JP2014228090A - Air temperature evaporator - Google Patents

Air temperature evaporator Download PDF

Info

Publication number
JP2014228090A
JP2014228090A JP2013109539A JP2013109539A JP2014228090A JP 2014228090 A JP2014228090 A JP 2014228090A JP 2013109539 A JP2013109539 A JP 2013109539A JP 2013109539 A JP2013109539 A JP 2013109539A JP 2014228090 A JP2014228090 A JP 2014228090A
Authority
JP
Japan
Prior art keywords
evaporation
blower
horizontal projection
evaporator
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013109539A
Other languages
Japanese (ja)
Other versions
JP2014228090A5 (en
JP6002630B2 (en
Inventor
英明 舘田
Hideaki Tateda
英明 舘田
薫 長谷川
Kaoru Hasegawa
薫 長谷川
公一 久穂
Koichi Kubo
公一 久穂
秀司 帰山
Hideji Kaeriyama
秀司 帰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
SDAT Co Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Showa Denko Aluminum Trading KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Showa Denko Aluminum Trading KK filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2013109539A priority Critical patent/JP6002630B2/en
Publication of JP2014228090A publication Critical patent/JP2014228090A/en
Publication of JP2014228090A5 publication Critical patent/JP2014228090A5/ja
Application granted granted Critical
Publication of JP6002630B2 publication Critical patent/JP6002630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air temperature evaporator having improved cost effectiveness that possibly extends continuous operating time.SOLUTION: An air temperature evaporator comprises: a casing 21 provided above an evaporation unit 2; an impeller 22 arranged in the casing 21; and a blower 20 feeding ambient air toward a part of a plurality of evaporation tubes 8. A horizontal projection area of the impeller 22 is set to fall within a range of one-sixteenth to one-nineteenth of an entire horizontal projection area. A center of a horizontal projected image of the impeller 22 is located closer to a liquefied gas inlet 10 relative to a center of an entire horizontal projected image. Assuming that a linear distance in a horizontal direction and a linear direction in a longitudinal direction of the entire horizontal projected image are L1 and L2, respectively and that a linear distance in the horizontal direction and a linear distance in the longitudinal direction between the center of the horizontal projected image of the impeller 22 and the center of the entire horizontal projected image are L3 and L4, respectively, a relation of L3≤1/3×L1 and L4≤1/6×L2 is satisfied.

Description

この発明は、空温式蒸発器に関する。   The present invention relates to an air temperature evaporator.

この明細書および特許請求の範囲において、図1の上下、左右を上下、左右といい、図1の紙面表側(図2の下側)を前、これと反対側を後というものとする。   In this specification and claims, the top and bottom, left and right in FIG. 1 are referred to as top and bottom and left and right, and the front side of FIG. 1 (the bottom side in FIG. 2) is the front, and the opposite side is the back.

たとえば天然ガス、酸素、窒素、アルゴン、ヘリウム、水素、炭酸ガス、メタン、プロパン、エチレンなどのガスは、輸送時や貯蔵時には、タンクの容量を小さくするために液化した状態で蓄えられている。そして、需要に応じて空温式蒸発器により再気化されて使用されるようになっている。   For example, natural gas, oxygen, nitrogen, argon, helium, hydrogen, carbon dioxide, methane, propane, ethylene, and other gases are stored in a liquefied state in order to reduce the capacity of the tank during transportation and storage. And according to demand, it is re-vaporized and used by an air temperature evaporator.

従来、このような空温式蒸発器としては、たとえば蒸発部および加温部を備えており、蒸発部が、長手方向を左右方向に向けた状態で上下方向に間隔をおいて互いに平行に配された1対の水平状マニホールド管と、外周面にフィンが設けられており、かつ両マニホールド管間に長手方向を上下方向に向けて配置されて上下両端部がそれぞれ両マニホールド管に接続されたフィン付き蒸発管とよりなる蒸発ユニットを、マニホールド管およびフィン付き蒸発管と直交する方向に間隔をおいて複数配置することにより構成されており、各蒸発ユニットの下マニホールド管の一端が、長手方向を前後方向に向けて配された水平状の入口ヘッダ管に接続されるとともに入口ヘッダ管の前後方向の中央部に液化ガス入口が設けられ、下マニホールド管の他端部が閉鎖され、上マニホールド管における下マニホールド管の入口ヘッダ管への接続端部と同一端部が閉鎖され、加温部が、外周面にフィンが設けられた蛇行状のフィン付き加温管を、蒸発部の蒸発ユニットが並んだ方向に間隔をおいて複数配置することにより構成されており、各フィン付き加温管の一端部が各蒸発ユニットの上マニホールド管の他端部に接続され、各フィン付き加温管の他端部が、長手方向を前後方向に向けて配された水平状の出口ヘッダ管に接続され、出口ヘッダ管の前後方向の中央部に気化ガス出口が設けられ、液化ガス入口から入口ヘッダ管を経て下マニホールド管内に流入した液化ガスが、全てのフィン付き蒸発管に分流し、フィン付き蒸発管を上昇する間に気化して上マニホールド管内に流入し、気化ガスが加温部のフィン付き加温管に流入するとともに、フィン付き加温管内を流れる間に所定温度に加温され、加温された気化ガスが出口ヘッダ管を経て気化ガス出口から流出するようになされた、所謂自然空温式蒸発器が知られている。   Conventionally, such an air-temperature evaporator has, for example, an evaporation section and a heating section, and the evaporation sections are arranged in parallel to each other with an interval in the vertical direction with the longitudinal direction facing the left-right direction. A pair of horizontal manifold pipes, fins are provided on the outer peripheral surface, and the longitudinal direction is arranged between the two manifold pipes so that the upper and lower ends are connected to the two manifold pipes, respectively. Evaporation units consisting of finned evaporation pipes are arranged at intervals in the direction perpendicular to the manifold pipes and finned evaporation pipes. One end of the lower manifold pipe of each evaporation unit is in the longitudinal direction. Is connected to a horizontal inlet header pipe arranged in the front-rear direction, and a liquefied gas inlet is provided at the center in the front-rear direction of the inlet header pipe. The end of the upper manifold pipe is closed at the same end as the connection end of the lower manifold pipe to the inlet header pipe, and the heating section is heated with meandering fins with fins on the outer peripheral surface. A plurality of tubes are arranged at intervals in the direction in which the evaporation units of the evaporation section are arranged, and one end of each finned heating tube is connected to the other end of the upper manifold tube of each evaporation unit The other end of each finned heating pipe is connected to a horizontal outlet header pipe arranged with its longitudinal direction directed in the front-rear direction, and a vaporized gas outlet is provided at the center in the front-rear direction of the outlet header pipe The liquefied gas that has flowed from the liquefied gas inlet through the inlet header pipe into the lower manifold pipe is diverted to all the finned evaporator pipes, vaporized while ascending the finned evaporator pipe, and flows into the upper manifold pipe, Vaporized gas It flows into the heating tube with fins of the heating unit, and is heated to a predetermined temperature while flowing in the heating tube with fins, so that the heated vaporized gas flows out from the vaporized gas outlet through the outlet header tube. A so-called natural air temperature evaporator made is known.

しかしながら、従来の自然空温式蒸発器では、液化ガス入口から入口ヘッダ管を経て下マニホールド管内に流入する液化ガスの温度が極低温(たとえば、液化酸素=−183℃)であるから、フィン付き蒸発管の外表面の下部に霜が付着するとともに付着した霜が比較的短時間で径方向外側および上方に成長し、伝熱効率が低下して熱交換を阻害することになる。しかも、自然空温式蒸発器の稼働中の外気温の変動や、気化させるガス量の変動に起因して、フィン付き蒸発管のアウターフィンの上部に付着した霜が溶解して下方に流れるとともに再凝固し、フィン付き蒸発管のアウターフィンの下部に氷塊が生成するので、当該氷塊によっても伝熱効率が低下して熱交換を阻害する。また、各フィン付き蒸発管のアウターフィンへの着霜量および着氷量にはばらつきがあるので、フィン付き蒸発管毎に蒸発性能に差が生じ、その結果各フィン付き蒸発管内の液面の高さが異なったものとなって各フィン付き蒸発管の温度が異なることになる。したがって、各フィン付き蒸発管の熱収縮量が異なることになって、一部のフィン付き蒸発管に比較的大きな熱応力が発生し、自然空温式蒸発器の損傷の原因となることがある。その結果、フィン付き蒸発管のアウターフィンに付着した霜や氷塊を除去する解霜・解氷作業を、自然空温式蒸発器の運転を停止して定期的に行う必要がある。   However, in the conventional natural air temperature type evaporator, since the temperature of the liquefied gas flowing from the liquefied gas inlet through the inlet header pipe into the lower manifold pipe is extremely low (for example, liquefied oxygen = -183 ° C.), fins are provided. Frost adheres to the lower part of the outer surface of the evaporator tube, and the adhering frost grows radially outward and upward in a relatively short time, reducing the heat transfer efficiency and hindering heat exchange. Moreover, due to fluctuations in the outside air temperature during operation of the natural air temperature evaporator and fluctuations in the amount of gas to be vaporized, frost adhering to the upper part of the outer fin of the finned evaporator tube melts and flows downward. Since it resolidifies and an ice block is generated below the outer fins of the finned evaporator tube, the heat transfer efficiency is lowered by the ice block and the heat exchange is inhibited. In addition, since the amount of frosting and the amount of icing on the outer fin of each evaporation tube with fins varies, there is a difference in evaporation performance between the evaporation tubes with fins, and as a result, the liquid level in each evaporation tube with fins The temperature of each finned evaporator tube will be different due to the different heights. Therefore, the amount of heat shrinkage of each finned evaporator tube is different, and a relatively large thermal stress is generated in some finned evaporator tubes, which may cause damage to the natural air temperature evaporator. . As a result, it is necessary to periodically perform defrosting and defrosting operations for removing frost and ice blocks adhering to the outer fins of the finned evaporator tube while stopping the operation of the natural air temperature evaporator.

特に、自然空温式蒸発器の蒸発部のフィン付き蒸発管の数が多くなると、内側に配置されたフィン付き蒸発管においては、外周部に配置されたフィン付き蒸発管に比べて、外側に存在する大気の熱の影響を受けにくくなるので、内側に配置されたフィン付き蒸発管の周囲の大気温度は、外側に配置されたフィン付き蒸発管の周囲の大気温度に比べて著しく低下し、上述した着霜や霜の成長が顕著になって、各フィン付き蒸発管への着霜量にばらつきが発生してフィン付き蒸発管毎に蒸発性能に差が生じる。そして、上述した解霜・解氷作業を実施する時期は、多量の着霜が生じる内側のフィン付き蒸発管を基準にして決める必要があるので、自然空温式蒸発器の連続運転時間が、着霜量の多い蒸発部の内側のフィン付き蒸発管に基づいて決められることになり、著しく短くなるおそれがある。   In particular, when the number of finned evaporator tubes in the evaporator section of the natural air temperature evaporator increases, the finned evaporator tubes arranged on the inner side are more outward than the finned evaporator tubes arranged on the outer periphery. Since it is less susceptible to the heat of the existing atmosphere, the ambient temperature around the finned evaporator tube placed inside is significantly lower than the ambient temperature around the finned evaporator tube placed outside, The above-described frost formation and frost growth become prominent, and the amount of frost formation on each finned evaporator tube varies, resulting in a difference in evaporation performance for each finned evaporator tube. And, since it is necessary to determine the timing of performing the above-described defrosting / defrosting operation with reference to the inner finned evaporator tube where a large amount of frost formation occurs, the continuous operation time of the natural air temperature evaporator is It will be decided based on the evaporation pipe with fins inside the evaporation section with a large amount of frost formation, and there is a possibility that it will be remarkably shortened.

上記問題を解決するために、本出願人は、先に、上述した自然空温式蒸発器において、フィン付き蒸発管の近傍に、フィン付き蒸発管の周囲の空気の温度よりも高温の気体を各蒸発管の少なくとも下部に向かって吹き出す吹き出し管が配置されている空温式蒸発器を提案した(特許文献1参照)。   In order to solve the above-mentioned problem, the applicant of the present invention previously introduced a gas having a temperature higher than the temperature of the air around the finned evaporator tube in the vicinity of the finned evaporator tube in the natural air temperature evaporator described above. The air temperature type | formula evaporator with which the blowing pipe which blows off toward the at least lower part of each evaporation pipe was arrange | positioned was proposed (refer patent document 1).

しかしながら、特許文献1記載の空温式蒸発器によれば、蒸発管の周囲の空気の温度よりも高温の気体を、吹き出し管を通して各蒸発管の少なくとも下部に向かって吹き出すのに必要とするエネルギに対して、高温気体の吹き出し量が少なく、費用対効果が低くなるという問題がある。   However, according to the air temperature type evaporator described in Patent Document 1, the energy required for blowing out a gas having a temperature higher than the temperature of the air around the evaporation pipe through the blowing pipe toward at least the lower part of each evaporation pipe. On the other hand, there is a problem that the amount of hot gas blown out is small and the cost effectiveness is low.

特開2011−52744号公報JP 2011-52744 A

この発明の目的は、上記問題を解決し、連続稼働時間を延長しうる費用対効果を向上した空温式蒸発器を提供することにある。   An object of the present invention is to provide an air temperature evaporator that solves the above-described problems and has an improved cost-effectiveness that can extend continuous operation time.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けて配置された複数の液化ガス蒸発管を有する蒸発部と、蒸発部で液化ガスを蒸発させることにより得られた気化ガスを加温する複数の加温管を有する加温部とを備え、蒸発部における加温部とは反対側の端部に液化ガス入口が設けられるとともに、加温部における蒸発部とは反対側の端部に気化ガス出口が設けられており、液化ガス入口から流入した液化ガスが分流して全液化ガス蒸発管内に下端から流入し、液化ガス蒸発管内を上昇する間に大気から熱を奪って蒸発して気化ガスとなり、ついで気化ガスが加温管内に流入してその内部を流れる間に大気により加温され、気化ガス出口から流出するようになっている空温式蒸発器において、
蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部および加温部を含む全体の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部および加温部を含む全体の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部および加温部を含む全体の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部および加温部を含む全体の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/3×L1、L4≦1/6×L2という関係を満たしている空温式蒸発器。
1) An evaporation section having a plurality of liquefied gas evaporation pipes arranged with the longitudinal direction facing the vertical direction, and a plurality of heating pipes for heating the vaporized gas obtained by evaporating the liquefied gas in the evaporation section. A liquefied gas inlet is provided at the end of the evaporating part opposite to the heating part, and a vaporized gas outlet is provided at the end of the heating part opposite to the evaporating part. The liquefied gas flowing in from the liquefied gas inlet is divided and flows into the entire liquefied gas evaporation pipe from the lower end. While rising in the liquefied gas evaporation pipe, heat is taken away from the atmosphere to evaporate into vaporized gas, and then vaporized. In the air temperature evaporator in which the gas flows into the heating pipe and flows through the inside thereof, it is heated by the atmosphere and flows out from the vaporized gas outlet.
Above the evaporation section, there is provided a blower that has a casing formed with a discharge port facing downward and an impeller disposed in the casing, and sends air to a plurality of evaporation tubes. The horizontal projection area of the blower impeller is in the range of 1/16 to 1/9 of the entire horizontal projection area including the evaporation section and the heating section, and the center of the horizontal projection view of the blower impeller is A linear distance in the horizontal direction and a linear distance in the front-rear direction of the entire horizontal projection including the evaporation unit and the heating unit, located on the liquefied gas inlet side from the center of the entire horizontal projection including the evaporation unit and the heating unit. L1 and L2, respectively, L3 and L3 represent the linear distance in the left-right direction and the linear distance in the front-rear direction between the center of the horizontal projection of the impeller of the blower and the center of the entire horizontal projection including the evaporator and the heating unit, respectively. When L4, L3 ≦ / 3 × L1, L4 air temperature evaporator meets the relationship of ≦ 1/6 × L2.

2)長手方向を上下方向に向けて配置された複数の液化ガス蒸発管を有する蒸発部を備え、蒸発部の一端部に液化ガス入口が設けられるとともに、他端部に気化ガス出口が設けられており、液化ガス入口から流入した液化ガスが分流して全液化ガス蒸発管内に下端から流入し、液化ガス蒸発管内を上昇する間に大気から熱を奪って蒸発して気化ガスとなり、気化ガスが気化ガス出口から流出するようになっている空温式蒸発器において、
蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/6×L1、L4≦1/6×L2という関係を満たしている空温式蒸発器。
2) Equipped with an evaporation section having a plurality of liquefied gas evaporation pipes arranged with the longitudinal direction oriented in the vertical direction, a liquefied gas inlet is provided at one end of the evaporation section, and a vaporized gas outlet is provided at the other end. The liquefied gas flowing in from the liquefied gas inlet is divided and flows into the entire liquefied gas evaporation pipe from the lower end. While rising in the liquefied gas evaporation pipe, it takes heat from the atmosphere and evaporates to become a vaporized gas. In an air-temperature evaporator in which the gas flows out from the vaporized gas outlet,
Above the evaporation section, there is provided a blower that has a casing formed with a discharge port facing downward and an impeller disposed in the casing, and sends air to a plurality of evaporation tubes. The horizontal projection area of the fan impeller is in the range of 1/16 to 1/9 of the horizontal projection area of the evaporator, and the center of the horizontal projection of the fan impeller is the center of the horizontal projection of the evaporator. Located on the liquefied gas inlet side of the center, L1 and L2 respectively represent the linear distance in the horizontal direction and the linear distance in the front-rear direction of the horizontal projection view of the evaporator, the center of the horizontal projection view of the impeller of the blower, Air temperature satisfying the relationship of L3 ≦ 1/6 × L1 and L4 ≦ 1/6 × L2, where L3 and L4 are the linear distance in the left-right direction and the linear distance in the front-rear direction from the center of the horizontal projection, respectively. Type evaporator.

3)蒸発部と送風機の羽根車との上下方向の距離が、送風機の羽根車のファン径の1/3〜1の範囲内にある上記1)または2)記載の空温式蒸発器。   3) The air-temperature evaporator according to 1) or 2) above, wherein the vertical distance between the evaporator section and the impeller of the blower is within a range of 1/3 to 1 of the fan diameter of the impeller of the blower.

4)送風機のケーシングに、吐出口に向かって徐々に絞られた絞り部が設けられている上記1)〜3)のうちのいずれかに記載の空温式蒸発器。   4) The air-temperature evaporator according to any one of 1) to 3) above, wherein a throttle part that is gradually throttled toward the discharge port is provided in the casing of the blower.

5)送風機が、送風機用架構に前後方向に移動自在に設けられている上記1)〜4)のうちのいずれかに記載の空温式蒸発器。   5) The air-temperature evaporator according to any one of 1) to 4), wherein the blower is provided on the frame for the blower so as to be movable in the front-rear direction.

6)送風機用架構に、前後方向にのびる1対のレールが設けられており、送風機に、両レールに沿って転動する車輪が設けられている上記5)記載の空温式蒸発器。   6) The air-temperature evaporator according to 5) above, wherein the blower frame is provided with a pair of rails extending in the front-rear direction, and the blower is provided with wheels that roll along both rails.

7)送風機用架構の上部に点検歩廊が設けられている上記1)〜6)のうちのいずれかに記載の空温式蒸発器。   7) The air-temperature evaporator according to any one of 1) to 6) above, wherein an inspection corridor is provided at an upper portion of the blower frame.

上記1)、3)〜7)の空温式蒸発器によれば、蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部および加温部を含む全体の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部および加温部を含む全体の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部および加温部を含む全体の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部および加温部を含む全体の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/3×L1、L4≦1/6×L2という関係を満たしているので、送風機によって下方に比較的温度の高い大気を送ることができ、蒸発部の内側に存在する蒸発管の表面が暖められる。したがって、蒸発管の外表面への着霜が抑制され、比較的短時間での伝熱効率の低下が防止されることになって、空温式蒸発器の連続稼働時間を長くすることが可能になる。また、空温式蒸発器の連続稼働時間を長くすることができるので、液化ガスを再気化させる際に、複数の空温式蒸発器が組み合わされて用いられ、かつ複数の空温式蒸発器のうちの少なくとも1台の空温式蒸発器が順次選択的に稼働させられるとともに、残りの空温式蒸発器が順次停止させられる場合であっても、停止している空温式蒸発器の停止時間も長くすることが可能となり、自然解氷が可能になって強制解氷が不要になったり、強制解氷に要する時間を短縮することができて、解氷作業が簡単になる。さらに、送風機により送られる大気によって、蒸発管の周囲の空気も暖められるので、空温式蒸発器の稼働時の大量の霧の発生を防止することができる。したがって、別途消霧装置を設置する必要がなくなり、コストが安くなる。   According to the air temperature type evaporators of the above 1), 3) to 7), it has a casing formed with a discharge port facing downward and an impeller disposed in the casing above the evaporation section, and A blower that sends air toward some of the plurality of evaporator tubes is provided, and the horizontal projection area of the impeller of the blower is 1/16 to 1/1 of the entire horizontal projection area including the evaporation section and the heating section. 9 and the center of the horizontal projection of the blower impeller is located closer to the liquefied gas inlet side than the center of the entire horizontal projection including the evaporation unit and the heating unit, and the evaporation unit and the heating unit L1 and L2 respectively represent the linear distance in the left-right direction and the linear distance in the front-rear direction of the entire horizontal projection including the center of the horizontal projection of the blower impeller, and the entire horizontal projection including the evaporation section and the heating section. The straight-line distance in the left-right direction and the straight-line distance in the front-rear direction from the center of the When L3 and L4 are satisfied, the relationship of L3 ≦ 1/3 × L1 and L4 ≦ 1/6 × L2 is satisfied, so the air having a relatively high temperature can be sent downward by the blower, The inner surface of the evaporator tube is warmed. Therefore, frost formation on the outer surface of the evaporator tube is suppressed, and a decrease in heat transfer efficiency in a relatively short time is prevented, so that the continuous operation time of the air temperature evaporator can be extended. Become. Further, since the continuous operation time of the air temperature evaporator can be extended, a plurality of air temperature evaporators are used in combination when re-vaporizing the liquefied gas, and the plurality of air temperature evaporators are used. At least one of the air-temperature evaporators is selectively operated sequentially, and even if the remaining air-temperature evaporators are sequentially stopped, The stop time can be extended, natural ice melting becomes possible and forced ice melting becomes unnecessary, or the time required for forced ice melting can be shortened, so that the ice melting operation is simplified. Furthermore, since the air around the evaporator tube is also warmed by the air sent by the blower, it is possible to prevent the generation of a large amount of fog when the air temperature evaporator is in operation. Therefore, it is not necessary to install a separate anti-fogging device, and the cost is reduced.

上記2)、3)〜7)の空温式蒸発器によれば、蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/3×L1、L4≦1/6×L2という関係を満たしているので、送風機によって下方に比較的温度の高い大気を送ることができ、蒸発部の内側に存在する蒸発管の表面が暖められる。したがって、蒸発管の外表面への着霜が抑制され、比較的短時間での伝熱効率の低下が防止されることになって、空温式蒸発器の連続稼働時間を長くすることが可能になる。また、空温式蒸発器の連続稼働時間を長くすることができるので、液化ガスを再気化させる際に、複数の空温式蒸発器が組み合わされて用いられ、かつ複数の空温式蒸発器のうちの少なくとも1台の空温式蒸発器が順次選択的に稼働させられるとともに、残りの空温式蒸発器が順次停止させられる場合であっても、停止している空温式蒸発器の停止時間も長くすることが可能となり、自然解氷が可能になって強制解氷が不要になったり、強制解氷に要する時間を短縮することができて、解氷作業が簡単になる。また、送風機により送られる大気によって、蒸発管の周囲の空気も暖められるので、空温式蒸発器の稼働時の大量の霧の発生を防止することができる。したがって、別途消霧装置を設置する必要がなくなり、コストが安くなる。   According to the air temperature type evaporator of the above 2), 3) to 7), it has a casing formed with a discharge port facing downward and an impeller disposed in the casing above the evaporation section, and A blower that sends air toward some of the plurality of evaporation pipes is provided, and the horizontal projection area of the blower impeller is in the range of 1/16 to 1/9 of the horizontal projection area of the evaporation unit, The center of the horizontal projection of the blower impeller is located closer to the liquefied gas inlet side than the center of the horizontal projection of the evaporator, and the horizontal distance in the horizontal direction and the linear distance in the front-rear direction of the horizontal projection of the evaporator are respectively shown. L1 and L2, L3 ≦ 1 /, where L3 and L4 are the linear distance in the horizontal direction and the linear distance in the front-rear direction between the center of the horizontal projection of the fan impeller and the center of the horizontal projection of the evaporator, respectively. Satisfying the relationship of 3 × L1, L4 ≦ 1/6 × L2 Therefore, air with a relatively high temperature can be sent downward by the blower, and the surface of the evaporation pipe existing inside the evaporation section is warmed. Therefore, frost formation on the outer surface of the evaporator tube is suppressed, and a decrease in heat transfer efficiency in a relatively short time is prevented, so that the continuous operation time of the air temperature evaporator can be extended. Become. Further, since the continuous operation time of the air temperature evaporator can be extended, a plurality of air temperature evaporators are used in combination when re-vaporizing the liquefied gas, and the plurality of air temperature evaporators are used. At least one of the air-temperature evaporators is selectively operated sequentially, and even if the remaining air-temperature evaporators are sequentially stopped, The stop time can be extended, natural ice melting becomes possible and forced ice melting becomes unnecessary, or the time required for forced ice melting can be shortened, so that the ice melting operation is simplified. Moreover, since the air around the evaporator tube is also warmed by the air sent by the blower, it is possible to prevent a large amount of fog from being generated when the air temperature evaporator is in operation. Therefore, it is not necessary to install a separate anti-fogging device, and the cost is reduced.

上記3)の空温式蒸発器によれば、送風機によって蒸発部の内側に配置された蒸発管に向かって効率良く大気を送ることができる。   According to the air temperature type evaporator of 3) above, it is possible to efficiently send the atmosphere toward the evaporation pipe disposed inside the evaporation unit by the blower.

上記4)の空温式蒸発器によれば、羽根車の中心部に対応する位置に生じる風が送られない部分の範囲を低減することができる。   According to the air temperature type evaporator of the above 4), the range of the portion where the wind generated at the position corresponding to the center portion of the impeller is not sent can be reduced.

上記5)および6)の空温式蒸発器によれば、送風機のメンテナンス時に、送風機を前方または後方に移動させることによって、蒸発部の外側寄りに位置させることができるので、メンテナンス作業が比較的簡単になる。   According to the air temperature type evaporators of 5) and 6) above, during maintenance of the blower, by moving the blower forward or backward, it can be positioned closer to the outside of the evaporation unit, so that the maintenance work is relatively It will be easy.

上記7)の空温式蒸発器によれば、送風機のメンテナンス時の作業性を向上させることができる。   According to the air temperature evaporator of the above 7), workability at the time of maintenance of the blower can be improved.

この発明による空温式蒸発器の全体構成を示す正面図である。It is a front view which shows the whole structure of the air temperature type evaporator by this invention. 図1に示す空温式蒸発器を若干拡大して示す平面図である。It is a top view which expands and shows the air temperature type evaporator shown in FIG. 1 a little. 図1の要部を示す部分拡大図である。It is the elements on larger scale which show the principal part of FIG. 図1の空温式蒸発器の蒸発部および加温部を含む全体および送風機の羽根車の水平投影図である。It is the horizontal projection figure of the whole and the impeller of an air blower including the evaporation part and heating part of the air temperature type evaporator of FIG.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2は空温式蒸発器の全体構成を示し、図3はその要部の構成を示す。また、図4は図1の空温式蒸発器の蒸発部および加温部を含む全体および送風機の羽根車の水平投影図を示す。   1 and 2 show the overall configuration of the air temperature evaporator, and FIG. 3 shows the configuration of the main part thereof. FIG. 4 shows a horizontal projection view of the whole of the air temperature type evaporator of FIG. 1 including the evaporation section and the heating section and the impeller of the blower.

図1および図2において、空温式蒸発器(1)は、複数の蒸発ユニット(3)を前後方向に間隔をおいて並列状に配置することにより構成された蒸発部(2)と、複数の蛇行状フィン付き加温管(5)を前後方向に間隔をおいて並列状に配置することにより構成された加温部(4)とを備えている。   1 and 2, the air-temperature evaporator (1) includes a plurality of evaporation units (2) configured by arranging a plurality of evaporation units (3) in parallel in the front-rear direction, and a plurality of evaporation units (3). And a heating section (4) configured by arranging the meandering finned heating pipes (5) in parallel in the front-rear direction.

各蒸発ユニット(3)は、長手方向を左右方向に向けた状態で上下方向に間隔をおいて互いに平行に配された1対の水平状マニホールド管(6)(7)と、両マニホールド管(6)(7)間に長手方向を上下方向に向けた状態で左右方向に間隔をおいて配されかつ上下両端部がそれぞれ上下マニホールド管(6)(7)に接続された複数の複数の垂直状フィン付き蒸発管(8)とよりなる。したがって、蒸発部(2)は、複数の蒸発ユニット(3)を、マニホールド管(6)(7)およびフィン付き蒸発管(8)と直交する方向に並列状に配置することにより構成されている。   Each evaporating unit (3) has a pair of horizontal manifold pipes (6) (7) arranged in parallel with each other at an interval in the vertical direction with the longitudinal direction directed in the left-right direction, and both manifold pipes ( 6) (7) A plurality of verticals arranged in the left-right direction with the longitudinal direction facing up and down, and whose upper and lower ends are respectively connected to the upper and lower manifold pipes (6) and (7). And an evaporating tube (8) with fins. Accordingly, the evaporation section (2) is configured by arranging a plurality of evaporation units (3) in parallel in a direction orthogonal to the manifold tubes (6) (7) and the finned evaporation tubes (8). .

すべての蒸発ユニット(3)の上マニホールド管(6)の左右両端はそれぞれ閉鎖されている。すべての蒸発ユニット(3)の下マニホールド管(7)の左端は、前後方向にのびかつ両端が閉鎖された入口ヘッダ管(9)に接続されている。入口ヘッダ管(9)の長さ方向の中央部には液化ガス入口(10)が設けられている。また、すべての蒸発ユニット(3)の下マニホールド管(7)の右端はそれぞれ閉鎖されている。   The left and right ends of the upper manifold pipes (6) of all the evaporation units (3) are closed. The left end of the lower manifold pipe (7) of all the evaporation units (3) is connected to an inlet header pipe (9) extending in the front-rear direction and closed at both ends. A liquefied gas inlet (10) is provided at the center in the length direction of the inlet header pipe (9). Further, the right ends of the lower manifold pipes (7) of all the evaporation units (3) are closed.

各蒸発ユニット(3)のフィン付き蒸発管(8)は、たとえばアルミニウム押出形材からなる横断面円形のものであり、外周面全体に上下方向にのびる複数のアウターフィンが周方向に間隔をおいて放射状に一体に形成されたものである。アウターフィンの上下両端の所定長さ部分は、フィン付き蒸発管(8)の上下両端を上下マニホールド管(6)(7)に接続する際の作業性を考慮して所定長さにわたって切除されている。なお、図示は省略したが、蒸発部(2)において、前後方向および左右方向に隣接するフィン付き蒸発管(8)のアウターフィンは、上下両端寄りの部分において連結部材により連結されていてもよい。   The evaporation pipe (8) with fins of each evaporation unit (3) has a circular cross section made of, for example, an aluminum extruded profile, and a plurality of outer fins extending vertically on the entire outer peripheral surface are spaced apart in the circumferential direction. And are integrally formed radially. The upper and lower ends of the outer fin are cut to a predetermined length in consideration of workability when connecting the upper and lower ends of the finned evaporation pipe (8) to the upper and lower manifold pipes (6) and (7). Yes. Although illustration is omitted, in the evaporation section (2), the outer fins of the finned evaporation pipe (8) adjacent to each other in the front-rear direction and the left-right direction may be connected by connecting members at portions near both the upper and lower ends. .

加温部(4)は、各フィン付き加温管(5)を、前後方向に関して蒸発ユニット(2)と対応する位置に来るように、蒸発部(2)の右側において前後方向に間隔をおいて配置することにより構成されている。各フィン付き加温管(5)は、たとえば長手方向を上下方向に向けた複数の直管状フィン付き加温管(11)をUベンド(12)を介して連通状に接続することにより形成されている。直管状フィン付き加温管(11)は、蒸発ユニット(2)のフィン付き蒸発管(8)と同様な構成である。各フィン付き加温管(5)の一端は、各蒸発ユニット(2)の上マニホールド管(6)の右端寄りの位置に接続され、同じく他端は、加温部(4)の下方に配され、かつ長手方向を前後方向に向けて配されるとともに両端が閉鎖された出口ヘッダ管(13)にそれぞれ接続されている。出口ヘッダ管(13)の長さ方向の中央部には気化ガス出口(14)が設けられている。気化ガス出口(14)は、液化ガス入口(10)と前後方向の同一位置に設けられている。   The heating section (4) has a space in the front-rear direction on the right side of the evaporation section (2) so that each finned heating pipe (5) is located at a position corresponding to the evaporation unit (2) in the front-rear direction. It is comprised by arranging. Each of the heating tubes with fins (5) is formed, for example, by connecting a plurality of heating tubes with straight tubular fins (11) whose longitudinal direction is in the vertical direction through U-bends (12). ing. The heating pipe (11) with straight tubular fins has the same configuration as the evaporation pipe (8) with fins of the evaporation unit (2). One end of each finned heating pipe (5) is connected to a position near the right end of the upper manifold pipe (6) of each evaporation unit (2), and the other end is arranged below the heating section (4). The outlet header pipes (13) are arranged with their longitudinal directions directed in the front-rear direction and closed at both ends. A vaporized gas outlet (14) is provided at the center in the length direction of the outlet header pipe (13). The vaporized gas outlet (14) is provided at the same position in the front-rear direction as the liquefied gas inlet (10).

空温式蒸発器(1)は、蒸発部(2)および加温部(4)にそれぞれ設けられた前後1対の支持脚(15)により支持されている。蒸発部(2)の前後1対の支持脚(15)の上端部は、それぞれ前後に隣接するフィン付き蒸発管(8)の下端部に溶接されている。また、加温部(4)の前後1対の支持脚(15)の上端部は、それぞれ前後に隣接するフィン付き加温管(5)の直管状フィン付き加温管(11)の下端部に溶接されている。   The air-temperature evaporator (1) is supported by a pair of front and rear support legs (15) provided in the evaporation section (2) and the heating section (4), respectively. The upper ends of the pair of support legs (15) at the front and rear of the evaporation section (2) are welded to the lower ends of the finned evaporation pipes (8) adjacent to the front and rear, respectively. The upper end of the pair of support legs (15) at the front and rear of the heating section (4) is the lower end of the heating pipe (11) with a straight tubular fin of the heating pipe with fin (5) adjacent to the front and rear. It is welded to.

空温式蒸発器(1)の蒸発部(2)の上方に、下端に吐出口(21a)(図3参照)が形成されたケーシング(21)、およびケーシング(21)内に配置されるとともに大気を下方に送る羽根車(22)を有し、かつ一部の複数のフィン付き蒸発管(8)に向かって大気を送る送風機(20)が設けられている。送風機(20)のケーシング(21)に、吐出口(21a)に向かって徐々に絞られた絞り部(29)が設けられている。なお、ケーシング(21)の吐出口(21a)は円形であり、吐出口(21a)の中心と羽根車(22)の中心とは一致している。   A casing (21) having a discharge port (21a) (see FIG. 3) formed at the lower end above the evaporation section (2) of the air temperature evaporator (1), and being disposed in the casing (21) A blower (20) is provided which has an impeller (22) for sending the atmosphere downward and sends the atmosphere toward some of the plurality of finned evaporator tubes (8). The casing (21) of the blower (20) is provided with a throttle portion (29) that is gradually throttled toward the discharge port (21a). The discharge port (21a) of the casing (21) has a circular shape, and the center of the discharge port (21a) coincides with the center of the impeller (22).

送風機(20)は、送風機用架構(23)に前後方向に移動自在に設けられている。送風機用架構(23)は、蒸発部(2)の前側および後側においてそれぞれ左右方向に間隔をおいて設けられた柱(24)と、I形鋼からなりかつ左側および右側の前後両柱(24)の上端間にそれぞれに渡し止められた左右1対の梁(25)と、前側および後側の左右両柱(24)の高さの中間部間に固定された前後1対の中桟(26)とを備えている。梁(25)が、送風機(20)を前後方向に案内する前後方向にのびる左右1対のレールとなっている。図3に示すように、送風機(20)のケーシング(21)は水平取付板(27)に取り付けられており、水平取付板(27)下面の左右両側縁寄りの部分に前後方向に間隔をおいて取り付けられた複数の車輪(28)が、左右1対の梁(25)の上フランジ部(25a)上を転動することによって、送風機(20)が送風機用架構(23)に前後方向に移動自在に設けられている。   The blower (20) is provided on the blower frame (23) so as to be movable in the front-rear direction. The blower frame (23) includes columns (24) spaced in the left-right direction on the front side and the rear side of the evaporation section (2), and both left and right front and rear columns made of I-shaped steel ( 24) a pair of left and right beams (25) secured between the upper ends of each, and a pair of front and rear middle beams fixed between the middle of the front and rear left and right pillars (24) (26). The beam (25) is a pair of left and right rails extending in the front-rear direction for guiding the blower (20) in the front-rear direction. As shown in FIG. 3, the casing (21) of the blower (20) is attached to the horizontal mounting plate (27), and the horizontal mounting plate (27) has a space in the front-rear direction at a portion near the left and right side edges. The plurality of wheels (28) mounted on the upper and lower wheels (28) roll on the upper flange (25a) of the pair of left and right beams (25), so that the blower (20) moves forward and backward in the blower frame (23). It is provided movably.

ここで、図4に示すように、送風機(20)の羽根車(22)の水平投影図(P1)の面積である水平投影面積は、蒸発部(2)および加温部(4)を含む全体の水平投影図(P2)の面積である水平投影面積の1/16〜1/9の範囲内にある。また、送風機(20)の羽根車(22)の水平投影図(P1)の中心(O1)は、蒸発部(2)および加温部(4)を含む全体の水平投影図(P2)の中心(O2)よりも液化ガス入口(10)側に位置している。さらに、蒸発部(2)および加温部(4)を含む全体の水平投影図(P2)の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機(20)の羽根車(22)の水平投影図(P1)における羽根車(22)の中心(O1)と、蒸発部(2)および加温部(4)を含む全体の水平投影図(P2)の中心(O2)との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/3×L1、L4≦1/6×L2という関係を満たしている。さらに、蒸発部(2)の上端と送風機(20)の羽根車(22)との上下方向の距離は、送風機(20)の羽根車(22)のファン径(D)の1/3〜1の範囲内にあることが好ましい。   Here, as shown in FIG. 4, the horizontal projection area, which is the area of the horizontal projection (P1) of the impeller (22) of the blower (20), includes the evaporation section (2) and the heating section (4). It is within the range of 1/16 to 1/9 of the horizontal projection area which is the area of the entire horizontal projection view (P2). The center (O1) of the horizontal projection (P1) of the impeller (22) of the blower (20) is the center of the entire horizontal projection (P2) including the evaporation section (2) and the heating section (4). It is located closer to the liquefied gas inlet (10) than (O2). Furthermore, the horizontal distance in the horizontal direction and the linear distance in the front-rear direction of the entire horizontal projection (P2) including the evaporation section (2) and the heating section (4) are L1 and L2, respectively, and the impeller of the blower (20) ( The center (O1) of the impeller (22) in the horizontal projection (P1) of 22) and the center (O2) of the entire horizontal projection (P2) including the evaporation section (2) and the heating section (4) When the straight line distance in the left-right direction and the straight line distance in the front-rear direction are L3 and L4, respectively, the relations L3 ≦ 1/3 × L1 and L4 ≦ 1/6 × L2 are satisfied. Further, the vertical distance between the upper end of the evaporator (2) and the impeller (22) of the blower (20) is 1/3 to 1 of the fan diameter (D) of the impeller (22) of the blower (20). It is preferable to be within the range.

上記構成の空温式蒸発器(1)の稼働時には、貯蔵タンクに貯蔵されていた液化ガスは、液化ガス入口(10)を通って入口ヘッダ管(9)内に送り込まれ、入口ヘッダ管(9)から各蒸発ユニット(3)の下マニホールド管(7)内に流入する。下マニホールド管(7)内に流入した液化ガスは全てのフィン付き蒸発管(8)に分流し、フィン付き蒸発管(8)内を上方に流れる間に大気と熱交換することにより気化して上マニホールド管(6)内に流入する。上マニホールド管(6)内に流入した気化ガスは、加温部(4)のフィン付き加温管(5)内に流入し、フィン付き加温管(5)内を流れる間に大気と熱交換して所定温度、たとえば0℃以上に加温される。加温された気化ガスは出口ヘッダ管(13)内に流入し、気化ガス出口(14)から送り出される。   During the operation of the air temperature evaporator (1) having the above configuration, the liquefied gas stored in the storage tank is fed into the inlet header pipe (9) through the liquefied gas inlet (10), and the inlet header pipe ( 9) flows into the lower manifold pipe (7) of each evaporation unit (3). The liquefied gas that has flowed into the lower manifold pipe (7) is diverted to all the finned evaporator pipes (8) and is vaporized by exchanging heat with the atmosphere while flowing upward in the finned evaporator pipe (8). It flows into the upper manifold pipe (6). The vaporized gas that has flowed into the upper manifold pipe (6) flows into the finned heating pipe (5) of the heating section (4), and flows into the atmosphere and heat while flowing through the finned heating pipe (5). It is exchanged and heated to a predetermined temperature, for example, 0 ° C. or higher. The heated vaporized gas flows into the outlet header pipe (13) and is sent out from the vaporized gas outlet (14).

上述した空温式蒸発器(1)の稼働時には、送風機(20)が作動させられることにより、フィン付き蒸発管(8)の周囲の空気の温度よりも高温である大気が、蒸発部(2)の内側に存在するフィン付き蒸発管(8)に送られ、その表面が暖められる。したがって、フィン付き蒸発管(8)の外表面への着霜が抑制され、比較的短時間での伝熱効率の低下が防止されることになって、空温式蒸発器(1)の連続稼働時間を長くすることが可能になる。また、空温式蒸発器(1)の連続稼働時間を長くすることができるので、液化ガスを再気化させる際に、複数の空温式蒸発器(1)が組み合わされて用いられ、かつ複数の空温式蒸発器(1)のうちの少なくとも1台の空温式蒸発器(1)が順次選択的に稼働させられるとともに、残りの空温式蒸発器(1)が順次停止させられる場合であっても、停止している空温式蒸発器(1)の停止時間も長くすることが可能となり、自然解氷が可能になって強制解氷が不要になったり、強制解氷に要する時間を短縮することができて、解氷作業が簡単になる。さらに、送風機(20)により送られる大気によって、フィン付き蒸発管(8)の周囲の空気も暖められるので、空温式蒸発器(1)の稼働時の大量の霧の発生を防止することができる。したがって、別途消霧装置を設置する必要がなくなり、コストが安くなる。   During the operation of the air temperature evaporator (1) described above, the air blower (20) is operated, so that the atmosphere higher than the temperature of the air around the finned evaporator tube (8) is converted into the evaporation section (2 ) Is sent to the finned evaporator tube (8) inside, and the surface is warmed. Therefore, frost formation on the outer surface of the finned evaporator tube (8) is suppressed, and a decrease in heat transfer efficiency in a relatively short time is prevented, so that the air temperature evaporator (1) is continuously operated. It becomes possible to lengthen the time. Further, since the continuous operation time of the air temperature evaporator (1) can be increased, a plurality of air temperature evaporators (1) are used in combination when re-vaporizing the liquefied gas, and When at least one air temperature evaporator (1) of the air temperature evaporators (1) is operated sequentially and the remaining air temperature evaporators (1) are stopped sequentially Even so, it is possible to extend the stop time of the stopped air-temperature evaporator (1), enabling natural de-icing and eliminating the need for forced de-icing, or for forced de-icing The time can be shortened, and the de-icing work becomes easy. In addition, since the air around the finned evaporator tube (8) is also warmed by the air sent by the blower (20), it is possible to prevent the generation of a large amount of fog during the operation of the air temperature evaporator (1). it can. Therefore, it is not necessary to install a separate anti-fogging device, and the cost is reduced.

送風機(20)のメンテナンスが必要になった場合には、車輪(28)を梁(25)の上フランジ部(25a)に沿って転動させるすることによって、送風機(20)を前方または後方に移動させることにより、比較的簡単にメンテナンスを行うことができる。   When maintenance of the blower (20) becomes necessary, the fan (20) can be moved forward or backward by rolling the wheel (28) along the upper flange part (25a) of the beam (25). By moving it, maintenance can be performed relatively easily.

なお、上記実施形態においては、この発明による空温式蒸発器が、蒸発部(2)の下流側に加温部(4)が設けられた空温式蒸発器(1)に適用されているが、これに限定されるものではなく、この発明による空温式蒸発器は、蒸発部(2)のみからなりかつ加温部(4)を備えていない加圧式の空温式蒸発器にも適用可能である。この場合にも、蒸発部の上方に、下方を向いた吐出口が形成されたケーシング、および大気を下方に送る羽根車を有し、かつ一部の複数の蒸発管に向かって大気を下方に送る送風機が設けられ、送風機の水平投影面積が、蒸発部の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の水平投影図におけるケーシングの吐出口の中心と、蒸発部の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/6×L1、L4≦1/6×L2という関係を満たしている。また、蒸発部と送風機の羽根車との上下方向の距離が、送風機の羽根車のファン径の1/3〜1の範囲内にあることが好ましい。   In the above embodiment, the air temperature evaporator according to the present invention is applied to the air temperature evaporator (1) provided with the heating part (4) on the downstream side of the evaporation part (2). However, the present invention is not limited to this, and the air-temperature evaporator according to the present invention is also a pressurized air-temperature evaporator that includes only the evaporation section (2) and does not include the heating section (4). Applicable. Also in this case, it has a casing in which a discharge port directed downward is formed above the evaporation section, and an impeller for sending the atmosphere downward, and the atmosphere is directed downward toward some of the plurality of evaporation tubes. A blower to be sent is provided, the horizontal projection area of the blower is in the range of 1/16 to 1/9 of the horizontal projection area of the evaporator, and the center of the horizontal projection of the blower impeller is the horizontal projection of the evaporator L1 and L2 are respectively the linear distance in the horizontal direction and the linear distance in the front-rear direction of the horizontal projection view of the evaporation unit, which are located on the liquefied gas inlet side from the center of the drawing, and the center of the outlet of the casing in the horizontal projection view of the blower When the linear distance in the left-right direction and the linear distance in the front-rear direction with respect to the center of the horizontal projection of the evaporation unit are L3 and L4, respectively, the relationship of L3 ≦ 1/6 × L1 and L4 ≦ 1/6 × L2 is satisfied. ing. Moreover, it is preferable that the distance of the up-down direction of an evaporation part and the impeller of an air blower exists in the range of 1/3-1 of the fan diameter of the impeller of an air blower.

この発明による空温式蒸発器は、天然ガス、酸素、窒素、アルゴン、ヘリウム、水素、炭酸ガス、メタン、プロパン、エチレンなどの液化ガスを再気化するのに好適に用いられる。   The air-temperature evaporator according to the present invention is suitably used for re-vaporizing liquefied gases such as natural gas, oxygen, nitrogen, argon, helium, hydrogen, carbon dioxide, methane, propane, and ethylene.

(1):空温式蒸発器
(2):蒸発部
(3):蒸発ユニット
(4):加温部
(5):フィン付き加温管
(8):フィン付き蒸発管(液化ガス蒸発管)
(10):液化ガス入口
(14):気化ガス出口
(20):送風機
(21):ケーシング
(21a):吐出口
(22):羽根車
(23):送風機用架構
(25):梁(レール)
(28):車輪
(29):絞り部
(1): Air temperature evaporator
(2): Evaporation section
(3): Evaporation unit
(4): Heating part
(5): Heating tube with fins
(8): Finned evaporation tube (liquefied gas evaporation tube)
(10): Liquefied gas inlet
(14): Vaporized gas outlet
(20): Blower
(21): Casing
(21a): Discharge port
(22): Impeller
(23): Blower frame
(25): Beam
(28): Wheel
(29): Aperture part

Claims (7)

長手方向を上下方向に向けて配置された複数の液化ガス蒸発管を有する蒸発部と、蒸発部で液化ガスを蒸発させることにより得られた気化ガスを加温する複数の加温管を有する加温部とを備え、蒸発部における加温部とは反対側の端部に液化ガス入口が設けられるとともに、加温部における蒸発部とは反対側の端部に気化ガス出口が設けられており、液化ガス入口から流入した液化ガスが分流して全液化ガス蒸発管内に下端から流入し、液化ガス蒸発管内を上昇する間に大気から熱を奪って蒸発して気化ガスとなり、ついで気化ガスが加温管内に流入してその内部を流れる間に大気により加温され、気化ガス出口から流出するようになっている空温式蒸発器において、
蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部および加温部を含む全体の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部および加温部を含む全体の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部および加温部を含む全体の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部および加温部を含む全体の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/3×L1、L4≦1/6×L2という関係を満たしている空温式蒸発器。
An evaporation section having a plurality of liquefied gas evaporation pipes arranged with the longitudinal direction facing the vertical direction, and a heating section having a plurality of heating pipes for heating vaporized gas obtained by evaporating the liquefied gas in the evaporation section. A liquefied gas inlet at the end of the evaporation section opposite to the heating section, and a vaporized gas outlet at the end of the heating section opposite to the evaporation section. Then, the liquefied gas flowing in from the liquefied gas inlet is divided and flows into the entire liquefied gas evaporation pipe from the lower end, and as it rises in the liquefied gas evaporation pipe, it takes heat from the atmosphere and evaporates to become vaporized gas, In the air temperature type evaporator which is heated by the atmosphere while flowing into the heating pipe and flowing through the inside, and flows out from the vaporized gas outlet,
Above the evaporation section, there is provided a blower that has a casing formed with a discharge port facing downward and an impeller disposed in the casing, and sends air to a plurality of evaporation tubes. The horizontal projection area of the blower impeller is in the range of 1/16 to 1/9 of the entire horizontal projection area including the evaporation section and the heating section, and the center of the horizontal projection view of the blower impeller is A linear distance in the horizontal direction and a linear distance in the front-rear direction of the entire horizontal projection including the evaporation unit and the heating unit, located on the liquefied gas inlet side from the center of the entire horizontal projection including the evaporation unit and the heating unit. L1 and L2, respectively, L3 and L3 represent the linear distance in the left-right direction and the linear distance in the front-rear direction between the center of the horizontal projection of the impeller of the blower and the center of the entire horizontal projection including the evaporator and the heating unit, respectively. When L4, L3 ≦ / 3 × L1, L4 air temperature evaporator meets the relationship of ≦ 1/6 × L2.
長手方向を上下方向に向けて配置された複数の液化ガス蒸発管を有する蒸発部を備え、蒸発部の一端部に液化ガス入口が設けられるとともに、他端部に気化ガス出口が設けられており、液化ガス入口から流入した液化ガスが分流して全液化ガス蒸発管内に下端から流入し、液化ガス蒸発管内を上昇する間に大気から熱を奪って蒸発して気化ガスとなり、気化ガスが気化ガス出口から流出するようになっている空温式蒸発器において、
蒸発部の上方に、下方を向いた吐出口が形成されたケーシングおよびケーシング内に配置された羽根車を有し、かつ一部の複数の蒸発管に向かって大気を送る送風機が設けられており、送風機の羽根車の水平投影面積が、蒸発部の水平投影面積の1/16〜1/9の範囲内にあり、送風機の羽根車の水平投影図の中心が、蒸発部の水平投影図の中心よりも液化ガス入口側に位置し、蒸発部の水平投影図の左右方向の直線距離および前後方向の直線距離をそれぞれL1およびL2、送風機の羽根車の水平投影図の中心と、蒸発部の水平投影図の中心との左右方向の直線距離および前後方向の直線距離をそれぞれL3およびL4とした場合、L3≦1/6×L1、L4≦1/6×L2という関係を満たしている空温式蒸発器。
It has an evaporation section having a plurality of liquefied gas evaporation pipes arranged with the longitudinal direction facing up and down, a liquefied gas inlet is provided at one end of the evaporation section, and a vaporized gas outlet is provided at the other end. The liquefied gas flowing in from the liquefied gas inlet is diverted and flows into the entire liquefied gas evaporation tube from the lower end. In an air temperature evaporator that flows out from the gas outlet,
Above the evaporation section, there is provided a blower that has a casing formed with a discharge port facing downward and an impeller disposed in the casing, and sends air to a plurality of evaporation tubes. The horizontal projection area of the fan impeller is in the range of 1/16 to 1/9 of the horizontal projection area of the evaporator, and the center of the horizontal projection of the fan impeller is the center of the horizontal projection of the evaporator. Located on the liquefied gas inlet side of the center, L1 and L2 respectively represent the linear distance in the horizontal direction and the linear distance in the front-rear direction of the horizontal projection view of the evaporation section, the center of the horizontal projection view of the blower impeller, and the evaporation section Air temperature satisfying the relationship of L3 ≦ 1/6 × L1 and L4 ≦ 1/6 × L2, where L3 and L4 are the linear distance in the left-right direction and the linear distance in the front-rear direction from the center of the horizontal projection, respectively. Type evaporator.
蒸発部と送風機の羽根車との上下方向の距離が、送風機の羽根車のファン径の1/3〜1の範囲内にある請求項1または2記載の空温式蒸発器。 The air temperature type evaporator according to claim 1 or 2, wherein the vertical distance between the evaporator and the impeller of the blower is within a range of 1/3 to 1 of the fan diameter of the impeller of the blower. 送風機のケーシングに、吐出口に向かって徐々に絞られた絞り部が設けられている請求項1〜3のうちのいずれかに記載の空温式蒸発器。 The air temperature type evaporator according to any one of claims 1 to 3, wherein a throttle portion that is gradually throttled toward a discharge port is provided in a casing of the blower. 送風機が、送風機用架構に前後方向に移動自在に設けられている請求項1〜4のうちのいずれかに記載の空温式蒸発器。 The air-temperature evaporator according to any one of claims 1 to 4, wherein the blower is provided on the frame for the blower so as to be movable in the front-rear direction. 送風機用架構に、前後方向にのびる1対のレールが設けられており、送風機に、両レールに沿って転動する車輪が設けられている請求項5記載の空温式蒸発器。 The air-temperature evaporator according to claim 5, wherein the blower frame is provided with a pair of rails extending in the front-rear direction, and the blower is provided with wheels that roll along both rails. 送風機用架構の上部に点検歩廊が設けられている請求項1〜6のうちのいずれかに記載の空温式蒸発器。 The air-temperature evaporator according to any one of claims 1 to 6, wherein an inspection walkway is provided at an upper portion of the blower frame.
JP2013109539A 2013-05-24 2013-05-24 Air temperature evaporator Active JP6002630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109539A JP6002630B2 (en) 2013-05-24 2013-05-24 Air temperature evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109539A JP6002630B2 (en) 2013-05-24 2013-05-24 Air temperature evaporator

Publications (3)

Publication Number Publication Date
JP2014228090A true JP2014228090A (en) 2014-12-08
JP2014228090A5 JP2014228090A5 (en) 2016-01-07
JP6002630B2 JP6002630B2 (en) 2016-10-05

Family

ID=52128127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109539A Active JP6002630B2 (en) 2013-05-24 2013-05-24 Air temperature evaporator

Country Status (1)

Country Link
JP (1) JP6002630B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324262A (en) * 2000-05-12 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for extinguishing fog in air heating type vaporizer for low temperature liquefied gas
JP2005003194A (en) * 2003-05-16 2005-01-06 Showa Denko Kk Air temperature type liquefied gas vaporizer
JP2006214688A (en) * 2005-02-07 2006-08-17 Osaka Gas Co Ltd Vaporizer
JP2011052744A (en) * 2009-09-01 2011-03-17 Showa Denko Aluminum Trading Kk Air temperature type liquefied gas vaporizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324262A (en) * 2000-05-12 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for extinguishing fog in air heating type vaporizer for low temperature liquefied gas
JP2005003194A (en) * 2003-05-16 2005-01-06 Showa Denko Kk Air temperature type liquefied gas vaporizer
JP2006214688A (en) * 2005-02-07 2006-08-17 Osaka Gas Co Ltd Vaporizer
JP2011052744A (en) * 2009-09-01 2011-03-17 Showa Denko Aluminum Trading Kk Air temperature type liquefied gas vaporizer

Also Published As

Publication number Publication date
JP6002630B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
CN106716036B (en) Equipment for condensed steam
US20150192249A1 (en) Equipment and method for filling pressurized gas cylinders from a liquefied gas tank
CN103217025B (en) Air-cooling condenser structure containing horizontal shaft axial flow fan group
WO2016001952A1 (en) Air-cooled type liquefied gas production facility
JP6002630B2 (en) Air temperature evaporator
JP5120567B2 (en) Air temperature liquefied gas vaporizer
JP2011052744A (en) Air temperature type liquefied gas vaporizer
CN203360520U (en) Air cushion type cooling nozzle device
ES2224929T3 (en) HEAT EXCHANGER OF FINS WITH SIDE REINFORCEMENT ELEMENTS FOR COOLING, AIR CONDITIONING AND HEATING EQUIPMENT.
CN102012186B (en) Crown-shaped cooling air deflector of direct air cooling unit
JP6486223B2 (en) Evaporator
CN105627794A (en) Flow path arrangement structure of heat exchanger
CN103357720A (en) Method for bending bridge U-shaped rib in ignition general yield manner by adopting special clamping device
CN103225964B (en) Air-cooling condenser with two sections of circular condensation finned tube bundles and induced air type axial-flow fan
CN106247828B (en) Heat exchanger
JP2005156141A (en) Air temperature type liquefied gas vaporizer
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
CN101566384A (en) Hydropneumatic electric heater
JP2015117807A (en) Hot water type liquefied gas vaporizer
JP2016023815A (en) Evaporator
JP2005069304A (en) Air-temperature type liquified gas vaporizer
CN217273517U (en) LNG vaporizer defroster
CN105066737A (en) Horizontal high-pressure air cooler
CN103217024B (en) Annular short tube-bundle forward current and adverse current mixing structure of air cooling condenser units
CN202675939U (en) Air cooler with thermal compensation mechanism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6002630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250