JP2015117807A - Hot water type liquefied gas vaporizer - Google Patents

Hot water type liquefied gas vaporizer Download PDF

Info

Publication number
JP2015117807A
JP2015117807A JP2013262999A JP2013262999A JP2015117807A JP 2015117807 A JP2015117807 A JP 2015117807A JP 2013262999 A JP2013262999 A JP 2013262999A JP 2013262999 A JP2013262999 A JP 2013262999A JP 2015117807 A JP2015117807 A JP 2015117807A
Authority
JP
Japan
Prior art keywords
hot water
tube
shell body
liquefied gas
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013262999A
Other languages
Japanese (ja)
Inventor
修一 渡邊
Shuichi Watanabe
修一 渡邊
正巳 佐野
Masami Sano
正巳 佐野
正雄 十河
Masao Sogo
正雄 十河
進 池田
Susumu Ikeda
進 池田
伊藤 幸夫
Yukio Ito
幸夫 伊藤
正樹 江村
Masaki Emura
正樹 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYODA KIKAI SEISAKUSHO KK
Tokyo Gas Engineering Co Ltd
Original Assignee
CHIYODA KIKAI SEISAKUSHO KK
Tokyo Gas Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYODA KIKAI SEISAKUSHO KK, Tokyo Gas Engineering Co Ltd filed Critical CHIYODA KIKAI SEISAKUSHO KK
Priority to JP2013262999A priority Critical patent/JP2015117807A/en
Publication of JP2015117807A publication Critical patent/JP2015117807A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water type vaporizer in which change of an outlet gas composition hardly occurs at restart time.SOLUTION: A hot water type liquefied gas vaporizer includes: a shell body 10 installed in a vertically long manner; a tube 11 having a plurality of reversed U-shaped curve parts 11A which are arranged in the shell body 10, and a pair of straight line parts 11B along the shell body 10; a hot water inflow part 12 which is arranged below the shell body 10 and which communicates with one of open ends of the pair of straight line parts 11B; a hot water outflow part 13 which is arranged below the shell body 10 and which communicates with the other open end of the pair of straight line parts 11B; a liquid inflow part 15 which allows a liquid of a liquefied gas to flow into the shell body 10; and a gas outflow part 16 which allows a gas vaporized in the shell body 10 to flow out. A curvature radius of the curved part 11A is set in such a manner that, when hot water flows in the tube 11 at a set flow rate equal to or more than a non-freezing average flow rate at which the hot water does not freeze at the straight line parts 11B, flow rate distribution which is equal to or more than the flow rate distribution of the non-freezing average flow rate at the straight line parts 11B can be acquired at the curved parts 11A.

Description

本発明は、温水との熱交換で液化ガスを気化する温水式液化ガス気化器に関するものである。   The present invention relates to a hot water type liquefied gas vaporizer that vaporizes liquefied gas by heat exchange with hot water.

LNG,液体窒素などの液化ガスの気化器として、温水の熱を利用して液化ガスを沸点まで加温するものが知られている。このように温水を熱源とする気化器は、容器内に満たした温水中に熱交換用のパイプを配置し、このパイプを液化ガスが通過する間に気化させる温水バス式(下記特許文献1参照)や、シェル&チューブ構造の熱交換器を用いて、シェル内に温水を循環させチューブ内を通過する液化ガスを気化させるシェル&チューブ式(下記特許文献2参照)などが知られている。   As a vaporizer for a liquefied gas such as LNG or liquid nitrogen, one that heats the liquefied gas to the boiling point using heat of hot water is known. Thus, the vaporizer which uses warm water as a heat source arrange | positions the pipe for heat exchange in the warm water with which the inside of the container was filled, and is a warm water bath type which vaporizes this pipe while liquefied gas passes (refer the following patent document 1). And a shell and tube type (see Patent Document 2 below) in which hot water is circulated in the shell and liquefied gas passing through the tube is vaporized using a heat exchanger having a shell and tube structure.

特開2001−201279号公報JP 2001-201279 A 特開平8−188785号公報JP-A-8-188785

温水バス式の気化器は、貯留した温水が凍結しないようにバス容器を大きくして熱容量を大きくする必要があり、機器の大型化が避けられない。また、前述したシェル&チューブ式の気化器も、シェル内を流れる温水の流速を高めることが難しいため、温水の凍結を避けるためにシェルを大きくして熱容量を大きくする構造になっており、温水バス式と同様に器体の大型化が問題になっている。さらに、液化ガスのチューブ内での気化による気液混合流れによる振動によってチューブの溶接部が破損しやすいという問題がある。   In the hot water bath type vaporizer, it is necessary to increase the heat capacity by enlarging the bath container so that the stored hot water does not freeze. In addition, since the shell and tube type vaporizer described above is difficult to increase the flow rate of the hot water flowing in the shell, the shell is enlarged to increase the heat capacity in order to avoid freezing of the hot water. As with the bus type, the increase in size of the vessel is a problem. Furthermore, there is a problem that the welded portion of the tube is easily damaged by vibration due to the gas-liquid mixed flow caused by vaporization of the liquefied gas in the tube.

このような問題に加えて、シェル&チューブ式の気化器は、停止時にチューブ内に液化ガスが液状態で滞留するため、再起動時に分留した滞留液が原因となって、気化器出口でのガス成分が変動することも問題になっていた。   In addition to these problems, the shell-and-tube type vaporizer retains liquefied gas in a liquid state in the tube when it is stopped. It was also a problem that the gas component of this fluctuated.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、器体の小型化、省スペース化が可能であり、チューブの破損を抑制し、更には、再起動時の出口ガス成分の変化が起こりにくい温水式の気化器を提供すること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, it is possible to reduce the size and space of the vessel, suppress the breakage of the tube, and further provide a hot water type vaporizer that is unlikely to change the outlet gas component at the time of restarting, etc. It is an object of the present invention.

このような目的を達成するために、本発明による温水式液化ガス気化器は、以下の構成を少なくとも具備するものである。
縦長に設置されるシェル本体と、前記シェル本体内に複数本配置され逆U字状の湾曲部と前記シェル本体に沿った一対の直線部を有するチューブと、前記シェル本体の下部に配置され前記一対の直線部の一方の開放端が連通する温水流入部と、前記シェル本体の下部に配置され前記一対の直線部の他方の開放端が連通する温水流出部と、前記シェル本体内に液化ガスの液を流入させる液流入部と、前記シェル本体内で気化したガスを流出させるガス流出部とを備え、前記湾曲部の曲率半径は、前記直線部で温水が凍結しない非凍結平均流速以上の設定流速で前記チューブ内に温水を流した場合に、前記直線部における前記非凍結平均流速の流速分布と同等以上の流速分布が前記湾曲部で得られるように設定されることを特徴とする温水式液化ガス気化器。
In order to achieve such an object, a hot water type liquefied gas vaporizer according to the present invention comprises at least the following configuration.
A vertically disposed shell main body, a plurality of tubes arranged in the shell main body and having an inverted U-shaped curved portion and a pair of straight portions along the shell main body, and a lower portion of the shell main body, A hot water inflow portion in which one open end of a pair of straight portions communicates, a hot water outflow portion in the lower portion of the shell main body that communicates with the other open end of the pair of straight portions, and a liquefied gas in the shell main body A liquid inflow part for injecting the liquid and a gas outflow part for outflowing the gas vaporized in the shell body, and the curvature radius of the curved part is equal to or greater than the non-freezing average flow rate at which the hot water does not freeze in the linear part. The hot water is set such that a flow velocity distribution equal to or higher than the flow velocity distribution of the non-freezing average flow velocity in the straight line portion is obtained in the curved portion when hot water is caused to flow in the tube at a set flow velocity. Liquefaction Scan vaporizer.

このような特徴を備えた温水式液化ガス気化器は、シェル&チューブ式気化器のチューブ内に温水を流しシェル本体内で液化ガスを気化させるものである。このため、チューブ内を流れる温水の流速を高めることで、器体を大型化することなく温水の凍結を防いで効率的に液化ガスを気化することが可能になる。また、チューブ内に比べて大容量のシェル本体内で液化ガスを気化することで、気液混合状態は殆ど無く、チューブやシェルに加わる振動を抑止することができる。更に、シェル本体内では停止時に残留液が殆ど生じないので、再起動時の出口ガス成分の変化が起こりにくい。   The hot water type liquefied gas vaporizer having such a feature is one in which warm water is allowed to flow in the tube of the shell and tube type vaporizer to vaporize the liquefied gas in the shell body. For this reason, by increasing the flow rate of the hot water flowing in the tube, it becomes possible to efficiently vaporize the liquefied gas while preventing the freezing of the hot water without increasing the size of the vessel. Further, by vaporizing the liquefied gas in the shell main body having a larger capacity than in the tube, there is almost no gas-liquid mixed state, and vibration applied to the tube or shell can be suppressed. Further, since almost no residual liquid is generated in the shell body at the time of stopping, the change in the outlet gas component at the time of restarting hardly occurs.

また、チューブ内を流れる温水の凍結が生じないようにチューブの曲率半径が設定されているので、温水が凍結することによるチューブの閉塞や破損による稼働障害が生じることがなく、更に、シェル本体とチューブが熱収縮に対してフリーな構造になっているので、クラック等の発生を抑止し耐久性の高い気化器を得ることができる。   In addition, since the radius of curvature of the tube is set so that the hot water flowing in the tube does not freeze, there is no operation failure due to clogging or breakage of the tube due to freezing of the hot water. Since the tube has a structure free from heat shrinkage, it is possible to suppress the occurrence of cracks and the like and obtain a highly durable vaporizer.

本発明の一実施形態に係る温水式液化ガス気化器の全体構成を示した説明図(縦断面図)である。It is explanatory drawing (longitudinal sectional view) which showed the whole structure of the hot water type | mold liquefied gas vaporizer which concerns on one Embodiment of this invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 温水が凍結しないチューブを設計する設計手法を示した説明図である。It is explanatory drawing which showed the design method which designs the tube which warm water does not freeze.

以下、本発明の実施形態を図面を参照して説明する。図1及び図2は本発明の一実施形態に係る温水式液化ガス気化器の全体構成を示した説明図(図1が縦断面図、図2がA−A断面図)である。温水式液化ガス気化器1は、シェル本体10、シェル本体10内に複数本配置されるチューブ11、シェル本体10の下部に配置される温水流入部12と温水流出部13、シェル本体10内に液化ガスの液を流入させる液流入部15、シェル本体10内で気化したガスを流出させるガス流出部16を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are explanatory views (FIG. 1 is a longitudinal sectional view, and FIG. 2 is an AA sectional view) showing an overall configuration of a hot water type liquefied gas vaporizer according to an embodiment of the present invention. The hot water liquefied gas vaporizer 1 includes a shell main body 10, a plurality of tubes 11 disposed in the shell main body 10, a hot water inflow portion 12 and a hot water outflow portion 13 disposed in the lower portion of the shell main body 10, and the shell main body 10. The liquid inflow part 15 into which the liquid of a liquefied gas is made to flow in, and the gas outflow part 16 from which the gas vaporized in the shell main body 10 is made to flow out are provided.

シェル本体10は、縦長に設置され、下端のみが支持されて上端はフリーになっている。シェル本体10内は、複数の仕切り板14によって上下に区画されているが、仕切り板14には複数の孔が形成されており、区画された各区分は互いに液又はガスの移動が可能になっている。また、シェル本体10はリング状の分割体を縦に積み上げて気密に連結することによって形成することができる。   The shell main body 10 is installed vertically, only the lower end is supported, and the upper end is free. The inside of the shell body 10 is partitioned vertically by a plurality of partition plates 14, but a plurality of holes are formed in the partition plate 14, and the partitioned sections can move a liquid or a gas to each other. ing. The shell body 10 can be formed by vertically stacking ring-shaped divided bodies and connecting them in an airtight manner.

シェル本体10に配置されるチューブ11は、一本のチューブ11が逆U字状の湾曲部11Aとシェル本体10に沿って上下に延設される一対の直線部11Bを備えており、湾曲部11Aの曲率半径が異なるチューブ11が平面的に複数並べて配置され、湾曲部11Aの曲率半径が等しいチューブ11が図示の紙面と垂直な方向に複数平行に並べて配置されている。これら複数のチューブ11の直線部11Bは、複数の仕切り板14を貫通して各仕切り板14に支持されている。チューブ11は熱媒体である温水を流通させると共に温水の熱をシェル本体10内に放出させるものであるが、仕切り板14はチューブ11を支持することでチューブ11から伝わった熱を放散させる放熱板としても機能している。   The tube 11 disposed in the shell main body 10 includes a curved portion 11A in which one tube 11 extends up and down along the shell main body 10 and a curved portion. A plurality of tubes 11 having different curvature radii of 11A are arranged in a plane, and a plurality of tubes 11 having the same curvature radius of the curved portion 11A are arranged in parallel in a direction perpendicular to the illustrated paper surface. The straight portions 11 </ b> B of the plurality of tubes 11 pass through the plurality of partition plates 14 and are supported by the partition plates 14. The tube 11 circulates warm water as a heat medium and releases the heat of the warm water into the shell body 10, but the partition plate 14 supports the tube 11 to dissipate heat transmitted from the tube 11. It is functioning as well.

温水流入部12は、チューブ11における一対の直線部11Bの一方の開放端(下端)が連通しており、温水流入口12Aから流入した温水が温水流入部12を介してチューブ11内に流入するようになっている。また、温水流出部13は、チューブ11における一対の直線部11Bの他方の開放端(下端)が連通しており、チューブ11内を通った温水が温水流出部13を介して温水流出口13Aから流出するようになっている。温水流入口12Aと温水流出口13Aは加熱源を含む循環流路を介して接続するようにしてもよい。   The warm water inflow portion 12 has one open end (lower end) of the pair of straight portions 11B in the tube 11 communicating with each other, and the warm water flowing in from the warm water inlet 12A flows into the tube 11 through the warm water inflow portion 12. It is like that. Further, the warm water outflow portion 13 communicates with the other open end (lower end) of the pair of straight portions 11B in the tube 11, and the warm water passing through the tube 11 passes through the warm water outflow portion 13 from the warm water outlet 13A. It comes to leak. The hot water inlet 12A and the hot water outlet 13A may be connected via a circulation channel including a heating source.

仕切り板14で区画されたシェル本体10内の上部区分10Aにはシェル本体10内に液化ガスの液を流入させる液流入部15が連通している。また、仕切り板14で区画されたシェル本体10内の下部区分10Bには液化ガスが気化したガスを流出させるガス流出部16が連通している。   A liquid inflow portion 15 for allowing the liquid of the liquefied gas to flow into the shell main body 10 communicates with the upper section 10 </ b> A in the shell main body 10 partitioned by the partition plate 14. In addition, a gas outflow portion 16 through which the gas vaporized from the liquefied gas flows out communicates with the lower section 10B in the shell main body 10 partitioned by the partition plate 14.

液流入部15には、液化ガスが供給される液配管20が接続・導入されており、シェル本体10内の全体に液化ガスの液を分散するようになっている。液配管20には圧力調整バルブ21が装備されている。また、ガス流出部16には、ガス配管22が接続されており、このガス配管22を介して需要先にガスの供給がなされている。ここでは、シェル本体10の上部に液流入部15を設け、シェル本体10の下部にガス流出部16を設けており、チューブ11の直線部11Bの上端位置を液流入部15より上方に設定している。これによって、湾曲部11A或いは湾曲部11Aの近傍で凍結が起こりにくい構造になっている。   A liquid pipe 20 to which liquefied gas is supplied is connected to and introduced into the liquid inflow portion 15 so that the liquid of the liquefied gas is dispersed throughout the shell body 10. The liquid pipe 20 is equipped with a pressure adjustment valve 21. In addition, a gas pipe 22 is connected to the gas outflow portion 16, and gas is supplied to the customer through the gas pipe 22. Here, the liquid inflow part 15 is provided in the upper part of the shell main body 10, and the gas outflow part 16 is provided in the lower part of the shell main body 10, and the upper end position of the straight part 11 </ b> B of the tube 11 is set above the liquid inflow part 15. ing. As a result, the bending portion 11A or the vicinity of the bending portion 11A has a structure in which freezing hardly occurs.

この温水式液化ガス気化器1は、液配管20によって供給される液化ガスを液流入部15を通してシェル本体10内に流入させ、温水が流れるチューブ11から発せられる熱によってシェル本体10内で液化ガスを気化させるものである。液流入部15を介してシェル本体10内に流入した液化ガスは、下方に落下する間にチューブ11や仕切り板14から熱を受けて気化するので、シェル本体10内に液が溜まることが少なく、シェル本体10内は気化したガスで充満される。そして、気化したガスは、シェル本体10内の圧力でガス流出部16に接続されるガス配管22に流入し、ガス配管22を介して需要先に供給させる。   The hot water type liquefied gas vaporizer 1 allows the liquefied gas supplied by the liquid pipe 20 to flow into the shell main body 10 through the liquid inflow portion 15, and the liquefied gas in the shell main body 10 by heat generated from the tube 11 through which the hot water flows. Is to vaporize. The liquefied gas that has flowed into the shell main body 10 via the liquid inflow portion 15 is vaporized by receiving heat from the tube 11 and the partition plate 14 while falling downward, so that the liquid is less likely to accumulate in the shell main body 10. The shell body 10 is filled with the vaporized gas. The vaporized gas flows into the gas pipe 22 connected to the gas outflow portion 16 by the pressure in the shell body 10 and is supplied to the customer through the gas pipe 22.

この温水式液化ガス気化器1においては、超低温の液化ガスとチューブ11が接触することでチューブ11内の温水が凍結することが問題になる。チューブ11内での温水の凍結を避けるためには、稼働中は温水を所定の流速以上で流し続けることが必要になる。しかしながら、ある程度速い流速でチューブ11内の温水を流したとしても、チューブ11には湾曲部11Aが存在するので、チューブ11内での流速分布が必ずしもチューブ11の内壁面から中心に向けて同方向に徐々に速くなる分布にならないことがあり、チューブ11の内壁面近くでチューブ11に沿った同方向の流速が得られない場合には、その箇所で温水が凍結しやすくなる。そこで、温水式液化ガス気化器1においては、湾曲部11Aの曲率半径を温水の流速との関係で設定して、チューブ11内で温水が凍結しないようにしている。   In this hot water type liquefied gas vaporizer 1, there is a problem that the hot water in the tube 11 is frozen by the ultra low temperature liquefied gas coming into contact with the tube 11. In order to avoid freezing of the hot water in the tube 11, it is necessary to keep the hot water flowing at a predetermined flow rate or higher during operation. However, even if hot water in the tube 11 is flowed at a somewhat high flow velocity, the curved portion 11A exists in the tube 11, so that the flow velocity distribution in the tube 11 is not necessarily in the same direction from the inner wall surface of the tube 11 toward the center. If the flow velocity in the same direction along the tube 11 is not obtained near the inner wall surface of the tube 11, the hot water is likely to freeze at that point. Therefore, in the hot water type liquefied gas vaporizer 1, the curvature radius of the curved portion 11A is set in relation to the flow rate of the hot water so that the hot water does not freeze in the tube 11.

図3は、温水が凍結しないチューブ11を設計する設計手法を示した説明図であり、チューブ11の内壁近傍における流速分布を示したグラフ(横軸が内壁からの距離/縦軸が流速)である。この設計手法は、液化ガスの温度と処理量、チューブ11の内径、チューブ11を流れる温水の温度を稼働条件として定め、先ず、直管(直線部11B)において凍結が生じない温水の平均流速(非凍結平均流速)m1を実験的に求める。そして、その非凍結平均流速m1における流速分布をシミュレーションによって求める。図3においては、曲線a1が直管における非凍結平均流速m1の流速分布である。ここでは、液化ガスがLNGであり、処理量が0.5t/h〜1.0t/h、チューブ11の内径が35mm、温水温度が60℃以上であるという稼働条件の基で、直管での非凍結平均流速0.1m/s(=m1)を実験的に求め、その流速分布を示している。   FIG. 3 is an explanatory diagram showing a design method for designing the tube 11 in which hot water does not freeze, and is a graph showing the flow velocity distribution in the vicinity of the inner wall of the tube 11 (the horizontal axis is the distance from the inner wall / the vertical axis is the flow velocity). is there. In this design method, the temperature and the processing amount of the liquefied gas, the inner diameter of the tube 11 and the temperature of the hot water flowing through the tube 11 are determined as operating conditions. First, the average flow rate of hot water that does not cause freezing in the straight pipe (straight portion 11B) ( The non-freezing average flow velocity) m1 is experimentally determined. Then, the flow velocity distribution at the non-freezing average flow velocity m1 is obtained by simulation. In FIG. 3, the curve a1 is a flow velocity distribution of the non-freezing average flow velocity m1 in the straight pipe. Here, the liquefied gas is LNG, the processing amount is 0.5 t / h to 1.0 t / h, the inner diameter of the tube 11 is 35 mm, and the hot water temperature is 60 ° C. or higher. The non-freezing average flow velocity of 0.1 m / s (= m1) was experimentally determined, and the flow velocity distribution is shown.

次に、前述した稼働条件において、温水の平均流速をm1以上にすることを前提にして、湾曲部11Aの曲率半径を変え、曲率半径と流速の組み合わせで湾曲部11Aにおける流速分布をシミュレーションする。図3におけるb1,b2,c1,c2がそのシミュレーション結果の曲線である。曲線b1は曲率半径が67.5mmであり平均流速が0.3m/sの例であり、曲線b2は曲率半径が67.5mmであり平均流速が0.4m/sの例である。また、曲線c1は曲率半径が114.5mmであり平均流速が0.3m/sの例であり、曲線c2は曲率半径が114.5mmであり平均流速が0.4m/sの例である。   Next, under the operating conditions described above, on the premise that the average flow velocity of hot water is not less than m1, the curvature radius of the bending portion 11A is changed, and the flow velocity distribution in the bending portion 11A is simulated by a combination of the curvature radius and the flow velocity. In FIG. 3, b1, b2, c1, and c2 are curves of the simulation results. Curve b1 is an example in which the radius of curvature is 67.5 mm and the average flow velocity is 0.3 m / s, and curve b2 is an example in which the radius of curvature is 67.5 mm and the average flow velocity is 0.4 m / s. Curve c1 is an example in which the radius of curvature is 114.5 mm and the average flow velocity is 0.3 m / s, and curve c2 is an example in which the radius of curvature is 114.5 mm and the average flow velocity is 0.4 m / s.

このようなシミュレーション結果に基づいて、湾曲部11Aにおける流速分布が非凍結平均流速m1における直管での流速分布a1と同等以上になるように、湾曲部11Aの曲率半径とチューブ11内の温水の平均流速を設定する。図3に示した例では、湾曲部11Aの曲率半径を67.5mmにした場合は、平均流速を非凍結平均流速の0.1m/sより速い0.3m/sや0.4m/sにしたとしても、曲線b1,b2に示されるようにチューブ11の内壁面近傍で曲線a1よりも流速が下まわる分布になるので、このような設定では凍結の可能性がある。これに対して、湾曲部11Aの曲率半径を114.5mmにした場合には平均流速を0.3m/s,0.4m/sにすると、曲線c1,c2に示されるように流速分布が全ての範囲で曲線a1を上まわることになり、このような設定は凍結の可能性が無い設定であるといえる。   Based on such a simulation result, the curvature radius of the bending portion 11A and the hot water in the tube 11 are set so that the flow velocity distribution in the bending portion 11A is equal to or greater than the flow velocity distribution a1 in the straight pipe at the non-freezing average flow velocity m1. Set the average flow rate. In the example shown in FIG. 3, when the curvature radius of the curved portion 11A is 67.5 mm, the average flow velocity is set to 0.3 m / s or 0.4 m / s faster than the non-freezing average flow velocity of 0.1 m / s. Even so, the distribution is such that the flow velocity is lower than that of the curve a1 in the vicinity of the inner wall surface of the tube 11 as indicated by the curves b1 and b2, and in such a setting, there is a possibility of freezing. On the other hand, when the curvature radius of the curved portion 11A is 114.5 mm, when the average flow velocity is 0.3 m / s and 0.4 m / s, the flow velocity distribution is all as shown by the curves c1 and c2. In this range, the curve a1 is exceeded, and it can be said that such a setting has no possibility of freezing.

また、湾曲部11Aの曲率半径を100mmとして平均流速を0.3m/sとした場合には、曲線dのような流速分布になる。この場合には、チューブ11の内壁の近傍で若干曲線a1より下まわる流速分布になってはいるがほぼ曲線a1と同等以上の流速分布が得られている。このように、直管(直線部11B)における非凍結平均流速m1の流速分布と同等以上の流速分布が得られるように湾曲部11Aの曲率半径と温水の平均流速を設定することで、凍結が生じないチューブ11の設定が可能になる。   Further, when the radius of curvature of the curved portion 11A is 100 mm and the average flow velocity is 0.3 m / s, the flow velocity distribution is as shown by the curve d. In this case, although the flow velocity distribution is slightly lower than the curve a1 in the vicinity of the inner wall of the tube 11, a flow velocity distribution substantially equal to or higher than the curve a1 is obtained. In this way, by setting the curvature radius of the curved portion 11A and the average flow velocity of the hot water so that a flow velocity distribution equal to or higher than the flow velocity distribution of the non-freezing average flow velocity m1 in the straight pipe (straight portion 11B) can be obtained, freezing can be achieved. The tube 11 that does not occur can be set.

このような設計手法によると、湾曲部11Aを有するチューブ11において、実際に凍結するかどうかの実験は、目視しやすい直管を用いて非凍結平均流速m1を求める実験を行い、使用可能な湾曲部11Aの曲率半径と平均流速の設定は、コンピュータによるシミュレーション結果を用いて絞り込むことができるので、実証確認の範囲も合理的に設定が可能となる。   According to such a design method, in the tube 11 having the curved portion 11A, an experiment to determine whether or not it actually freezes is performed by performing an experiment for obtaining the non-freezing average flow velocity m1 using a straight tube that is easy to visually check. Since the setting of the radius of curvature and the average flow velocity of the part 11A can be narrowed down using a simulation result by a computer, the verification verification range can be set rationally.

以上説明した本発明の実施形態に係る温水式液化ガス気化器1によると、チューブ11内の温水を比較的速い流速で流すことで機器を小型にしても温水の凍結が生じない温水式液化ガス気化器1を得ることができる。また、シェル本体10を縦長に設置することで、設置面積の省スペース化が可能であり、シェル本体10やチューブ11を上端フリーに支持しているので、熱収縮に対して歪みが生じることがなく、クラック等の発生を抑止することが可能になる。また、シェル本体10内で液化ガスを気化するので、停止時にも液の残留が少なく、再起動時にも出口成分の変化がない。更には、チューブ11の設計を温水の凍結が生じない設計にしているので、凍結によるチューブ11の閉塞や破損の懸念が無く、安定した継続運転が可能になる。   According to the hot water type liquefied gas vaporizer 1 according to the embodiment of the present invention described above, the hot water type liquefied gas that does not cause the hot water to freeze even if the device is downsized by flowing the hot water in the tube 11 at a relatively high flow rate. The vaporizer 1 can be obtained. Further, by installing the shell main body 10 vertically, it is possible to reduce the installation area, and since the shell main body 10 and the tube 11 are supported at the upper end free, distortion may occur with respect to heat shrinkage. It is possible to suppress the occurrence of cracks and the like. Further, since the liquefied gas is vaporized in the shell body 10, there is little liquid remaining even when stopped, and there is no change in the outlet component even when restarting. Furthermore, since the design of the tube 11 is designed so that the hot water does not freeze, there is no fear of the tube 11 being blocked or damaged by freezing, and stable continuous operation is possible.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.

1:温水式液化ガス気化器,
10:シェル本体,11:チューブ,11A:湾曲部,11B:直線部,
12:温水流入部,12A:温水流入口,
13:温水流出部,13A:温水流出口,
14:仕切り板,15:液流入部,16:ガス流出部
1: Hot water liquefied gas vaporizer,
10: Shell body, 11: Tube, 11A: Curved part, 11B: Straight part,
12: Hot water inflow part, 12A: Hot water inflow port,
13: Hot water outlet, 13A: Hot water outlet,
14: Partition plate, 15: Liquid inflow part, 16: Gas outflow part

Claims (3)

縦長に設置されるシェル本体と、
前記シェル本体内に複数本配置され逆U字状の湾曲部と前記シェル本体に沿った一対の直線部を有するチューブと、
前記シェル本体の下部に配置され前記一対の直線部の一方の開放端が連通する温水流入部と、
前記シェル本体の下部に配置され前記一対の直線部の他方の開放端が連通する温水流出部と、
前記シェル本体内に液化ガスの液を流入させる液流入部と、
前記シェル本体内で気化したガスを流出させるガス流出部とを備え、
前記湾曲部の曲率半径は、前記直線部で温水が凍結しない非凍結平均流速以上の設定流速で前記チューブ内に温水を流した場合に、前記直線部における前記非凍結平均流速の流速分布と同等以上の流速分布が前記湾曲部で得られるように設定されることを特徴とする温水式液化ガス気化器。
A shell body installed vertically,
A tube having a plurality of inverted U-shaped curved portions disposed in the shell body and a pair of straight portions along the shell body;
A hot water inflow portion disposed at a lower portion of the shell main body and communicating with one open end of the pair of linear portions;
A warm water outflow part arranged at the lower part of the shell main body and communicating with the other open end of the pair of linear parts;
A liquid inflow portion for allowing the liquid of the liquefied gas to flow into the shell body;
A gas outflow part for allowing gas vaporized in the shell body to flow out,
The radius of curvature of the curved portion is equivalent to the flow rate distribution of the non-freezing average flow velocity in the straight portion when the hot water flows in the tube at a set flow rate equal to or higher than the non-freezing average flow velocity at which the hot water does not freeze in the straight portion. A hot water type liquefied gas vaporizer, wherein the above flow velocity distribution is set to be obtained at the curved portion.
前記非凍結平均流速が0.1m/sである場合に、設定流速を0.3m/sとし前記曲率半径を100mm以上とすることを特徴とする請求項1記載の温水式液化ガス気化器。   2. The hot water liquefied gas vaporizer according to claim 1, wherein when the non-freezing average flow velocity is 0.1 m / s, the set flow velocity is 0.3 m / s and the curvature radius is 100 mm or more. 前記直線部の上端位置を前記液流入部より上方に設定することを特徴とする請求項1又は2記載の温水式液化ガス気化器。   The hot water liquefied gas vaporizer according to claim 1 or 2, wherein an upper end position of the linear portion is set above the liquid inflow portion.
JP2013262999A 2013-12-19 2013-12-19 Hot water type liquefied gas vaporizer Pending JP2015117807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262999A JP2015117807A (en) 2013-12-19 2013-12-19 Hot water type liquefied gas vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262999A JP2015117807A (en) 2013-12-19 2013-12-19 Hot water type liquefied gas vaporizer

Publications (1)

Publication Number Publication Date
JP2015117807A true JP2015117807A (en) 2015-06-25

Family

ID=53530705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262999A Pending JP2015117807A (en) 2013-12-19 2013-12-19 Hot water type liquefied gas vaporizer

Country Status (1)

Country Link
JP (1) JP2015117807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812278B1 (en) * 2017-06-09 2017-12-26 주식회사 태진중공업 Trim heater
CN109253640A (en) * 2018-09-06 2019-01-22 广东捷玛节能科技股份有限公司 A kind of vibration turbulent flow type Horizontal U-shaped heat exchange tube type heat exchangers
JP7494794B2 (en) 2021-05-27 2024-06-04 Jfeスチール株式会社 Nitrogen supply device and nitrogen supply method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812278B1 (en) * 2017-06-09 2017-12-26 주식회사 태진중공업 Trim heater
CN109253640A (en) * 2018-09-06 2019-01-22 广东捷玛节能科技股份有限公司 A kind of vibration turbulent flow type Horizontal U-shaped heat exchange tube type heat exchangers
CN109253640B (en) * 2018-09-06 2020-03-10 广东捷玛节能科技股份有限公司 Vibration turbulent flow type horizontal U-shaped heat exchange tube type heat exchanger
JP7494794B2 (en) 2021-05-27 2024-06-04 Jfeスチール株式会社 Nitrogen supply device and nitrogen supply method

Similar Documents

Publication Publication Date Title
JP5746202B2 (en) LNG re-vaporization plant
US20140166262A1 (en) Cooling apparatus for casting mold and cooling method for casting mold
JP2015117807A (en) Hot water type liquefied gas vaporizer
WO2014024824A1 (en) Ship equipped with liquefied gas vaporization device, and liquefied gas vaporization device
KR101497560B1 (en) Open rack vaporizer having guide
JP2017078475A (en) Intermediate medium type gas vaporizer
JP2018040531A (en) Heat exchanger
JP2007247797A (en) Lng vaporizer
JP5869646B1 (en) Refrigerant supply device, cooling device, and cooling system
JP2017106643A (en) Chiller unit
WO2015037452A1 (en) Float structure
JP2016008716A (en) Heat exchanger
JP2011117536A (en) Gas supply device
JP6666703B2 (en) Heat exchanger
JP2016191424A (en) Gas vaporizer for cold heat recovery
JP2009192004A (en) Liquefied gas vaporizing equipment
JP2011127754A (en) Hydrogen gas cooling device
JP2017048961A (en) Heat exchange device and heat exchange method
JP2009281646A (en) Plate heat exchanger for evaporation cooling
JP6126569B2 (en) Vaporizer for liquefied gas
WO2023047937A1 (en) Liquid hydrogen vaporizer, and generation method for generating hydrogen
CN104613804A (en) Bent pipe and semiconductor refrigeration refrigerator with same
JP2018091562A (en) Carburetor and manufacturing method thereof
JP5899261B2 (en) Vaporizer
JP2008309410A (en) Heat pump type hot water supply device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151222