71から吐出された高温高圧の冷媒が、四方弁92を経由して、庫外熱交換器81で凝縮し、三方弁94からキャピラリチューブ93B側に流れて、キャピラリチューブ93Bで減圧され、庫内熱交換器51Bで一部の冷媒が蒸発し、その後、庫内熱交換器51Cで残りの液冷媒が蒸発して、インバータ圧縮機71に戻る。   And when simultaneously cooling the inside B and the right C, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 is condensed in the outside heat exchanger 81 via the four-way valve 92, The refrigerant flows from the three-way valve 94 toward the capillary tube 93B, and is depressurized by the capillary tube 93B. A part of the refrigerant evaporates in the internal heat exchanger 51B, and then the remaining liquid refrigerant evaporates in the internal heat exchanger 51C. Then, the process returns to the inverter compressor 71.

また、中庫内Bと右庫内Cのうち右庫内Cのみを冷却する場合は、インバータ圧縮機71から吐出された高温高圧の冷媒が、四方弁92を経由して、庫外熱交換器81で凝縮し、三方弁94からキャピラリチューブ93C側に流れて、キャピラリチューブ93Cで減圧され、庫内熱交換器51Cで蒸発して、インバータ圧縮機71に戻る。   In addition, when only the right compartment C is cooled out of the inner compartment B and the right compartment C, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 71 passes through the four-way valve 92 to exchange heat outside the compartment. Condensate in the vessel 81, flow from the three-way valve 94 toward the capillary tube 93C, decompressed in the capillary tube 93C, evaporate in the internal heat exchanger 51C, and return to the inverter compressor 71.

図3に示すように、本実施の形態の自動販売機21を制御する主制御手段200は、入力処理部103、運転制御手段104、運転状態判定手段105、制御温度補正手段106、庫内ファン回転数補正手段107、庫外ファン回転数補正手段108、圧縮機回転数補正手段109、運転モード切替手段110により構成されている。   As shown in FIG. 3, the main control means 200 for controlling the vending machine 21 of the present embodiment includes an input processing unit 103, an operation control means 104, an operation state determination means 105, a control temperature correction means 106, an internal fan. The rotation speed correction means 107, the outside fan rotation speed correction means 108, the compressor rotation speed correction means 109, and the operation mode switching means 110 are configured.

入力処理部103は、各庫内コラム内温度センサ41A,41B,41C、外気温度センサ100、各庫内熱交換器温度センサ101A,101B,101C、庫外熱交換器温度センサ102の温度データを読み取る。   The input processing unit 103 receives the temperature data of the internal column temperature sensors 41A, 41B, 41C, the outside air temperature sensor 100, the internal heat exchanger temperature sensors 101A, 101B, 101C, and the external heat exchanger temperature sensor 102. read.

運転制御手段104は、各庫内ファン61A,61B,61C、各ヒータ62A,62B、インバータ圧縮機71、庫外ファン82、四方弁92、三方弁94を制御する。   The operation control means 104 controls the internal fans 61A, 61B, 61C, the heaters 62A, 62B, the inverter compressor 71, the external fan 82, the four-way valve 92, and the three-way valve 94.

運転状態判定手段105は、外気温度センサ100の値が、ヒートポンプ運転(インバータ圧縮機71から吐出した冷媒ガスが四方弁92を経由して庫内熱交換器51Aに送られ、庫内熱交換器51Bで凝縮して、キャピラリチューブ93Dで減圧されて、庫外熱交換器81で凝縮して、庫内熱交換器51Bまたは庫内熱交換器51Cで蒸発してインバータ圧縮機71にて圧縮されるサイクルを繰り返す運転)の条件に入っているかどうかを判定する。   The operating state determination means 105 is configured so that the value of the outside air temperature sensor 100 indicates that the heat pump operation (refrigerant gas discharged from the inverter compressor 71 is sent to the internal heat exchanger 51A via the four-way valve 92 and the internal heat exchanger 51 Condensed by 51B, depressurized by capillary tube 93D, condensed by external heat exchanger 81, evaporated by internal heat exchanger 51B or internal heat exchanger 51C, and compressed by inverter compressor 71. It is determined whether or not it is within the conditions of operation that repeats the cycle.

外気温度センサ100の値が例えば0℃以上で20℃以下の場合、ヒートポンプ運転であり、それ以外はヒートポンプ運転ではないとする。   When the value of the outside air temperature sensor 100 is, for example, 0 ° C. or more and 20 ° C. or less, the heat pump operation is performed, and otherwise, the heat pump operation is not performed.

制御温度補正手段106は、インバータ圧縮機71や各ヒータ62A,62Bを動作および停止する温度を補正する。左庫内Aが加温設定、中庫内Bと右庫内Cが冷却設定の場合、ヒータ62Aは左庫内コラム内温度センサ41Aの値が例えば53℃で動作して57
℃で停止し、インバータ圧縮機71は中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が例えば5℃で動作して1℃で停止する。
The control temperature correction means 106 corrects the temperature at which the inverter compressor 71 and the heaters 62A and 62B are operated and stopped. When the left chamber A is heated and the inner chamber B and the right chamber C are cooled, the heater 62A operates at a value of the left chamber temperature sensor 41A of, for example, 53 ° C.
The inverter compressor 71 is operated at a temperature of the inner column temperature sensor 41B and the right column temperature sensor 41C of, for example, 5 ° C. and stops at 1 ° C.

庫内ファン回転数補正手段107は、左庫内ファン61A、中庫内ファン61B、右庫内ファン61Cの回転数を補正する。庫外ファン回転数補正手段108は、庫外ファン82の回転数を補正する。圧縮機回転数補正手段109は、インバータ圧縮機71の回転数を補正する。運転モード切替手段110は、ヒートポンプ運転をするかしないかを決定する。   The internal fan rotational speed correction means 107 corrects the rotational speeds of the left internal fan 61A, the central internal fan 61B, and the right internal fan 61C. The outside fan rotation speed correction means 108 corrects the rotation speed of the outside fan 82. The compressor rotation speed correction means 109 corrects the rotation speed of the inverter compressor 71. The operation mode switching means 110 determines whether or not to perform the heat pump operation.

以上のように構成された本実施の形態の自動販売機21について、図4を参照しながら、以下その動作、作用を説明する。   The operation and action of the vending machine 21 of the present embodiment configured as described above will be described below with reference to FIG.

図4に示すように、運転状態判定手段105が、外気温度センサ100の値を入力処理部103から読み取り、ヒートポンプ運転の条件に入っているかどうかを確認する(図4のSTEP1)。   As shown in FIG. 4, the operation state determination means 105 reads the value of the outside air temperature sensor 100 from the input processing unit 103 and confirms whether or not the heat pump operation condition is satisfied (STEP 1 in FIG. 4).

図4のSTEP2で、外気温度センサ100の値がヒートポンプ運転の条件(例えば、0℃以上かつ20℃以下)に入っていない場合は処理を終了し、外気温度センサ100の値がヒートポンプ運転の条件入っている場合は、図4のSTEP3に進む。   In STEP 2 of FIG. 4, if the value of the outside air temperature sensor 100 is not in the heat pump operation condition (for example, 0 ° C. or more and 20 ° C. or less), the process is terminated, and the value of the outside temperature sensor 100 is the condition of the heat pump operation. If yes, go to STEP 3 in FIG.

そして、図4のSTEP3では、左庫内Aが加温設定、中庫内Bと右庫内Cが冷却設定になり、四方弁92によりヒートポンプ運転用の冷媒流路に切り替えて、左庫内Aをヒートポンプ運転で加温するが、この時は、インバータ圧縮機71の運転率を上げる制御(例えば制御温度補正手段106が、冷却制御温度を1℃シフトダウンする(下げる))を行う。   In STEP 3 of FIG. 4, the left chamber A is heated, the middle chamber B and the right chamber C are cooled, and the four-way valve 92 switches to the refrigerant flow path for heat pump operation. A is heated by heat pump operation. At this time, control for increasing the operation rate of the inverter compressor 71 (for example, the control temperature correction means 106 shifts down (decreases) the cooling control temperature by 1 ° C.) is performed.

制御温度補正手段106が冷却制御温度を1℃シフトダウンする制御温度補正を行わない場合は、中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が5℃にまで上昇すると、インバータ圧縮機71を運転し、中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が1℃以下になると、インバータ圧縮機71の運転を停止するのであるが、制御温度補正手段106が冷却制御温度を1℃シフトダウンする制御温度補正を行った場合は、中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が4℃にまで上昇すると、インバータ圧縮機71を運転し、中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が0℃以下になると、インバータ圧縮機71の運転を停止する。   When the control temperature correction means 106 does not perform the control temperature correction for shifting down the cooling control temperature by 1 ° C., the temperature of the inner column temperature sensor 41B and the right column temperature sensor 41C rises to 5 ° C. When the inverter compressor 71 is operated and the temperature of the inner column temperature sensor 41B and the right column temperature sensor 41C becomes 1 ° C. or less, the operation of the inverter compressor 71 is stopped. When the correction means 106 performs control temperature correction to shift down the cooling control temperature by 1 ° C., the temperature of the inner column temperature sensor 41B and the right column temperature sensor 41C rises to 4 ° C. When the compressor 71 is operated and the temperatures of the inner column temperature sensor 41B and the right column temperature sensor 41C become 0 ° C. or less, the operation of the inverter compressor 71 is performed. A stop.

以上のように、本実施の形態の自動販売機21に用いた物品冷却装置は、インバータ圧縮機71と共に冷凍サイクルを構成し冷却運転時に蒸発器として働き庫内の空気を冷却する庫内熱交換器51A,51B,51Cと、庫内熱交換器51A,51B,51Cにより冷却された空気がそれぞれ左庫内A、中庫内B、右庫内Cを循環するように送風する回転数可変の各庫内ファン61A,61B,61Cと、庫外熱交換器81を空冷するための庫外ファン82と、左庫内Aと中庫内Bを加温するためのヒータ62A,ヒータ62Bの運転を制御する運転制御手段104と、運転状態判定手段105と、制御温度補正手段106と、庫内ファン回転数補正手段107と、庫外ファン回転数補正手段108を有している。   As described above, the article cooling apparatus used in the vending machine 21 according to the present embodiment constitutes a refrigeration cycle together with the inverter compressor 71, serves as an evaporator during cooling operation, and cools the air in the warehouse. The number of revolutions is variable so that air cooled by the chambers 51A, 51B, 51C and the internal heat exchangers 51A, 51B, 51C circulates in the left warehouse A, the middle warehouse B, and the right warehouse C, respectively. Operation of each of the internal fans 61A, 61B, 61C, the external fan 82 for air-cooling the external heat exchanger 81, and the heaters 62A, 62B for heating the left internal A and the internal B The operation control means 104, the operation state determination means 105, the control temperature correction means 106, the internal fan rotation speed correction means 107, and the external fan rotation speed correction means 108 are provided.

制御温度補正手段106が、ヒートポンプ運転中、冷却制御温度をシフトダウンして、運転制御手段104がシフトダウンされた温度でインバータ圧縮機71を制御する。   The control temperature correction means 106 shifts down the cooling control temperature during the heat pump operation, and the operation control means 104 controls the inverter compressor 71 at the shifted down temperature.

そのため、冷却制御温度がシフトダウンされる前に比べてインバータ圧縮機71の運転
率が増えることで、ヒートポンプ運転(インバータ圧縮機71から吐出した冷媒ガスが四方弁92を経由して庫内熱交換器51Aに送られ、庫内熱交換器51Bで凝縮して、キャピラリチューブ93Dで減圧されて、庫外熱交換器81で凝縮して、庫内熱交換器51Bまたは庫内熱交換器51Cで蒸発してインバータ圧縮機71にて圧縮されるサイクルを繰り返す運転)の寄与率が増えてヒータ62Aの運転率が減ることになる。
Therefore, the operation rate of the inverter compressor 71 is increased as compared with that before the cooling control temperature is shifted down, so that the heat pump operation (the refrigerant gas discharged from the inverter compressor 71 passes through the four-way valve 92 to exchange heat in the warehouse). 51A, condensed in the internal heat exchanger 51B, depressurized in the capillary tube 93D, condensed in the external heat exchanger 81, and stored in the internal heat exchanger 51B or the internal heat exchanger 51C. The contribution ratio of the operation of repeating the cycle of evaporation and compression by the inverter compressor 71 increases, and the operation ratio of the heater 62A decreases.

ゆえに、冷却の運転率が増えて冷却による消費電力量は増えるものの、それ以上に加温の運転率が減って加温による消費電力量が減るので、冷却と加温の全体をみると消費電力量を減らすことができる。   Therefore, although the cooling operation rate increases and the power consumption due to cooling increases, the heating operation rate decreases further and the power consumption due to heating decreases. The amount can be reduced.

なお、図4のSTEP3におけるインバータ圧縮機71の運転率を上げる方法として、制御温度補正手段106で冷却設定の中庫内Bと右庫内Cの冷却制御温度を所定温度(1℃)下げる代わりに、庫内ファン回転数補正手段107を用いてもよい。   As a method of increasing the operation rate of the inverter compressor 71 in STEP 3 of FIG. 4, instead of lowering the cooling control temperatures of the inside B and the right C in the cooling setting by the control temperature correction means 106, a predetermined temperature (1 ° C.). In addition, the internal fan rotation speed correction means 107 may be used.

庫内ファン回転数補正手段107を用いて図4のSTEP3におけるインバータ圧縮機71の運転率を上げる場合は、庫内ファン回転数補正手段107が、中庫内Bの庫内ファン61Bと右庫内Cの庫内ファン61Cの回転数をヒートポンプ運転を行わないときよりも高くする(高回転数に上げる)。   When the operating rate of the inverter compressor 71 in STEP 3 of FIG. 4 is increased using the internal fan rotational speed correcting means 107, the internal fan rotational speed correcting means 107 is connected to the internal fan 61B and the right internal warehouse B. The rotation speed of the internal fan 61C of the inner C is made higher than when the heat pump operation is not performed (the rotation speed is increased).

この場合は、商品収納コラム23Bと商品収納コラム23Cの下部から上部までに冷気が行き渡りトータルクーリングとなり、その分、冷却する仕事量が増えて、インバータ圧縮機71の運転率も増える。そして、ヒートポンプ運転の寄与率が増えてヒータ62Aの運転率が減ることになる。   In this case, the cool air spreads from the lower part to the upper part of the product storage column 23B and the product storage column 23C, resulting in total cooling, and the amount of work to be cooled increases accordingly, and the operating rate of the inverter compressor 71 also increases. Then, the contribution rate of the heat pump operation increases and the operation rate of the heater 62A decreases.

ゆえに、冷却の運転率が増えて冷却による消費電力量は増えるものの、それ以上に加温の運転率が減って加温による消費電力量が減るので、冷却と加温の全体をみると消費電力量を減らすことができる。さらに、商品収納コラム23Bと商品収納コラム23Cの下部から上部まで冷却されることにより蓄冷効果が増えて、冷たい商品を提供する機会を増やすことができる。   Therefore, although the cooling operation rate increases and the power consumption due to cooling increases, the heating operation rate decreases further and the power consumption due to heating decreases. The amount can be reduced. Furthermore, by cooling from the lower part to the upper part of the product storage column 23B and the product storage column 23C, the cold storage effect is increased, and the opportunity to provide cold products can be increased.

もしくは、図4のSTEP3におけるインバータ圧縮機71の運転率を上げる方法として、制御温度補正手段106で冷却設定の中庫内Bと右庫内Cの冷却制御温度を所定温度(1℃)下げる代わりに、庫外ファン回転数補正手段108を用いてもよい。   Alternatively, as a method of increasing the operation rate of the inverter compressor 71 in STEP 3 of FIG. 4, instead of lowering the cooling control temperatures of the inside B and the right C in the cooling setting by the control temperature correction means 106 by a predetermined temperature (1 ° C.). In addition, the outside fan rotation speed correction means 108 may be used.

庫外ファン回転数補正手段108を用いて図4のSTEP3におけるインバータ圧縮機71の運転率を上げる場合は、庫外ファン回転数補正手段108が庫外ファン82の回転数をヒートポンプ運転を行わないときよりも低くする(低回転数に下げる)。   When the operating rate of the inverter compressor 71 in STEP 3 of FIG. 4 is increased using the external fan rotational speed correcting means 108, the external fan rotational speed correcting means 108 does not perform the heat pump operation on the rotational speed of the external fan 82. Lower than usual (lower to a lower speed).

この場合は、庫外熱交換器81の凝縮温度が上がり、中庫内Bの庫内熱交換器51Bと右庫内Cの庫内熱交換器51Cの蒸発温度も上がることになる。そして、蒸発温度と商品温度との温度差が小さくなるので、商品から奪われる熱量も減り、インバータ圧縮機71の運転率は増えることになる。   In this case, the condensation temperature of the external heat exchanger 81 is increased, and the evaporation temperatures of the internal heat exchanger 51B in the internal storage B and the internal heat exchanger 51C in the right internal C are also increased. Since the temperature difference between the evaporation temperature and the product temperature is reduced, the amount of heat taken from the product is reduced, and the operation rate of the inverter compressor 71 is increased.

ゆえに、インバータ圧縮機71の運転率が増えることで加温の運転率が減って加温による消費電力量を減らすことができる。さらに、蒸発温度が上がることで冷凍サイクルの効率も上がり、冷却の商品電力量も減らすことができ、さらなる省エネルギーを達成することができる。   Therefore, when the operation rate of the inverter compressor 71 is increased, the heating operation rate is reduced, and the power consumption due to heating can be reduced. Furthermore, the evaporating temperature is increased, so that the efficiency of the refrigeration cycle is increased, the amount of power for cooling can be reduced, and further energy saving can be achieved.

以上説明したように、本実施の形態の物品冷却装置を備えた自動販売機は、1台のインバータ圧縮機71と複数(3つの)の庫内(左庫内A、中庫内B、右庫内C)にそれぞれ
配置された庫内熱交換器51A,51B,51Cと庫外に配置された庫外熱交換器81とを用いて冷却運転用の冷媒流路とヒートポンプ運転用の冷媒流路とに四方弁92で切替可能な冷凍サイクルを構成している。
As described above, the vending machine provided with the article cooling device of the present embodiment has one inverter compressor 71 and a plurality (three) of warehouses (left warehouse A, middle warehouse B, right Refrigerant flow path for cooling operation and refrigerant flow for heat pump operation using in-compartment heat exchangers 51A, 51B, 51C respectively disposed in the interior C) and an external heat exchanger 81 disposed outside the interior A refrigeration cycle that can be switched by a four-way valve 92 to the road is configured.

そして、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、運転制御手段104が、四方弁92で冷凍サイクルをヒートポンプ運転用の冷媒流路に切替えた上で庫内熱交換器51B,51Cにより冷却される冷却設定の中庫内B、右庫内Cの温度が制御温度になるようにインバータ圧縮機71の運転を制御し、庫内熱交換器51Aにより加温される加温設定の左庫内Aの温度が加温設定温度になるように、庫内熱交換器51Aにより加温される加温設定の左庫内Aに配置されたヒータ62Aへの通電を制御する。   Then, when heating the left chamber A set for heating in the heat pump operation, the operation control means 104 switches the refrigeration cycle to the refrigerant flow path for the heat pump operation with the four-way valve 92, and then the heat exchanger 51B in the chamber. , 51C, the operation of the inverter compressor 71 is controlled so that the temperature in the inner compartment B and the right compartment C, which are cooled by the cooling, becomes the control temperature, and is heated by the internal heat exchanger 51A. The energization to the heater 62A disposed in the left chamber A of the heating setting heated by the internal heat exchanger 51A is controlled so that the temperature of the left chamber A of the setting becomes the heating set temperature.

そして、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げることを特徴とする。   When the operation control means 104 heats the left chamber A set for heating in the heat pump operation, the operating rate of the inverter compressor 71 is higher than when the left chamber A set for heating is not heated in the heat pump operation. It is characterized by raising.

上記構成において、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げるので、ヒートポンプ運転による加温の寄与率が増えてヒータ62Aによる加温の寄与率が減ることになる。   In the above configuration, when the operation control means 104 heats the left chamber A set for heating in the heat pump operation, the inverter compressor 71 is more heated than when the left chamber A set for heating is not heated in the heat pump operation. Since the operating rate is increased, the contribution rate of heating by the heat pump operation increases, and the contribution rate of heating by the heater 62A decreases.

この場合、加温の消費電力量の減少量は、冷却の消費電力量の増加量より大きいので、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   In this case, since the amount of decrease in power consumption for heating is larger than the amount of increase in power consumption for cooling, the power consumption as a whole can be reduced (energy saving).

また、本実施の形態では、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりも、四方弁92で冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に庫内熱交換器51B,51Cにより冷却される冷却設定の中庫内Bと右庫内Cの制御温度を(制御温度補正手段106により)下げることにより、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げることを特徴とする。   Further, in the present embodiment, when the operation control means 104 heats the left chamber A set for heating in the heat pump operation, it does not warm the left chamber A set for heating in the heat pump operation. When the four-way valve 92 is used as a refrigerant flow path for heat pump operation when the refrigeration cycle is used, the control temperatures of the central storage B and the right internal storage C that are cooled by the internal heat exchangers 51B and 51C (control temperature correction) It is characterized in that the operation rate of the inverter compressor 71 is increased by lowering the temperature by means of means 106 as compared with the case of not heating the left-hand chamber A set for heating in the heat pump operation.

ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりも、四方弁92で冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に庫内熱交換器51B,51Cにより冷却される冷却設定の中庫内Bと右庫内Cの制御温度を(制御温度補正手段106により)下げると、サーモオン時間(インバータ圧縮機71が運転している時間)が長くなってサーモオフ時間(インバータ圧縮機71が停止している時間)が短くなるので、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げことができる。   Refrigerant flow path for heat pump operation with four-way valve 92 when heating left chamber A with heating set in heat pump operation than when not heating left chamber A with heating pump operation When the control temperatures of the inside B and the right C in the cooling setting cooled by the inside heat exchangers 51B and 51C are lowered (by the control temperature correcting means 106), the thermo-on time (inverter compressor 71) is reduced. Is longer and the thermo-off time (time when the inverter compressor 71 is stopped) is shortened. Therefore, when heating the left chamber A with the heat setting in the heat pump operation, the heat pump operation is performed. The operation rate of the inverter compressor 71 can be increased as compared with the case where the left-side A inside the heating setting is not heated.

したがって、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータ62Aによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the left chamber A that is set for heating in the heat pump operation, the contribution ratio of the heating by the heat pump operation is increased and the contribution ratio of the heating by the heater 62A is reduced, and the power consumption is reduced as a whole. It can be reduced (to save energy).

また、本実施の形態では、庫内熱交換器51A,51B,51Cにより冷却または加温された空気を循環させる回転数可変の庫内ファン61A,61B,61Cを各庫内に備え、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりも、四方弁92により冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に庫内熱交換器51B,51Cにより冷却される冷却設定の中庫内Bと右庫内Cの庫内ファン61B,61Cの回転数を庫内ファン回転数補正手段107により高回転数にする(回転数を上げる、回転数を高くする)こ
とにより、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げることを特徴とする。
Further, in the present embodiment, the internal fans 61A, 61B, 61C with variable rotation speed for circulating the air cooled or heated by the internal heat exchangers 51A, 51B, 51C are provided in the internal storages, and operation control is performed. When the means 104 heats the left chamber A set for heating in the heat pump operation, the refrigeration cycle is used for the heat pump operation by the four-way valve 92 rather than when the left chamber A set for heating is not heated in the heat pump operation. The number of rotations of the internal fans 61B and 61C in the central storage B and the right internal C cooled by the internal heat exchangers 51B and 51C when the refrigerant flow paths are used are the internal fan rotational speed correction means. By increasing the number of revolutions by 107 (increasing the number of revolutions and increasing the number of revolutions), the operating rate of the inverter compressor 71 is increased as compared with the case where the heating chamber left heating chamber A is not heated. The And butterflies.

上記構成(回転数補正手段107)により、庫内熱交換器51B,51Cで冷却される冷却設定の中庫内Bと右庫内Cの庫内ファン61B,61Cの回転数が上がると、庫内熱交換器51B,51Cと庫内ファン61B,61Cから離れた中庫内Bと右庫内Cの上部の領域にまで冷気(庫内熱交換器51B,51Cで冷却された空気)が循環し、中庫内Bと右庫内Cの庫内熱交換器51B,51Cと庫内ファン61B,61Cに近い中庫内Bと右庫内Cの下部領域のみの部分冷却から中庫内Bと右庫内Cのほぼ全体の冷却になり、その分、中庫内Bと右庫内Cにおける冷気(庫内熱交換器51B,51Cで冷却された空気)の循環量(循環領域、循環サイクルの長さ)の増加により、庫内温度検知手段(コラム内温度センサ41B,41C)が検知する庫内温度がサーモオフ設定温度または下限温度に到達するまでに要する時間が長くなるので、インバータ圧縮機71の運転率が上がる。   When the number of rotations of the internal fans 61B and 61C in the central storage B and the right internal C cooled by the internal heat exchangers 51B and 51C is increased by the above configuration (the rotational speed correction means 107), Cold air (air cooled by the internal heat exchangers 51B and 51C) is circulated to the upper region of the inner chamber B and the right chamber C which are separated from the inner heat exchangers 51B and 51C and the internal fans 61B and 61C. Then, from the partial cooling of only the lower area of the inner chamber B and the right chamber C close to the inner heat exchangers 51B, 51C and the inner fans 61B, 61C of the inner chamber B and the right chamber C, the inner chamber B And the cooling in the right warehouse C, and the circulation amount of the cold air (air cooled by the internal heat exchangers 51B and 51C) in the inner warehouse B and the right warehouse C (circulation region, circulation). The chamber temperature detection means (column temperature sensors 41B, 41C) due to an increase in cycle length) Since the time that the internal temperature detected it takes to reach the thermo-off set temperature or the lower the temperature becomes longer, the operation rate of the inverter compressor 71 is increased.

したがって、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータ62Aによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the left chamber A that is set for heating in the heat pump operation, the contribution ratio of the heating by the heat pump operation is increased and the contribution ratio of the heating by the heater 62A is reduced, and the power consumption is reduced as a whole. It can be reduced (to save energy).

さらに、庫内熱交換器51B,51Cと庫内ファン61B,61Cが配置される中庫内Bと右庫内Cの下部領域から上部領域まで冷却販売する商品を収納した中庫内Bと右庫内C(の商品収納コラム23B,23C)が冷却されることにより、蓄冷効果が増えて、冷たい商品を提供する機会(適温(制御温度)に冷却された商品を販売できる数)を増やすことができる。   Further, the inside B and the right containing the products to be cooled and sold from the lower area to the upper area of the inside B and the inside C where the inside heat exchangers 51B and 51C and the inside fans 61B and 61C are arranged. By cooling the inside C (the product storage columns 23B and 23C), the cold storage effect is increased, and the opportunity to provide cold products (the number of products that can be cooled to an appropriate temperature (control temperature)) can be increased. Can do.

また、本実施の形態では、庫外熱交換器81に外気を送風する庫外ファン82を備え、庫外熱交換器81が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温される加温設定の左庫内Aの庫内熱交換器51Aで凝縮した冷媒を外気との熱交換により冷却し、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりも庫外ファン82の回転数を庫外ファン回転数補正手段108で低回転数にすることにより、ヒートポンプ運転で加温設定の左庫内Aを加温しない時よりもインバータ圧縮機71の運転率を上げることを特徴とする。   Moreover, in this Embodiment, the external heat exchanger 81 is provided with the external fan 82 which ventilates external air, and when the external heat exchanger 81 heats the left internal A of a heating setting by heat pump operation. Then, the refrigerant condensed in the internal heat exchanger 51A of the left internal chamber A which is heated in the heat pump operation is cooled by heat exchange with the outside air, and the operation control means 104 is set in the heat pump operation. When heating the left chamber A, the rotation speed of the outside fan 82 is set to a lower rotation speed by the outside fan rotation speed correction means 108 than when the left chamber A is not heated by the heat pump operation. Thus, the operation rate of the inverter compressor 71 is increased as compared with the case where the left-side chamber A set for heating is not heated in the heat pump operation.

上記構成において、庫外熱交換器81は、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、加温設定の左庫内Aの庫内熱交換器51Aから流出して冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cに向かって流れる冷媒を外気との熱交換により冷却するが、この庫外熱交換器81に送風する庫外ファン82の回転数が庫外ファン回転数補正手段108により下がると、庫外熱交換器81を通過して熱交換する外気の送風量が減るので、庫外熱交換器81での冷媒と外気との熱交換量が減り、庫外熱交換器81から流出して冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cに流入する冷媒の温度(冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cでの冷媒の蒸発温度)が上がる。   In the above configuration, the external heat exchanger 81 flows out of the internal heat exchanger 51A of the left internal chamber A of the heating setting when cooling the left internal chamber A of the heating setting by the heat pump operation, and is set for cooling. The refrigerant flowing toward the internal heat exchangers 51 </ b> B and 51 </ b> C in the right internal warehouse B and the right internal warehouse C is cooled by heat exchange with the outside air, but the external fan 82 that blows air to the external heat exchanger 81 is used. When the rotational speed is lowered by the external fan rotational speed correcting means 108, the amount of the outside air that exchanges heat through the external heat exchanger 81 is reduced, so the heat of the refrigerant and the external air in the external heat exchanger 81 is reduced. The amount of exchange decreases, the temperature of the refrigerant flowing out of the external heat exchanger 81 and flowing into the internal heat exchangers 51B and 51C in the internal warehouse B and the internal right compartment C (cooling internal compartment B And the evaporating temperature of the refrigerant in the internal heat exchangers 51B and 51C of the right internal chamber C).

その結果、冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cにおいて互いに熱交換する冷媒と中庫内Bと右庫内Cの空気との温度差が小さくなり、冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cの冷却能力が低下するので、冷却設定の中庫内Bと右庫内Cの庫内温度検知手段(コラム内温度センサ41B,41C)が検知する庫内温度がサーモオフ設定温度または下限温度に到達するまでに要する時間が長くなって、インバータ圧縮機71の運転率が上がる。   As a result, the temperature difference between the refrigerant that exchanges heat with each other in the internal heat exchangers 51B and 51C in the internal storage B and the right internal C in the cooling setting and the air in the internal storage B and the right internal C is reduced. Since the cooling capacities of the internal heat exchangers 51B and 51C in the central storage B and the right internal C in the cooling setting are reduced, the internal temperature detection means (in the column) The time required for the internal temperature detected by the temperature sensors 41B, 41C) to reach the thermo-off set temperature or the lower limit temperature becomes longer, and the operation rate of the inverter compressor 71 increases.

したがって、ヒートポンプ運転で加温設定の左庫内Aを加温する時に、ヒートポンプ運転による加温の寄与率が増えてヒータ62Aによる加温の寄与率が減ることになり、全体として消費電力量を減らす(省エネルギーを図る)ことができる。   Therefore, when heating the left chamber A that is set for heating in the heat pump operation, the contribution ratio of the heating by the heat pump operation is increased and the contribution ratio of the heating by the heater 62A is reduced, and the power consumption is reduced as a whole. It can be reduced (to save energy).

さらに、冷却設定の中庫内Bと右庫内Cの庫内熱交換器51B,51Cでの冷媒の蒸発温度が上がることで冷凍サイクルの効率が上がり、冷却の消費電力量も減らすことができ、更なる省エネルギーを達成することができる。   Furthermore, the efficiency of the refrigeration cycle can be increased and the power consumption of cooling can be reduced by increasing the evaporation temperature of the refrigerant in the internal heat exchangers 51B and 51C in the central storage B and the right internal storage C. Further energy saving can be achieved.

(実施の形態2)
図5本発明の実施の形態2における物品冷却装置を備えた自動販売機の制御を示すフローチャートである。図6は同実施の形態の自動販売機の別の制御を示すフローチャートである。
(Embodiment 2)
5 is a flowchart showing the control of the vending machine provided with the article cooling device in Embodiment 2 of the present invention. FIG. 6 is a flowchart showing another control of the vending machine according to the embodiment.

本実施の形態は、運転制御手段104が、ヒートポンプ運転で加温設定の左庫内Aを加温している時に、ヒートポンプ運転で加温される加温設定の左庫内Aの庫内温度検知手段(コラム内温度センサ41A)が検知する庫内温度が加温停止温度より所定温度(1℃)だけ低い温度に到達すると、圧縮機回転数補正手段109によりインバータ圧縮機71の回転数を下げる点で、実施の形態1と異なっており、その他は実施の形態1と同様であるので、共通する部分については説明を省略する。   In the present embodiment, when the operation control means 104 is heating the left chamber A set for heating in the heat pump operation, the temperature in the left chamber A set for heating is set in the heat pump operation. When the internal temperature detected by the detection means (column temperature sensor 41A) reaches a temperature lower than the heating stop temperature by a predetermined temperature (1 ° C.), the compressor rotational speed correction means 109 causes the inverter compressor 71 to rotate. The lowering points are different from the first embodiment, and the others are the same as those of the first embodiment, and thus the description of common parts is omitted.

以上のように構成された本実施の形態の自動販売機21について、図5を参照しながら、以下その動作、作用を説明する。   The operation and action of the vending machine 21 of the present embodiment configured as described above will be described below with reference to FIG.

図5に示すように、運転状態判定手段105が、外気温度センサ100の値を入力処理部103から読み取り、ヒートポンプ運転の条件に入っているかどうかを確認する(図5のSTEP1)。   As shown in FIG. 5, the operation state determination unit 105 reads the value of the outside air temperature sensor 100 from the input processing unit 103 and confirms whether or not the heat pump operation condition is satisfied (STEP 1 in FIG. 5).

図5のSTEP2で、外気温度センサ100の値がヒートポンプ運転の条件(例えば、0℃以上かつ20℃以下)に入っていない場合は処理を終了し、入っている場合は、図5のSTEP3に進む。   In STEP2 of FIG. 5, when the value of the outside air temperature sensor 100 does not enter the condition of the heat pump operation (for example, 0 ° C. or more and 20 ° C. or less), the process is terminated. move on.

そして、図5のSTEP3では、左庫内Aが加温設定、中庫内Bと右庫内Cが冷却設定になり、四方弁92によりヒートポンプ運転用の冷媒流路に切り替えて、左庫内Aをヒートポンプ運転で加温するが、この時は、インバータ圧縮機71の運転率を上げる制御(例えば制御温度補正手段106が、冷却制御温度を1℃シフトダウンする(下げる))を行う。   In STEP 3 of FIG. 5, the left chamber A is heated, the middle chamber B and the right chamber C are cooled, and the four-way valve 92 switches to the refrigerant flow path for heat pump operation. A is heated by heat pump operation. At this time, control for increasing the operation rate of the inverter compressor 71 (for example, the control temperature correction means 106 shifts down (decreases) the cooling control temperature by 1 ° C.) is performed.

中庫内コラム内温度センサ41Bと右庫内コラム内温度センサ41Cの温度が1℃より高くて4℃より低いときに左庫内コラム内温度センサ41Aの温度が左庫内Aの加温停止温度より1℃低い温度に到達すると(図5のSTEP4)、圧縮機回転数補正手段109がインバータ圧縮機71の回転数を1段階減速するように補正し(図5のSTEP5)、運転制御手段104は圧縮機回転数補正手段109が補正した回転数でインバータ圧縮機71を動作させる。   When the temperature of the inner chamber temperature sensor 41B and the right chamber temperature sensor 41C is higher than 1 ° C. and lower than 4 ° C., the temperature of the left chamber temperature sensor 41A stops heating in the left chamber A When the temperature reaches 1 ° C. lower than the temperature (STEP 4 in FIG. 5), the compressor rotational speed correcting means 109 corrects the rotational speed of the inverter compressor 71 so as to decelerate by one step (STEP 5 in FIG. 5). 104 operates the inverter compressor 71 at the rotation speed corrected by the compressor rotation speed correction means 109.

そして6分後に左庫内コラム内温度センサ41Aにより測定した左庫内Aの温度が左庫内Aの加温停止温度に到達すれば、運転制御手段104は四方弁92を動作させて、インバータ圧縮機71から吐出された冷媒を加温設定の左庫内Aの庫内熱交換器51Aで凝縮させるヒートポンプ運転用の冷媒流路からインバータ圧縮機71から吐出された冷媒を加温設定の左庫内Aの庫内熱交換器51Aで凝縮させずに庫外熱交換器81に流して庫外熱交換器81で凝縮させる冷却運転用の冷媒流路に冷凍サイクルの冷媒流路を切り替える。   If the temperature in the left chamber A measured by the left column temperature sensor 41A reaches the warming stop temperature in the left chamber A after 6 minutes, the operation control means 104 operates the four-way valve 92 to The refrigerant discharged from the inverter compressor 71 from the refrigerant flow path for heat pump operation in which the refrigerant discharged from the compressor 71 is condensed by the internal heat exchanger 51A of the left internal A of the heating setting is set to the left. The refrigerant flow path of the refrigeration cycle is switched to a refrigerant flow path for cooling operation that is flown to the external heat exchanger 81 without being condensed by the internal heat exchanger 51A of the internal A and is condensed by the external heat exchanger 81.

左庫内Aの加温時の温度制御はヒータ62Aで行い、ヒートポンプ運転による加温を行うことにより、ヒータ62Aによる加温の消費電力量を減らしている。   The temperature control during the heating of the left chamber A is performed by the heater 62A, and the power consumption by the heater 62A is reduced by performing the heating by the heat pump operation.

もし、左庫内Aの左庫内コラム内温度センサ41Aの温度が左庫内Aの加温停止温度に到達した状態でヒートポンプ運転すると、左庫内Aの加温商品温度はヒートポンプ運転を行わない場合よりも高くなってしまう。   If the heat pump operation is performed in a state where the temperature in the left chamber temperature sensor 41A in the left chamber A reaches the heating stop temperature in the left chamber A, the heated product temperature in the left chamber A performs the heat pump operation. It will be higher than if not.

そこで、本実施の形態では、圧縮機回転数補正手段109が、ヒートポンプ運転中に左庫内コラム内温度センサ41A測定した温度が左庫内Aの加温停止温度より1℃低い温度に到達すると、圧縮機回転数補正手段109がインバータ圧縮機71の回転数を1段階減速する(低回転にする)ように補正する。運転制御手段104は圧縮機回転数補正手段109が補正した回転数でインバータ圧縮機71を制御する。   Therefore, in the present embodiment, when the compressor rotation speed correction means 109 reaches a temperature 1 ° C. lower than the heating stop temperature in the left chamber A, the temperature measured by the left column temperature sensor 41A during the heat pump operation. Then, the compressor rotation speed correction means 109 corrects the rotation speed of the inverter compressor 71 so as to reduce the rotation speed by one step (low rotation). The operation control means 104 controls the inverter compressor 71 with the rotation speed corrected by the compressor rotation speed correction means 109.

そのため、左庫内Aの加温商品温度がヒータ62Aのみで加温する場合よりも高くなることを抑制し、加温基準温度よりも高くなることを防止できる。   Therefore, it can suppress that the warming product temperature of A in the left warehouse becomes higher than the case where it heats only by heater 62A, and it can prevent becoming higher than heating reference temperature.

ゆえに、加温商品を加温基準温度の範囲内になるように加温制御することができる。   Therefore, the heating control can be performed so that the warmed product is within the range of the warming reference temperature.

なお、図5のSTEP5で、圧縮機回転数補正手段109によりインバータ圧縮機71の回転数を1段階減速する(低回転にする)代わりに、図6に示すように運転モード切替手段110によりヒートポンプ運転を停止させて(ヒートポンプ運転用の冷媒流路から冷却運転用の冷媒流路に冷凍サイクルの冷媒流路を切り替えて)もよい。   In STEP 5 of FIG. 5, instead of decelerating the rotation speed of the inverter compressor 71 by one step (lowering the rotation speed) by the compressor rotation speed correction means 109, the heat pump is operated by the operation mode switching means 110 as shown in FIG. The operation may be stopped (by switching the refrigerant flow path of the refrigeration cycle from the refrigerant flow path for heat pump operation to the refrigerant flow path for cooling operation).

この場合は、運転モード切替手段110が、ヒートポンプ運転を停止するように運転制御手段104に命令して、運転制御手段104が、四方弁92を動作させて、インバータ圧縮機71から吐出された冷媒を加温設定の左庫内Aの庫内熱交換器51Aで凝縮させるヒートポンプ運転用の冷媒流路からインバータ圧縮機71から吐出された冷媒を加温設定の左庫内Aの庫内熱交換器51Aで凝縮させずに庫外熱交換器81に流して庫外熱交換器81で凝縮させる冷却運転用の冷媒流路に冷凍サイクルの冷媒流路を切り替えて、圧縮機の運転率を冷却運転用の運転率に戻す。   In this case, the operation mode switching unit 110 instructs the operation control unit 104 to stop the heat pump operation, and the operation control unit 104 operates the four-way valve 92 to discharge the refrigerant discharged from the inverter compressor 71. The refrigerant discharged from the inverter compressor 71 from the refrigerant flow path for heat pump operation is condensed in the internal heat exchanger 51A of the left internal chamber A with heating setting. The refrigerant flow path of the refrigeration cycle is switched to the refrigerant flow path for cooling operation that flows to the external heat exchanger 81 without being condensed by the cooler 51A and is condensed by the external heat exchanger 81, thereby cooling the operation rate of the compressor. Return to the driving rate for driving.

左庫内Aの加温時の温度制御はヒータ62Aで行い、ヒートポンプ運転による加温を行うことにより、ヒータ62Aによる加温の消費電力量を減らしているが、ヒートポンプ運転を行うと、加温と冷却のバランスをとりながらインバータ圧縮機71制御することとなるので、ヒータ62A単独制御の場合よりも制御が複雑になってしまう。   The temperature control during the heating of the left chamber A is performed by the heater 62A, and the power consumption by the heater 62A is reduced by performing the heating by the heat pump operation. Since the inverter compressor 71 is controlled while balancing the cooling and the cooling, the control becomes more complicated than in the case of the heater 62A single control.

そこで、ヒートポンプ運転中に左庫内コラム内温度センサ41A測定した温度が左庫内Aの加温停止温度より1℃低い温度に到達すると、運転モード切替手段110が、ヒートポンプ運転を停止するように運転制御手段104に命令して、運転制御手段は四方弁92を動作させてインバータ圧縮機71から吐出した冷媒ガスが庫内熱交換器51Aに流すのではなく、庫外熱交換器81に流してヒートポンプ運転を停止させる。   Therefore, when the temperature measured by the left column temperature sensor 41A during the heat pump operation reaches a temperature that is 1 ° C. lower than the heating stop temperature in the left chamber A, the operation mode switching means 110 stops the heat pump operation. The operation control means instructs the operation control means 104 to operate the four-way valve 92 so that the refrigerant gas discharged from the inverter compressor 71 does not flow to the internal heat exchanger 51A but flows to the external heat exchanger 81. To stop the heat pump operation.

運転モード切替手段110によりヒートポンプ運転を停止させる場合は、より簡易的な制御で、左庫内Aの加温商品温度がヒータ62Aのみで加温する場合よりも高くなることを抑制し、加温基準温度よりも高くなることを防止できる。   When the heat pump operation is stopped by the operation mode switching means 110, the heating product temperature in the left warehouse A is suppressed from becoming higher than that when only the heater 62A is heated by simpler control, and heating is performed. It is possible to prevent the temperature from becoming higher than the reference temperature.

ゆえに、加温商品を加温基準温度の範囲内になるように加温制御することができる。また、ヒートポンプ運転で増加していた冷却の消費電力量の増加分を減らすことができる。   Therefore, the heating control can be performed so that the warmed product is within the range of the warming reference temperature. Further, it is possible to reduce the increase in power consumption of cooling that has been increased by the heat pump operation.

以上のように、本発明にかかる物品冷却装置は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることにより、ヒートポンプ加温による寄与率が増えて(ヒータ加温による寄与率が減って)、全体としての省エネルギーを図ることができるので、冬期にヒートポンプ運転して缶、瓶、PETボトルの容器に入った飲料商品を加温及び冷却販売する自動販売機に最適である。   As described above, the article cooling device according to the present invention operates the compressor more when heating the interior of the heating set in the heat pump operation than when heating the interior of the heating set in the heat pump operation. By increasing the rate, the contribution rate by heating the heat pump increases (the contribution rate by heating the heater decreases) and overall energy saving can be achieved. It is ideal for vending machines that sell and sell beverage products in containers.

21 自動販売機
41A,41B,41C コラム内温度センサ
51A,51B,51C 庫内熱交換器
61A,61B,61C 庫内ファン
62A ヒータ
71 インバータ圧縮機
81 庫外熱交換器
82 庫外ファン
92 四方弁
104 運転制御手段
105 運転状態判定手段
106 制御温度補正手段
107 庫内ファン回転数補正手段
108 庫外ファン回転数補正手段
109 圧縮機回転数補正手段
110 運転モード切替手段
A 左庫内
B 中庫内
C 右庫内
21 Vending machine 41A, 41B, 41C In-column temperature sensor 51A, 51B, 51C In-house heat exchanger 61A, 61B, 61C In-house fan 62A Heater 71 Inverter compressor 81 Out-of-house heat exchanger 82 Out-of-house fan 92 Four-way valve 104 Operation control means 105 Operating state determination means 106 Control temperature correction means 107 Internal fan rotation speed correction means 108 External fan rotation speed correction means 109 Compressor rotation speed correction means 110 Operation mode switching means A Left inside B Inside inside C Right warehouse

Claims (7)

1台の圧縮機と複数の庫内にそれぞれ配置された庫内熱交換器と庫外に配置された庫外熱交換器とを用いて冷却運転用の冷媒流路とヒートポンプ運転用の冷媒流路とに切替可能な冷凍サイクルを構成し、
ヒートポンプ運転で加温設定の庫内を加温する時に、運転制御手段が、前記冷凍サイクルをヒートポンプ運転用の冷媒流路に切替えた上で前記庫内熱交換器により冷却される冷却設定の庫内の温度が制御温度になるように前記圧縮機の運転を制御し、前記庫内熱交換器により加温される加温設定の庫内の温度が加温設定温度になるように、前記庫内熱交換器により加温される加温設定の庫内に配置されたヒータへの通電を制御する物品冷却装置であって、
前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とした物品冷却装置。
Refrigerant flow path for cooling operation and refrigerant flow for heat pump operation using one compressor, an in-compartment heat exchanger arranged in each of a plurality of compartments, and an outside heat exchanger arranged outside the compartment A refrigeration cycle that can be switched to
When the interior of the heating chamber is heated in the heat pump operation, the operation control means switches the refrigeration cycle to the refrigerant flow path for the heat pump operation and is cooled by the internal heat exchanger. The operation of the compressor is controlled so that the inside temperature becomes the control temperature, and the temperature in the heating setting chamber heated by the inside heat exchanger becomes the heating setting temperature. An article cooling device for controlling energization to a heater arranged in a heating setting chamber heated by an internal heat exchanger,
The operation control means increases the operation rate of the compressor when heating the interior of the heating set in the heat pump operation than when not heating the interior of the heating set in the heat pump operation. Article cooling device.
前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも、前記冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に前記庫内熱交換器により冷却される冷却設定の庫内の制御温度を下げることにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とした請求項1に記載の物品冷却装置。 The operation control means uses the refrigeration cycle as a refrigerant flow path for heat pump operation when heating the interior of the heating setting chamber during heat pump operation than when heating the interior of the heating chamber setting during heat pump operation. The operating rate of the compressor is increased by lowering the control temperature in the cooling-set chamber that is cooled by the internal heat exchanger during heating than when the heating pump is not heated in the heating pump. The article cooling apparatus according to claim 1, wherein: 前記庫内熱交換器により冷却または加温された空気を循環させる回転数可変の庫内ファンを各庫内に備え、
前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも、前記冷凍サイクルをヒートポンプ運転用の冷媒流路にしている時に前記庫内熱交換器により冷却される冷却設定の庫内の前記庫内ファンの回転数を高回転数にすることにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とした請求項1に記載の物品冷却装置。
Provided in each warehouse with an internal fan having a variable number of revolutions for circulating the air cooled or heated by the internal heat exchanger,
The operation control means uses the refrigeration cycle as a refrigerant flow path for heat pump operation when heating the interior of the heating setting chamber during heat pump operation than when heating the interior of the heating chamber setting during heat pump operation. By setting the number of rotations of the internal fan in the cooling setting chamber cooled by the internal heat exchanger to a high rotation number, the heating chamber is not heated in the heating setting. The article cooling apparatus according to claim 1, wherein an operating rate of the compressor is also increased.
前記庫外熱交換器に外気を送風する庫外ファンを備え、
前記庫外熱交換器は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温される加温設定の庫内の前記庫内熱交換器で凝縮した冷媒を外気との熱交換により冷却し、
前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温する時に、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記庫外ファンの回転数を低回転数にすることにより、ヒートポンプ運転で加温設定の庫内を加温しない時よりも前記圧縮機の運転率を上げることを特徴とした請求項1に記載の物品冷却装置。
An outside fan that blows outside air to the outside heat exchanger is provided,
The outside heat exchanger heats the refrigerant condensed by the inside heat exchanger in the heating setting chamber heated by the heat pump operation when the inside of the heating setting chamber is heated by the heat pump operation. Cooling by heat exchange,
The operation control means makes the rotation speed of the outside fan lower when the interior of the heating chamber is heated by the heat pump operation than when the heating chamber is not heated by the heat pump operation. The article cooling device according to claim 1, wherein the operation rate of the compressor is increased as compared with a case where the interior of the heating setting chamber is not heated by heat pump operation.
前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温している時に、ヒートポンプ運転で加温される加温設定の庫内の温度が前記ヒータによる加温を停止させる加温停止温度より所定温度だけ低い温度に到達すると、前記圧縮機の回転数を下げることを特徴とした請求項1から4のいずれか1項に記載の物品冷却装置。 The operation control means is a heating stop in which the temperature in the heating setting chamber heated by the heat pump operation stops heating by the heater when the heating setting chamber is heated in the heat pump operation. The article cooling device according to any one of claims 1 to 4, wherein when the temperature reaches a predetermined temperature lower than the temperature, the rotational speed of the compressor is decreased. 前記運転制御手段は、ヒートポンプ運転で加温設定の庫内を加温している時に、ヒートポンプ運転で加温される加温設定の庫内の温度が前記ヒータによる加温を停止させる加温停止温度より所定温度だけ低い温度に到達すると、前記圧縮機から吐出された冷媒を加温設定の庫内の前記庫内熱交換器で凝縮させるヒートポンプ運転用の冷媒流路から前記圧縮機から吐出された冷媒を加温設定の庫内の前記庫内熱交換器で凝縮させずに前記庫外熱交換器に流して前記庫外熱交換器で凝縮させる冷却運転用の冷媒流路に前記冷凍サイクルの冷
媒流路を切り替えることを特徴とした請求項1から5のいずれか1項に記載の物品冷却装置。
The operation control means is a heating stop in which the temperature in the heating setting chamber heated by the heat pump operation stops heating by the heater when the heating setting chamber is heated in the heat pump operation. When reaching a temperature lower than the temperature by a predetermined temperature, the refrigerant discharged from the compressor is discharged from the compressor through a refrigerant passage for heat pump operation that condenses the refrigerant in the internal heat exchanger in the heating set. The refrigeration cycle is supplied to the refrigerant flow path for cooling operation in which the refrigerant is allowed to flow through the external heat exchanger without being condensed by the internal heat exchanger in the heating setting chamber and is condensed by the external heat exchanger. The article cooling device according to claim 1, wherein the refrigerant flow path is switched.
請求項1から6のいずれか1項の物品冷却装置を備えた自動販売機。 A vending machine comprising the article cooling device according to any one of claims 1 to 6.
JP2013106874A 2013-05-21 2013-05-21 Article cooling device and vending machine equipped with the same Active JP6155466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106874A JP6155466B2 (en) 2013-05-21 2013-05-21 Article cooling device and vending machine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106874A JP6155466B2 (en) 2013-05-21 2013-05-21 Article cooling device and vending machine equipped with the same

Publications (2)

Publication Number Publication Date
JP2014228987A true JP2014228987A (en) 2014-12-08
JP6155466B2 JP6155466B2 (en) 2017-07-05

Family

ID=52128801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106874A Active JP6155466B2 (en) 2013-05-21 2013-05-21 Article cooling device and vending machine equipped with the same

Country Status (1)

Country Link
JP (1) JP6155466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168836A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Merchandise cooling/heating device and beverage vending machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078440A (en) * 2002-08-14 2004-03-11 Kubota Corp Cooling and heating device of vending machine
JP2009245192A (en) * 2008-03-31 2009-10-22 Fuji Electric Retail Systems Co Ltd Vending machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078440A (en) * 2002-08-14 2004-03-11 Kubota Corp Cooling and heating device of vending machine
JP2009245192A (en) * 2008-03-31 2009-10-22 Fuji Electric Retail Systems Co Ltd Vending machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168836A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Merchandise cooling/heating device and beverage vending machine

Also Published As

Publication number Publication date
JP6155466B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP2013089209A (en) Automatic vending machine
JP3003356B2 (en) Vending machine cooling and heating equipment
JP6155466B2 (en) Article cooling device and vending machine equipped with the same
JP2013190906A (en) Automatic vending machine
JP2000205672A (en) Refrigerating system
JP5899409B2 (en) Article cooling device and vending machine equipped with the same
JP5321241B2 (en) vending machine
JP4702101B2 (en) Refrigerator and vending machine
JP2010044678A (en) Vending machine
JP6131466B2 (en) Article cooling device and vending machine equipped with the same
JP5169383B2 (en) vending machine
JP5375333B2 (en) vending machine
JP2016114319A (en) Heating system
JP5948561B2 (en) Article cooling device and vending machine equipped with the same
JP2013084073A (en) Automatic vending machine
JP5418037B2 (en) vending machine
JP6455752B2 (en) Refrigeration system
JP6326621B2 (en) vending machine
JP2016170691A (en) Automatic vending machine
JP2012008828A (en) Automatic vending machine
JP6256834B2 (en) vending machine
JP5434423B2 (en) vending machine
JP2023079334A (en) refrigerator
JP5516150B2 (en) vending machine
JP5240017B2 (en) vending machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6155466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151