JP2014226682A - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
JP2014226682A
JP2014226682A JP2013106966A JP2013106966A JP2014226682A JP 2014226682 A JP2014226682 A JP 2014226682A JP 2013106966 A JP2013106966 A JP 2013106966A JP 2013106966 A JP2013106966 A JP 2013106966A JP 2014226682 A JP2014226682 A JP 2014226682A
Authority
JP
Japan
Prior art keywords
cutting
section
cutting line
substrate
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013106966A
Other languages
Japanese (ja)
Other versions
JP6017373B2 (en
Inventor
純 岡本
Jun Okamoto
純 岡本
北田 良二
Ryoji Kitada
良二 北田
秀俊 宇澤
Hidetoshi Uzawa
秀俊 宇澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Corp
Original Assignee
Towa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Corp filed Critical Towa Corp
Priority to JP2013106966A priority Critical patent/JP6017373B2/en
Publication of JP2014226682A publication Critical patent/JP2014226682A/en
Application granted granted Critical
Publication of JP6017373B2 publication Critical patent/JP6017373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent burning damage or flaw damage in a surface of a transparent resin lens body 40 for sealing an optical semiconductor element installed in respective sections of a substrate surface, in laser processing for cutting a substrate 10.SOLUTION: A laser processing method includes a forward passage cutting process of cutting by irradiating a laser beam L up to its central position C from a starting end side position 30a of a first row section 31 along a cutting expected line 20 of the substrate 10, stopping irradiation of the laser beam L up to the starting end side position 30a of a second row section 32 from the central position C of the first row section 31 and also cutting the respective sections 60 up to its central position C from the starting end side position 30a of the respective row sections by repeating irradiation and stopping of the laser beam L up to the final row section, and a backward passage cutting process of cutting by irradiating the laser beam L up to its central position C from a tail end side position 30b in the final row section of the cutting expected line 20 via this forward passage cutting process and also cutting the respective sections 70 up to its central position C from the tail end side position 30b of the respective row sections by repeating the irradiation of the laser beam L up to the first row section 31.

Description

本発明は、レーザ加工手段を用いて基板表面に設定した各区画内に装着した光半導体素子を各別に切断して分離するレーザ加工方法に関し、特に、レーザ加工時に発生する加工飛散物(デブリ:debris)が光半導体素子を封止する透明樹脂レンズ体を焼損若しくは傷損するのを効率良く防止することができるようにしたレーザ加工方法の改良に関する。   The present invention relates to a laser processing method for cutting and separating an optical semiconductor element mounted in each section set on a substrate surface using a laser processing means, and in particular, processing scattered matter (debris: generated during laser processing). The present invention relates to an improvement in a laser processing method that can efficiently prevent burning or damage of a transparent resin lens body that seals an optical semiconductor element.

ところで、被加工物の表面にレーザ光を照射して該被加工物を、所謂、熱加工によって切断するレーザ加工時においては加工飛散物が発生することが知られている。
また、この加工飛散物が加工部周辺に付着すると、加工品質・精度を得ることができない等の問題があるため、被加工物へのレーザ光照射時にその周辺の部位にアシストガスを吹き付けると共に、このアシストガスと加工飛散物とを外部へ吸引して排出することが知られている(例えば、特許文献1参照)。
また、この種のレーザ加工ヘッドは、被加工物表面へのレーザ光照射とアシストガスの吹付作業効率や、加工部周辺からアシストガス及び加工飛散物を外部へ吸引して排出する作業効率等を考慮して、該レーザ加工ヘッドの底面と被加工物表面との間隔を接近させて行うのが通例である。
従って、レーザ加工ヘッドの底面と被加工物表面との間隔を接近させた状態でレーザ加工を行う場合は、上記した各作業効率を向上させることができると云った利点がある。
By the way, it is known that scattered workpieces are generated at the time of laser processing in which the surface of a workpiece is irradiated with laser light to cut the workpiece by so-called thermal processing.
In addition, if this work scattering matter adheres to the periphery of the processing part, there is a problem that it is not possible to obtain processing quality and accuracy, so when the laser beam is irradiated to the work piece, the assist gas is blown to the surrounding area, It is known that the assist gas and the processing scattered matter are sucked to the outside and discharged (for example, see Patent Document 1).
In addition, this type of laser processing head has a laser beam irradiation and assist gas spraying work efficiency on the surface of the work, and an operation efficiency of sucking and discharging the assist gas and work scattered matter from the periphery of the processing part to the outside. In consideration, the distance between the bottom surface of the laser processing head and the surface of the workpiece is usually close.
Therefore, when laser processing is performed with the distance between the bottom surface of the laser processing head and the surface of the workpiece close, there is an advantage that each of the above-described work efficiencies can be improved.

しかしながら、例えば、基板の表面に光半導体素子を封止する多数の透明樹脂レンズ体が突設されているように、基板表面に多数の凹凸部が配置された形状として形成された被加工物の場合は、レーザ加工時においてレーザ加工ヘッドの底面と各透明樹脂レンズ体との接触を防止するために、該レーザ加工ヘッドの底面を該各透明樹脂レンズ体の高さ位置よりも更に高い位置となるように設定する必要がある。
従って、この場合は、レーザ加工ヘッドの底面と切断予定線を設定した加工部となる基板の表面との間隔は必然的に広くなる(離れる)ので該両者の間隔を接近させることができない。このため、上記した各作業効率を低下させることになると云った問題がある。
However, for example, a workpiece formed as a shape in which a large number of concavo-convex portions are arranged on the surface of a substrate so that a large number of transparent resin lens bodies for sealing an optical semiconductor element are projected on the surface of the substrate. In order to prevent contact between the bottom surface of the laser processing head and each transparent resin lens body at the time of laser processing, the bottom surface of the laser processing head is positioned higher than the height position of each transparent resin lens body. It is necessary to set so that
Therefore, in this case, since the distance between the bottom surface of the laser processing head and the surface of the substrate that becomes the processing portion where the cutting line is set is inevitably widened (separated), the distance between the two cannot be made closer. For this reason, there is a problem that the above-described work efficiency is lowered.

また、レーザ光の照射表面に多数の凹凸部が配置された形状として形成された被加工物をレーザ加工する場合においては、更に、次のような問題がある。
図7に示す被加工物Wは、基板1の表面に格子状の切断予定線2を設定して設けた多数の区画3内に光半導体素子を封止する多数の透明樹脂レンズ体4が突設されて、該基板1の表面に多数の凹凸部が配置された形状として形成されている。
このような被加工物Wに対しても、その切断予定線2に沿ってレーザ光Lを照射することによって各区画3毎に切断して分離するレーザ加工を行うことができる。
この場合のレーザ光Lは、基板1の表面に設定した切断予定線2に沿って該基板1における始端部位1aからその終端部位1bに向かって直線状に且つ連続して照射される。
Further, in the case of laser processing a workpiece formed as a shape in which a large number of uneven portions are arranged on the laser light irradiation surface, there are the following problems.
A workpiece W shown in FIG. 7 has a large number of transparent resin lens bodies 4 for sealing an optical semiconductor element in a large number of sections 3 provided by setting a grid-like cutting line 2 on the surface of the substrate 1. It is formed as a shape in which a large number of irregularities are arranged on the surface of the substrate 1.
Such workpiece W can also be subjected to laser processing for cutting and separating each section 3 by irradiating laser beam L along the planned cutting line 2.
In this case, the laser beam L is irradiated linearly and continuously from the start end portion 1a to the end portion 1b of the substrate 1 along the planned cutting line 2 set on the surface of the substrate 1.

図7に示す被加工物Wのレーザ加工においては、レーザ加工ヘッドの底面と切断予定線2を設定した基板表面との間隔が広くなることから、該切断予定線2へのレーザ光Lの照射時において吹き付けたアシストガスと加工飛散物とを基板表面の外部へ排出する作業効率が悪くなる。
また、該基板表面における切断予定線2の両側に透明樹脂レンズ体4(凸部)が突設されていることから、該切断予定線2に吹き付けたアシストガスの流れが変化する。
即ち、図7(2) に示すように、基板表面の切断予定線2に照射したレーザ光L及びその切断予定線2に吹き付けたアシストガスを該切断予定線2に沿って(図例においては、下方向へ)走査させると、各区画3における始端側の位置3aからその中心位置Cまでの区間6においてはアシストガスとこれに捕捉された加工飛散物8とはレーザ光Lの走査方向とは逆方向(図例では、上方向)へ流動する。
また、上記各区画3の中心位置Cを通過してその終端側の位置3bに至る区間7においては、上記したとは逆に、アシストガスとこれに捕捉された加工飛散物8とはレーザ光Lの走査方向と同じ方向(図例では、下方向)へ流動する。
このようなアシストガス及び加工飛散物8の流動作用に基因して、該加工飛散物が透明樹脂レンズ体4の表面に衝突し或は付着すると、該透明樹脂レンズ体4の表面が焦げて焼損し或はこれを傷損して品質を低下させると云った弊害が生じる。
更に、各区画3の透明樹脂レンズ体4に対する加工飛散物8の衝突作用、或は、加工飛散物8の付着作用は、各区画3における始端側の位置3aからその中心位置Cまでの区間6においては少ないが、各区画3の中心位置Cを通過してその終端側の位置3bに至る区間7においては多くなる傾向がみられる。
従って、その結果、各区画3の中心位置Cを通過してその終端側の位置3bに至る区間7においてその表面を焼損し易い部位9が発生すると云った問題がある。
In the laser processing of the workpiece W shown in FIG. 7, since the distance between the bottom surface of the laser processing head and the substrate surface on which the planned cutting line 2 is set is widened, the laser beam L is irradiated onto the planned cutting line 2. The working efficiency of discharging the assist gas sprayed at the time and the processing scattered matter to the outside of the substrate surface is deteriorated.
Moreover, since the transparent resin lens body 4 (convex part) protrudes on both sides of the planned cutting line 2 on the substrate surface, the flow of the assist gas sprayed on the planned cutting line 2 changes.
That is, as shown in FIG. 7 (2), the laser beam L applied to the planned cutting line 2 on the substrate surface and the assist gas sprayed to the planned cutting line 2 are projected along the planned cutting line 2 (in the example shown in the figure). In the section 6 from the position 3a on the start end side to the center position C in each section 3, the assist gas and the processing scattered matter 8 trapped by this are in the scanning direction of the laser light L. Flows in the opposite direction (upward in the example).
In the section 7 that passes through the center position C of each section 3 and reaches the terminal position 3b, contrary to the above, the assist gas and the processing scattered matter 8 trapped therein are laser light. It flows in the same direction as the scanning direction of L (downward in the example).
Due to the fluid action of the assist gas and the processed scattered matter 8, when the processed scattered matter collides with or adheres to the surface of the transparent resin lens body 4, the surface of the transparent resin lens body 4 burns and burns out. Or the bad effect that this is damaged and quality is reduced arises.
Furthermore, the collision action of the processing scattered matter 8 with respect to the transparent resin lens body 4 in each section 3 or the adhesion action of the processing scattered matter 8 is the section 6 from the position 3a on the start end side to the center position C in each section 3. However, it tends to increase in the section 7 that passes through the center position C of each section 3 and reaches the terminal position 3b.
Therefore, as a result, there is a problem that a portion 9 that easily burns its surface is generated in the section 7 that passes through the center position C of each section 3 and reaches the position 3b on the end side.

なお、被加工物Wのレーザ光照射表面に多数の凹凸部が配置されている場合は、所謂、CW発振(連続発振)によるCWレーザ加工、または、パルス発振によるパルスレーザ加工のいずれにおいてもそのレーザ光照射表面側に加工飛散物が残存して付着する傾向がみられる。これは、レーザ加工ヘッドの底面とレーザ光照射表面(基板表面)との間隔が広くなるので、該レーザ光照射表面に加工飛散物が発生し易く、更に、アシストガスと加工飛散物とを基板表面の外部へ排出する作業効率が悪いことに基因しているものと考えられる。   If a large number of irregularities are arranged on the surface of the workpiece W irradiated with laser light, the so-called CW laser processing by so-called CW oscillation (continuous oscillation) or pulse laser processing by pulse oscillation can be used. There is a tendency that the processed scattered matter remains and adheres to the laser light irradiation surface side. This is because the distance between the bottom surface of the laser processing head and the laser light irradiation surface (substrate surface) is widened, so that processing scattered matter is likely to be generated on the laser light irradiation surface, and the assist gas and processing scattered matter are further transferred to the substrate. This is thought to be due to the poor work efficiency of discharging to the outside of the surface.

また、推測ではあるが、基板表面の切断予定線2に照射したレーザ光L及びその切断予定線2に吹き付けたアシストガスを該切断予定線2に沿って走査させた場合に、区画3における一辺の前半(区間6)を切断するときは、加工飛散物8を含むアシストガスの流れは透明樹脂レンズ体4(凸部)に反射して走査方向とは反対方向に流れる量が大きくなると推測される(図7(2) では上方向)。このとき、区画3の中心位置Cの近傍となる2つの凸部4の狭間に流れる加工飛散物8を含むアシストガスの流れは少ないものと推測される。
また、推測ではあるが、区画3における一辺の後半(区間7)を切断するときは、アシストガスの流れは透明樹脂レンズ体4(凸部)に反射して走査方向とは同じ方向に流れる量が大きくなると推測される(図7(2) では下方向)。即ち、加工飛散物8を含むアシストガスが区画3の中心位置Cをから凸部4の形状に添って広がるため、基板表面を焼損し易い部位9が発生することになると推測される。
Moreover, although it is guessed, when the laser beam L irradiated to the cutting line 2 on the substrate surface and the assist gas sprayed on the cutting line 2 are scanned along the cutting line 2, one side in the section 3 When the first half (section 6) is cut, it is estimated that the flow of the assist gas including the processed scattered matter 8 is reflected by the transparent resin lens body 4 (convex portion) and flows in the direction opposite to the scanning direction. (Upward in Fig. 7 (2)). At this time, it is estimated that the flow of the assist gas including the processing scattered matter 8 flowing between the two convex portions 4 in the vicinity of the center position C of the section 3 is small.
Moreover, although it is guessed, when cutting the second half (section 7) of one side in the section 3, the flow of the assist gas is reflected by the transparent resin lens body 4 (convex portion) and flows in the same direction as the scanning direction. Is estimated to increase (downward in Fig. 7 (2)). That is, since the assist gas including the processing scattered matter 8 spreads from the center position C of the section 3 along the shape of the convex portion 4, it is estimated that a portion 9 that easily burns the substrate surface is generated.

特開平9−192870号公報(第2頁の段落〔0009〕、第4頁の段落〔0029〕、図1等)JP-A-9-192870 (paragraph [0009] on the second page, paragraph [0029] on the fourth page, FIG. 1 etc.)

本発明は、基板の表面に格子状に設けた多数の区画内に凸部(光半導体素子を封止する透明樹脂レンズ体)が配置された形状として形成された被加工物に対するレーザ加工時において、該各凸部への加工飛散物の衝突或は付着作用を抑制して、該各凸部の焼損若しくは傷損を防止することができるレーザ加工方法を提供することを目的とする。   In the present invention, laser processing is performed on a workpiece formed as a shape in which convex portions (transparent resin lens bodies for sealing an optical semiconductor element) are arranged in a large number of sections provided in a lattice shape on the surface of a substrate. An object of the present invention is to provide a laser processing method capable of preventing the projections from being burned or damaged by suppressing the collision or adhesion of the processing scattered matter to the projections.

上記した目的を達成するための本発明に係るレーザ加工方法は、基板10の表面に格子状の切断予定線20を設定した多数の区画30内に半導体デバイスを装着して封止することにより、基板10表面の高さと半導体デバイス封止体(40)との高さとに高低差を有する被加工物Wに対して、その切断予定線20に沿ってレーザ光Lを照射することにより、基板10を各区画30毎に切断して分離するレーザ加工方法であって、
基板10の切断予定線20に沿って第一列目の区画31における始端側の位置30aからその中心位置Cまでレーザ光Lを照射して該切断予定線20の区間60を切断すると共に、第一列目の区画31における中心位置Cから第二列目の区画32における始端側の位置30aまでレーザ光Lの照射を停止して該切断予定線20の区間70を切断しないようにし、更に、最終列目の区画に至るまで該切断予定線20上におけるレーザ光Lの照射と停止とを繰り返すことにより、該切断予定線20に沿って各列の区画30における始端側の位置30aからその中心位置Cまでレーザ光Lを照射して該切断予定線20の各区間60を切断する往路切断工程と、
上記往路切断工程を経た切断予定線20の最終列目の区画30における終端側の位置30bから第一列目の区画31におけるその中心位置Cまでレーザ光Lを照射してこの間における未切断個所(往路切断工程において切断されていない個所)である切断予定線20の各区間70を切断する復路切断工程と、
上記した往路切断工程及び復路切断工程における少なくとも基板10の切断予定線20へのレーザ光L照射時において切断予定線20の部位(レーザ光Lと同軸)にアシストガス90を吹き付けて供給するアシストガス吹付工程とを含み、
更に、基板10の各切断予定線20に沿って上記往路切断工程を行い、次に、上記往路切断工程を経た切断予定線20の上記復路切断工程を行うことによって基板10における各区画30を各別に切断して分離することを特徴とする。
In the laser processing method according to the present invention for achieving the above-described object, the semiconductor device is mounted and sealed in a number of sections 30 in which the grid-like cutting lines 20 are set on the surface of the substrate 10, By irradiating the workpiece W having a height difference between the height of the surface of the substrate 10 and the height of the semiconductor device sealing body (40) along the planned cutting line 20, the substrate 10 Is a laser processing method for cutting and separating each section 30,
The laser beam L is irradiated from the starting end position 30a in the section 31 of the first row to the center position C along the planned cutting line 20 of the substrate 10 to cut the section 60 of the planned cutting line 20, and The irradiation of the laser beam L is stopped from the center position C in the section 31 of the first row to the position 30a on the start end side in the section 32 of the second row so as not to cut the section 70 of the planned cutting line 20, By repeatedly irradiating and stopping the laser beam L on the planned cutting line 20 until reaching the section of the last row, the center thereof from the position 30a on the start end side in the section 30 of each row along the planned cutting line 20 is obtained. An outward cutting step of cutting each section 60 of the planned cutting line 20 by irradiating the laser beam L to the position C;
The laser beam L is irradiated from the position 30b on the end side in the section 30 of the last row of the planned cutting line 20 that has undergone the above-described cutting process to the center position C in the section 31 of the first row, and uncut portions ( A return path cutting process for cutting each section 70 of the planned cutting line 20 that is not cut in the forward path cutting process;
Assist gas that blows and supplies the assist gas 90 to the portion of the planned cutting line 20 (coaxial with the laser light L) at least when the laser beam L is irradiated onto the planned cutting line 20 of the substrate 10 in the forward path cutting process and the backward path cutting process. Spraying process,
Further, the forward path cutting process is performed along each planned cutting line 20 of the substrate 10, and then each of the sections 30 on the substrate 10 is performed by performing the backward path cutting process of the planned cutting line 20 that has undergone the forward path cutting process. It is characterized by being cut and separated separately.

また、本発明に係るレーザ加工方法は、半導体デバイスが、光半導体素子を透明樹脂レンズ体から成る封止体(40)に封止成形されていることを特徴とする。   The laser processing method according to the present invention is characterized in that the semiconductor device is formed by sealing an optical semiconductor element into a sealing body (40) made of a transparent resin lens body.

また、本発明に係るレーザ加工方法は、アシストガス吹付工程時において、切断予定線20の部位に吹き付けたアシストガス90及び切断予定線20の部位から発生した加工飛散物80を外部へ吸引して排出する吸引排出工程を行うことを特徴とする。   Further, in the laser processing method according to the present invention, the assist gas 90 sprayed on the site of the planned cutting line 20 and the processing scattered matter 80 generated from the site of the planned cutting line 20 are sucked to the outside during the assist gas spraying process. A suction / discharge process of discharging is performed.

また、本発明に係るレーザ加工方法は、前記往路切断工程において切断予定線20に沿って形成される往路切断部60a内を、レーザ光の照射側からその反対側に空気を強制的に排出することにより、前記切断予定線20の部位に吹き付けたアシストガス及び前記切断予定線20の部位から発生した加工飛散物80を排出する工程を行い、
前記復路切断工程において切断予定線20に沿って形成される復路切断部70a内を、レーザ光の照射側からその反対側に空気を強制的に排出する工程を行うことを特徴とする。
Further, in the laser processing method according to the present invention, air is forcibly discharged from the laser beam irradiation side to the opposite side in the forward path cutting portion 60a formed along the planned cutting line 20 in the forward path cutting step. By performing the step of discharging the work gas 80 generated from the assist gas sprayed to the site of the planned cutting line 20 and the site of the planned cutting line 20,
The step of forcibly discharging air from the laser beam irradiation side to the opposite side is performed in the return path cutting portion 70a formed along the planned cutting line 20 in the return path cutting step.

本発明方法によれば、基板10の表面に格子状に設けた多数の区画30内に凸部(透明樹脂レンズ体40)が配置された形状として形成された被加工物Wに対するレーザ加工時において、該各凸部への加工飛散物80の衝突或は付着作用を効率良く防止若しくは抑制し得るため、該各凸部の焼損若しくは傷損を防止することができる。   According to the method of the present invention, at the time of laser processing on a workpiece W formed as a shape in which convex portions (transparent resin lens bodies 40) are arranged in a large number of sections 30 provided in a lattice pattern on the surface of the substrate 10. In addition, since the collision or adhesion of the processing scattered matter 80 to each convex portion can be efficiently prevented or suppressed, it is possible to prevent the respective convex portions from being burned or damaged.

また、本発明方法によれば、各凸部への加工飛散物80の付着作用を効率良く防止若しくは抑制し得てレーザ加工品質が改善されるため、例えば、次工程となる被加工物Wの洗浄工程を省力化或は簡略化することができる。   Further, according to the method of the present invention, the adhesion of the processed scattered matter 80 to each convex portion can be efficiently prevented or suppressed, and the laser processing quality is improved. The cleaning process can be labor-saving or simplified.

本発明に係るレーザ加工方法の説明図であって、レーザ加工装置の構成概略を示す一部切欠正面図である。It is explanatory drawing of the laser processing method which concerns on this invention, Comprising: It is a partially notched front view which shows the structure outline of a laser processing apparatus. 図1に対応するレーザ加工装置の要部を示す一部切欠拡大正面図である。FIG. 2 is a partially cutaway enlarged front view showing a main part of the laser processing apparatus corresponding to FIG. 1. 本発明方法における往路切断工程についての説明図であって、図3(1) は被加工物の要部を示す平面図、図3(2) はその要部拡大平面図である。FIG. 3 (1) is a plan view showing a main part of a workpiece, and FIG. 3 (2) is an enlarged plan view of the main part. 図3に対応する被加工物の要部拡大平面図であって、往路切断工程を経た状態を示している。FIG. 4 is an enlarged plan view of a main part of the workpiece corresponding to FIG. 3, showing a state after an outward cutting process. 本発明方法における復路切断工程についての説明図であって、図5(1) は被加工物の要部を示す平面図、図5(2) はその要部拡大平面図である。FIG. 5 (1) is a plan view showing a main part of a workpiece, and FIG. 5 (2) is an enlarged plan view of the main part. 図5に対応する被加工物の要部拡大平面図であって、復路切断工程を経た状態を示している。FIG. 6 is an enlarged plan view of a main part of the workpiece corresponding to FIG. 5, showing a state after a return path cutting step. 従来のレーザ加工方法を用いて基板表面に多数の凹凸部が配置された被加工物をレーザ加工した場合の技術的な問題点の説明図であって、図7(1) は被加工物の要部を示す平面図、図7(2) はその要部拡大平面図である。FIG. 7 (1) is an explanatory view of a technical problem when laser processing is performed on a workpiece having a large number of irregularities on the substrate surface using a conventional laser processing method. FIG. 7B is a plan view showing the main part, and FIG. 7B is an enlarged plan view of the main part.

以下、本発明を実施例図に基づいて説明する。   Hereinafter, the present invention will be described with reference to the accompanying drawings.

図1はレーザ加工装置におけるレーザ加工部50の概略を示している。
このレーザ加工部50には、吸着パッド51aを介して基板10(被加工物W)を吸着保持する吸着テーブル51とを備えている。
また、このレーザ加工部50には、吸着テーブル51上に保持させた被加工物Wにおける加工部(切断予定線20)にレーザ光Lを照射するためのレーザ光照射手段52とアルゴン等のアシストガス90を吹き付けて供給するためのアシストガス供給手段53とを備えている。
なお、該加工部から飛散した加工飛散物80をアシストガス90の流れに乗せて基板表面の外部に吸引して排出させるための加工飛散物排出手段54等を備えることができる。
FIG. 1 schematically shows a laser processing unit 50 in the laser processing apparatus.
The laser processing unit 50 includes a suction table 51 that sucks and holds the substrate 10 (workpiece W) via a suction pad 51a.
The laser processing unit 50 includes a laser beam irradiation means 52 for irradiating a laser beam L to a processing unit (scheduled cutting line 20) in the workpiece W held on the suction table 51, and an assist such as argon. Assist gas supply means 53 for spraying and supplying the gas 90 is provided.
It should be noted that the processing scattered matter discharging means 54 for sucking and discharging the processing scattered matter 80 scattered from the processing portion on the flow of the assist gas 90 to the outside of the substrate surface can be provided.

また、図1には、被加工物Wの表面に対向して配置されるレーザ加工ヘッド55の部分を示している。
また、図2に示すように、レーザ加工ヘッド55には、レーザ光Lの照射口及びアシストガス90の吹付口を兼ねる開口部55aが設けられている。
また、レーザ加工装置には、吸着テーブル51上に保持させた被加工物Wの撮像手段及びその制御手段(図示なし)等を備えており、該吸着テーブル51と撮像手段とを相対的に移動させて基板10(被加工物W)の表面に設定した加工部(切断予定線20)を検出すると共に、該加工部におけるレーザ加工部位を決定するためのアライメント(切断部位の位置決め)工程を行うことができるように設けられている。
なお、レーザ加工ヘッド55には、該開口部55aの外方周囲に開口させたアシストガス90及び加工飛散物80の吸引排出口55bが設けられている(図2参照)。
Further, FIG. 1 shows a portion of a laser processing head 55 that is disposed to face the surface of the workpiece W.
As shown in FIG. 2, the laser processing head 55 is provided with an opening 55 a that doubles as an irradiation port for the laser light L and a blowing port for the assist gas 90.
Further, the laser processing apparatus is provided with an imaging means for the workpiece W held on the suction table 51 and its control means (not shown), and the suction table 51 and the imaging means are relatively moved. Then, a processing part (scheduled cutting line 20) set on the surface of the substrate 10 (workpiece W) is detected, and an alignment (positioning of the cutting part) step for determining a laser processing part in the processing part is performed. It is provided so that it can.
The laser processing head 55 is provided with an assist gas 90 opened around the outside of the opening 55a and a suction / discharge port 55b for processing scattered matter 80 (see FIG. 2).

また、上記した被加工物Wは、次のように構成されている。
即ち、図3に示すように、被加工物Wは、基板10の表面に格子状の切断予定線20を設定して設けた多数の区画30内に光半導体素子を封止する多数の透明樹脂レンズ体40(半導体デバイス封止体)が突設されている。従って、該基板10の表面には、該基板10の表面と透明樹脂レンズ体40とによって、多数の凹凸部が配置された形状として形成されている(図1参照)。
Further, the workpiece W described above is configured as follows.
That is, as shown in FIG. 3, the workpiece W has a large number of transparent resins for sealing the optical semiconductor elements in a large number of sections 30 provided by setting grid-like cutting lines 20 on the surface of the substrate 10. A lens body 40 (semiconductor device sealing body) is projected. Accordingly, the surface of the substrate 10 is formed in a shape in which a large number of uneven portions are arranged by the surface of the substrate 10 and the transparent resin lens body 40 (see FIG. 1).

また、吸着テーブル51上に保持させた被加工物Wを、上記レーザ加工装置を用いてレーザ加工する手法は、従来の方法と基本的には同様である。
即ち、まず、上記したアライメント工程により被加工物Wの加工部(切断予定線20)を検出して該加工部におけるレーザ加工部位を決定する。
次に、レーザ光照射手段52を介して、集光レンズ52aにより集光したレーザ光Lを上記被加工物Wのレーザ加工部位に照射する。
また、このレーザ加工部位へのレーザ光Lの照射時において、アシストガス供給手段53を介して、アシストガス90を被加工物Wの該レーザ加工部位に吹き付けて供給する。
なお、このとき、上記したレーザ光Lの照射とアシストガス90の吹き付けによってレーザ加工を行いながら、加工飛散物排出手段54を介して、該加工部から飛散した加工飛散物80をアシストガス90の流れに乗せて基板表面の外部へ吸引して排出させても良い(図2参照)。
Further, the method of laser processing the workpiece W held on the suction table 51 using the laser processing apparatus is basically the same as the conventional method.
That is, first, the processing part (scheduled cutting line 20) of the workpiece W is detected by the above-described alignment process, and the laser processing part in the processing part is determined.
Next, the laser beam L of the workpiece W is irradiated with the laser beam L condensed by the condenser lens 52a via the laser beam irradiation means 52.
Further, at the time of irradiation of the laser beam L to the laser processing site, the assist gas 90 is blown and supplied to the laser processing site of the workpiece W through the assist gas supply means 53.
At this time, while performing the laser processing by the irradiation of the laser beam L and the spraying of the assist gas 90, the processing scattered matter 80 scattered from the processing portion is removed from the processing portion via the processing scattered matter discharging means 54. It is possible to put it on the flow and suck it out of the substrate surface to be discharged (see FIG. 2).

以下、透明樹脂レンズ体40への加工飛散物80による衝突或は付着作用を抑制して該透明樹脂レンズ体40の焼損若しくは傷損を防止することについて詳述する。
即ち、図3に示すように、まず、基板10の切断予定線20に沿って第一列目の区画31における始端側の位置30aからその中心位置Cまでレーザ光Lを照射して該切断予定線20の区間60を切断する。
そして、第一列目の区画31における中心位置Cから第二列目の区画32における始端側の位置30aまでレーザ光Lの照射を停止することにより、該切断予定線20の区間70は切断しない。
更に、最終列目の区画に至るまで該切断予定線20上における上記したレーザ光Lの照射と停止とを(間欠的に)繰り返すことにより、該切断予定線20に沿って各列の区画30における始端側の位置30aからその中心位置Cまでレーザ光Lを照射して該切断予定線20の各区間60についてのみ夫々切断する往路切断工程を行う。
Hereinafter, detailed description will be given of preventing the transparent resin lens body 40 from being burned or damaged by suppressing the collision or adhesion of the processed resin 80 to the transparent resin lens body 40.
That is, as shown in FIG. 3, first, the laser beam L is irradiated from the starting end side position 30a of the section 31 in the first row to the center position C along the planned cutting line 20 of the substrate 10 to be cut. Cut section 60 of line 20.
Then, by stopping the irradiation of the laser beam L from the center position C in the section 31 of the first row to the position 30a on the start end side in the section 32 of the second row, the section 70 of the planned cutting line 20 is not cut. .
Further, by repeating (intermittently) irradiating and stopping the laser beam L on the planned cutting line 20 until reaching the final column, the sections 30 of each column along the planned cutting line 20 are obtained. The forward cutting process of cutting only each section 60 of the planned cutting line 20 by irradiating the laser beam L from the position 30a on the starting end side to the center position C is performed.

また、上記した往路切断工程における少なくとも基板10の切断予定線20へのレーザ光L照射時において、切断予定線20の部位(レーザ光Lと同軸)にアシストガス90を吹き付けるアシストガス吹付工程を行う。
この往路切断工程において、基板表面の切断予定線20に照射したレーザ光L及びその切断予定線20に吹き付けたアシストガスを該切断予定線20に沿って走査させると、各区画30における始端側の位置30aからその中心位置Cまでの区間60においては、図3(2) に示すように、アシストガスとこれに捕捉された加工飛散物80とはレーザ光Lの走査方向とは逆方向(図例では、上方向)へ流動する。
この往路切断工程における各区画3の透明樹脂レンズ体40に対する加工飛散物80の衝突作用、或は、加工飛散物80の付着作用は、従来例と同様に、各区画30における始端側の位置30aからその中心位置Cまでの区間60においては少ない。
In addition, an assist gas spraying step of spraying the assist gas 90 on the portion of the planned cutting line 20 (coaxial with the laser light L) is performed at least when the laser beam L is applied to the planned cutting line 20 of the substrate 10 in the forward path cutting step. .
In this forward cutting process, when the laser beam L irradiated to the cutting line 20 on the substrate surface and the assist gas sprayed to the cutting line 20 are scanned along the cutting line 20, In the section 60 from the position 30a to the center position C, as shown in FIG. 3 (2), the assist gas and the scattered scattered matter 80 trapped by the assist gas are in the direction opposite to the scanning direction of the laser beam L (see FIG. In the example, it flows upward).
In the forward cutting process, the colliding action of the processing scattered matter 80 against the transparent resin lens body 40 in each section 3 or the attaching action of the processing scattered matter 80 is the position 30a on the start end side in each section 30 as in the conventional example. Is less in the section 60 from the center position C to the center position C.

また、図4に示すように、上記した往路切断工程においては、基板10には往路切断部60aが形成される。この往路切断部60aは、切断予定線20に沿った始端側の位置30aからその中心位置Cまでの長さを有し且つ所要幅を有する細長い孔部(貫通孔)である。
なお、後述するが、復路切断工程において、往路切断部60aに加工飛散物8を含むアシストガスが流入して基板の表側から裏側に抜けていくことになる。
Further, as shown in FIG. 4, in the above-described outbound cutting step, the outbound path cutting portion 60 a is formed on the substrate 10. The forward path cutting portion 60a is a long and narrow hole (through hole) having a length from a position 30a on the start end side along the planned cutting line 20 to its center position C and having a required width.
As will be described later, in the backward path cutting step, the assist gas including the processing scattered matter 8 flows into the forward path cutting portion 60a and escapes from the front side to the back side of the substrate.

次に、上記往路切断工程を経た切断予定線20の最終列目の区画30における終端側の位置30bから第一列目の区画31におけるその中心位置Cまでレーザ光Lを照射して、この間における切断されていない切断予定線20の各区間70を夫々切断する復路切断工程を行う。
また、上記した往路切断工程及び復路切断工程における少なくとも基板10の切断予定線20へのレーザ光L照射時において、切断予定線20の部位(レーザ光Lと同軸)にアシストガス90を吹き付けるアシストガス吹付工程が行なうことができる。
なお、上記した往路切断工程及び復路切断工程における少なくとも基板10の切断予定線20へのレーザ光L照射時及びアシストガス90供給時において、加工飛散物排出手段54による加工飛散物80の吸引排出工程を行なうことができる。
このとき、加工飛散物排出手段54にて吸引排出口55bから加工飛散物80を吸引して排出することができる。
Next, the laser beam L is irradiated from the terminal-side position 30b in the section 30 of the last row of the planned cutting line 20 that has undergone the above-described cutting process to the center position C in the section 31 of the first row. A return path cutting process is performed for cutting each section 70 of the planned cutting line 20 that has not been cut.
In addition, the assist gas that blows the assist gas 90 onto the portion of the planned cutting line 20 (coaxial with the laser light L) at least when the laser beam L is irradiated onto the planned cutting line 20 of the substrate 10 in the forward path cutting process and the backward path cutting process. A spraying process can be performed.
In addition, at least when the laser beam L is applied to the planned cutting line 20 of the substrate 10 and when the assist gas 90 is supplied in the above-described forward path cutting process and backward path cutting process, the processing dust discharge means 54 sucks and discharges the processing dust 80. Can be performed.
At this time, the processing scattered matter discharging means 54 can suck and discharge the processing scattered matter 80 from the suction discharge port 55b.

即ち、本発明によれば、基板10上に設定した全ての切断予定線20に沿って上記往路切断工程を行い、次に、該往路切断工程を経た全ての切断予定線20に沿って上記復路切断工程を行うことによって、基板10における各区画30を各別に切断して分離することができる。   That is, according to the present invention, the forward path cutting process is performed along all the planned cutting lines 20 set on the substrate 10, and then the return path is performed along all the planned cutting lines 20 that have undergone the forward path cutting process. By performing the cutting step, each section 30 in the substrate 10 can be cut and separated separately.

また、前述したように、レーザ加工ヘッド55から被加工物Wのレーザ加工部位にレーザ光Lを照射するとき、アシストガス90を被加工物Wの該レーザ加工部位に吹き付けて供給することができる。このとき、前記往路切断工程においては、レーザ切断されることによって長さが伸長しつつある往路切断部60a(長い穴)内を、アシストガスとレーザ光とが一緒に抜けてゆくことになる。
また、このとき、先に、レーザ加工ヘッド55からアシストガスが被加工物W(基板10)上の封止体40間の狭い間隔(中心位置Cの近傍)に流れているため、後から、レーザ切断して発生する加工飛散物80を含むアシストガスが封止体40間の狭い間隔を通り抜けていくことが難しくなってレーザの切断方向とは反対側に流れ易くなり〔図3(2)に示す加工飛散物80の矢印などを参照〕、加工飛散物80を含むアシストガスが往路切断部60a内を抜けてゆくことになる。このため、被加工物W(基板)における区間60の往路切断部60aの上方位置近傍に(レーザ加工ヘッド55の下方位置近傍に)、アシストガスの効果範囲(空間部)が形成されることになる。
また、前記した復路切断工程においても、前記往路切断工程と同様に、レーザ切断されることによって長さが伸長しつつある復路切断部70a(長い穴)内を、アシストガスとレーザ光とが一緒に抜けてゆくことになる。
また、このとき、アシストガスは封止体40に当たって跳ね返り、この跳ね返ったアシストガスは、レーザの切断方向とは反対側に流れ、復路切断部70a内を抜けてゆくことになる。このため、被加工物W(基板)における区間70の復路切断部70aの上方位置近傍に(レーザ加工ヘッド55の下方位置近傍に)、アシストガスの効果範囲(空間部)が形成されることになる。
Further, as described above, when the laser beam L is irradiated from the laser processing head 55 to the laser processing site of the workpiece W, the assist gas 90 can be sprayed and supplied to the laser processing site of the workpiece W. . At this time, in the forward path cutting step, the assist gas and the laser beam are allowed to escape together through the forward path cutting portion 60a (long hole) whose length is being extended by laser cutting.
At this time, since the assist gas flows from the laser processing head 55 at a narrow interval (near the center position C) between the sealing bodies 40 on the workpiece W (substrate 10) first, It becomes difficult for the assist gas including the processing scattered matter 80 generated by the laser cutting to pass through the narrow space between the sealing bodies 40 and easily flows to the opposite side to the laser cutting direction [(2) in FIG. The assist gas including the processed scattered matter 80 passes through the forward path cutting portion 60a. For this reason, the effective range (space part) of the assist gas is formed in the vicinity of the upper position of the forward cutting section 60a in the section 60 of the workpiece W (substrate) (in the vicinity of the lower position of the laser processing head 55). Become.
Also, in the above-described return path cutting step, the assist gas and the laser beam are combined together in the return path cutting portion 70a (long hole) whose length has been extended by laser cutting, as in the forward path cutting process. It will come out.
At this time, the assist gas bounces off when hitting the sealing body 40, and the bounced assist gas flows to the opposite side to the laser cutting direction and passes through the return path cutting portion 70a. For this reason, the effect range (space part) of the assist gas is formed in the vicinity of the upper position of the return cutting section 70a in the section 70 of the workpiece W (substrate) (in the vicinity of the lower position of the laser processing head 55). Become.

また、本発明によれば、まず、図3に示すように、上記往路切断工程において各区画30における始端側の位置30aからその中心位置Cまでの区間60のレーザ加工を行うと、アシストガス90とこれに捕捉された加工飛散物80とはレーザ光Lの走査方向とは逆方向(図では、上方向)へ流動することになる(図3(2) 参照)。
従って、アシストガス90とこれに捕捉された加工飛散物80とは切断予定線20の両側に突設されている透明樹脂レンズ体40から離れる方向(上方の始端側位置30aの方向)へ流動するので、これらが該透明樹脂レンズ体40に衝突或は付着する作用を防止し若しくは抑制することができる。
往路切断工程を経た基板10には、図4に示すように、その各区間60に往路切断部60aが夫々形成されることになる。
Further, according to the present invention, as shown in FIG. 3, first, when laser processing is performed in the section 60 from the position 30a on the start end side to the center position C in each section 30 in the forward path cutting step, the assist gas 90 is obtained. And the processing scattered matter 80 captured thereby flows in the direction opposite to the scanning direction of the laser beam L (upward in the figure) (see FIG. 3 (2)).
Accordingly, the assist gas 90 and the scattered work 80 captured by the assist gas 90 flow in a direction away from the transparent resin lens body 40 projecting on both sides of the planned cutting line 20 (in the direction of the upper start side position 30a). Therefore, it is possible to prevent or suppress the action of these colliding or adhering to the transparent resin lens body 40.
As shown in FIG. 4, the substrate 10 that has undergone the forward cutting step is formed with the forward cutting portions 60a in the respective sections 60.

次に、図5に示すように、上記した復路切断工程において切断予定線20の最終列目の区画30における終端側の位置30bから第一列目の区画31におけるその中心位置Cまでレーザ光Lを照射して、この間における切断されていない切断予定線20の各区間70をレーザ加工すると、アシストガス90とこれに捕捉された加工飛散物80とはレーザ光Lの走査方向とは逆方向(図では、下方向)へ流動することになる(図5(2) 参照)。
従って、基本的に、アシストガス90とこれに捕捉された加工飛散物80とは切断予定線20の両側に突設されている透明樹脂レンズ体40から離れる方向(下方の始端側位置30aの方向)へ流動するので、これらが該透明樹脂レンズ体40に衝突或は付着する作用を防止し若しくは抑制することができる。
また、復路切断工程を経た基板10には、図6に示すように、その各区間70に復路切断部70aが夫々形成されることになる。
即ち、切断予定線20における上記往路切断工程と該切断予定線20における上記復路切断工程を行うことにより、該切断予定線20に沿って基板10を切断することができる。
Next, as shown in FIG. 5, in the above-described return path cutting step, the laser beam L extends from a position 30b on the end side in the section 30 of the final row of the planned cutting line 20 to its center position C in the section 31 of the first row. When the laser beam machining is performed on each section 70 of the cutting line 20 that is not cut during this period, the assist gas 90 and the processing scattered matter 80 captured thereby are opposite to the scanning direction of the laser beam L ( In the figure, it flows downward) (see Fig. 5 (2)).
Therefore, basically, the assist gas 90 and the scattered work 80 captured by the assist gas 90 are away from the transparent resin lens body 40 projecting on both sides of the planned cutting line 20 (the direction of the lower starting end side position 30a). ) To prevent or suppress the action of collision or adhesion to the transparent resin lens body 40.
Further, as shown in FIG. 6, the substrate 10 that has undergone the return path cutting step is formed with a return path cutting portion 70a in each section 70 thereof.
That is, the substrate 10 can be cut along the planned cutting line 20 by performing the forward path cutting process at the planned cutting line 20 and the return path cutting process at the planned cutting line 20.

また、上記した復路切断工程において、推測ではあるが、切断予定線20の区間70のレーザ走査方向の前方位置(区間60)にある往路切断部60aに、加工飛散物8を含むアシストガスを流入させて基板の表側から裏側に抜けてさせていくことができると推測される。
このため、上記した復路切断工程において、加工飛散物80を基板表面の外部へ排出することに関し、加工飛散物80を含むアシストガス90をレーザ光Lの走査方向とは逆方向に流動させる作用と、往路切断部60aに加工飛散物80を含むアシストガス90を流入させる作用とを併用させることができる。
Further, in the above-described return path cutting step, although it is estimated, the assist gas including the processing scattered material 8 flows into the forward path cutting section 60a at the front position (section 60) of the section 70 of the planned cutting line 20 in the laser scanning direction. It is estimated that the substrate can be removed from the front side to the back side.
For this reason, in the above-described return path cutting step, the discharge of the processed scattered matter 80 to the outside of the substrate surface causes the assist gas 90 including the processed scattered matter 80 to flow in the direction opposite to the scanning direction of the laser light L. In addition, it is possible to use in combination with the action of causing the assist gas 90 including the processing scattered matter 80 to flow into the forward path cutting portion 60a.

以上のように、上記往路切断工程及び復路切断工程におけるレーザ光L照射は切断予定線20の全区間(各区間60及び各区間70)を連続して行うものではない。
即ち、このレーザ光L照射は、該切断予定線20における各区間60・70のみを間欠的に行うと共に、該各区間のレーザ光L照射は各区画30の中心位置Cまで行うものであって、その中心位置Cを超えて行うものではない。
従って、切断予定線の全区間を連続して照射する従来のレーザ光照射の場合のように、各区画(30)の中心位置(C)を通過した位置に多量の加工飛散物(80)が衝突し或は付着することにより、その表面を焼損若しくは傷損し易い部位(図7の符号9参照)が発生するのを効率良く防止することができる。
As described above, the laser beam L irradiation in the forward path cutting process and the backward path cutting process does not continuously perform all sections (each section 60 and each section 70) of the planned cutting line 20.
That is, the laser light L irradiation is performed intermittently only in the sections 60 and 70 in the planned cutting line 20, and the laser light L irradiation in the sections is performed up to the center position C of each section 30. The operation is not performed beyond the center position C.
Therefore, as in the case of conventional laser light irradiation that continuously irradiates the entire section of the planned cutting line, a large amount of processing scattered matter (80) is present at the position that has passed the center position (C) of each section (30). By colliding or adhering, it is possible to efficiently prevent the occurrence of a portion (see reference numeral 9 in FIG. 7) where the surface easily burns or is damaged.

なお、上記した往路切断工程及び復路切断工程におけるレーザ光L照射は切断予定線20の全区間(各区間60及び各区間70)を連続して行うものではないが、該復路切断工程におけるレーザ光L照射についてはこれを連続して行うようにしても差し支えない。
上述したように、切断予定線20の各区間60には、上記往路切断工程において、既に、往路切断部60aが夫々形成されることにより切断された状態にある。従って、上記復路切断工程においては、未だ切断されていない切断予定線20の各区間70のみにレーザ光L照射を行って復路切断部70aを夫々形成すればよい。
即ち、復路切断工程においては、切断されていない各区間70に対して間欠的なレーザ加工を行えばよいことになるが、例えば、切断予定線20の最終列目の区画30における終端側の位置30bから第一列目の区画31における始端側位置30aまでの全区間に対してレーザ光Lを連続して照射するようにしてもよい(図5(2) 参照)。
この場合は、切断予定線20の各区間60は既に切断されているので、結局、切断予定線20の各区間70のみのレーザ加工が行われることになる。
また、上記復路切断工程においてレーザ光L照射を連続して行っても切断予定線20における各区間60のレーザ加工は行われない。従って、各区画30の中心位置Cを超えてレーザ加工を行うものではない。
このため、上述したような各区画30の中心位置Cを通過した位置に多量の加工飛散物80が衝突し或は付着してその表面を焼損若しくは傷損し易い部位(図7の符号9参照)が発生するようなことはない。
The laser beam L irradiation in the forward path cutting process and the backward path cutting process described above does not continuously perform all sections (each section 60 and each section 70) of the planned cutting line 20, but the laser beam in the backward path cutting process For L irradiation, this may be performed continuously.
As described above, in each section 60 of the planned cutting line 20, in the forward path cutting step, the forward path cutting portion 60a has already been formed and has been cut. Therefore, in the return path cutting step, it is only necessary to perform laser beam L irradiation only on each section 70 of the planned cutting line 20 that has not yet been cut to form the return path cutting portions 70a.
That is, in the return path cutting step, it is only necessary to perform intermittent laser processing on each section 70 that is not cut. For example, the position on the terminal side in the section 30 of the last row of the planned cutting line 20 You may make it irradiate continuously the laser beam L with respect to all the sections from 30b to the starting end side position 30a in the section 31 of the 1st row (refer to Drawing 2 (2)).
In this case, since each section 60 of the planned cutting line 20 has already been cut, only the respective sections 70 of the planned cutting line 20 are laser processed.
Further, even if the laser beam L irradiation is continuously performed in the return path cutting step, the laser processing of each section 60 in the planned cutting line 20 is not performed. Therefore, the laser processing is not performed beyond the center position C of each section 30.
For this reason, a part where a large amount of processed scattered matter 80 collides or adheres to the position passing through the center position C of each section 30 as described above and the surface thereof is easily burnt or damaged (see reference numeral 9 in FIG. 7). Will not occur.

また、基板10の表面に設定した格子状の各切断予定線20に沿って上記した往路切断工程及び復路切断工程を行うことにより、該基板10における各区画30を各別に切断して分離することができる。   In addition, each of the sections 30 in the substrate 10 can be cut and separated separately by performing the above-described forward cutting step and the backward cutting step along each grid-like cutting line 20 set on the surface of the substrate 10. Can do.

また、上記した往路切断工程及び復路切断工程における少なくともレーザ光L照射時とアシストガス90供給時に、加工飛散物排出手段54を介して、切断予定線20の部位(レーザ加工部位)から飛散した加工飛散物80をアシストガス90の流れに乗せて外部へ吸引して排出させることにより、加工飛散物80が透明樹脂レンズ体40に衝突或は付着して該透明樹脂レンズ体40を焼損若しくは傷損する作用を、より効率良く防止することができる。   In addition, at least when the laser beam L is irradiated and when the assist gas 90 is supplied in the above-described forward path cutting process and the backward path cutting process, the processing scattered from the portion of the planned cutting line 20 (laser processing portion) via the processing scattered matter discharging means The scattered matter 80 is put on the flow of the assist gas 90 and sucked outside to be discharged, so that the processed scattered matter 80 collides with or adheres to the transparent resin lens body 40 and burns or damages the transparent resin lens body 40. The action can be prevented more efficiently.

なお、図2には、レーザによる熱加工時において溶けた物質が基板10の裏面に残留した状態を概略的に示している。
この基板裏面に付着する溶融残留物(ドロス)81は、レーザ光Lと同軸に流すアシストガス90(図1参照)の流量や圧力等を調節することによって、該基板裏面への付着を防止することが可能である。
FIG. 2 schematically shows a state in which a dissolved material remains on the back surface of the substrate 10 during the thermal processing by the laser.
The molten residue (dross) 81 adhering to the back surface of the substrate is prevented from adhering to the back surface of the substrate by adjusting the flow rate or pressure of the assist gas 90 (see FIG. 1) flowing coaxially with the laser beam L. It is possible.

本発明は、前述した実施例のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、必要に応じて、任意に且つ適宜に変更・選択して採用することができる。
例えば、レーザ加工においては、所謂、CW発振(連続発振)によるCWレーザ加工、或は、パルス発振によるパルスレーザ加工のいずれを採用してもよい。
The present invention is not limited to the above-described embodiments, and can be arbitrarily changed and selected as necessary within a range not departing from the gist of the present invention.
For example, in laser processing, so-called CW laser processing by CW oscillation (continuous oscillation) or pulse laser processing by pulse oscillation may be employed.

なお、本発明においては、図示はしていないが、被加工物W(基板)の下面(基板の非レンズ体形成面)側となる吸着テーブル51側に、空気を強制的に吸引排出する強制吸引排出手段を補助的に設けて構成することができる。
即ち、レーザ切断加工にて被加工物W(基板)に形成される区間60の往路切断部60a(長穴)内を、或いは、区間70の復路切断部70a(長穴)内を、基板10の上面側(基板の半導体デバイス封止体形成面側又はレーザ光の照射側)から基板の下面側(基板の非半導体デバイス封止体形成面側又はレーザ光の照射側とは反対側)に、空気を強制的に吸引排出することができる。このため、強制吸引排出手段にて、被加工物W(基板)の往路切断部60aから、或いは、被加工物W(基板)の復路切断部70aから、加工飛散物80を含むアシストガス90を基板の表面からその外部に排出することができる。
In the present invention, although not shown in the drawing, air is forcibly sucked and discharged to the suction table 51 side which is the lower surface of the workpiece W (substrate) (non-lens body forming surface of the substrate). A suction discharge means can be provided in an auxiliary manner.
That is, the inside of the forward cut section 60a (long hole) in the section 60 formed in the workpiece W (substrate) by laser cutting processing or the inside of the backward cut section 70a (long hole) in the section 70 is transferred to the substrate 10. From the upper surface side (the semiconductor device sealing body forming surface side of the substrate or the laser light irradiation side) to the lower surface side of the substrate (the non-semiconductor device sealing body forming surface side of the substrate or the side opposite to the laser light irradiation side) The air can be forcibly sucked and discharged. For this reason, the assist gas 90 including the work scattering object 80 is generated from the forward cutting part 60a of the workpiece W (substrate) or from the backward cutting part 70a of the workpiece W (substrate) by the forced suction discharge means. It can be discharged from the surface of the substrate to the outside.

10 基板
10a 加工飛散物
20 切断予定線
30 区画
30a 始端側の位置
30b 終端側の位置
31 第一列目の区画
32 第二列目の区画
40 透明樹脂レンズ体
50 レーザ加工部
51 吸着テーブル
51a 吸着パッド
52 レーザ光照射手段
53 アシストガス供給手段
54 加工飛散物排出手段
55 レーザ加工ヘッド
55a 開口部
55b 吸引排出口
60 区間
60a 往路切断部
70 区間
70a 復路切断部
80 加工飛散物
81 溶融残留物
90 アシストガス
C 中心位置
L レーザ光
S 間隔
W 被加工物
10 Board
10a Processing scattered matter
20 Scheduled cutting line
30 compartments
30a Start end position
30b Terminal position
31 First row compartment
32 Second row compartment
40 Transparent resin lens body
50 Laser processing section
51 Suction table
51a Suction pad
52 Laser beam irradiation means
53 Assist gas supply means
54 Means for discharging processed waste
55 Laser processing head
55a opening
55b Suction outlet
60 segments
60a Outward cutting section
70 segments
70a Return cut section
80 Processing scattered matter
81 Molten residue
90 Assist gas C Center position L Laser beam S Interval W Workpiece

Claims (4)

基板の表面に格子状の切断予定線を設定した多数の区画内に半導体デバイスを装着して封止することにより、前記基板表面の高さと前記半導体デバイス封止体との高さとに高低差を有する被加工物に対して、その前記切断予定線に沿ってレーザ光を照射することにより、前記基板を前記各区画毎に切断して分離するレーザ加工方法であって、
前記基板の切断予定線に沿って前記第一列目の区画における始端側の位置からその中心位置までレーザ光を照射してこの切断予定線の区間を切断すると共に、前記第一列目の区画における中心位置から前記第二列目の区画における始端側の位置までレーザ光の照射を停止してこの切断予定線の区間を切断しないようにし、更に、前記最終列目の区画に至るまで前記した切断予定線上におけるレーザ光の照射と停止とを繰り返すことにより、前記切断予定線に沿って前記各列の区画における始端側の位置からその中心位置までレーザ光を照射してこの切断予定線の各区間を切断する往路切断工程と、
前記往路切断工程を経た前記切断予定線の前記最終列目の区画における終端側の位置から第一列目の区画におけるその中心位置までレーザ光を照射してこの間における未切断個所である前記切断予定線の各区間を切断する復路切断工程と、
前記往路切断工程及び前記復路切断工程における少なくとも前記基板の切断予定線へのレーザ光照射時において前記切断予定線の部位にアシストガスを吹き付けて供給するアシストガス吹付工程とを含み、
更に、前記基板の各切断予定線に沿って前記往路切断工程を行い、次に、前記往路切断工程を経た前記切断予定線の前記復路切断工程を行うことによって前記基板における前記各区画を各別に切断して分離することを特徴とするレーザ加工方法。
By mounting and sealing a semiconductor device in a number of sections in which grid-like cutting lines are set on the surface of the substrate, there is a difference in height between the height of the substrate surface and the height of the semiconductor device sealing body. A laser processing method for cutting and separating the substrate for each of the sections by irradiating the workpiece with laser light along the planned cutting line,
The laser beam is irradiated from the position on the start end side to the center position of the first row section along the planned cutting line of the substrate to cut the section of the planned cutting line, and the first row section The irradiation of the laser beam is stopped from the center position in the second row section to the position on the start end side so as not to cut the section of the planned cutting line, and further to the last row section as described above. By repeatedly irradiating and stopping the laser beam on the planned cutting line, each of the planned cutting lines is irradiated with laser light from the position on the start end side in the section of each row along the planned cutting line to the center position thereof. An outward cutting process for cutting the section;
The cutting schedule which is an uncut portion in the meantime by irradiating a laser beam from the position on the terminal side of the final row section of the planned cutting line that has undergone the forward cutting process to the center position of the first row section A return path cutting step for cutting each section of the line;
An assist gas spraying step of spraying and supplying an assist gas to a portion of the planned cutting line at the time of laser beam irradiation to at least the planned cutting line of the substrate in the forward path cutting step and the backward path cutting step;
Further, the forward cutting step is performed along each planned cutting line of the substrate, and then each of the sections on the substrate is separately performed by performing the backward cutting process of the planned cutting line that has undergone the forward cutting process. A laser processing method characterized by cutting and separating.
前記半導体デバイスが、光半導体素子を透明樹脂レンズ体から成る封止体に封止成形されていることを特徴とする請求項1に記載のレーザ加工方法。   The laser processing method according to claim 1, wherein the semiconductor device is formed by sealing an optical semiconductor element into a sealing body made of a transparent resin lens body. 前記アシストガス吹付工程時において、切断予定線の部位に吹き付けたアシストガス及び前記切断予定線の部位から発生した加工飛散物を外部へ吸引して排出する吸引排出工程を行うことを特徴とする請求項1に記載のレーザ加工方法。   In the assist gas spraying step, the suction gas discharging step of sucking and discharging the assist gas sprayed to the site of the planned cutting line and the processing scattered matter generated from the site of the planned cutting line is performed. Item 2. The laser processing method according to Item 1. 前記往路切断工程において切断予定線に沿って形成される往路切断部内を、レーザ光の照射側からその反対側に空気を強制的に排出することにより、前記切断予定線の部位に吹き付けたアシストガス及び前記切断予定線の部位から発生した加工飛散物を排出する工程を行い、
前記復路切断工程において切断予定線に沿って形成される復路切断部内を、レーザ光の照射側からその反対側に空気を強制的に排出する工程を行うことを特徴とする請求項1に記載のレーザ加工方法。
Assist gas sprayed on the portion of the planned cutting line by forcibly discharging air from the laser beam irradiation side to the opposite side in the forward cutting section formed along the planned cutting line in the forward cutting step And a step of discharging the processing scattered matter generated from the part of the planned cutting line,
2. The step of forcibly discharging air from the laser beam irradiation side to the opposite side is performed in the return path cutting portion formed along the planned cutting line in the return path cutting step. Laser processing method.
JP2013106966A 2013-05-21 2013-05-21 Manufacturing method of semiconductor device Active JP6017373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106966A JP6017373B2 (en) 2013-05-21 2013-05-21 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106966A JP6017373B2 (en) 2013-05-21 2013-05-21 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2014226682A true JP2014226682A (en) 2014-12-08
JP6017373B2 JP6017373B2 (en) 2016-11-02

Family

ID=52127005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106966A Active JP6017373B2 (en) 2013-05-21 2013-05-21 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6017373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199080A (en) * 2014-04-07 2015-11-12 株式会社ディスコ Laser processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798608A (en) * 1993-09-28 1995-04-11 Toyoda Mach Works Ltd Working route deciding device for two torch type laser beam machine
JPH0966377A (en) * 1995-09-04 1997-03-11 Fanuc Ltd Laser beam processing method and laser beam processing machine
JP2007326129A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Laser-beam machining apparatus and method
JP2010149165A (en) * 2008-12-26 2010-07-08 Towa Corp Cutting apparatus for manufacturing electronic component and cutting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798608A (en) * 1993-09-28 1995-04-11 Toyoda Mach Works Ltd Working route deciding device for two torch type laser beam machine
JPH0966377A (en) * 1995-09-04 1997-03-11 Fanuc Ltd Laser beam processing method and laser beam processing machine
JP2007326129A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Laser-beam machining apparatus and method
JP2010149165A (en) * 2008-12-26 2010-07-08 Towa Corp Cutting apparatus for manufacturing electronic component and cutting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199080A (en) * 2014-04-07 2015-11-12 株式会社ディスコ Laser processing device

Also Published As

Publication number Publication date
JP6017373B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6647829B2 (en) Laser processing equipment
JP6104025B2 (en) Laser processing apparatus and laser processing method
CN108063118B (en) Method for processing wafer
TWI391202B (en) A laser processing apparatus, a manufacturing method of a laser processing apparatus, and a laser processing method
KR101070192B1 (en) Laser machining chuck and laser machining method using the same
JP2017035714A (en) Laser processing device
KR20160012073A (en) Processing method of package substrate
KR20110062886A (en) Particle removal device for a laser processing apparatus and laser processing apparatus haivng the same
JP5610991B2 (en) Laser processing equipment
JP2010120038A (en) Laser beam machining apparatus and method
JP5824998B2 (en) Glass plate cutting method and glass plate cutting device
JP2020534670A (en) Polymer Resin Molded Compound-based substrate cutting method and its system
JP6017373B2 (en) Manufacturing method of semiconductor device
KR20180097373A (en) Apparatus and method for processing metal material using nozzle
JP2011125871A (en) Laser beam machining apparatus
KR101438735B1 (en) Laser Welding Device having Chamber
TWI713741B (en) Wafer processing method
JP6363894B2 (en) Laser processing equipment
JP6713214B2 (en) Device wafer processing method
JP5498033B2 (en) Protective sheet for laser processing workpiece and laser processing workpiece to which it is attached
JP2005118849A (en) Laser beam machining device
JPS62267095A (en) Laser beam processing method
JP2008194845A (en) Manufacturing method of mold for molding honeycomb structure and groove processing device used therein
JP5017900B2 (en) Workpiece processing method and apparatus
JP2004343038A (en) Semiconductor package having cutting groove on side flash, method of forming this cutting groove, deflashing method in semiconductor package having cutting groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250