JP2014227490A - ブレーカートッピング用ゴム組成物及び空気入りタイヤ - Google Patents

ブレーカートッピング用ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
JP2014227490A
JP2014227490A JP2013108970A JP2013108970A JP2014227490A JP 2014227490 A JP2014227490 A JP 2014227490A JP 2013108970 A JP2013108970 A JP 2013108970A JP 2013108970 A JP2013108970 A JP 2013108970A JP 2014227490 A JP2014227490 A JP 2014227490A
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
natural rubber
mass
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013108970A
Other languages
English (en)
Other versions
JP5650798B2 (ja
Inventor
結香 横山
Yuka YOKOYAMA
結香 横山
俊明 ▲榊▼
俊明 ▲榊▼
Toshiaki Sakaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013108970A priority Critical patent/JP5650798B2/ja
Priority to US14/888,285 priority patent/US9862814B2/en
Priority to EP14801053.1A priority patent/EP2993205B1/en
Priority to CN201480026336.3A priority patent/CN105264003B/zh
Priority to PCT/JP2014/062597 priority patent/WO2014188901A1/ja
Publication of JP2014227490A publication Critical patent/JP2014227490A/ja
Application granted granted Critical
Publication of JP5650798B2 publication Critical patent/JP5650798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性をバランス良く改善したブレーカートッピング用ゴム組成物及び該ゴム組成物を用いて作製した空気入りタイヤを提供する。
【解決手段】高純度化され、かつpHが2〜7に調整された改質天然ゴムと、カーボンブラックとを含むブレーカートッピング用ゴム組成物に関する。
【選択図】なし

Description

本発明は、ブレーカートッピング用ゴム組成物及び該ゴム組成物を用いて作製した空気入りタイヤに関する。
近年、燃料代の高騰や環境規制の導入により、車の低燃費化への要求が強くなり、内部部材であるブレーカートッピング用ゴムにも、優れた低燃費性が要求されている。ブレーカートッピング用ゴムには、天然ゴムが多用されているため、タイヤ全体の低燃費化には、天然ゴムの低燃費化も進めることが必要となっている。
天然ゴムの改質による低燃費化として、例えば、特許文献1には、天然ゴムラテックスに界面活性剤を加えて洗浄処理する方法が開示されている。しかし、この方法で蛋白質やゲル分をある程度低減できるものの、充分なレベルではなく、tanδの更なる低減が望まれている。また、タイヤ用のゴムには耐熱老化性などの性能も要求されているが、特許文献1の方法では耐熱性が不充分で低燃費性と耐熱老化性の両立という点の改善も望まれている。
また、天然ゴムは、他の合成ゴムに比べて高ムーニー粘度で加工性が悪く、通常しゃっ解剤を添加して素練りを行い、ムーニー粘度を低下させた後に使用しているため、生産性が悪い。更に、素練りにより天然ゴムの分子鎖が切断されることで、天然ゴムが本来有する高分子量ポリマーの特性(良好な耐摩耗性、低燃費性、ゴム強度など)が失われるという問題もある。
一方、近年、タイヤの耐摩耗性が向上し、市場での使用期間が長期化しているため、タイヤの内部損傷による耐久性能が懸念される。内部損傷の代表的なものとして、ブレーカートッピングゴムの破断強度の低下などを原因として発生するブレーカーエッジの損傷(以下、BEL(BREAKER EDGE LOOSENESS)とも言う。)があるが、従来から知られているフィラーの増量により対処しても、ゴムの発熱性能が悪化し、低燃費性が低下してしまう。
以上のとおり、タイヤのブレーカートッピング用ゴム組成物において、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性をバランス良く改善することは困難であり、改良が求められている。
特許第3294901号公報
本発明は、前記課題を解決し、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性をバランス良く改善したブレーカートッピング用ゴム組成物及び該ゴム組成物を用いて作製した空気入りタイヤを提供することを目的とする。
本発明は、高純度化され、かつpHが2〜7に調整された改質天然ゴムと、カーボンブラックとを含むブレーカートッピング用ゴム組成物に関する。
前記改質天然ゴムは、天然ゴムの非ゴム成分を除去した後、酸性化合物で処理して得られ、pHが2〜7であることが好ましい。
前記改質天然ゴムは、ケン化天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7であることが好ましい。
前記改質天然ゴムは、脱蛋白天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7であることが好ましい。
前記改質天然ゴムのリン含有量が200ppm以下であることが好ましい。
前記改質天然ゴムの窒素含有量が0.15質量%以下であることが好ましい。
前記pHは、前記改質天然ゴムを各辺2mm角以内の大きさに切って蒸留水に浸漬し、マイクロ波を照射しながら90℃で15分間抽出し、浸漬水をpHメーターを用いて測定された値であることが好ましい。
前記改質天然ゴムは、JIS K 6300:2001−1に準拠して測定したムーニー粘度ML(1+4)130℃について、下記式で表される耐熱老化性指数が75〜120%のものであることが好ましい。
Figure 2014227490
酸化亜鉛を含むことが好ましい。
有機酸コバルトを含むことが好ましい。
耐熱性老化防止剤を含むことが好ましい。
前記改質天然ゴムが素練りする工程を経ずに作製されたものであることが好ましい。
本発明はまた、前記ブレーカートッピング用ゴム組成物を用いて作製した空気入りタイヤに関する。
本発明によれば、高純度化され、かつpHが2〜7に調整された改質天然ゴムと、カーボンブラックとを含むブレーカートッピング用ゴム組成物であるので、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性をバランス良く改善できる。
本発明のブレーカートッピング用ゴム組成物は、高純度化され、かつpHが2〜7に調整された改質天然ゴムと、カーボンブラックとを含む。
前記改質天然ゴムは、高純度化され、かつpHが2〜7に調整されたものである。
タンパク質、リン脂質などの非ゴム成分を除去して高純度化するとともに、ゴムのpHを適切な値にコントロールした改質天然ゴムであるため、優れた加工性を得つつ、低燃費性及び破断強度が改善される。また、非ゴム成分の除去やゴムが塩基性又は強酸性となることで、ゴムの劣化が進行し易くなるが、ゴムのpHを所定範囲に調整することで、保存中の分子量の低下が抑制されるので、良好な耐熱老化性が得られる。その結果、混練工程でのゴム物性の低下防止、充填剤の分散性向上が実現し、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性の性能バランスを顕著に改善できる。
ここで、高純度化とは、天然ポリイソプレノイド成分以外のリン脂質、タンパク質等の不純物を取り除くことである。天然ゴムは、イソプレノイド成分が、前記不純物成分に被覆されているような構造となっており、前記成分を取り除くことにより、イソプレノイド成分の構造が変化して、配合剤との相互作用が変わってエネルギーロスが減ったり、耐久性が向上し、より良いゴム組成物を得ることができると推察される。
高純度化され、かつpHが2〜7に調整された改質天然ゴムとしては、非ゴム成分量を低減して高純度化され、かつゴムのpHが2〜7の改質天然ゴムであれば特に限定されず、具体的には、(1)天然ゴムの非ゴム成分を除去した後、酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、(2)ケン化天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、(3)脱蛋白天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、等が挙げられる。
このように、前記改質天然ゴムは、ケン化天然ゴムラテックスや脱蛋白天然ゴムラテックスを、蒸留水などで水洗し、更に酸性化合物で処理する製法等により調製できるが、水洗に用いた蒸留水のpHに比べて、酸性化合物の処理により酸性側にシフトさせ、pHの値を下げることが重要である。通常、蒸留水のpHが7.00ということはなく、5〜6程度であるが、この場合は、酸性化合物の処理によりpHの値を5〜6よりも酸性側に低下させることが重要となる。具体的には、水洗に用いる水のpH値より、酸性化合物の処理でpH値を0.2〜2低下させることが好ましい。
前記改質天然ゴムのpHは2〜7であり、好ましくは3〜6、より好ましくは4〜6である。上記範囲内に調整することで、耐熱老化性の低下が防止され、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性の性能バランスを顕著に改善できる。なお、改質天然ゴムのpHは、ゴムを各辺2mm角以内の大きさに切って蒸留水に浸漬し、マイクロ波を照射しながら90℃で15分間抽出し、浸漬水をpHメーターを用いて測定された値であり、具体的には後述の実施例に記載の方法で測定する。ここで、抽出については、超音波洗浄器などで1時間抽出してもゴム内部から完全に水溶性成分を抽出することはできないため、正確に内部のpHを知ることはできないが、本手法で抽出することでゴムの実体を知ることが可能になる点を本発明者は見出したものである。
前記改質天然ゴムは、前記(1)〜(3)等、各種方法により高純度化したものであり、例えば、該改質天然ゴム中のリン含有量は、好ましくは200ppm以下、より好ましくは150ppm以下である。200ppmを超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、tanδが上昇し低燃費性を改善できないおそれがある。なお、リン含有量は、ICP発光分析等、従来の方法で測定できる。リンは、天然ゴムに含まれるリン脂質に由来するものと考えられる。
前記改質天然ゴムは、人工の老化防止剤を含んでいる場合、アセトン中に室温(25℃)下で48時間浸漬した後の窒素含有量が0.15質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。0.15質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、低燃費性の改善効果が充分に得られないおそれがある。高純度化した天然ゴムは天然ゴムが元々有しているといわれる天然の老化防止剤成分が除去されているため、長期の保存で劣化するおそれがある。そのため、人工の老化防止剤が添加されることがある。上記窒素含有量は、アセトン抽出によりゴム中の人工の老化防止剤を除去した後の測定値である。窒素含有量は、ケルダール法、微量窒素量計等、従来の方法で測定できる。窒素は、タンパク質やアミノ酸に由来するものである。
前記改質天然ゴムは、JIS K 6300:2001−1に準拠して測定したムーニー粘度ML(1+4)130℃が75以下であることが好ましく、より好ましくは40〜75、更に好ましくは45〜75、特に好ましくは50〜70、最も好ましくは55〜65である。75以下であることにより、ゴム混練前に通常必要な素練りが不要となる。従って、素練りする工程を経ずに作製された前記改質天然ゴムをゴム組成物の配合材料として好適に使用できる。一方、75を超えると、使用前に素練りが必要となり、設備の専有、電気や熱エネルギーロス、等が発生する傾向がある。
前記改質天然ゴムは、前記ムーニー粘度ML(1+4)130℃について、下記式で表される耐熱老化性指数が75〜120%のゴムであることが好ましい。
Figure 2014227490
前記式で示される耐熱老化性指数は、より好ましくは80〜115%、更に好ましくは85〜110%である。ゴムの耐熱老化性の評価として種々の方法が報告されているが、前記ムーニー粘度ML(1+4)130℃の80℃で18時間熱処理した前後の変化率で評価する方法を用いることで、タイヤ製造時やタイヤ使用時などの耐熱老化性を正確に評価できる。ここで、前記範囲内であれば優れた耐熱老化性及び加工性が得られ、また、低燃費性、破断強度及び耐熱老化性の性能バランスを顕著に改善できる。
前記(1)〜(3)などの高純度化され、かつpHが2〜7に調整された前記改質天然ゴムは、(製法1)天然ゴムラテックスをケン化処理する工程1−1と、ケン化天然ゴムラテックスを洗浄する工程1−2と、酸性化合物で処理する工程1−3とを含む製造方法、(製法2)天然ゴムラテックスを脱蛋白処理する工程2−1と、脱蛋白天然ゴムラテックスを洗浄する工程2−2と、酸性化合物で処理する工程2−3とを含む製造方法、等により調製できる。
〔製法1〕
(工程1−1)
工程1−1では、天然ゴムラテックスをケン化処理する。これにより、ゴム中のリン脂質やタンパク質が分解され、非ゴム成分が低減されたケン化天然ゴムラテックスが調製される。
天然ゴムラテックスはヘベア樹などの天然ゴムの樹木の樹液として採取され、ゴム分のほか水、タンパク質、脂質、無機塩類などを含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、あるいは遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックスなど)を使用できる。
ケン化処理の方法としては、例えば、特開2010−138359号公報、特開2010−174169号公報に記載の方法により好適に行うことができ、具体的には下記方法などで実施できる。
ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することで実施でき、必要に応じて撹拌などを行っても良い。
ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウムなどが好ましいが、これらに限定されない。界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル硫酸エステル塩などの公知のアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤が挙げられるが、ゴムを凝固させず良好にケン化できるという点から、ポリオキシエチレンアルキルエーテル硫酸エステル塩などのアニオン系界面活性剤が好適である。ケン化処理において、アルカリ及び界面活性剤の添加量、ケン化処理の温度及び時間は、適宜設定すればよい。
(工程1−2)
工程1−2では、前記工程1−1で得られたケン化天然ゴムラテックスを洗浄する。該洗浄により、タンパク質などの非ゴム成分を除去する。
工程1−2は、例えば、前記工程1−1で得られたケン化天然ゴムラテックスを凝集させて凝集ゴムを作製した後、得られた凝集ゴムを塩基性化合物で処理し、更に洗浄することにより実施できる。具体的には、凝集ゴムの作製後に、水で希釈して水溶性成分を水層に移して、水を除去することで非ゴム成分を除去でき、更に凝集後に塩基性化合物で処理することで凝集時にゴム内に閉じ込められた非ゴム成分を再溶解させることができる。これにより、凝集ゴム中に強く付着したタンパク質などの非ゴム成分を除去できる。
凝集方法としては、ギ酸、酢酸、硫酸などの酸を添加してpHを調整し、必要に応じて更に高分子凝集剤を添加する方法などが挙げられる。これにより、大きな凝集塊ではなく、直径数mm〜1mm以下から、20mm程度の粒状ゴムが形成され、塩基性化合物処理によりタンパク質などが充分に除去される。上記pHは、好ましくは3.0〜5.0、より好ましくは3.5〜4.5の範囲に調整される。
高分子凝集剤としては、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体などのカチオン性高分子凝集剤、アクリル酸塩の重合体などのアニオン系高分子凝集剤、アクリルアミド重合体などのノニオン性高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩−アクリル酸塩の共重合体などの両性高分子凝集剤などが挙げられる。高分子凝集剤の添加量は、適宜選択できる。
次いで、得られた凝集ゴムに対して、塩基性化合物による処理が施される。ここで、塩基性化合物としては特に限定されないが、タンパク質などの除去性能の点から、塩基性無機化合物が好適である。
塩基性無機化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物などの金属水酸化物;アルカリ金属炭酸塩、アルカリ土類金属炭酸塩などの金属炭酸塩;アルカリ金属炭酸水素塩などの金属炭酸水素塩;アルカリ金属リン酸塩などの金属リン酸塩;アルカリ金属酢酸塩などの金属酢酸塩;アルカリ金属水素化物などの金属水素化物;アンモニアなどが挙げられる。
アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどが挙げられる。アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。アルカリ土類金属炭酸塩としては、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどが挙げられる。アルカリ金属炭酸水素塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられる。アルカリ金属リン酸塩としては、リン酸ナトリウム、リン酸水素ナトリウムなどが挙げられる。アルカリ金属酢酸塩としては、酢酸ナトリウム、酢酸カリウムなどが挙げられる。アルカリ金属水素化物としては、水素化ナトリウム、水素化カリウムなどが挙げられる。
なかでも、金属水酸化物、金属炭酸塩、金属炭酸水素塩、金属リン酸塩、アンモニアが好ましく、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アンモニアがより好ましく、炭酸ナトリウム、炭酸水素ナトリウムが更に好ましい。上記塩基性化合物は、単独で用いてもよく、2種以上を併用してもよい。
凝集ゴムを塩基性化合物で処理する方法は、凝集ゴムを上記塩基性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを塩基性化合物の水溶液に浸漬する方法、凝集ゴムに塩基性化合物の水溶液を噴霧する方法などが挙げられる。塩基性化合物の水溶液は、各塩基性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の塩基性化合物の含有量は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上である。0.1質量%未満では、タンパク質を充分に除去できないおそれがある。該含有量は、好ましくは10質量%以下、より好ましくは5質量%以下である。10質量%を超えると、多量の塩基性化合物が必要なわりにタンパク質分解量が増えるわけではなく、効率が悪い傾向がある。
上記処理温度は適宜選択すればよいが、好ましくは10〜50℃、より好ましくは15〜35℃である。また、処理時間は、通常、1分以上であり、好ましくは10分以上、より好ましくは30分以上である。1分未満であると、本発明の効果が良好に得られないおそれがある。上限に制限はないが、生産性の点から、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは16時間以下である。
塩基性化合物の処理後、洗浄処理が行われる。該洗浄処理により、タンパク質などの非ゴム成分を除去できる。洗浄方法としては、例えば、ゴム分を水で希釈して洗浄後、遠心分離する方法、静置してゴムを浮かせ、水相のみを排出してゴム分を取り出す方法が挙げられる。洗浄回数は、タンパク質などの非ゴム成分を所望量に低減することが可能な任意の回数を採用できるが、乾燥ゴム300gに対して水1000mLを加えて撹拌した後に脱水するという洗浄サイクルを繰り返す手法なら、3回(3サイクル)以上が好ましく、5回(5サイクル)以上がより好ましく、7回(7サイクル)以上が更に好ましい。
洗浄処理は、ゴム中のリン含有量が200ppm以下及び/又は窒素含有量が0.15質量%以下になるまで洗浄するものであることが好ましい。洗浄処理でリン脂質やタンパク質が充分に除去されることで、低燃費性、破断強度や加工性が改善される。
(工程1−3)
工程1−3では、工程1−2で得られた洗浄後のゴムに酸性化合物による処理が施される。塩基性化合物の処理などに起因して耐熱老化性が低下する傾向があるが、更に酸性化合物で処理することで、そのような問題を防止し、良好な耐熱老化性が得られる。
酸性化合物としては特に限定されず、塩酸、硝酸、硫酸、リン酸、ポリリン酸、メタリン酸、ほう酸、ボロン酸、スルファニル酸、スルファミン酸などの無機酸;ギ酸、酢酸、グリコール酸、シュウ酸、プロピオン酸、マロン酸、コハク酸、アジピン酸、マレイン酸、リンゴ酸、酒石酸、クエン酸、安息香酸、フタル酸、イソフタル酸、グルタル酸、グルコン酸、乳酸、アスパラギン酸、グルタミン酸、サリチル酸、メタンスルホン酸、イタコン酸、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンジスルホン酸、トリフルオロメタンスルホン酸、スチレンスルホン酸、トリフルオロ酢酸、バルビツール酸、アクリル酸、メタクリル酸、桂皮酸、4−ヒドロキシ安息香酸、アミノ安息香酸、ナフタレンジスルホン酸、ヒドロキシベンゼンスルホン酸、トルエンスルフィン酸、ベンゼンスルフィン酸、α−レゾルシン酸、β−レゾルシン酸、γ−レゾルシン酸、没食子酸、フロログリシン、スルホサリチル酸、アスコルビン酸、エリソルビン酸、ビスフェノール酸などの有機酸などが挙げられる。なかでも、酢酸、硫酸、ギ酸などが好ましい。上記酸性化合物は、単独で用いてもよく、2種以上を併用してもよい。
凝集ゴムを酸で処理する方法は、凝集ゴムを上記酸性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを酸性化合物の水溶液に浸漬する方法、凝集ゴムに酸性化合物の水溶液を噴霧する方法などが挙げられる。酸性化合物の水溶液は、各酸性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の酸性化合物の含有量は特に限定されないが、下限は好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、上限は好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。該含有量が上記範囲内であると、良好な耐熱老化性が得られる。
上記処理温度は適宜選択すればよいが、好ましくは10〜50℃、より好ましくは15〜35℃である。また、処理時間は、通常、好ましくは3秒以上であり、より好ましくは10秒以上、更に好ましくは30秒以上である。3秒未満であると、充分に中和できず、本発明の効果が良好に得られないおそれがある。上限に制限はないが、生産性の点から、好ましくは24時間以下、より好ましくは10時間以下、更に好ましくは5時間以下である。
酸性化合物の水溶液への浸漬などの処理では、pHを6以下に調整することが好ましい。
このような中和により、優れた耐熱老化性が得られる。該pHの上限は、より好ましくは5以下、更に好ましくは4.5以下である。下限は特に限定されず、浸漬時間にもよるが、酸が強すぎるとゴムが劣化したり、廃水処理が面倒になるため、好ましくは1以上、より好ましくは2以上である。なお、浸漬処理は、酸性化合物の水溶液中に凝集ゴムを放置しておくこと等で実施できる。
処理後に、酸性化合物の処理に使用した該化合物を除去した後、処理後の凝集ゴムの洗浄処理を適宜実施してもよい。洗浄処理としては、上記と同様の方法が挙げられ、例えば、洗浄を繰り返すことで非ゴム成分を更に低減し、所望の含有量に調整すればよい。また、酸性化合物の処理後の凝集ゴムをロール式の絞り機等で絞ってシート状などにしてもよい。凝集ゴムを絞る工程を追加することで、凝集ゴムの表面と内部のpHを均一にすることができ、所望の性能を持つゴムが得られる。必要に応じて、洗浄や絞り工程を実施した後、クレーパーに通して裁断し、乾燥することにより、前記改質天然ゴムが得られる。なお、乾燥は特に限定されず、例えば、TSRを乾燥させるために使用されるトロリー式ドライヤー、真空乾燥機、エアドライヤー、ドラムドライヤー等の通常の乾燥機を用いて実施できる。
〔製法2〕
(工程2−1)
工程2−1では、天然ゴムラテックスを脱蛋白処理する。これにより、タンパク質などの非ゴム成分が除去された脱蛋白天然ゴムラテックスが調製できる。工程2−1で使用する天然ゴムラテックスとしては、前記と同様のものが挙げられる。
脱蛋白処理の方法としては、タンパク質の除去が可能な公知の方法を特に制限なく採用でき、例えば、天然ゴムラテックスに蛋白質分解酵素を添加して蛋白質を分解させる方法などが挙げられる。
脱蛋白処理に使用される蛋白質分解酵素としては特に限定されず、細菌由来のもの、糸状菌由来のもの、酵母由来のもののいずれでも構わない。具体的には、プロテアーゼ、ペプチターゼ、セルラーゼ、ペクチナーゼ、リパーゼ、エステラーゼ、アミラーゼ等を単独又は組み合わせて使用できる。
蛋白質分解酵素の添加量は、天然ゴムラテックス中の固形分100質量部に対して、好ましくは0.005質量部以上、より好ましくは0.01質量部以上、更に好ましくは0.05質量部以上である。下限未満では、蛋白質の分解反応が不十分になるおそれがある。
なお、脱蛋白処理において、蛋白質分解酵素と共に界面活性剤を添加してもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系、両性界面活性剤等が挙げられる。
(工程2−2)
工程2−2では、前記工程2−1で得られた脱蛋白天然ゴムラテックスを洗浄する。該洗浄により、タンパク質などの非ゴム成分を除去する。
工程2−2は、例えば、前記工程2−1で得られた脱蛋白天然ゴムラテックスを凝集させて凝集ゴムを作製した後、得られた凝集ゴムを洗浄することにより実施できる。これにより、凝集ゴム中に強く付着したタンパク質などの非ゴム成分を除去できる。
凝集方法は、前記工程1−2と同様の方法で実施できる。更に必要に応じて、前述したような塩基性化合物で処理しても良い。凝集ゴムの作製後、洗浄処理が行われる。該洗浄処理は、前記工程1−2と同様の方法で実施でき、これにより、タンパク質などの非ゴム成分を除去できる。なお、洗浄処理は、前記と同様の理由により、ゴム中のリン含有量が200ppm以下及び/又は窒素含有量が0.15質量%以下になるまで洗浄するものであることが好ましい。
(工程2−3)
工程2−3では、工程2−2で得られた洗浄後のゴムに酸性化合物による処理が施される。塩基性化合物での処理はもちろん、酸凝集においても酸量が少ない場合、最終的に得られたゴムを水で抽出した際、アルカリ性〜中性になることに起因して耐熱老化性が低下する傾向がある。一般的に、好適に脱蛋白できるという理由から、蛋白質分解酵素として、アルカリ領域に至適pHを有する酵素が使用されており、当該酵素反応は、至適pHに合わせてアルカリ条件下で行われることが多い。その後、凝集の時に酸性下で凝固されるが、そのゴムを水洗しただけでは、後述する抽出でpHが抽出液よりも上がり、この場合に特に耐熱老化性の低下が大きかった。これに対して、凝固後、必要に応じて塩基性化合物で処理後に、酸性化合物で処理することで、そのような問題を防止し、良好な耐熱老化性が得られる。
酸性化合物としては、前記工程1−3と同様のものが挙げられる。また、凝集ゴムを酸で処理する方法は、凝集ゴムを上記酸性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを酸性化合物の水溶液に浸漬する方法、凝集ゴムに酸性化合物の水溶液を噴霧する方法などが挙げられる。酸性化合物の水溶液は、各酸性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の酸性化合物の含有量は特に限定されないが、下限は好ましくは0.01質量%以上、より好ましくは0.03質量%以上であり、上限は好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。該含有量が上記範囲内であると、良好な耐熱老化性が得られる。
上記処理温度、処理時間は適宜選択すればよく、前記工程1−3と同様の温度を採用すればよい。また、酸性化合物の水溶液への浸漬などの処理では、pHを前記工程1−3と同様の値に調整することが好ましい。
処理後に、酸性化合物の処理に使用した該化合物を除去した後、処理後の凝集ゴムの洗浄処理を適宜実施しても良い。洗浄処理としては、上記と同様の方法が挙げられ、例えば、洗浄を繰り返すことで非ゴム成分を更に低減し、所望の含有量に調整すればよい。洗浄処理終了後、乾燥することにより、前記改質天然ゴムが得られる。なお、乾燥は特に限定されず、前述の手法などを採用できる。
本発明のゴム組成物において、ゴム成分100質量%中の前記改質天然ゴムの含有量は、5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは50質量%以上、特に好ましくは80質量%以上であり、また、上限は特に限定されず、100質量%でもよい。5質量%未満であると、優れた低燃費性及びゴム強度が得られないおそれがある。
前記改質天然ゴム以外に使用できるゴム成分としては、天然ゴム(非改質)(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。なかでも、良好な破壊特性(破断強度)が得られるという理由から、NRが好ましい。NRとしては、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。その中でもRSS♯3を用いることがゴム強度の点で特に好ましい。
本発明のゴム組成物は、カーボンブラックを含む。これにより、優れた補強効果が得られる。
カーボンブラックとしては、特に限定されず、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらのカーボンブラックは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
カーボンブラックのチッ素吸着比表面積(NSA)は、好ましくは20m/g以上、より好ましくは30m/g以上である。また該NSAは、好ましくは150m/g以下、より好ましくは100m/g以下、更に好ましくは70m/g以下、特に好ましくは50m/g以下である。30m/g未満であると、充分な補強効果が得られない傾向があり、150m/gを超えると、未加硫時の粘度が非常に高くなり、加工性が悪化し、また低燃費性も悪化する傾向がある。
なお、カーボンブラックのチッ素吸着比表面積は、JIS K 6217のA法によって求められる。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは15質量部以上である。該含有量は、好ましくは100質量部以下、より好ましくは80質量部以下、更に好ましくは70質量部以下である。10質量部未満であると、充分な補強性が得られない傾向があり、100質量部を超えると、発熱が大きくなり、低燃費性が悪化する傾向がある。
本発明のゴム組成物は、充填剤としてカーボンブラックの他の充填剤を含んでもよい。充填剤としては、ゴム工業で一般的に使用されているもの、たとえば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用できる。なかでも、低燃費性の観点から、シリカが好ましい。
シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
本発明のゴム組成物は、有機酸コバルトを含むことが好ましい。有機酸コバルトは、コード(スチールコード)とゴムとを架橋する役目を果たすため、この成分を配合することにより、コードとゴムとの接着性を向上させることができる。
有機酸コバルトとしては、例えば、ステアリン酸コバルト、ナフテン酸コバルト、ネオデカン酸コバルト、ホウ素3ネオデカン酸コバルトなどが挙げられる。なかでも、ステアリン酸コバルト、ナフテン酸コバルトが好ましい。
有機酸コバルトの含有量は、ゴム成分100質量部に対して、コバルト金属量に換算して、好ましくは0.05質量部以上、より好ましくは0.08質量部以上である。0.05質量部未満では、スチールコードのメッキ層とゴムの接着性が充分でないおそれがある。また、該含有量は、好ましくは0.5質量部以下、より好ましくは0.3質量部以下、更に好ましくは0.2質量部以下である。0.5質量部を超えると、ゴムの酸化劣化が顕著になり、破断特性が悪化する傾向がある。
本発明のゴム組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛を配合することにより、スチールコードのメッキ層とゴムとの接着性が向上する。また、ゴムの加硫助剤としての働きもある。また、スコーチを抑制する効果もある。
酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは2質量部以上、より好ましくは5質量部以上、更に好ましくは6質量部以上である。2質量部未満では、スチールコードのメッキ層とゴムとの接着性が不充分であったり、ゴムの加硫が不充分となるおそれがある。また、該含有量は、好ましくは25質量部以下、より好ましくは20質量部以下、更に好ましくは15質量部以下である。25質量部を超えると、ゴム強度が低下するおそれがある。
本発明のゴム組成物では、加硫剤として硫黄を好適に使用できる。硫黄としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられる。
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上である。2質量部未満では、充分な架橋密度が得られず、接着性能が悪化するおそれがある。また、該含有量は、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。10質量部を超えると、耐熱老化性が悪化するおそれがある。
本発明のゴム組成物には、上記の材料以外にも、オイルなどの可塑剤、ステアリン酸、各種老化防止剤、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。
上記加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド−アミン系若しくはアルデヒド−アンモニア系、イミダゾリン系、又は、キサンテート系加硫促進剤が挙げられる。なかでも、スコーチ性に優れるという理由から、スルフェンアミド系加硫促進剤が好ましい。
スルフェンアミド系加硫促進剤としては、例えば、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N,N’−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DZ)等が挙げられる。
上記老化防止剤としては、例えば、アミン・ケトン系、アミン系、フェノール系、イミダゾール系、チオウレア系などがあげられる。これらの老化防止剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、なかでも、破壊特性及び耐熱性が優れるという理由から、アミン系老化防止剤を用いることが好ましい。
アミン系老化防止剤としては、例えば、ジフェニルアミン系、p−フェニレンジアミン系などのアミン誘導体が挙げられる。ジフェニルアミン系誘導体としては、例えば、p−(p−トルエンスルホニルアミド)−ジフェニルアミン、オクチル化ジフェニルアミンなどが挙げられる。p−フェニレンジアミン系誘導体としては、例えば、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン(6PPD)、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(IPPD)、N,N’−ジ−2−ナフチル−p−フェニレンジアミンなどが挙げられる。
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは1.3質量部以上である。1質量部未満であると、破壊特性を向上できないおそれがある。また、該含有量は、好ましくは6質量部以下、より好ましくは4質量部以下、さらに好ましくは2質量部以下である。6質量部を超えると、老化防止剤が表面に析出し、ゴム物性が低下するおそれがある。本発明のゴム組成物は、耐熱老化性に優れるため、老化防止剤が2質量部以下でも、十分な耐久性を有することができる。
上記オイルとしては、例えば、プロセスオイル、植物油脂、その混合物等を用いることができる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。
オイルの含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、該含有量は、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。上記範囲外であると、充分に湿熱耐剥離性、耐久性を向上できないおそれがある。
本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。
本発明のゴム組成物は、ブレーカー(スチールコード)トッピング用ゴム組成物として使用する。スチールコードとしては、1×n構成の単撚りスチールコード、k+m構成の層撚りスチールコード等が挙げられる(nは1〜27の整数、kは1〜10の整数、mは1〜3の整数など)。
本発明のブレーカートッピング用ゴム組成物は、トレッドの内部で、かつカーカスの半径方向外側に配されるブレーカーに使用される。具体的には、特開2003−94918号公報の図3、特開2004−67027号公報の図1、特開平4−356205号公報の図1〜4に示されるブレーカーなどに使用される。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造される。すなわち、スチールコードを上記ゴム組成物で被覆してブレーカーの形状に成形したのち、他のタイヤ部材と貼りあわせて未加硫タイヤを成形、加硫することで空気入りタイヤ(ラジアルタイヤなど)を製造できる。
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤとして好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下に、実施例で用いた各種薬品について説明する。
フィールドラテックス:ムヒバラテックス社から入手したフィールドラテックス
エマールE−27C(界面活性剤):花王(株)製のエマールE−27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム、有効成分27質量%)
NaOH:和光純薬工業(株)製のNaOH
Wingstay L(老化防止剤):ELIOKEM社製のWingstay L(ρ−クレゾールとジシクロペンタジエンとの縮合物をブチル化した化合物)
エマルビンW(界面活性剤):LANXESS社製のエマルビンW(芳香族ポリグリコールエーテル)
タモールNN9104(界面活性剤):BASF社製のタモールNN9104(ナフタレンスルホン酸/ホルムアルデヒドのナトリウム塩)
Van gel B(界面活性剤):Vanderbilt社製のVan gel B(マグネシウムアルミニウムシリケートの水和物)
NR:RSS♯3グレード
カーボンブラック:キャボットジャパン(株)製のN550(NSA:42m/g、平均粒子径:48nm、DBP吸油量:113ml/100g)
オイル:出光興産(株)製のダイアナプロセスオイルPS323
有機酸コバルト:大日本インキ化学工業(株)製のcost−F(ステアリン酸コバルト、コバルト含有量:9.5質量%)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーDZ
<実施例及び比較例>
(老化防止剤分散体の調製)
水 462.5gにエマルビンW 12.5g、タモールNN9104 12.5g、Van gel B 12.5g、Wingstay L 500g(合計1000g)をボールミルで16時間混合し、老化防止剤分散体を調製した。
(製造例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。次いで、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整した後、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は0.5〜5mm程度であった。得られた凝集物を取り出し、2質量%の炭酸ナトリウム水溶液1000mlに、常温で4時間浸漬した後、ゴムを取出した。これに、水2000mlを加えて2分間撹拌し、極力水を取り除く作業を7回繰り返した。その後、水500mlを添加し、pH4になるまで2質量%ギ酸を添加し、15分間放置した。更に、水を極力取り除き、再度水を添加して2分間撹拌する作業を3回繰返した後、水しぼりロールで水を絞ってシート状にした後、90℃で4時間乾燥して固形ゴム(高純度天然ゴムA)を得た。
(比較製造例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。次いで、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整した後、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜15mm程度であった。得られた凝集物を取り出し、2質量%の炭酸ナトリウム水溶液1000mlに、常温で4時間浸漬した後、ゴムを取出した。これに、水1000mlを加えて2分間撹拌し、極力水を取り除く作業を1回行った。その後、水500mlを添加し、pH4になるまで2質量%ギ酸を添加し、15分間撹拌した。更に、水を極力取り除き、再度水を添加して2分間撹拌する作業を3回繰返した後、90℃で4時間乾燥して固形ゴム(高純度天然ゴムB)を得た。
(比較製造例2)
製造例1において炭酸ナトリウム水溶液で処理し、水洗を7回繰り返した後、2質量%ギ酸による酸処理をすることなく、水しぼりロールで水を絞ってシート状にしたほかは、同様の手順で固形ゴム(高純度天然ゴムC)を得た。
(製造例2)
市販のハイアンモニアラテックス〔マレイシアのムヒバラテックス社製、固形ゴム分62.0%〕を、0.12%のナフテン酸ソーダ水溶液で希釈して、固形ゴム分を10%にし、更に燐酸二水素ナトリウムを添加してpHを9.2に調整した。そしてゴム分10gに対して、蛋白質分解酵素(アルカラーゼ2.0M)を0.87gの割合で添加し、更にpHを9.2に再調整した後、37℃で24時間維持した。
次に、酵素処理を完了したラテックスに、ノニオン系界面活性剤〔花王社製の商品名エマルゲン810〕の1%水溶液を加えてゴム分濃度を8%に調整し、11,000r.p.m.の回転速度で30分間遠心分離した。次に、遠心分離により生じたクリーム状留分を、上記エマルゲン810の1%水溶液に分散して、ゴム分濃度が8%になるように調整した後、再度、11,000r.p.m.の回転速度で30分間遠心分離した。この操作を2回繰り返した後、得られたクリーム状留分を蒸留水に分散して、固形ゴム分60%の脱蛋白ゴムラテックスを調製した。
このラテックスに2質量%ギ酸をpH4になるまで添加し、更にカチオン系高分子凝集剤を添加して0.5〜5mmのゴム粒を得た。これの水を極力取り除き、水をゴム分10gに対して50g添加の上、2質量%ギ酸をpH3になるまで添加した。30分後ゴムを引き上げ、クレーパーでシート化した後、90℃で4時間乾燥し、固形ゴム(高純度天然ゴムD)を得た。
(比較製造例3)
市販のハイアンモニアラテックス〔マレイシアのムヒバラテックス社製、固形ゴム分62.0%〕を、0.12%のナフテン酸ソーダ水溶液で希釈して、固形ゴム分を10%にし、更に燐酸二水素ナトリウムを添加してpHを9.2に調整した。そしてゴム分10gに対して、蛋白質分解酵素(アルカラーゼ2.0M)を0.87gの割合で添加し、更にpHを9.2に再調整した後、37℃で24時間維持した。
次に、酵素処理を完了したラテックスに、ノニオン系界面活性剤〔花王社製の商品名エマルゲン810〕の1%水溶液を加えてゴム分濃度を8%に調整し、11,000r.p.m.の回転速度で30分間遠心分離した。次に、遠心分離により生じたクリーム状留分を、上記エマルゲン810の1%水溶液に分散して、ゴム分濃度が8%になるように調整した後、再度、11,000r.p.m.の回転速度で30分間遠心分離した。この操作をもう一度繰り返した後、得られたクリーム状留分を蒸留水に分散して、固形ゴム分60%の脱蛋白ゴムラテックスを調製した。
このラテックスにゴムが固まるまで50質量%ギ酸を添加し、凝固したゴムを取り出した。このゴムをクレーパーで水で洗いながらシート化した後、90℃で4時間乾燥し、固形ゴム(高純度天然ゴムE)を得た。
(比較製造例4)
比較製造例3において凝固したゴムを取り出した後、0.5質量%炭酸ナトリウム水溶液に1時間浸漬し、次いでクレーパーで水で洗いながらシート化した後、90℃で4時間乾燥したほかは、同様の手順で固形ゴム(高純度天然ゴムF)を得た。
前記で得られた固形ゴムについて、下記により評価し、結果を表1に示した。
<ゴムのpHの測定>
得られたゴム5gを5mm以下(約1〜2×約1〜2×約1〜2(mm))に切断して100mlビーカーに入れ、常温の蒸留水50mlを加えて2分間で90℃に昇温し、その後90℃に保つように調整しながらマイクロ波(300W)を13分(合計15分)照射した。次いで、浸漬水をアイスバスで冷却して25℃とした後、pHメーターを用いて、浸漬水のpHを測定した。
<窒素含有量の測定>
(アセトン抽出(試験片の作製))
各固形ゴムを1mm角に細断したサンプルを約0.5g用意した。サンプルをアセトン50g中に浸漬して、室温(25℃)で48時間後にゴムを取出し、乾燥させ、各試験片(老化防止剤抽出済み)を得た。
(測定)
得られた試験片の窒素含有量を以下の方法で測定した。
窒素含有量は、微量窒素炭素測定装置「SUMIGRAPH NC95A((株)住化分析センター製)」を用いて、上記で得られたアセトン抽出処理済みの各試験片を分解、ガス化し、そのガスをガスクロマトグラフ「GC−8A((株)島津製作所製)」で分析して窒素含有量を定量した。
<リン含有量の測定>
ICP発光分析装置(P−4010、(株)日立製作所製)を使用してリン含有量を求めた。
<ゲル含有率の測定>
1mm×1mmに切断した生ゴムのサンプル約70mgを正確に計り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(質量%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
<耐熱老化性>
80℃で18時間処理した前後の固形ゴムのムーニー粘度ML(1+4)130℃をJIS K 6300:2001−1に準拠して測定し、前記式により耐熱老化性指数を算出した。
Figure 2014227490
表1により、ゴムのpHが2〜7の範囲内の改質天然ゴムは、範囲外のゴムに比べて、耐熱老化性が優れていた。
<未加硫ゴム組成物及び加硫ゴム組成物の作製>
表2に示す配合処方に従い、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りし、混練り物を得た。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を練り込み、未加硫ゴム組成物を得た。
次に、得られた未加硫ゴム組成物を、150℃で30分間、2mm厚の金型でプレスし、加硫ゴム組成物を得た。得られた未加硫ゴム組成物及び加硫ゴム組成物を下記により評価した。結果を表2に示す。
<低燃費性(転がり抵抗指数)>
加硫ゴム組成物について、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がり抵抗性が優れる。
(転がり抵抗指数)=(比較例1のtanδ)/(各配合のtanδ)×100
<加工性指数:ムーニー粘度の測定>
得られた未加硫ゴム組成物について、JIS K 6300に準拠したムーニー粘度の測定方法に従い、130℃で測定した。比較例1のムーニー粘度(ML1+4)を100とし、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例1のML1+4)/(各配合のML1+4)×100
<破断強度指数>
JIS K 6251「加硫ゴムおよび熱可塑性ゴム引っ張り特性の求め方」に準じて、3号ダンベルを用いて引張り試験を実施し、加硫ゴム組成物の破断時伸び(EB)と破断時の引張り強度(TB)を測定した。なお、比較例1のEB×TBを100とし、下記計算式により、各配合のEB×TBをそれぞれ指数表示した。指数が大きいほど破断強度に優れることを示す。
(破断強度指数)=(各配合のEB×TB)/(比較例1のEB×TB)×100
Figure 2014227490
表2により、高純度天然ゴムA又はDを用いた実施例では、優れた加工性を得つつ、低燃費性、破断強度及び耐熱老化性が顕著に改善されることが明らかとなった。
<ゴムのpHの測定>
得られたゴム5gを3辺の合計が5mm以下(約1〜2×約1〜2×約1〜2(mm))に切断して100mlビーカーに入れ、常温の蒸留水50mlを加えて2分間で90℃に昇温し、その後90℃に保つように調整しながらマイクロ波(300W)を13分(合計15分)照射した。次いで、浸漬水をアイスバスで冷却して25℃とした後、pHメーターを用いて、浸漬水のpHを測定した。

Claims (13)

  1. 高純度化され、かつpHが2〜7に調整された改質天然ゴムと、カーボンブラックとを含むブレーカートッピング用ゴム組成物。
  2. 前記改質天然ゴムは、天然ゴムの非ゴム成分を除去した後、酸性化合物で処理して得られ、pHが2〜7である請求項1記載のブレーカートッピング用ゴム組成物。
  3. 前記改質天然ゴムは、ケン化天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である請求項1記載のブレーカートッピング用ゴム組成物。
  4. 前記改質天然ゴムは、脱蛋白天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である請求項1記載のブレーカートッピング用ゴム組成物。
  5. 前記改質天然ゴムのリン含有量が200ppm以下である請求項1〜4のいずれかに記載のブレーカートッピング用ゴム組成物。
  6. 前記改質天然ゴムの窒素含有量が0.15質量%以下である請求項1〜5のいずれかに記載のブレーカートッピング用ゴム組成物。
  7. 前記pHは、前記改質天然ゴムを各辺2mm角以内の大きさに切って蒸留水に浸漬し、マイクロ波を照射しながら90℃で15分間抽出し、浸漬水をpHメーターを用いて測定された値である請求項1〜6のいずれかに記載のブレーカートッピング用ゴム組成物。
  8. 前記改質天然ゴムは、JIS K 6300:2001−1に準拠して測定したムーニー粘度ML(1+4)130℃について、下記式で表される耐熱老化性指数が75〜120%のものである請求項1〜7記載のブレーカートッピング用ゴム組成物。
    Figure 2014227490
  9. 酸化亜鉛を含む請求項1〜8のいずれかに記載のブレーカートッピング用ゴム組成物。
  10. 有機酸コバルトを含む請求項1〜9のいずれかに記載のブレーカートッピング用ゴム組成物。
  11. 耐熱性老化防止剤を含む請求項1〜10のいずれかに記載のブレーカートッピング用ゴム組成物。
  12. 前記改質天然ゴムが素練りする工程を経ずに作製されたものである請求項1〜11のいずれかに記載のブレーカートッピング用ゴム組成物。
  13. 請求項1〜12のいずれかに記載のブレーカートッピング用ゴム組成物を用いて作製した空気入りタイヤ。
JP2013108970A 2013-05-23 2013-05-23 ブレーカートッピング用ゴム組成物及び空気入りタイヤ Active JP5650798B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013108970A JP5650798B2 (ja) 2013-05-23 2013-05-23 ブレーカートッピング用ゴム組成物及び空気入りタイヤ
US14/888,285 US9862814B2 (en) 2013-05-23 2014-05-12 Pneumatic tire, studless tire, method for manufacturing pneumatic tire, and method for manufacturing studless tire
EP14801053.1A EP2993205B1 (en) 2013-05-23 2014-05-12 Pneumatic tire, studless tire, method for manufacturing pneumatic tire, and method for manufacturing studless tire
CN201480026336.3A CN105264003B (zh) 2013-05-23 2014-05-12 充气轮胎、无钉防滑轮胎、制造充气轮胎的方法以及制造无钉防滑轮胎的方法
PCT/JP2014/062597 WO2014188901A1 (ja) 2013-05-23 2014-05-12 空気入りタイヤ及びスタッドレスタイヤ、並びに該空気入りタイヤの製造方法及び該スタッドレスタイヤの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013108970A JP5650798B2 (ja) 2013-05-23 2013-05-23 ブレーカートッピング用ゴム組成物及び空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2014227490A true JP2014227490A (ja) 2014-12-08
JP5650798B2 JP5650798B2 (ja) 2015-01-07

Family

ID=52127664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108970A Active JP5650798B2 (ja) 2013-05-23 2013-05-23 ブレーカートッピング用ゴム組成物及び空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP5650798B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213752A (ja) * 2005-02-01 2006-08-17 Bridgestone Corp 天然ゴムを含むゴム組成物
JP2006213753A (ja) * 2005-02-01 2006-08-17 Bridgestone Corp タイヤトレッド用ゴム組成物
JP2012116970A (ja) * 2010-12-01 2012-06-21 Sumitomo Rubber Ind Ltd 改質天然ゴム、タイヤ用ゴム組成物及び空気入りタイヤ
JP2012149134A (ja) * 2011-01-17 2012-08-09 Sumitomo Rubber Ind Ltd 改質天然ゴム、その製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP2012241066A (ja) * 2011-05-17 2012-12-10 Sumitomo Rubber Ind Ltd 高純度化天然ゴム及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213752A (ja) * 2005-02-01 2006-08-17 Bridgestone Corp 天然ゴムを含むゴム組成物
JP2006213753A (ja) * 2005-02-01 2006-08-17 Bridgestone Corp タイヤトレッド用ゴム組成物
JP2012116970A (ja) * 2010-12-01 2012-06-21 Sumitomo Rubber Ind Ltd 改質天然ゴム、タイヤ用ゴム組成物及び空気入りタイヤ
JP2012149134A (ja) * 2011-01-17 2012-08-09 Sumitomo Rubber Ind Ltd 改質天然ゴム、その製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP2012241066A (ja) * 2011-05-17 2012-12-10 Sumitomo Rubber Ind Ltd 高純度化天然ゴム及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014039745; Sureerut Amnuaypornsri: 'Highly Purified Natural Rubber by Saponificaion of Latex: Analysis of Green and Cured properties' Journal of Applied Polymer Science 118, 6, 2010, 3524-3531 *
JPN6014039747; Seiichi Kawahara: 'Removal of proteins from natural rubber with urea' Polym. Adv. Technol. 15, 2004, 181-184 *

Also Published As

Publication number Publication date
JP5650798B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5650796B2 (ja) スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP6199733B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6215695B2 (ja) 空気入りタイヤ
WO2015098419A1 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6297896B2 (ja) 空気入りタイヤ
JP6297894B2 (ja) 空気入りタイヤ
JP5650802B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
JP6215694B2 (ja) 空気入りタイヤ
JP5650799B2 (ja) プライトッピング用ゴム組成物及び空気入りタイヤ
JP5650803B2 (ja) アンダートレッド用ゴム組成物及び空気入りタイヤ
JP6215693B2 (ja) 空気入りタイヤ
JP7231813B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6345971B2 (ja) 空気入りタイヤ
JP5650794B2 (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP5650798B2 (ja) ブレーカートッピング用ゴム組成物及び空気入りタイヤ
JP6006170B2 (ja) キャップトレッドゴム組成物及び重荷重用タイヤ
JP6231878B2 (ja) 空気入りタイヤ
JP5650800B2 (ja) ビードエイペックス用ゴム組成物及び空気入りタイヤ
JP6006171B2 (ja) キャップトレッドゴム組成物及び重荷重用タイヤ
JP5650795B2 (ja) ベーストレッド用ゴム組成物及び空気入りタイヤ
JP6006172B2 (ja) キャップトレッドゴム組成物及び重荷重用タイヤ
JP6006168B2 (ja) ベーストレッドゴム組成物及び重荷重用タイヤ
JP5650801B2 (ja) クリンチエイペックス用ゴム組成物及び空気入りタイヤ
JP6006169B2 (ja) サイドウォールゴム組成物及び重荷重用タイヤ
JP5650797B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250