JP2014227573A - High strength steel having excellent high-pressure hydrogen environment embrittlement resistance properties and production method therefor - Google Patents

High strength steel having excellent high-pressure hydrogen environment embrittlement resistance properties and production method therefor Download PDF

Info

Publication number
JP2014227573A
JP2014227573A JP2013108066A JP2013108066A JP2014227573A JP 2014227573 A JP2014227573 A JP 2014227573A JP 2013108066 A JP2013108066 A JP 2013108066A JP 2013108066 A JP2013108066 A JP 2013108066A JP 2014227573 A JP2014227573 A JP 2014227573A
Authority
JP
Japan
Prior art keywords
strength steel
pressure hydrogen
hydrogen environment
strength
embrittlement resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013108066A
Other languages
Japanese (ja)
Other versions
JP6179977B2 (en
Inventor
佐藤 慎也
Shinya Sato
慎也 佐藤
荒島 裕信
Hironobu Arashima
裕信 荒島
林造 茅野
Rinzo Kayano
林造 茅野
洋流 和田
Hiroharu Wada
洋流 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2013108066A priority Critical patent/JP6179977B2/en
Publication of JP2014227573A publication Critical patent/JP2014227573A/en
Application granted granted Critical
Publication of JP6179977B2 publication Critical patent/JP6179977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel having excellent hydrogen embrittlement properties in high-pressure hydrogen environment like 70 MPa or more, and a production method therefor.SOLUTION: A high strength steel having high strength and also excellent hydrogen embrittlement properties in high-pressure hydrogen environment is obtained with a composition where C: 0.20 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P: 0.02% or less, S: 0.02% or less, Ni: 1.0 to 5.0%, Cr: 0.5 to 2.5%, Mo: 0.1 to 1.5%, and V: 0.005 to 0.3%, based on mass%, and if desired, also one or two of Nb: 0.1% or less and Cu: 0.5% or less are contained, the rest consists of Fe and inevitable impurity, and Ceq represented by the following formula is 0.75 or more. Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14, where each element symbol in the formula represents a numerical value of mass% for each element.

Description

この発明は、高圧水素貯蔵用蓄圧器などに使用される耐高圧水素環境脆化特性に優れた高強度鋼およびその製造方法に関するものである。   The present invention relates to a high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance used for a high-pressure hydrogen storage pressure accumulator and the like, and a method for producing the same.

水素社会構築のための水素インフラとして、高圧水素を貯蔵・供給する水素ステーションの普及は重要である。水素ステーションを構成する主たる機器として水素蓄圧器があり、FRP(Fiber Reinforced Plastics)製蓄圧器、FRPとライナーの複合蓄圧器、鋼製蓄圧器の開発が進められている。これらのうち鋼製蓄圧器は既に高い安全性が実証されており、低コスト化に向けた技術開発も進んでいることから、今後建設される水素ステーションへの採用が見込まれている。
さらに近年、水素ステーションの普及に向けて蓄圧器の高圧化および高容量化が望まれており、特に燃料電池自動車の航続距離延長のためには充填圧力の高圧化が必要となることから、蓄圧器には70MPa以上の高圧水素ガスを貯蔵する必要がある。しかし、従来の鋼製蓄圧器に使用されているような低合金高強度鋼は高圧水素ガス環境下で水素脆化することが知られている。このような高圧水素ガス環境でも脆化しにくい材料としてはオーステナイト系ステンレス鋼であるSUS316Lが挙げられるが、大気中の引張強度が600MPa程度と低いために充填圧力70MPa以上の高圧環境下で使用するには蓄圧器の肉厚増加による大幅な重量増加およびコスト増加は避けられないことから蓄圧器への適用は現実的ではない。
高圧水素環境下でも使用可能な水素脆化感受性を抑制した鋼製蓄圧器用材料が特許文献1〜4などで報告されている。特許文献1及び特許文献2では、大気中の引張強度が900〜950MPaの範囲で従来の高強度低合金鋼よりも水素脆化感受性の低い成分系が示されている。特許文献3では下部組織の制御により、特許文献4では微細炭化物形態の制御により、いずれも大気中の引張強度が800MPa以上の高強度鋼でありながら水素脆化感受性が低い鋼材の製造が可能である、と提案されている。
The spread of hydrogen stations that store and supply high-pressure hydrogen is important as a hydrogen infrastructure for building a hydrogen society. A hydrogen pressure accumulator is a main device constituting the hydrogen station, and development of an FRP (Fiber Reinforced Plastics) pressure accumulator, a combined FRP and liner pressure accumulator, and a steel pressure accumulator is underway. Among these, steel accumulators have already been proven to be highly safe, and technological developments aimed at lowering costs are advancing, so they are expected to be used in hydrogen stations to be constructed in the future.
In recent years, it has been desired to increase the pressure and capacity of accumulators for the spread of hydrogen stations. In particular, it is necessary to increase the charging pressure to extend the cruising range of fuel cell vehicles. It is necessary to store high-pressure hydrogen gas of 70 MPa or more in the vessel. However, it is known that low-alloy high-strength steel used in conventional steel accumulators is hydrogen embrittled in a high-pressure hydrogen gas environment. SUS316L, which is an austenitic stainless steel, can be cited as a material that is not easily embrittled even in such a high-pressure hydrogen gas environment. However, since a significant increase in weight and cost due to an increase in the thickness of the pressure accumulator is inevitable, application to the pressure accumulator is not realistic.
Patent Documents 1 to 4 report steel pressure accumulator materials that suppress hydrogen embrittlement sensitivity that can be used even in a high-pressure hydrogen environment. Patent Document 1 and Patent Document 2 show a component system that is less susceptible to hydrogen embrittlement than a conventional high-strength low-alloy steel in a range of tensile strength in the atmosphere of 900 to 950 MPa. In Patent Document 3, it is possible to produce a steel material with low hydrogen embrittlement susceptibility by controlling the substructure, and in Patent Document 4 by controlling the fine carbide form, both of which are high strength steels having an atmospheric tensile strength of 800 MPa or more. It is proposed that there is.

特開2009−46737号公報JP 2009-46737 A 特開2009−275249号公報JP 2009-275249 A 特開2012−107333号公報JP 2012-107333 A 特開2009−74122号公報JP 2009-74122 A

蓄圧器の高圧化および高容量化のためには従来の形状よりも厚肉化、大型化する必要がある。大型化する場合の問題として焼入れ性の確保が挙げられる。質量効果の影響が大きい大型材では焼入れ時に内部の冷却速度が低下するため、焼入れ性の悪い成分系の場合、冷却速度の小さい内部は上部ベイナイト組織やフェライト・パーライト組織となるため引張特性及び靱性の低下を引き起こす。そのため、大型材には焼入れ性を向上させる合金元素を添加した鋼種が使用されており、焼入れ性の指標としては式(1)に示す炭素当量(Ceq)が用いられている。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 ・・・式(1) ただし、式中の元素記号は各元素の質量%の数値を示す。
炭素当量に制限を設けることで、大型材でも内部まで目的とする組織を得ることが可能である。
In order to increase the pressure and capacity of the accumulator, it is necessary to make it thicker and larger than the conventional shape. Ensuring hardenability is a problem when increasing the size. Large materials with large mass effects have a lower internal cooling rate during quenching, so in the case of component systems with poor hardenability, the lower cooling rate inside becomes the upper bainite structure or ferrite / pearlite structure, so tensile properties and toughness Cause a decline. Therefore, a steel type to which an alloy element that improves hardenability is added is used for large materials, and the carbon equivalent (Ceq) shown in Formula (1) is used as an index of hardenability.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 Formula (1) However, the element symbol in the formula represents a numerical value of mass% of each element.
By providing a restriction on the carbon equivalent, it is possible to obtain a target structure even inside a large material.

特許文献1〜3で示されている組成では製品サイズが小さい場合は耐水素材脆化感受性に優れた高強度鋼が製造できるが、Ceqが低いため製造できるサイズに制限がある。特許文献4については板厚12mmの結果のみであり、大型材を想定した冷却速度の影響は検討されていないことや、45MPa水素環境下における評価しか実施していないことから、70MPa以上の高圧水素環境下でも45MPa水素環境下と同等の特性が得られるか検討されていない。
大型材のもう一つの課題としては焼戻しマルテンサイト組織の水素脆化感受性が挙げられる。一般的に焼入れ性とはマルテンサイト組織へのなりやすさを意味しており、焼入れ性を高めた調質鋼は焼戻しマルテンサイト組織を有することになる。このときの焼戻し条件は目的とする引張強度に応じて選択されるが、焼戻し条件によっては焼戻しにより析出する粗大なセメンタイトが水素の集積サイトとなり、水素脆化感受性の増加を引き起こすことが知られている。また、高強度鋼ほど水素脆化感受性は増加することが知られている。
In the compositions shown in Patent Documents 1 to 3, when the product size is small, a high-strength steel excellent in water-resistant material embrittlement susceptibility can be produced. However, since Ceq is low, the size that can be produced is limited. Patent Document 4 is only a result of a plate thickness of 12 mm, and the effect of the cooling rate assuming a large material has not been studied, and only evaluation in a 45 MPa hydrogen environment has been conducted. It has not been studied whether characteristics equivalent to those in a 45 MPa hydrogen environment can be obtained even under an environment.
Another problem with large materials is the sensitivity to hydrogen embrittlement of the tempered martensite structure. Generally, hardenability means the ease of forming a martensite structure, and a tempered steel with improved hardenability has a tempered martensite structure. The tempering conditions at this time are selected according to the target tensile strength, but depending on the tempering conditions, it is known that coarse cementite precipitated by tempering becomes an accumulation site of hydrogen and causes an increase in hydrogen embrittlement sensitivity. Yes. It is also known that hydrogen embrittlement susceptibility increases as the strength of steel increases.

この発明は上記のような従来のものの課題を解決するためになされたもので、Ceqを高めて焼入れ性を確保するとともに、高強度でありながら従来材よりも水素脆化感受性に優れた材料および製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the conventional ones, and enhances Ceq to ensure hardenability, and is a material having high strength and excellent hydrogen embrittlement susceptibility while being high strength, and An object is to provide a manufacturing method.

すなわち、本発明の耐高圧水素環境脆化特性に優れた高強度鋼のうち、第1の本発明は、質量%で、C:0.20〜0.50%、Si:0.01〜0.40%、Mn:0.10〜1.0%、P:0.02%以下、S:0.02%以下、Ni:1.0〜5.0%、Cr:0.5〜2.5%、Mo:0.1〜1.5%、V:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる組成を有し、且つ下記式で示されるCeqが0.75以上となることを特徴とする。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ただし、式中の元素記号は各元素の質量%の数値を示す。
That is, among the high-strength steels excellent in high-pressure hydrogen environment embrittlement resistance according to the present invention, the first present invention is mass%, C: 0.20 to 0.50%, Si: 0.01 to 0 .40%, Mn: 0.10 to 1.0%, P: 0.02% or less, S: 0.02% or less, Ni: 1.0 to 5.0%, Cr: 0.5 to 2. 5%, Mo: 0.1 to 1.5%, V: 0.005 to 0.3%, with the balance being composed of Fe and inevitable impurities, and Ceq represented by the following formula: It is characterized by being 0.75 or more.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol in a formula shows the numerical value of the mass% of each element.

第2の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1の本発明において、前記組成に、さらに質量%で、Nb:0.1%以下、Cu:0.5%以下の1種または2種を含有することを特徴とする。   The high-strength steel excellent in the high-pressure hydrogen environment embrittlement resistance according to the second aspect of the present invention is the composition according to the first aspect of the present invention, further comprising, in mass%, Nb: 0.1% or less, Cu: 0.00. 1 type or 2 types of 5% or less are contained, It is characterized by the above-mentioned.

第3の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1または第2の本発明において、調質後の大気中引張強度が800MPa〜1100MPaであることを特徴とする。   The high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance according to the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the tensile strength in the atmosphere after tempering is 800 MPa to 1100 MPa. To do.

第4の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1〜第3の本発明のいずれかにおいて、JISG0552(鋼のフェライト結晶粒度試験方法)の比較法により測定した、調質後の結晶粒度番号が6以上の粒度を有することを特徴とする。   The high-strength steel excellent in the high-pressure hydrogen environment embrittlement resistance according to the fourth aspect of the present invention is measured by a comparison method of JIS G 0552 (steel ferrite grain size test method) in any of the first to third aspects of the present invention. The grain size number after tempering is 6 or more.

第5の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1〜第4の本発明のいずれかにおいて、耐水素脆化指数(切欠引張試験におけるT.S.比:水素中のT.S.を大気中のT.S.で除した値)が0.6以上となることを特徴とする。   The high-strength steel excellent in the high-pressure hydrogen environment embrittlement resistance according to the fifth aspect of the present invention is the hydrogen embrittlement index (TS ratio in notch tensile test) in any of the first to fourth aspects of the present invention. : Value obtained by dividing TS in hydrogen by TS in air) is 0.6 or more.

第6の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1〜第5の本発明のいずれかにおいて、70MPa以上の高圧水素環境で使用されることを特徴とする。   The high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance according to the sixth aspect of the present invention is characterized by being used in a high-pressure hydrogen environment of 70 MPa or more in any of the first to fifth aspects of the present invention. .

第7の本発明の耐高圧水素環境脆化特性に優れた高強度鋼は、前記第1〜第6の本発明のいずれかにおいて、マルテンサイト組織、下部ベイナイト組織のいずれかまたはマルテンサイト組織と下部ベイナイト組織の混合組織からなることを特徴とする。   The high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance according to the seventh aspect of the present invention is the martensite structure, any of the lower bainite structure or the martensite structure in any of the first to sixth aspects of the present invention. It consists of a mixed structure of a lower bainite structure.

第8の本発明の耐高圧水素環境脆化特性に優れた高強度鋼の製造方法は、前記第1または第2の本発明の組成を有する高強度鋼に焼きならしをし、その後、800℃以上で焼入れ後、560〜680℃の範囲で焼戻しをすることを特徴とする。   The manufacturing method of the high strength steel excellent in the high pressure hydrogen environment embrittlement resistance according to the eighth aspect of the present invention normalizes the high strength steel having the composition according to the first or second aspect of the present invention, and then 800 It is characterized by tempering at a temperature in the range of 560 to 680 ° C. after quenching at a temperature not lower than C.

以下に本発明における合金元素の作用、限定理由について説明する。
C:0.20〜0.50%
Cは焼入れ性を向上させ強度を確保するために必要な元素であることから、その下限値を0.2%とする。しかし、過剰に含有すると焼戻し時に粗大な炭化物を形成する要因となることから、その上限値を0.5%とする。同様の理由で、望ましい下限は0.25%、望ましい上限は0.45%である。
Below, the effect | action of the alloy element in this invention and the reason for limitation are demonstrated.
C: 0.20 to 0.50%
Since C is an element necessary for improving the hardenability and ensuring the strength, the lower limit is set to 0.2%. However, if it is excessively contained, it becomes a factor for forming coarse carbides during tempering, so the upper limit is made 0.5%. For the same reason, the desirable lower limit is 0.25% and the desirable upper limit is 0.45%.

Si:0.01〜0.40%
Siは強度確保、製鋼時の脱酸などに必要な元素であり、その効果を得るための下限値を0.01%とする。しかし、過剰な含有は介在物による靱性低下や焼戻し脆化の原因となるため上限値を0.40%とする。同様の理由で、望ましい下限は0.03%、望ましい上限は0.30%である。
Si: 0.01-0.40%
Si is an element necessary for securing strength, deoxidation during steel making, and the lower limit for obtaining the effect is 0.01%. However, excessive content causes toughness reduction and temper embrittlement due to inclusions, so the upper limit is made 0.40%. For the same reason, the desirable lower limit is 0.03% and the desirable upper limit is 0.30%.

Mn:0.10〜1.0%
Mnは強度確保に必要な元素であり、その効果を得るための下限値を0.10%とする。しかし、過剰な含有は介在物による靱性低下の原因となるため上限値を1.0%とする。同様の理由で、望ましい下限は0.20%、望ましい上限は0.90%である。
Mn: 0.10 to 1.0%
Mn is an element necessary for ensuring strength, and the lower limit for obtaining the effect is 0.10%. However, excessive content causes a decrease in toughness due to inclusions, so the upper limit is made 1.0%. For the same reason, the desirable lower limit is 0.20% and the desirable upper limit is 0.90%.

P:0.02%以下
Pは含有量は工業的に十分実現可能な0.02%を上限とした。
S:0.02%以下
Sは含有量は工業的に十分実現可能な0.02%を上限とした。
P: 0.02% or less P has an upper limit of 0.02%, which can be industrially sufficiently realized.
S: 0.02% or less S has an upper limit of 0.02%, which can be industrially sufficiently realized.

Ni:1.0〜5.0%
Niは焼入れ性を向上させ強度および靱性を確保するために必要な元素であることから、その効果を得るための下限値を1.0%とする。しかし、過剰な含有は製造コスト増加の原因となるため上限値を5.0%とする。同様の理由で、望ましい下限は1.5%、望ましい上限は4.0%である。
Ni: 1.0-5.0%
Since Ni is an element necessary for improving the hardenability and ensuring the strength and toughness, the lower limit for obtaining the effect is set to 1.0%. However, excessive content causes an increase in production cost, so the upper limit is set to 5.0%. For the same reason, the desirable lower limit is 1.5% and the desirable upper limit is 4.0%.

Cr:0.5〜2.5%
Crは強度向上に必要な元素であり、その効果を得るための下限値を0.5%とする。しかし、過剰な含有は焼戻し時に粗大な炭化物を形成する要因となるため上限値を2.5%とする。同様の理由で、望ましい下限は1.0%、望ましい上限は2.0%である。
Cr: 0.5 to 2.5%
Cr is an element necessary for improving the strength, and the lower limit for obtaining the effect is 0.5%. However, excessive content causes formation of coarse carbides during tempering, so the upper limit is set to 2.5%. For the same reason, the desirable lower limit is 1.0% and the desirable upper limit is 2.0%.

Mo:0.1〜1.5%
Moは強度向上に必要な元素であり、その効果を得るための下限値を0.1%とする。しかし、過剰な含有は製造コスト増加の原因となるため上限値を1.5%とする。同様の理由で、望ましい下限は0.2%、望ましい上限は1.0%である。
Mo: 0.1 to 1.5%
Mo is an element necessary for improving the strength, and the lower limit for obtaining the effect is 0.1%. However, excessive content causes an increase in production cost, so the upper limit is set to 1.5%. For the same reason, the desirable lower limit is 0.2% and the desirable upper limit is 1.0%.

V:0.005〜0.3%
Vは強度向上に必要な元素であり、その効果を得るための下限値を0.005%とする。しかし、過剰な含有は靱性を低下させる要因となるため上限値を0.3%とする。同様の理由で、望ましい下限は0.03%、望ましい上限は0.2%である。
V: 0.005-0.3%
V is an element necessary for improving the strength, and the lower limit for obtaining the effect is 0.005%. However, excessive content causes a decrease in toughness, so the upper limit is made 0.3%. For the same reason, the desirable lower limit is 0.03% and the desirable upper limit is 0.2%.

Ceq(下記式で示される)が0.75以上
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ただし、式中の元素記号は各元素の質量%の数値を示す。
Ceqは鋼の焼入れ性を表す指標であり、Ceqが0.75以上であれば実際の耐高圧水素環境で使用される部材(例えば蓄圧器)の製造において想定される範囲で最も小さい冷却速度になった場合でも内部まで目的とする組織が得られる。
Ceq (shown by the following formula) is 0.75 or more Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol in a formula shows the numerical value of the mass% of each element.
Ceq is an index representing the hardenability of steel. If Ceq is 0.75 or more, the cooling rate is the smallest in the range assumed in the production of a member (for example, a pressure accumulator) used in an actual high pressure resistant hydrogen environment. Even if it becomes, the target organization can be obtained to the inside.

Nb:0.1%以下
Nbは強度向上や結晶粒径の微細化に有効な元素であり、所望により含有させる。ただし、過剰な含有は製造コストの増加や鍛造性悪化の要因となるため上限値を0.1%とする。望ましくは上限0.08%である。また、上記作用を十分に得るためには、下限を0.01%とするのが望ましい。
Nb: 0.1% or less Nb is an element effective for improving the strength and reducing the crystal grain size, and is contained as desired. However, an excessive content causes an increase in manufacturing cost and a deterioration in forgeability, so the upper limit is set to 0.1%. Desirably, the upper limit is 0.08%. In order to obtain the above effect sufficiently, it is desirable to set the lower limit to 0.01%.

Cu:0.5%以下
Cuは強度向上に有効な元素であり所望により含有させる。ただし、過剰な含有は鍛造性悪化の要因となるため、上限を0.5%とする。望ましくは上限0.4%である。また、上記作用を十分に得るためには、下限を0.01%とするのが望ましい。
Cu: 0.5% or less Cu is an element effective for improving the strength, and is contained as desired. However, excessive content causes deterioration of forgeability, so the upper limit is made 0.5%. Desirably, the upper limit is 0.4%. In order to obtain the above effect sufficiently, it is desirable to set the lower limit to 0.01%.

目標強度:調質後の室温強度を800MPa以上
本発明の高強度鋼では、調質後の室温強度が800MPa以上であるのが望ましく、850MPa以上が一層望ましい。
ただし水素雰囲気下における水素脆化感受性は強度が高いほど大きくなるので、室温強度の上限は1100MPaとするのが望ましく、上限を1050MPaとするのが一層望ましい。室温強度は、組成の選定、調質の条件設定により調整することができる。
Target strength: room temperature strength after tempering is 800 MPa or more In the high strength steel of the present invention, the room temperature strength after tempering is desirably 800 MPa or more, and more desirably 850 MPa or more.
However, since the hydrogen embrittlement susceptibility in a hydrogen atmosphere increases as the strength increases, the upper limit of room temperature strength is preferably 1100 MPa, and more preferably 1050 MPa. The room temperature strength can be adjusted by selecting the composition and setting the tempering conditions.

結晶粒度:粒度番号6以上(JISG0552)
本発明の高強度鋼は、JISG0552(鋼のフェライト結晶粒度試験方法)の比較法により測定した調質後の結晶粒度番号が6以上であるのが望ましい。当該結晶粒度番号が6以上であれば、従来鋼と比較して、格別に優れた耐水素脆性を発現させることができる。細粒を得る方法としては、加工や熱処理およびそれらの組み合わせなどさまざまな方法があるが、本発明ではどのような方法を用いても得られる効果に影響は無いため、細粒を得るための方法については特に限定しない。
Crystal grain size: grain size number 6 or more (JISG 0552)
The high-strength steel of the present invention preferably has a grain size number of 6 or more after tempering measured by a comparative method of JISG 0552 (steel ferrite grain size test method). When the crystal grain size number is 6 or more, hydrogen embrittlement resistance that is exceptionally superior to that of conventional steel can be exhibited. There are various methods for obtaining fine particles, such as processing, heat treatment, and combinations thereof, but in the present invention, there is no effect on the effect obtained by using any method, so a method for obtaining fine particles It does not specifically limit about.

耐水素脆化指数(切欠引張試験におけるT.S.比:水素中のT.S.を大気中のT.S.で除した値):0.6以上
本発明の高強度鋼は、耐水素脆性を評価する指標として耐水素脆化指数(切欠引張試験におけるT.S.比:水素中のT.S.を大気中のT.S.で除した値)を定義すると、この耐水素脆化指数が0.6以上であるのが望ましい。一般的な傾向として、大気中の平滑引張強度が大きくなると耐水素脆化指数は低下する。耐水素脆化指数が0.6以上であれば格別に優れた耐水素脆性を有すると判断される。
Hydrogen embrittlement index (TS ratio in notch tensile test: value obtained by dividing TS in hydrogen by TS in air): 0.6 or more The hydrogen embrittlement index (TS ratio in notch tensile test: value obtained by dividing TS in hydrogen by TS in air) is defined as an index for evaluating hydrogen embrittlement. It is desirable that the brittleness index is 0.6 or more. As a general tendency, the hydrogen embrittlement index decreases as the smooth tensile strength in the atmosphere increases. If the hydrogen embrittlement resistance index is 0.6 or more, it is judged that the hydrogen embrittlement resistance is particularly excellent.

製造方法
本発明の高強度鋼は、上記組成を有する低合金鋼に対し、鍛造時のひずみを除去するために焼きならしを実施し、また最適な結晶粒径を得るために800℃以上で焼入れを実施するのが望ましく、焼入れ後は最適な強度範囲に調整するため560〜680℃で焼戻しを実施するのが望ましい。
Production Method The high strength steel of the present invention is subjected to normalization to remove strain during forging, and 800 ° C. or more in order to obtain an optimum crystal grain size, for the low alloy steel having the above composition. It is desirable to perform quenching, and after quenching, it is desirable to perform tempering at 560 to 680 ° C. in order to adjust to the optimum strength range.

以上のように、この発明によれば大型材においても均一な組織を得ることが可能であり、高強度を有し、高圧水素雰囲気下でも優れた耐水素脆性を有する鋼材を得ることができる。   As described above, according to the present invention, a uniform structure can be obtained even in a large material, and a steel material having high strength and excellent hydrogen embrittlement resistance even under a high-pressure hydrogen atmosphere can be obtained.

実施例における切欠き引張試験での大気中平滑引張強度と耐水素脆化指数との関係を示すグラフである。It is a graph which shows the relationship between the smooth tensile strength in air | atmosphere and the hydrogen embrittlement resistance index in the notch tensile test in an Example.

以下に、本発明の実施形態を説明する。
質量%で、C:0.20〜0.50%、Si:0.01〜0.40%、Mn:0.10〜1.0%、P:0.02%以下、S:0.02%以下、Ni:1.0〜5.0%、Cr:0.5〜2.5%、Mo:0.1〜1.5%、V:0.005〜0.3%を含有し、さらに、所望によりNb:0.1%以下、Cu:0.5%以下の1種または2種を含有し、残部がFe及び不可避的不純物からなる組成を有し、且つ下記式で示されるCeqが0.75以上となる組成の鋼を溶製する。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ただし、式中の元素記号は各元素の質量%の数値を示す。
溶製の方法は特に限定されるものではなく、常法に従って行うことができ、例えば真空誘導溶解により行うことができる。
上記組成としては、主にASME SA723Mで提供される鋼種をベースとするものが挙げられる。
Hereinafter, embodiments of the present invention will be described.
In mass%, C: 0.20 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P: 0.02% or less, S: 0.02 %: Ni: 1.0-5.0%, Cr: 0.5-2.5%, Mo: 0.1-1.5%, V: 0.005-0.3%, Further, if desired, Ceq containing one or two of Nb: 0.1% or less and Cu: 0.5% or less, the balance being composed of Fe and unavoidable impurities, and represented by the following formula A steel having a composition of 0.75 or more is melted.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol in a formula shows the numerical value of the mass% of each element.
The melting method is not particularly limited and can be performed according to a conventional method, for example, by vacuum induction melting.
Examples of the composition include those based mainly on steel types provided by ASME SA723M.

得られた材料は、鋳造によって所定の形状とすることもできるが、熱間鍛造などの熱間加工を経て所定の形状とすることができる。熱間加工後は、鍛造時の歪みを除去するため焼きならしを行うことができる。焼きならしは、例えば、800〜1000℃の条件で行うことができる。
さらに上記材料は、例えば800℃以上で焼入れを行い、焼入れ後、560〜680℃、2〜10時間の範囲で焼き戻しを実施することができる。焼き戻しの時間は前記に限定されるものではなく、材料質量に応じて変更することができる。焼入れにより組織をマルテンサイト組織、下部ベイナイト組織のいずれかまたはマルテンサイト組織と下部ベイナイト組織の混合組織とすることができる。これらの組織が得られていれば実用上十分な強度、靱性が得られる。また、焼入れによってJISG0552による粒度番号が6以上となる最適な結晶粒径を得ることができ、格別に優れた耐水素脆性を発現させることができる。
焼き戻しでは、強度調整を行うことができ、好適には、大気中引張強度を800MPa〜1100MPaとすることができる。
Although the obtained material can also be made into a predetermined shape by casting, it can be made into a predetermined shape through hot working such as hot forging. After hot working, normalization can be performed to remove distortion during forging. Normalization can be performed, for example, under conditions of 800 to 1000 ° C.
Further, the above material can be tempered at, for example, 800 ° C. or higher, and tempered within a range of 560 to 680 ° C. and 2 to 10 hours after quenching. The tempering time is not limited to the above, and can be changed according to the material mass. By quenching, the structure can be either a martensite structure, a lower bainite structure, or a mixed structure of a martensite structure and a lower bainite structure. If these structures are obtained, practically sufficient strength and toughness can be obtained. Moreover, the optimal crystal grain size in which the grain size number by JISG0552 becomes 6 or more can be obtained by quenching, and exceptionally excellent hydrogen embrittlement resistance can be expressed.
In tempering, the strength can be adjusted, and the tensile strength in the air can be suitably set to 800 MPa to 1100 MPa.

また、上記材料は、高圧水素環境で使用される蓄圧器などに使用することができ、70MPa以上の高圧水素環境で使用するものに好適である。高圧水素環境では、耐水素脆化に優れている必要があり、その指標の一つとして耐水素脆化指数(切欠引張試験におけるT.S.比:水素中のT.S.を大気中のT.S.で除した値)が0.6以上であるのが望ましい。   Moreover, the said material can be used for the pressure accumulator etc. which are used in a high pressure hydrogen environment, and is suitable for what is used in a 70 MPa or more high pressure hydrogen environment. In a high-pressure hydrogen environment, hydrogen embrittlement resistance must be excellent, and as one of the indicators, the hydrogen embrittlement index (TS ratio in notch tensile test: TS in hydrogen is It is desirable that the value divided by TS is 0.6 or more.

表1に示す組成(残部がFeおよび不可避不純物)の供試材を真空誘導溶解炉を用いて溶製し、それぞれの供試材について50kg鋼塊を得て熱間鍛造により35mm厚さの鍛造板に加工した。
各供試材は、熱間鍛造後に900℃×2時間の条件で焼きならしを行い、さらに850℃×8時間で焼入れを行った。本実施例では、肉厚材を想定し全ての供試材について焼入れ時の平均冷却速度を40℃/分に調整した。なお、この冷却速度は板厚約200mmの鋼材を水冷した場合の板厚1/2位置の冷却速度に相当する。その後、引張強度を調整するために560℃から680℃の間で焼き戻しを実施した。焼戻しの保持時間は6時間とした。
Test materials having the composition shown in Table 1 (the balance being Fe and inevitable impurities) were melted using a vacuum induction melting furnace, 50 kg steel ingots were obtained for each test material, and forging with a thickness of 35 mm by hot forging. Processed into a plate.
Each test material was subjected to normalization under conditions of 900 ° C. × 2 hours after hot forging, and further quenched at 850 ° C. × 8 hours. In this example, thick materials were assumed, and the average cooling rate during quenching was adjusted to 40 ° C./min for all test materials. This cooling rate corresponds to the cooling rate at the position of half the plate thickness when a steel material having a plate thickness of about 200 mm is water-cooled. Thereafter, tempering was performed between 560 ° C. and 680 ° C. in order to adjust the tensile strength. Tempering retention time was 6 hours.

焼入れ、焼き戻しの調質後の供試材からJIS Z 2201に規定された14号平滑試験片(直径8mm、標点距離40mm)を採取し、平行部の中央に環状のV字切欠きを導入した。切欠き底部は直径4mmとした。引張試験は高圧水素環境疲労試験機を用い、99MPa水素環境下および大気雰囲気下で実施した。引張試験における変形速度は0.0028mm/sで実施した。試験温度は20℃とした。   Sample 14 smooth test piece (diameter 8mm, gauge distance 40mm) specified in JIS Z 2201 is taken from the test material after quenching and tempering, and an annular V-shaped notch is formed in the center of the parallel part. Introduced. The notch bottom was 4 mm in diameter. The tensile test was carried out using a high-pressure hydrogen environmental fatigue tester under a 99 MPa hydrogen environment and an atmospheric atmosphere. The deformation rate in the tensile test was 0.0028 mm / s. The test temperature was 20 ° C.

また、上記引張試験の前に組織観察を実施した。実施例1〜5は、強度および靱性を低下させる上部ベイナイト組織やフェライト組織は認められなかった。また結晶粒度番号はいずれも6以上の細粒が得られていることを確認した。
次に、長さ55mmで一辺10mmの角棒とした供試材の中央に、深さ2mmで45度V字溝を入れ(Vノッチ)、20℃におけるシャルピー衝撃試験を行った。測定された吸収エネルギーは表1に示した。その結果、実施例1〜5は、いずれも比較例1〜3に比べて高い吸収エネルギーを示しており、比較例1〜3に比べて靱性に優れていることが明らかになった。比較例1〜3は上部ベイナイトを有する組織であり、これが靱性の低下を招いたものと考えられる。
上記のように、発明材では、200mmまたはそれ以上の肉厚においても上記組織や結晶粒度が得られており、焼き入れ性に優れていることが分かる。ただし、本発明材の肉厚は特に限定されるものではなく、例えば50mm以上の肉厚を有する蓄圧器の材料として好適に利用できる。
Further, the structure was observed before the tensile test. In Examples 1 to 5, the upper bainite structure and the ferrite structure that decrease the strength and toughness were not recognized. Further, it was confirmed that fine grains having a crystal grain size number of 6 or more were obtained.
Next, a 45-degree V-shaped groove (V notch) was formed at a depth of 2 mm at the center of a specimen material having a length of 55 mm and a square bar having a side of 10 mm, and a Charpy impact test at 20 ° C. was performed. The measured absorbed energy is shown in Table 1. As a result, each of Examples 1 to 5 showed higher absorbed energy than Comparative Examples 1 to 3, and was found to be superior in toughness compared to Comparative Examples 1 to 3. Comparative Examples 1 to 3 are structures having upper bainite, which is considered to have caused a decrease in toughness.
As described above, in the inventive material, the above-mentioned structure and crystal grain size are obtained even at a thickness of 200 mm or more, and it can be seen that the hardenability is excellent. However, the thickness of the material of the present invention is not particularly limited, and can be suitably used as a material for a pressure accumulator having a thickness of 50 mm or more, for example.

図1に切欠き引張試験におけるT.S.比と大気中平滑引張強度との関係を示す。実施例1〜5は大気中の平滑引張強度が800MPa〜1100MPaの範囲で耐水素脆化指数が0.6以上となり、比較例に比べて耐高圧水素環境脆化特性が優れていることが確認された。なお、比較例の一部では、低強度側(800〜950MPa未満)で良好な耐水素脆化を示しているが、その材料でも高強度側(950MPa〜1100MPa)では耐水素脆化特性に劣っていることが分かる。これらの点から本発明は、特に高強度側においても優れた耐水素脆化特性を有するという点で特筆されるものである。
結晶粒微細化の効果としては、粒界長さが増加することにより粒界単位長さあたりの水素濃度が低減することや、細粒化に伴いブロックやパケットといった下部組織も細かくなることが割れに対する抵抗性向上に寄与しているといった点などが推測される。
In FIG. S. The relationship between the ratio and the smooth tensile strength in the air is shown. In Examples 1 to 5, the smooth tensile strength in the air is in the range of 800 MPa to 1100 MPa, the hydrogen embrittlement index is 0.6 or more, and it is confirmed that the high pressure hydrogen environment embrittlement resistance is superior to the comparative example. It was done. Some of the comparative examples show good hydrogen embrittlement resistance on the low strength side (less than 800 to 950 MPa), but even the material has poor hydrogen embrittlement resistance on the high strength side (950 MPa to 1100 MPa). I understand that From these points, the present invention is particularly noted in that it has excellent hydrogen embrittlement resistance even on the high strength side.
The effect of grain refinement is that the grain boundary length increases, the hydrogen concentration per grain boundary unit length decreases, and the substructures such as blocks and packets become finer as the grain refines. It is speculated that it contributes to the improvement of the resistance to.

Figure 2014227573
Figure 2014227573

Claims (8)

質量%で、C:0.20〜0.50%、Si:0.01〜0.40%、Mn:0.10〜1.0%、P:0.02%以下、S:0.02%以下、Ni:1.0〜5.0%、Cr:0.5〜2.5%、Mo:0.1〜1.5%、V:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる組成を有し、且つ下記式で示されるCeqが0.75以上となることを特徴とする耐高圧水素環境脆化特性に優れた高強度鋼。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ただし、式中の元素記号は各元素の質量%の数値を示す。
In mass%, C: 0.20 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P: 0.02% or less, S: 0.02 %: Ni: 1.0-5.0%, Cr: 0.5-2.5%, Mo: 0.1-1.5%, V: 0.005-0.3%, A high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance, characterized in that the balance is composed of Fe and inevitable impurities, and Ceq represented by the following formula is 0.75 or more.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol in a formula shows the numerical value of the mass% of each element.
前記組成に、さらに質量%で、Nb:0.1%以下、Cu:0.5%以下の1種または2種を含有することを特徴とする請求項1記載の耐高圧水素環境脆化特性に優れた高強度鋼。   2. The high-pressure hydrogen environment embrittlement resistance according to claim 1, wherein the composition further contains one or two of Nb: 0.1% or less and Cu: 0.5% or less in mass%. Excellent high strength steel. 調質後の大気中引張強度が800MPa〜1100MPaであることを特徴とする請求項1または2に記載の耐高圧水素環境脆化特性に優れた高強度鋼。   The high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance according to claim 1 or 2, wherein the tensile strength in the atmosphere after tempering is 800 MPa to 1100 MPa. JISG0552(鋼のフェライト結晶粒度試験方法)の比較法により測定した、調質後の結晶粒度番号が6以上の粒度を有することを特徴とする請求項1〜3のいずれか1項に記載の耐高圧水素環境脆化特性に優れた高強度鋼。   The resistance to resistance according to any one of claims 1 to 3, wherein the grain size number after tempering is 6 or more, as measured by a comparison method of JIS G 0552 (steel ferrite grain size test method). High-strength steel with excellent high-pressure hydrogen environment embrittlement characteristics. 耐水素脆化指数(切欠引張試験におけるT.S.比:水素中のT.S.を大気中のT.S.で除した値)が0.6以上となることを特徴とする請求項1〜4のいずれか1項に記載の耐高圧水素環境脆化特性に優れた高強度鋼。   The hydrogen embrittlement index (TS ratio in notch tensile test: value obtained by dividing TS in hydrogen by TS in air) is 0.6 or more. High strength steel excellent in the high pressure hydrogen environment embrittlement resistance of any one of 1-4. 70MPa以上の高圧水素環境で使用されることを特徴とする請求項1〜5のいずれか1項に記載の耐高圧水素環境脆化特性に優れた高強度鋼。   The high-strength steel excellent in high-pressure hydrogen environment embrittlement resistance according to any one of claims 1 to 5, which is used in a high-pressure hydrogen environment of 70 MPa or more. マルテンサイト組織、下部ベイナイト組織のいずれかまたはマルテンサイト組織と下部ベイナイト組織の混合組織からなることを特徴とする請求項1〜6のいずれか1項に記載の耐高圧水素環境脆化特性に優れた高強度鋼。   The high-pressure hydrogen environment embrittlement resistance according to any one of claims 1 to 6, characterized by comprising either a martensite structure, a lower bainite structure, or a mixed structure of a martensite structure and a lower bainite structure. High strength steel. 請求項1または2に記載の組成を有する高強度鋼に焼きならしをし、その後、800℃以上で焼入れ後、560〜680℃の範囲で焼戻しをすることを特徴とする耐高圧水素環境脆化特性に優れた高強度鋼の製造方法。   The high-strength steel having the composition according to claim 1 is normalized, then quenched at 800 ° C. or higher, and then tempered in a range of 560 to 680 ° C. Of high-strength steel with excellent heat treatment characteristics.
JP2013108066A 2013-05-22 2013-05-22 High-strength steel with excellent high-pressure hydrogen environment embrittlement resistance and method for producing the same Expired - Fee Related JP6179977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108066A JP6179977B2 (en) 2013-05-22 2013-05-22 High-strength steel with excellent high-pressure hydrogen environment embrittlement resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013108066A JP6179977B2 (en) 2013-05-22 2013-05-22 High-strength steel with excellent high-pressure hydrogen environment embrittlement resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014227573A true JP2014227573A (en) 2014-12-08
JP6179977B2 JP6179977B2 (en) 2017-08-16

Family

ID=52127730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108066A Expired - Fee Related JP6179977B2 (en) 2013-05-22 2013-05-22 High-strength steel with excellent high-pressure hydrogen environment embrittlement resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6179977B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147594A1 (en) * 2015-03-16 2016-09-22 Jfeスチール株式会社 Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner
CN107142428A (en) * 2017-04-19 2017-09-08 马鞍山市鑫龙特钢有限公司 A kind of Cr Mo Ni steel alloys and preparation method thereof
JP2018012855A (en) * 2016-07-20 2018-01-25 新日鐵住金株式会社 Low alloy steel material, low alloy steel tube and container and method for producing the container
WO2018030223A1 (en) * 2016-08-12 2018-02-15 Jfeスチール株式会社 Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
WO2018055937A1 (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Steel pipe for accumulator, method for manufacturing steel pipe for accumulator, and liner for composite container accumulator
JP2018053357A (en) * 2016-09-21 2018-04-05 Jfeスチール株式会社 Liner for pressure accumulator, pressure accumulator, composite vessel pressure accumulator, and method for producing liner for pressure accumulator
CN108220809A (en) * 2017-12-26 2018-06-29 钢铁研究总院 A kind of high-strength and high-toughness steel with relatively low Hydrogen Embrittlement
WO2020137812A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
WO2020203158A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129724A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of thick walled ultra high tension steel
JPH02213411A (en) * 1989-02-13 1990-08-24 Kawasaki Steel Corp Production of high tensile steel with low yield radio
JP2005344149A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd High strength steel for large-sized steel forging, and crankshaft
JP2008025021A (en) * 2006-06-21 2008-02-07 Kobe Steel Ltd Steel for forging, process for producing the same, and forged article
JP2009046737A (en) * 2007-08-21 2009-03-05 Japan Steel Works Ltd:The Low-alloy high-strength steel excellent in resistance to high-pressure hydrogen environment embrittlement and its production method
JP2009275249A (en) * 2008-05-13 2009-11-26 Japan Steel Works Ltd:The High-strength low-alloy steel having excellent embrittlement resistance to high-pressure hydrogen environment and manufacturing method therefor
JP2010248540A (en) * 2009-04-10 2010-11-04 Kobe Steel Ltd Integrated crankshaft and method for manufacturing the same
JP2013253287A (en) * 2012-06-06 2013-12-19 Kobe Steel Ltd High-strength large steel forging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129724A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of thick walled ultra high tension steel
JPH02213411A (en) * 1989-02-13 1990-08-24 Kawasaki Steel Corp Production of high tensile steel with low yield radio
JP2005344149A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd High strength steel for large-sized steel forging, and crankshaft
JP2008025021A (en) * 2006-06-21 2008-02-07 Kobe Steel Ltd Steel for forging, process for producing the same, and forged article
JP2009046737A (en) * 2007-08-21 2009-03-05 Japan Steel Works Ltd:The Low-alloy high-strength steel excellent in resistance to high-pressure hydrogen environment embrittlement and its production method
JP2009275249A (en) * 2008-05-13 2009-11-26 Japan Steel Works Ltd:The High-strength low-alloy steel having excellent embrittlement resistance to high-pressure hydrogen environment and manufacturing method therefor
JP2010248540A (en) * 2009-04-10 2010-11-04 Kobe Steel Ltd Integrated crankshaft and method for manufacturing the same
JP2013253287A (en) * 2012-06-06 2013-12-19 Kobe Steel Ltd High-strength large steel forging

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022787B1 (en) 2015-03-16 2019-09-18 제이에프이 스틸 가부시키가이샤 Steel pipe or tube for composite pressure vessel liner, and method of manufacturing steel pipe or tube for composite pressure vessel liner
JPWO2016147594A1 (en) * 2015-03-16 2017-04-27 Jfeスチール株式会社 Steel material for composite container pressure accumulator liner, steel tube for composite container pressure accumulator liner, and method for manufacturing steel tube for composite container pressure accumulator liner
KR20170117149A (en) * 2015-03-16 2017-10-20 제이에프이 스틸 가부시키가이샤 Composite container Accumulator liner steel material, composite container Accumulator liner steel pipe and composite container Accumulator liner
CN107429340A (en) * 2015-03-16 2017-12-01 杰富意钢铁株式会社 The manufacture method of recombination pressure container liner steel, recombination pressure container liner steel pipe and recombination pressure container liner steel pipe
EP3272893A4 (en) * 2015-03-16 2018-01-24 JFE Steel Corporation Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner
US10697036B2 (en) 2015-03-16 2020-06-30 Jfe Steel Corporation Steel material for composite pressure vessel liner and steel pipe or tube for composite pressure vessel liner
WO2016147594A1 (en) * 2015-03-16 2016-09-22 Jfeスチール株式会社 Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner
CN107429340B (en) * 2015-03-16 2019-07-02 杰富意钢铁株式会社 The manufacturing method of recombination pressure container liner steel, recombination pressure container liner steel pipe and recombination pressure container liner steel pipe
JP2018012855A (en) * 2016-07-20 2018-01-25 新日鐵住金株式会社 Low alloy steel material, low alloy steel tube and container and method for producing the container
US11365848B2 (en) 2016-08-12 2022-06-21 Jfe Steel Corporation Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
WO2018030223A1 (en) * 2016-08-12 2018-02-15 Jfeスチール株式会社 Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
EP3498875A4 (en) * 2016-08-12 2019-08-14 JFE Steel Corporation Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
JPWO2018030223A1 (en) * 2016-08-12 2018-08-09 Jfeスチール株式会社 Composite container pressure accumulator liner, composite container pressure accumulator, and method of manufacturing a composite container pressure accumulator liner
CN109715841A (en) * 2016-09-21 2019-05-03 杰富意钢铁株式会社 Steels for pressure vessel use pipe, the manufacturing method of steels for pressure vessel use pipe and recombination pressure container liner
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
JPWO2018055937A1 (en) * 2016-09-21 2018-09-20 Jfeスチール株式会社 Pressure accumulator steel pipe, pressure accumulator steel pipe manufacturing method, and composite container pressure accumulator liner
JP2018053357A (en) * 2016-09-21 2018-04-05 Jfeスチール株式会社 Liner for pressure accumulator, pressure accumulator, composite vessel pressure accumulator, and method for producing liner for pressure accumulator
WO2018055937A1 (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Steel pipe for accumulator, method for manufacturing steel pipe for accumulator, and liner for composite container accumulator
CN109715841B (en) * 2016-09-21 2022-06-07 杰富意钢铁株式会社 Steel pipe for pressure vessel, method for producing steel pipe for pressure vessel, and composite liner for pressure vessel
CN107142428B (en) * 2017-04-19 2019-01-01 马鞍山市鑫龙特钢有限公司 A kind of preparation method of Cr-Mo-Ni steel alloy
CN107142428A (en) * 2017-04-19 2017-09-08 马鞍山市鑫龙特钢有限公司 A kind of Cr Mo Ni steel alloys and preparation method thereof
CN108220809A (en) * 2017-12-26 2018-06-29 钢铁研究总院 A kind of high-strength and high-toughness steel with relatively low Hydrogen Embrittlement
WO2020137812A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
JPWO2020137812A1 (en) * 2018-12-26 2021-02-18 Jfeスチール株式会社 Method for manufacturing high-pressure hydrogen gas environmental steel, high-pressure hydrogen gas environmental steel structure, and high-pressure hydrogen gas environmental steel
WO2020203158A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet
JPWO2020203158A1 (en) * 2019-03-29 2021-10-21 日本製鉄株式会社 Steel plate
CN112969804A (en) * 2019-03-29 2021-06-15 日本制铁株式会社 Steel plate
JP7196997B2 (en) 2019-03-29 2022-12-27 日本製鉄株式会社 steel plate

Also Published As

Publication number Publication date
JP6179977B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6179977B2 (en) High-strength steel with excellent high-pressure hydrogen environment embrittlement resistance and method for producing the same
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
JP5201625B2 (en) High strength low alloy steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same
JP2018012855A (en) Low alloy steel material, low alloy steel tube and container and method for producing the container
WO2011061812A1 (en) High-toughness abrasion-resistant steel and manufacturing method therefor
JP5842537B2 (en) High-strength steel for high-pressure hydrogen storage containers
JP5655351B2 (en) Method for producing 9% Ni steel excellent in strength and low temperature toughness
CN103131962A (en) High-tenacity low-alloy high-strength steel and quenched-tempered heat treatment method thereof
JP6648647B2 (en) Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
CN102943212A (en) NM500 high-strength wear-resistant steel plate and heat treatment technique thereof
JP5521712B2 (en) Ni-containing steel for low temperature excellent in strength, low temperature toughness and brittle crack propagation stopping characteristics, and method for producing the same
JP2017115239A (en) Thick steel sheet excellent in ultra low temperature toughness
US9757780B2 (en) Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching
CN103088269B (en) Pressure container steel having high toughness at -120 DEG C, and its production method
WO2018215600A1 (en) High-strength, hot rolled abrasive wear resistant steel strip
JP2016509129A (en) High strength steel plate and manufacturing method thereof
JP2014173160A (en) Low alloy steel for high pressure hydrogen gas and accumulator for high pressure hydrogen
CN109097664B (en) 900 MPa-grade thick-specification high-toughness hot-rolled steel strip and preparation method thereof
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
US11441201B2 (en) Sucker rod steel and manufacturing method therefor
CN101591756A (en) Low-crackle sensitive steel board with yield strength of 620 MPa grade and manufacture method thereof
WO2013146214A1 (en) Steel for spring and method for producing same, and spring
JP5413350B2 (en) Rolled steel for hot forging and method for producing the same
JP5565050B2 (en) 9Ni steel with excellent strength, low temperature toughness and brittle crack propagation stopping properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170713

R150 Certificate of patent or registration of utility model

Ref document number: 6179977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees