JP2014225900A - マルチセグメント損失の保護 - Google Patents

マルチセグメント損失の保護 Download PDF

Info

Publication number
JP2014225900A
JP2014225900A JP2014143732A JP2014143732A JP2014225900A JP 2014225900 A JP2014225900 A JP 2014225900A JP 2014143732 A JP2014143732 A JP 2014143732A JP 2014143732 A JP2014143732 A JP 2014143732A JP 2014225900 A JP2014225900 A JP 2014225900A
Authority
JP
Japan
Prior art keywords
packets
fec
error correction
service node
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014143732A
Other languages
English (en)
Inventor
ジェイ. ラーハァー、ティモティー
J Rahrer Timothy
ジェイ. ラーハァー、ティモティー
ガンドゥハン、エマー
Gunduzhan Emre
ソウクップ、マーティン、ジャン
Jan Soukup Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockstar Consortium US LP
Original Assignee
Rockstar Consortium US LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/342,174 external-priority patent/US20100023842A1/en
Application filed by Rockstar Consortium US LP filed Critical Rockstar Consortium US LP
Publication of JP2014225900A publication Critical patent/JP2014225900A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

【課題】メディアパケットの誤り訂正方法を提供する。【解決手段】コアネットワークセグメントに関連したサービスノードは、第1誤り訂正プロセスを使用し、アクセス・ネットワークセグメントに関連したサービスノードは、第2誤り訂正プロセスを使用する。ローカルネットワークセグメントに関連したサービスノードは、第3誤り訂正プロセスを使用してもよい。異なるネットワークセグメントの異なる誤り訂正プロセスを、必要に応じて利用する。サービスノードは、誤り訂正が不十分であるとの情報を監視エージェントから受信し、これに応じて、サービスノードは、ネットワークセグメントに関連した誤り訂正の量を増やしてもよい。メディアパケットは、前方誤り訂正(FEC)ブロックに、パケットの復旧量を増やすようにインターリーブされる。【選択図】図1

Description

本出願は、米国特許仮出願番号第61/083,710号(2008年7月25日出願)の利益を主張し、当該出願全体が本願において引用されている。
本発明は、パケット化されたビデオ信号を、セグメント化されたネットワークを介して提供することに関し、特に、各ネットワークセグメントの属性に基づいて誤り訂正プロセスを用いることに関する。
テレビ放送やオンデマンドプログラムなどのビデオ信号は、ますます、パケット化されたフォーマットでビデオ配信ネットワークを介して契約者に配信されている。一般に、デジタル化されたビデオ信号は、まずデジタル化されたビデオ信号のシーケンシャルユニットを、インターネットプロトコルパケットのストリームにカプセル化することによりパケット化され、次にヘッドエンド(Headend)から、住居や会社などの構内に送られる。パケット化されたビデオ信号は、スイッチド・デジタル・ビデオ(Switched Digital Video)などの新規の技術を利用して、ネットワーク帯域幅を、従来よりもさらに効率的に割り当てる能力など、パケット化されていないビデオ信号と比べて多くの利点を有する。しかしながら、サービスプロバイダは、パケット化されたビデオ信号の一貫したストリームを、数百マイルにも亘るであろうネットワークを介してエンドユーザに確実に配信することは、困難な問題であることが分かった。各パケットは、複数のネットワークセグメントを横断する。ネットワークセグメントは、たとえば光学的または電気的な、異なるエネルギー領域で動作する、異なるタイプの機器により接続される。各パケットは途中で、ケーブルの断線や機器の故障、トランジェントノイズ、ネットワークノードの混雑などの障害に直面する可能性がある。パケットが目的とする構内にいったん到達すると、パケットは、ローカルエリアネットワークを介して運ばれる。各ローカルエリアネットワークは、それぞれ構内によって大きく異なり、サービスプロバイダが殆ど知識を有さないか、制御不能なものであり、エンドユーザが任意に変更できるものである。パケットは、最終的にセットトップボックスやコンピュータなどの装置に配信され、テレビや液晶ディスプレイ(LCD)コンピュータスクリーンなどに表示される。
ビデオ配信ネットワークは、一般的に、以下の3つのネットワークセグメントを有する。つまり、スーパーヘッドエンドから地区のビデオ供給オフィスまで延長するコアネットワークセグメント、各地区のビデオ供給オフィスから構内まで延長するアクセス・ネットワークセグメント、構内においてビデオパケットを運ぶローカルネットワークセグメントである。各ネットワークセグメントは異なる属性を有しており、パケット化されたビデオ信号の配信に関し固有の問題がある。コアネットワークセグメントは、一般に、ファイバーネットワークであり、帯域幅は十分広くてもよい。アクセス・ネットワークセグメントは、xDSLネットワークであってもよく、非常に制限された帯域幅を有していてもよい。1つの構内におけるローカルネットワークセグメントは、有線イーサネット技術を使用しており、高いロバスト性を有する可能性があるが、隣接する構内のローカルエリアセグメントは、無線技術を利用しており、低いロバスト性を有しており、干渉を受けやすい可能性がある。
サービスプロバイダにより、パケット化されたビデオサービス用のホームネットワークの初期投資が、莫大となる可能性のあることが分かった。同様に、サービスプロバイダは、ホームネットワークにおける問題を修正したり解決するためのサービスコールの運営費も、非常に莫大となる可能性のあることが分かった。構内でのパケット化されたビデオ信号の配信に関連した問題の多くは、ケーブルの断線やトランジェントノイズなどの結果である損失パケットに起因する、エンドユーザにおけるビデオの品質に関連する。前方誤り訂正(FEC)または自動再送要求(ARQ)などのパケット誤り訂正技術は、パケット損失の発生が、ビデオディスプレイの品質に悪影響を及ぼさないようにするために使用されてもよい。FECが使用された場合、FECは、一般に、サービスプロバイダのヘッドエンドから、構内のセットボックスまで提供され、使用されるFECの量は、ネットワークの最も帯域幅制約されたセグメントにより制限される。結果として、FECは、たとえば、ネットワークのアクセスセグメントにおいて発生する可能性のある、パケット損失の大部分を修正するのには十分であるかもしれないが、FECは、ネットワークのコアセグメントあるいはローカルセグメントにおいて発生するパケット損失を修正するのには不十分である可能性がある。さらに、1つの構内のローカルネットワークセグメントにおいて発生するビデオ信号品質問題を修正するのに必要なFECの量は、他の構内のローカルネットワークセグメントにおいて発生するビデオ信号品質問題を修正するには不十分である可能性がある。
ARQは、アクセス・ネットワークセグメントまたはローカルネットワークセグメントにおいて使用される場合には役立つが、一般的には、コアネットワークセグメントにおいてARQを実行するのに必要な記憶量及び処理量により、コアネットワークセグメントでは使用されない。結果として、ARQを実行するサービスプロバイダは、コアネットワークセグメント用には誤り訂正を行わない。そのため、特定のネットワークセグメントの損失プロファイル及び帯域幅に基づいて、異なるネットワークセグメントに対して異なる誤り訂正プロセスを行うことは、サービスプロバイダにとって有益である。また、ネットワークセグメントに関連したリアルタイム誤り条件に関するフィードバックに応答して、ネットワークセグメントにおいて使用される誤り訂正プロセスを動的に変更することは、ネットワークプロバイダにとって有益である。
本発明は、異なる誤り訂正プロセス(損失緩和プロセスと称することもある)を、サービスノードにより接続されたネットワークの異なるセグメントにおいて実行する。誤り訂正プロセスは、前方誤り訂正(FEC)、自動再送要求(ARQ)、コールアドミッション制御(CAC)、パケット損失を防止あるいは修正する他の適切な機構及び、これらの組み合わせを含む。本発明は、それぞれのネットワークセグメントに関連した帯域幅及びそれぞれのネットワークセグメントによって一般的に、または実際に行われる誤りのタイプに基づいて、適切な誤り訂正プロセスを実行する。サービスノードは、第1ネットワークセグメントを介してパケットを受信し、第1誤り訂正プロセスを用いて損失パケットまたは破損パケットを復旧し、このパケットを、第2ネットワークセグメントを介して、第2誤り訂正プロセスを用いて損失パケットまたは破損パケットを復旧するサービスノードに送る。
本発明の一の実施形態によれば、1つ以上のサービスノードにおける監視エージェントは、関連したネットワークセグメントの誤り状態を監視し、上流の誤り訂正コントローラ(ECC)と通信し、関連したネットワークセグメントに使用されている誤り訂正の量またはタイプを動的に修正する。2つの異なるネットワークセグメントに関連した誤り訂正プロセスは、FECやARQなど、異なる誤り訂正プロセスであってもよく、FECなど同じタイプの誤り訂正プロセスを使用するが、異なる量の誤り訂正を使用する、異なるタイプの誤り訂正プロセスであってもよい。たとえば、コアネットワークセグメントに関連したサービスノードは、コアネットワークセグメントにおいて損失する可能性のある第1の損失パケット数を保護するのに適した量のFECを使用してもよく、アクセス・ネットワークセグメントに関連したサービスノードは、第2及び少量の損失パケット数を保護するのに適した量のFECを使用してもよい。何故なら、アクセス・ネットワークセグメントは、コアネットワークセグメントよりも帯域幅が著しく狭いためである。
本発明の一の実施形態によると、コアネットワークセグメントに関連したサービスノードは、比較的多くの量のビデオパケットを保護するのに適した、十分な量のFECパケットを使用する。このビデオパケットは、切断されたファイバーケーブルのトラフィックを再ルーティングするなど、50ミリ秒から100ミリ秒の保護スイッチイベントをコアネットワーク上にて行う場合に損失する可能性がある。アクセス・ネットワークセグメントに関連したサービスノードは、比較的少量のビデオパケットを保護するのに適した、少量のFECパケットを使用する。このビデオパケットは、トランジェントノイズに起因したものなど、アクセスネットワーク上における短期間インパルス損失の間に損失する可能性がある。アクセス・ネットワークセグメントで使用されたFECパケットは、コアネットワークセグメントを介して受信されたFECパケットのサブセットである。本発明は、FECパケットを再利用して、FECを再カプセル化するのに必要なオーバーヘッドを使用せず、特定のネットワークセグメント用のFECを調整することを可能とする。
当業者であれば、本発明の範囲を理解することが可能であろうし、また、後述する好ましい実施形態の詳細な説明と、添付の図面とを参照することで、本発明の他の態様も理解できよう。
本明細書に含まれ、一部を形成する添付の図面は、本発明のいくつかの態様を示し、かつ詳細な説明と共に本発明の原理を説明する。
本発明の一の実施形態のスイッチド・デジタルメディアネットワークのブロック図である。 本発明の一の実施形態の構内のブロック図である。 本発明の一の実施形態の誤り訂正を実行するサービスノードのブロック図である。 本発明の一の実施形態のスイッチド・デジタルメディアネットワーク内のヘッドエンドサービスノードにおける誤り訂正を実行するためのプロセスを示すフローチャートである。 本発明の一の実施形態のサービスノードにおける誤り訂正処理を示すフローチャートである。 本発明の他の実施形態のサービスノードにおける誤り訂正処理を示すフローチャートである。 本発明の一の実施形態の監視エージェントを実行するサービスノードのブロック図である。 ネットワークセグメントに関連した変更された損失プロファイルに関するフィードバックに応答して、誤り訂正プロセスを変更することを示すフローチャートである。 本発明の一の実施形態の前方誤り訂正(FEC)ブロックのブロック図である。 図9に示されたように、インターリーブ順序に伝送されたFECブロックからの連続したパケットの損失を示すブロック図である。 本発明の一の実施形態のFECブロックのブロック図である。 本発明の一の実施形態のサービスノードのブロック図である。 本発明の一の実施形態の顧客構内設備(CPE)のブロック図である。
後述する実施形態は、当業者が本発明を実施する上で必要な情報を表し、かつ、本発明を実施する最良の形態を示す。添付の図面を参照して下記の説明を読むことで、当業者であれば、本発明の概念を理解するであろうし、かつ、ここで特に述べられていないこれらの概念の用途もまた理解されよう。なお、これらの概念及び用途は、本開示の範囲内及び添付の図面に含まれる。
スイッチド・デジタルメディアネットワークは、様々なチャンネル用のメディアストリーム、または、視聴のために顧客が選べるオンデマンドプログラムの形式におけるストリーミングメディアの配信を可能とする。スイッチド・デジタルメディアネットワークは、衛星、ケーブル、インターネットプロトコル放送(IPTV)または、公共あるいは個人用の、音声またはビデオを配信するために設定された類似のネットワークを表す。一般に、サービスプロバイダは、広範囲にわたりかつ階層的なネットワークに依存している。このネットワークは、メディアコンテンツを集約した場所から、様々な中間ネットワークを介して顧客構内へと拡がる。単純なスイッチド・デジタルメディアネットワークの例を図1に示す。メディアコンテンツが集約された場所は、コアネットワークセグメント14及びアクセス・ネットワークセグメント16を介して構内12に対応するチャンネル用の様々なメディアストリームを配信するように構成された、メディアヘッドエンド(MHE)10などのサービスノードに備わっている。アクセス・ネットワークセグメント16により、構内12に有線あるいは無線のアクセスが生じ、コアネットワークセグメント14は、様々なアクセス・ネットワークセグメント16をMHE10に接続する、一次伝送ネットワークを表す。
ビデオ用のスーパーヘッドエンドなどのMHE10は、一般的に様々な衛星テレビ用受信アンテナの設置場所、メディアサーバ、エンコーダなどへのアクセスを有する。受信アンテナの設置場所、メディアサーバ、エンコーダ等は、対応するチャンネル用の様々なメディアコンテンツをMHE10に提供する。説明のために、MHE10は、単数として表されているが、MHE10は、コンテンツ管理、コンテンツエンコード、オンデマンドサービスへのビデオの提供など、MHE10の必要な機能を達成するための複数の設備を有することとしてもよい。MHE10は、メディアコンテンツを様々なソースから集め、配信用メディアコンテンツを、適切な時間及び適切なチャンネルで構内12に割り当てる。特に、メディアコンテンツは、ビデオ・オンデマンドサービス用に提供されているため、予め決められたスケジュールまたは顧客の要求に応じて構内12に配信されてもよい。特に、メディアコンテンツは、メディアコンテンツ内の適切なスロットに収められた広告コンテンツを含んでもよい。ビデオまたはテレビベースのスイッチド・デジタルメディアネットワークにおいて、MHE10により提供された広告コンテンツは、一般的に、地理的に広範囲に渡る顧客への配信を意図した全国広告である。スイッチド・デジタルメディアネットワークは図1に示された2つのMHE10が示すように、冗長性のために複数のMHE10を有してもよい。
1つ以上の構内12に向けて配信されたメディアコンテンツは、コアネットワークセグメント14に備わっているメディアハブオフィス(MHO)18を通過してもよい。必須要件ではないが、1つのMHO18を1つの都市または都市圏に割り当ててもよい。MHO18は、ローカル広告を含むローカルメディアコンテンツへのアクセスを有してもよい。ローカルメディアコンテンツは、MHE10により提供されているメディアコンテンツに関連して提供されてもよい。ローカル広告を提供することに加えて、ローカル緊急警報メッセージまたはコンテンツは、MHO18においてメディアコンテンツに導入してもよい。MHE10及びMHO18は、様々なタイプのエンコード及びデコードだけでなく、トランスコーディングを行ってもよく、顧客構内12に向けて配信されているメディアコンテンツに関連したエンコード、圧縮及びフォーマットを効率よく変更できる。
顧客構内12に向かうパス内における次のサービスノードは、メディアサービングオフィス(MSO)20を含んでもよい。メディアサービングオフィス20は、一般的に、MSO20に供給された、市または大都市圏に備わっている。さらに、MSO20は、1つ以上の近隣区域に関連するなど、対応する地理的な場所全体に渡って配置されてもよい。これら各近隣地域または対応する領域において、各MSO20は、1つ以上のアクセスノード(AN)22と関連してもよい。アクセスノード(AN)22は、また、アクセス多重化装置と称してもよい。アクセスノード22は、様々な構内12間の有線または無線接続の全てを効率的に集める。MSO20及びアクセスノード22は、一般的に、対応するアクセス・ネットワークセグメント16に関連する。図示されているように、1つのアクセスノード22は、任意の数の構内12に対応する。アクセス・ネットワークセグメント16の例としては、デジタル加入者回線(DSL)、受動光ネットワーク(PON)、イーサネットネットワーク、セルラーネットワーク、WiMAXネットワークなどのブロードバンド無線ネットワークなどが挙げられる。アクセスノード22としては、デジタル加入者回線アクセス多重化装置(DSLAM)、光回線終端端末(OLT)、イーサネットモデム、携帯電話基地局、無線アクセスポイントなどが挙げられる。特に、MSO20及び構内12間の距離が十分に小さい場合、アクセスノード22は、構内12に対応するのに必要ではなく、または望ましくなく、MSO20が、直接1つ以上の構内12に対応してもよい。
構内12内に一旦入ると、メディアコンテンツは、図2に示されるように、任意の数のデバイスに配信される。特に、顧客構内12は、必ずしも必要ではないが、レジデンシャル・ゲートウェイなどの構内ゲートウェイ(PG)24を有してもよい。構内ゲートウェイ24は、アクセス・ネットワークセグメント16及び任意の顧客構内設備(CPE)26間に、セットトップボックス(STB)、パーソナルビデオレコーダ(PVR)、パーソナルコンピュータ(PC)や電話などのゲートウェイ機能を提供する。PG24は、ローカルネットワークセグメント28を介して、CPE26に接続されていてもよい。ローカルネットワークセグメント28は、ルータ30A及びイーサネットスイッチ30Bなど、1つ以上のスイッチングデバイス30を有する。PG24は、スタンドアロンデバイスとして実行されてもよく、または、ケーブルやDSLモデムなどの他のネットワーク要素に一体化することができる。ローカルネットワークセグメント28において使用された通信リンク34は、WiFiなどの無線や、同軸ケーブル上のデータ、カテゴリー5のケーブルまたは電話線などの様々な物理的メディアを介するイーサネット(登録商標)など、従来の任意のまたは独自のネットワーク技術を備えてもよい。各通信リンク34は、他の通信リンク34とは異なる帯域幅及びロバスト性を有している。特に、図2を使用して説明すると、ローカルネットワークセグメント28は、様々な形式をとることができ、様々なタイプの通信リンク34、CPE26、及びスイッチングデバイス30を有する。
任意のネットワークセグメント14、16及び28におけるメディアパケットの損失、破損または遅延は、CPE26において顕著な音声及び映像の異常につながる。また、各ネットワークセグメントは、一般的に、パケット損失のタイプを特徴付ける、別々の異なる損失プロファイルを有する。パケット損失は、それぞれのネットワークセグメントにおいて起こる、または一般的に起こる可能性がある。たとえば、干渉によるコアネットワークセグメント14でのパケット損失は、比較的稀である。しかしながら、この種のイベントは、ケーブルの切断またはネットワーク要素の故障など、コアネットワークセグメント14上にパケット損失を引き起こす恐れがあり、比較的大量の損失パケットにつながる可能性があり、また、サービスプロバイダにより供給された構内12影響を及ぼす可能性がある。対照的に、アクセス・ネットワークセグメント16の一般的な損失プロファイルは、トランジェントインパルスノイズやクロストークなど、さらに頻発する問題を有しており、これらにより生ずる損失パケットは、ケーブル断線によるものより少ないが、コアネットワークセグメント14内でのケーブル断線の影響よりも構内12に与える影響は少ない。とりわけサービスプロバイダにとって問題となるのは、1つの構内12と他の構内12とで異なるローカルネットワークセグメント28である。ローカルネットワークセグメント28は、無数の異なるスイッチングデバイス30、CPE26及び通信リンク34を含んでおり、この構成は、サービスプロバイダへ事前に通告されることなく、顧客が任意に変更する可能性がある。ローカルネットワークセグメント28が不定であり、かつ大きく変更される可能性があるため、サービスプロバイダは、構内12用のメディアサービスを設定し、構内12のメディアの品質を維持するのに多大な費用を要することとなる。
いくつかのサービスプロバイダは、損失パケットの影響を、誤り訂正などの機構により低減しようと試みている。誤り訂正は、一般的には帯域幅と遅延との間のトレードオフを含む。前方誤り訂正(FEC)などの誤り訂正技術は、いくつかのメディアパケット間に追加の情報を含むことにより、追加帯域幅を利用する。メディアパケットは、損失または破損メディアパケットを、損失メディアパケットの再送信を待たずに再作成するために使用される。自動再送要求(ARQ)などの他の誤り訂正技術は、損失または破損メディアパケットの再送信に依存している。損失または破損メディアパケットの再送信は、帯域幅オーバーヘッドを低減させるが、遅延を増大させ、再送信が必要となった場合において、メディアパケットの記憶のための記憶要求を増大させる。
図3は、本発明の一の実施形態のスイッチド・デジタルメディアネットワークを介したMHE10から構内12へのそれぞれのパスのブロック図である。使用できる特定のサービスノードは、コアネットワークセグメント14のMHO18またはアクセス・ネットワークセグメント16のアクセスノード22など、1つ以上のネットワークセグメントにおいて使用できるが、説明の都合上、これらは図3においては省略する。損失または破損メディアパケットに関連したビデオ映像または音声の異常を低減し、または無くすために、1つ以上の誤り訂正コントローラ(ECC)36A〜36Dは、MHE10、MSO20、PG24及びCPE26などそれぞれのサービスノードにおいて、誤り訂正プロセスを実行する。本発明の一の実施形態によれば、誤り訂正プロセスは、それぞれのサービスノードにおいて異なってもよい。十分なメディアパケットが、ケーブルの断線または類似のイベントにおいて、MSO20により復旧されることを保証するために、たとえば、MHE10は、メディアパケットの特定のサイズのFECブロックと行及び列のいずれのFECパケットも使用するFECプロセスを実行してもよい。このようなFECプロセスは、かなりの帯域幅を必要とする一方で、コアネットワークセグメント14は、このようなFECプロセスを可能とするために、過剰帯域幅及び能力を有するファイバーネットワークを有する。
MHE10とは対照的に、MSO20は、アクセス・ネットワークセグメント16に接続されてもよい。アクセス・ネットワークセグメント16は、xDSL通信パスなど、非常に制限された帯域幅を有しており、同様のFECブロックのサイズと行及び列のいずれのFECパケットをも提供するには不十分な過剰帯域幅を有する。MSO20はそのため、FECブロックのサイズを変更でき、かつ、列FECパケットのみを生成して、アクセス・ネットワークセグメント16のFECを実行するために必要な量の帯域幅を、十分に低減する。異なるFECブロックのサイズ及びより少量のFECパケットは、復旧可能な損失メディアパケットの量を低減するが、このようなトレードオフは、コアネットワークセグメント14の損失プロファイルとは異なる、アクセス・ネットワークセグメント16用の実際の損失プロファイルを考慮して、十分な信頼性を提供する。
PG24は、ローカルネットワークセグメント28に接続されてもよい。ローカルネットワークセグメント28は高帯域幅の通信リンク34を有するが、これには、構内12における無線あるいは他の電子機器の干渉に起因する、重大なメディアデータパケット損失の問題がある。そのため、PG24は、ローカルネットワークセグメント28に関連した損失プロファイルにより良く適するように、FECブロックのサイズを変えたり、行及び列のいずれものFECパケットを生成して、PG24からCPE26への途中で損失した可能性のあるかなりの量のメディアパケットを、CPE26が復旧できるようにするなどして、FECエンコードを変更する。
図4は、本発明の一の実施形態のMHE10で発生する可能性のある誤り訂正処理を示すフローチャートである。MHE10は、ブロードキャストテレビチャンネルなどのメディアのストリームを、ブロードキャスト供給元から受信する(ステップ200)。メディアストリームは、アナログまたはデジタルフォーマットであってもよい。アナログであれば、MHE10は、メディアストリームをデジタル化し、次いで、これを、ムービング・ピクチャー・エクスパーツ・グループ2(MPEG−2)またはMPEG−4などのデジタルスイッチド・メディアネットワークを介してメディアを配信するのに適した任意のフォーマットにエンコードする。メディアストリームが既にデジタル化されている場合は、MHE10は、メディアストリームを所望のビットレートまたはフォーマットにトランスコードしてもよい(ステップ202)。エンコードされたメディアストリームは次に、メディアセグメントにセグメント化される(ステップ204)。セグメント化は、当業者に理解されるように、デジタル化されたメディアユニットの任意の適切なグループを備えてもよく、使用されたデジタルエンコードに基づいて異なっていてもよい。たとえば、エンコードフォーマットがMPEG−2である場合、メディアセグメントは、1つ以上の転送ストリームパケットを有する。エンコードがMPEG−4の場合、メディアセグメントは、1つ以上のネットワーク概要レイヤを有する。
メディアセグメントは次に、リアルタイム転送プロトコル(RTP)パケットなどの、適切な転送パケットにパケット化される(ステップ206)。説明のために、FEC誤り訂正プロセスを、コアネットワークセグメント14用に利用すると仮定する。所望の第1FEC誤り訂正プロセスは次に、複数の誤り訂正パケットを生成するために、メディアパケットに適用される(ステップ208)。当業者に知られているように、FEC誤り訂正は、一般に、保護される所望の大きさのメディアパケットの2次元のブロック、または行列を形成し、次いで、このようなメディアパケットがネットワークを介して通過した際に損失または破損した場合、1つ以上のメディアパケットを再生成するのに使用されるFECパケットを生成する。MHE10は、ファイバーネットワークセグメントでありかつ過剰帯域幅の容量を有するコアネットワークセグメント14に接続されると仮定する。さらに、コアネットワークセグメント14は随時、たとえばMHE10から数マイル離れた場所に新しいオフィスビルを作る間に発生する、ネットワーク要素の故障またはケーブルの断線の影響を受ける可能性があると仮定する。また、第1MHE10の機能を発揮させるためにスイッチオーバーし、または故障したネットワーク要素をルーティングするために、50ミリ秒(ms)を必要とする冗長MHE10またはネットワークルーティングパスがコアネットワークセグメント14に接続され、50ミリ秒のタイムフレームの間、チャンネルごとに16個ものメディアパケットが、2メガビット毎秒(Mbps)のビデオデーターストリームに関して損失する可能性があると仮定する。したがって、MHE10は、FECブロックのサイズを選択し、かつ十分なFECパケットを生成することで、16個のメディアパケットまでの復旧を可能とし、その結果、スイッチオーバーの間に損失したメディアパケットを、CPE26へのメディアの提示を妨害することなく、下流のMHE10により復旧することができる。メディアパケット及びFECパケットは次に、コアネットワークセグメント14を介して伝送される(ステップ210)。FECパケットは、ライン内で伝送され、メディアパケットと混合され、または別々のチャンネルまたはポートを介して伝送される。
図5は、本発明の一の実施形態のMSO20における誤り訂正処理を示すフロー図である。MSO20は、MHE10から送信されたメディアパケット及びFECパケットを受信する(ステップ300)。MSO20は、第1FECプロセスを、メディアパケットに適用し、ケーブルの切断もしくは他の障害により損失した可能性のある任意のメディアパケットを復旧してもよい(ステップ302)。MSO20が、アクセス・ネットワークセグメント16に接続すると仮定する。アクセス・ネットワークセグメント16は、xDSL通信リンクを備えており、帯域幅が制限されている。さらに、アクセス・ネットワークセグメント16の損失プロファイルは主に、損失イベントごとに損失パケット数が一般に4以下となるトランジェントインパルスノイズイベントを主に有する。MSO20は、MHE10が使用したFECブロックのサイズとは異なる第2FECブロックのサイズを使用する第2FECプロセスを適用してもよく、かつMHE10が生成したものよりも少ないFECパケットを生成し、その結果、FECプロセスは、FECブロックごとに5つの損失パケットまでのみを復旧するように適合されるが(ステップ304)、必要とする誤り訂正パケット用の追加の帯域幅は少ない。MSO20は次に、メディアパケット及びFECパケットを、アクセス・ネットワークセグメント16を介して伝送する(ステップ306)。
図6は、本発明の他の実施形態のMSO20における誤り訂正処理を示すフロー図である。図5を参照して説明したように、MSO20は、複数のメディアパケット及びFECパケットを受信し(ステップ400)、FECプロセス及びFECパケットを使用して、損失した任意のパケットを復旧する(ステップ402)。しかしながら、本実施形態において仮定するのは、MSO20はARQ誤り訂正プロセスを、アクセス・ネットワークセグメント16と共に利用することである。ARQプロセスは、初めに、メディアパケットをPG24に送信する前に、メディアパケットをローカル記憶装置に記憶する(ステップ404)。ARQプロセスは次に、メディアパケットをPG24に送る(ステップ406)。PG24がメディアパケットの受信を確認した場合、ARQプロセスは、メディアパケットを削除するか、ローカル記憶装置を上書きする。もしくは、ARQプロセスはメディアパケットを、PG24からの確認が受信されるまで再伝送する。また、ARQプロセスは、典型的な損失プロファイルをカバーし、かつPG24からの特定の損失パケットの再送信の要求に応答するために十分な長さの循環バッファを使用してもよい。さらに他の実施形態において、ARQプロセスは、MSO20及びPG24間ではなく、MSO20及びCPE26間において実行されてもよい。
パケット損失が発生しなかった場合、ARQは、FEC誤り訂正プロセスよりも少ない帯域幅を必要とするが、ARQは、再送信に関連した重大な遅延を生じさせる可能性がある。さらに、ARQは、以下のような場合のネットワークセグメントでは適切ではない場合がある。つまり、非常に多くのパケット損失が発生した後の再送信の要求が、再送信要求を処理するための送信サービスノードの能力を上回る場合、もしくは、メディアパケットを記憶するための処理量及び記憶量が、過剰なリソースを必要とした場合、などである。たとえば、ARQ誤り訂正プロセスは、コアネットワークセグメント14を介して送信されるかなりの量のメディアパケットと、ケーブルの断線などのパケット損失の場合に処理する必要のある大量の再送信要求とにより、コアネットワークセグメント14にとって適当な誤り訂正プロセスではなくてもよい。
図7を参照すると、図3で示されたサービスノードのブロック図が示される。MSO20、PG24及びCPE26などの1つ以上のサービスノードは、サービスノードが接続されたそれぞれのネットワークセグメントを監視することができる監視エージェント(MA)38を有し、かつ特定ネットワークセグメントに関連した損失プロファイルを判定する。MA38は、情報または要求を上流のECC36に提供し、それぞれのネットワークセグメントを介してパケット損失を復旧するために使用された誤り訂正プロセスを動的に変更する。本発明の使用に適した監視エージェントは、その全体を引用にて援用した米国特許第11/961,879(2007年12月20日出願)の「メディアのモニタリング」に開示されている。
図8は、本発明の一の実施形態のネットワークセグメント上の誤り制御プロセスを変更するプロセスを示すフローチャートである。説明の都合上、図8は図7と共に説明する。PG24は、PG24により送信された損失データパケットを復旧するために、十分な誤り訂正をCPE26に提供する第1FECプロセスを使用する、と仮定する。PG24には、特定の時間において、ローカルネットワークセグメント28の損失プロファイルが付与される。さらに、ローカルネットワークセグメント28の損失プロファイルを変更するイベントが発生すると仮定する。たとえば、顧客はスイッチングデバイス30を、ローカルネットワークセグメント28で脱落したパケットを増やし、または電子レンジなどの大きい電子機器を、通信リンク34の近傍に移動させる方法で再構成し、かつ、電子レンジにより生成された電磁場により、トランジェントパケット損失が増大すると仮定する。結果として、PG24及びCPE26が使用する第1FECプロセスは、ローカルネットワークセグメント28に対して新しい損失プロファイルを付与された大量の損失パケットを相殺するには、不十分である可能性がある。MA38Cは、ローカルネットワークセグメント28の損失プロファイルは変更されたと判定する(ステップ500)。たとえば、MA38Cは、多大な量の送信において、FECパケットは損失した全てのパケットを復旧するには不十分であることを判定してもよい。MA38Cは、誤り制御メッセージを、PG24に関連した上流のECC36Cに提供し、存在する誤り訂正プロセスが不十分であることをECC36Cに知らせる(ステップ502)。誤り制御メッセージは、増加したFECパケットに対する要求、損失プロファイルを識別するデータ、またはPG24に、増加した誤り保護を提供する新しい誤り訂正プロセスが、適切なメディアプレゼンテーションの品質を維持するように要求されていることを通知できる、任意の他のメッセージである可能性がある。
PG24及びCPE26間の通信リンク34が、十分な帯域幅を有すると仮定して、誤り制御メッセージの受信に応答して、ECC36Cは、以前にECC36Cが提供した以外の追加の誤り訂正を提供する異なる誤り制御プロセスを、続いて受信されたメディアパケットに対して開始する(ステップ504)。PG24は、CPE26に向けられる複数のメディアパケットを、MSO20から、アクセス・ネットワークセグメント16を介して受信すると仮定する(ステップ506)。ECC36Cは、ネットワークセグメント16に関連した誤り訂正プロセスに従って、誤り訂正をメディアパケットに実行する(ステップ178)。誤り訂正制御メッセージをCPE26から受信する前に、ECC36Cは、メディアパケットを特定のFECブロックのサイズで提供し、かつ、メディアパケットに十分なFECパケットを提供し、5つまでの連続した損失パケットの復旧した可能性がある。ECC36Cは、FECブロックのサイズを変更し、大量のFECパケットをメディアパケットから生成し、10個までの連続した損失パケットの復旧を、CPE26により可能とする(ステップ510)。PG24は、複数のメディアパケットを、新しいFECブロックのサイズ及び増加したFECパケットを使用して、CPE26に送信する(ステップ512)。このプロセスは、ECC36Cが提供する誤り制御処理のレベルが、CPE26において適切なメディアプレゼンテーションの品質を提供するのに十分なものとなるまで続けてもよい。特に、誤り制御修正は、上流のネットワークセグメント14または16の上流のサービスノードまたは任意の追加の帯域幅によるいかなる追加の処理も含まない。また特に、ビデオ配信における問題は、サービスプロバイダの職員による手動の介入なしに自動的に監視され、訂正され、これにより、関連するコールセンタやトラックロールのサポートにかかるコストを省くことになる。
本発明の一の実施形態によれば、サービスノードは、第1ネットワークセグメントを介して受信したFECパケットを再生成する必要なく、第1ネットワークセグメント上の第1FEC誤り訂正プロセス及び第2ネットワークセグメント上の第2誤り訂正プロセスを実行することができる。本発明により、処理ノードは、新しいFECパケットを再演算するリソースを費やさずに、誤り訂正処理に使用された帯域幅を容易に低減できる。本発明は、本明細書にその全体を組み込まれる、映画テレビ技術者協会(SMPTE)規格のSMPTE2002−1及びSMPTE2022−1に記載の、プロMPEGフォーラムの実務規則(COP)♯3FECプロセスを使用する。プロMPEG FECは、行列の「L」寸法と呼ばれる、多くの列を有するFEC行列を生成し、かつ、行列の「D」寸法と呼ばれる、多くの行を有することを含む。FEC行列の寸法は、本明細書において、まずL寸法(列の数)及び次いでD寸法(行の数)を参照して説明される。たとえば、5つの列及び10個の行を有するFEC行列は、本明細書において、10(L)×5(D)FEC行列とされる。誤り訂正は、FECパケットの形式で提供される。FECパケットは、FEC行列の特定の行または列のメディアパケットに基づいて導き出される。FECパケットは、特定の行に関連したパケット損失を訂正するために生成され、本明細書においては、行FECパケットとされる。FECパケットは、特定の列に関連したパケット損失を訂正するために生成され、本明細書においては、列FECパケットとされる。比較的量の多い誤り訂正は、行及び列FECパケットを生成することにより提供される。少ない量の誤り訂正は、列FECパケットのみを生成することにより提供される。当業者によって理解されるように、FEC行列のサイズと、行及び列FECパケットの使用は、所望の誤り訂正量と利用する帯域幅の間のトレードオフで定まる。メディアパケットに対するFECパケットの比率が高いと、誤り訂正の可能性が高くなるが、同様にメディアパケットとFECパケットとを通信するのに必要な帯域幅を増やす。「FEC行列」なる用語は、本明細書において、各メディアパケットの行列に対して使用される。「FECブロック」なる用語は、FEC行列に基づいて生成されたそれぞれのFEC行列及びFECパケットの両方を呼ぶのに使用される。
コアネットワークセグメント14上のケーブルの断線またはアクセス・ネットワークセグメント16上のインパルスノイズなど損失パケットが発生した結果として、一般に、パケットのFECブロック内において、複数のランダムパケットよりもむしろ、一連の連続パケットが損失されることとなる。損失連続パケットは、FECブロックの損失パケットのみであると仮定して、列FECパケットのみが誤り訂正用に生成された場合、L損失連続パケットと同数のパケットがFECブロックから復旧される。損失連続パケットは、FECブロックの損失パケットのみであると再度仮定して、行及び列FECパケットが誤り訂正用に生成された場合、L+1損失連続パケットと同数のパケットがFECブロックから復旧される。
本発明は、メディアパケット及びFECパケットのFECブロックの送信を、追加のFECパケットを生成する必要なく復旧できる連続パケットの数を増やすようにインターリーブする。本発明によりまた、FECブロックのサイズが変更された場合、FECパケットを再生成する必要なく、第2ネットワークセグメント上の次の誤り訂正用のFECパケットの適切なサブセットを再利用できる。
図9は、本発明の一の実施形態の5×10FEC行列における複数のメディアパケット52及びFECパケット54を示すFECブロック50のブロック図の例である。説明のために、メディアパケット52及びFECパケット54の両方をあわせてパケット52及び54とされる。なお、FEC行列のL及びD寸法を定義する目的ために、メディアパケット52のみを考慮する。この特定FECブロック50には、列56A〜56F及び行58A〜58Kに示す、50個のメディアパケット52及び16個のFECパケット54がある。特に、任意のFECパケット54なしで50個のメディアパケット52を送信するのに必要な元々の速度が、2メガビット毎秒(Mb/s)である場合、50個のメディアパケット52及び追加の16個のFECパケット54を送信するのに必要な増大した帯域幅は、2.64(Mb/s)であり、これは、32%の誤り訂正帯域幅のオーバーヘッドを示す。
従来のFECブロック50において、16個のFECパケット54は、6つのメディアパケット52(L(5)+1)の連続パケット損失を訂正するのに十分である。なお、図9において、各パケット52及び54は、2つの数字を有しており、左端の数字が、右端の数字から「/」によって分けられている。各メディアパケット52に関して、左端の数字は、メディアパケット52がCPE26での表示用に連続してデコードされる順序のパケットシーケンス番号を示す。各FECパケット54に関して、左端の数字は、FECパケット54が一般的に連続して並べられたメディアパケット52に混合された、連続した順序を示す。FECブロック50(列56F)の各行の端において、各FECパケット54は、任意のメディアパケット52を訂正または復旧するために使用できる。このメディアパケット52は、FECパケット54の行における他のメディアパケット52が損失しない限りは、FECパケット54と同じ行にあり、または、列FECパケット54を使用して再作成することができる。FECブロック50(行58K)の各列の端において、各FECパケット54は、任意の1つのメディアパケット52を訂正するために使用することができる。このメディアパケット52は、FECパケット54の列における他のメディアパケット52が損失しない限りは、FECパケット54と同じ列にあり、または、行FECパケット54を使用して再作成することができる。
各パケット52及び54の右端の数字は、本発明の一の実施形態のインターリーブパケット送信順序を示す。パケット52及び54を、ネットワークセグメントを介した送信を開始する前にインターリーブすることで、本発明は、連続メディアパケット52の数を増やす。連続メディアパケット52は、L+1=6連続パケットから、L+D+1=16連続パケットへと復旧される。特に、図9に示すFECブロック50において、16個の連続の損失パケットを復旧する能力は、従来のFECブロック50と比べて167%の増加を表す。本発明の一の実施形態のパケット52及び54のインターリーブ順序を下記に説明する。インターリーブ順序における第1のメディアパケット52及び54は、行58A及び列56Aにおけるメディアパケット52である。インターリーブ順序における次のメディアパケット52及び54は、行58B及び列56Bにおけるメディアパケット52である。インターリーブ順序における第3のメディアパケット52及び54は、行58C及び列56Cにおけるメディアパケット52である。このプロセスは、行58F及び列56FにおけるFECパケット54がインターリーブ順序に加えられるまで、斜めの経路60に沿って連続する。この時点で、列56Fは、FECブロック50の最後の列であるため、インターリーブ順序の次の列は、第1の列である、列56Aである。しかしながら、行58FはFECブロック50の最後の行ではないため、インターリーブ順序の次の行は、行58Gである。したがって、インターリーブ順序における次のメディアパケット52及び54は、行58G及び列56Aにおけるメディアパケット52である。このプロセスは、行58K及び列56EにおけるFECパケット54がインターリーブ順序に加えられるまで、斜めの経路62に沿って連続する。この時点で、行58Kは、FECブロック50の最後の行であるため、インターリーブ順序の次の行は、第1の行である、行58Aである。しかしながら、列56EはFECブロック50の最後の列ではないため、インターリーブ順序の次の列は、列56Fである。したがって、インターリーブ順序における次のメディアパケット52及び54は、斜めの経路64に示すように、行58A及び列56FにおけるFECパケット54である。なお、列56Fは、FECブロック50における最後の列であり、インターリーブ順序における次のメディアパケット52及び54は、行58B及び列56Aにおけるメディアパケット52である。このプロセスは、全てのパケット52及び54がインターリーブ順序に加えられるまで、斜めの経路66〜90に示すような方法で続く。
MSO20などの下流のサービスノードによりインターリーブパケット52及び54を受信した後、MSO20は、インターリーブパケット52及び54を、図9の各パケット52及び54に関連した左端の数字が示す連続した順序に配置する。ケーブルの切断が、MSO20にFECブロック50を送信する間及びバックアップMHE10へのスイッチオーバーの間に発生したと仮定すると、多数の連続パケット52及び54が損失した。
図10は、MSO20による受信及び連続した順序での配置の後の、図9に示すFECブロック50のブロック図である。Xを有するパケット52及び54は、損失メディアパケットを表す。なお、16個のメディアパケット52及び54は、ケーブルの断線のため損失した。さらに、損失パケット52及び54は、インターリーブ順序で伝送されるため、図10においては連続した順序ではない。本発明は、パケット52及び54の送信順序をインターリーブするため、各16個の損失パケット52及び54は復旧され得る。明確に説明するため、損失パケットの復旧について説明するが、各損失パケットは、図10においてそれぞれの損失パケットが有する数字により、識別される。損失パケット5、42、43、50、57及び64は、まず、行に関連したそれぞれのFECパケット54により復旧されるか、もしくは損失パケット42の場合、損失パケット42を行58Gに存在するパケットから再作成することにより復旧される可能性がある。
損失パケット35及び12は、パケット5及び42が事前に復旧されているため、それぞれの列56E及び56Fに存在しない唯一のパケットとして次に復旧される。損失パケット34は次に、損失パケット35が事前に復旧されているため、行58Fに存在しない唯一のパケットとして復旧される。損失パケット26は、損失パケット34が復旧された後に列56Dに存在しない唯一のパケットであるため、次に復旧される。損失パケット27、21、20、14、13及び7は、同様の方法で復旧される。
図11は、本発明の他の実施形態による、FECブロック92のブロック図である。MSO20は、図10に示すFECブロックを受信し、全ての損失パケットを復旧したと仮定する。さらに、アクセス・ネットワークセグメント16が、FECブロック50を有する行及び列FECパケット54を含むように要求される、32%のオーバーヘッドを負うのに十分な帯域幅を有さないと仮定する。さらに、アクセス・ネットワークセグメント16に関連した損失プロファイルが、平均連続パケット損失は5以下の連続パケットであることを示すと仮定する。本発明の一の実施形態によると、MSO20は、FECブロック50から行FECパケット54を取り除き、または脱落させ、列FECパケット54を再利用して、図11に示すFECブロック92を作成する。なお、5つの列FECパケット54は、アクセス・ネットワークセグメント16に関連した損失プロファイルに従って、一般的な損失パケットの数を復旧するには十分である。特に、列FECパケット54は、FEC行列から再生成する必要はないが再利用され、これにより、処理時間を減少させ、かつ処理の遅延により発生するCPE26における視覚的歪みを低減させる。
図12は、サービスノード94のブロック図を示している。サービスノード94は、MSO20、MHE10、MHO18またはPG24の機能を提供可能な、汎用制御エンティティである。詳細には、サービスノード94は、上述のように動作を改善させるために必要なソフトウェア100及びデータ102用の十分なメモリ98を有する制御システム96を有してもよい。デバイス全体の機能を提供することに加えて、ソフトウェア100は、その構成に依って、MA38及びECC36を提供してもよい。さらに、制御システム96は1つ以上の通信インターフェース104に関連してもよく、動作に関して必要に応じて通信を改善させる。サービスノード94は、スタンドアロンエンティティであっても、スイッチまたはルータなど、他の要素の一部であってもよい。
図13を参照すると、CPE26のブロック図を示す。CPE26は、上述のように動作するために必要なソフトウェア100及びデータ102用の十分なメモリ108を有する制御システム106を有してもよい。また、ソフトウェア110は、その構成に依って、一般的にCPE26の機能のほかに、MA38及びECC36を提供する。制御システム106は、1つ以上の通信インターフェース114に関連してもよく、上述のように通信を改善させる。さらに、制御システム106は、ユーザーインターフェース116に関連してもよく、顧客との意思疎通を改善するほか、可聴または可視のフォーマットのストリーミングメディアを顧客に提供し、また、顧客からの情報を受信する。
当業者であれば、本発明の好ましい実施形態になされた改良及び変形を理解するであろう。このような改良及び変形は、本明細書において記載された概念及び下記の請求項の範囲内にあるものと考えられる。

Claims (10)

  1. 第1サービスノードを有するアクセス・ネットワークセグメントに接続されたコアネットワークセグメントと、第2サービスノードを有するローカルネットワークセグメントに接続された前記アクセス・ネットワークセグメントとを有するネットワークを介して第1の複数のビデオパケットを送信する方法であって、
    前記第1の複数のビデオパケットに基づいて第1の複数の前方誤り訂正(FEC)パケットを生成する工程と、
    前記第1の複数のビデオパケット及び前記第1の複数のFECパケットを、前記第1サービスノードに送信する工程と、
    第2の複数のFECパケットを、前記複数のFECパケットから取り除き、第3の複数のFECパケットを形成する工程と、
    前記第1の複数のビデオパケット及び前記第3の複数のFECパケットを、前記第2サービスノードに送信する工程とを有する方法であって、前記コアネットワークセグメントは、前記アクセス・ネットワークセグメントの第2帯域幅よりも大きい第1帯域幅を有することを特徴とするビデオパケット送信方法。
  2. 前記第2サービスノードから、前記第3の複数のFECパケットが不十分なFEC量のFECパケットを有するという情報を受信する工程と、
    第2の複数のビデオパケットを受信する工程と、
    前記第3の複数のビデオパケットを、前記第2サービスノードに送信する工程と、
    前記情報に応答して、前記第3の複数のビデオパケットに関連した第4の複数のFECパケットを前記第2サービスノードに送信する工程とを含む方法であって、前記第4の複数のFECパケットは、前記不十分なFEC量のFECパケットよりも多いFECパケットを有することを特徴とする請求項1に記載のビデオパケット送信方法。
  3. 前記第1サービスノードにおいて、前記第3の複数のFECパケットは、不十分な量のFECパケットであるという情報を受信する工程と、
    前記情報に応答して、第4の複数のFECパケットを、前記第2サービスノードに送信する工程とを含む方法であって、前記第4の複数のFECパケットは、前記第3の複数のFECパケットよりも多くの数のFECパケットを有することを特徴とする請求項1に記載のビデオパケット送信方法。
  4. 異なる帯域幅を有する2つのネットワークセグメントを介して誤り訂正を行う方法であって、
    第1サービスノードにおいて、第1の複数のビデオパケット及び第1の複数の前方誤り訂正(FEC)パケットを有する第1の複数のデータパケットを受信する工程と、
    第2サービスノードに、前記第1の複数のビデオパケット及び第2の複数のFECパケットを有する第2の複数のデータパケットを送信する工程とを有する方法であって、各前記第1の複数のデータパケットは、前記第1の複数のデータパケットに関連した連続した順序を識別する関連したシーケンス番号を有し、前記第1の複数のデータパケットは、前記第1サービスノードにおいてインターリーブ順序で受信され、前記第2の複数のFECパケットは、前記第1の複数のFECパケットの適切なサブセットを備え、前記第2の複数のデータパケットは、前記第1の複数のビデオパケット及び前記第2の複数のFECパケットに関連したシーケンス番号に基づいて、連続した順序で送信されることを特徴とする誤り訂正を行う方法。
  5. 第1ネットワークセグメントと通信するように適合された入力第1インターフェースと、
    第2ネットワークセグメントと通信するように適合された出力インターフェースと、
    前記入力第1インターフェース及び前記出力インターフェースに接続され、
    前記第1の複数のビデオパケットに関連した第1の複数の誤り訂正パケット及び第1の複数のビデオパケットを、前記第1ネットワークセグメントを介して受信し、
    前記第1の複数のビデオパケットの第1誤り訂正を、前記第1の複数の誤り訂正パケットを用いて行い、
    前記第1の複数のビデオパケットに基づいて、第2の複数の誤り訂正パケットを生成し、
    前記第1の複数のビデオパケット及び前記第2の複数の誤り訂正パケットを有する第2の複数のビデオパケットを、第2サービスノードに送信するように適合された制御システムとを有することを特徴とするサービスノード。
  6. 前記第2の複数のビデオパケットがさらに、前記第1誤り訂正によって復旧された複数の復旧ビデオパケットを有することを特徴とする請求項5に記載のサービスノード。
  7. 前記第2の複数の誤り訂正パケットが、前記第1の複数の誤り訂正パケットの適切なサブセットであることを特徴とする請求項5に記載のサービスノード。
  8. 前記第1の複数の誤り訂正パケットは、複数の行誤り訂正パケット及び複数の列誤り訂正パケットを備え、前記第2の複数の誤り訂正パケットは、前記複数の列誤り訂正パケットで構成されることを特徴とする請求項7に記載のサービスノード。
  9. 前記制御システムがさらに、
    前記第2の複数の誤り訂正パケットは、不十分な量の誤り訂正パケットである情報を受信し、
    第3の複数のビデオパケット及び第3の複数の誤り訂正パケットを受信し、
    第3の複数のビデオパケットを有する第4の複数のビデオパケットを、前記第2サービスノードに送信し、
    前記情報に応答して、前記第4の複数のビデオパケットに関連した第4の複数の誤り訂正パケットを、前記第2サービスノードに送信するように適合されたサービスノードであって、前記第4の複数の誤り訂正パケットは、不十分な量の誤り訂正パケットよりも多い誤り訂正パケットを有することを特徴とする請求項5に記載のサービスノード。
  10. 前記第1誤り訂正は、前記第1ネットワークセグメントに関連した損失プロファイルに基づいて選択されたことを特徴とする請求項5に記載のサービスノード。
JP2014143732A 2008-12-23 2014-07-11 マルチセグメント損失の保護 Pending JP2014225900A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/342,174 US20100023842A1 (en) 2008-07-25 2008-12-23 Multisegment loss protection
US12/342,174 2008-12-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011519247A Division JP2012513689A (ja) 2008-07-25 2009-06-01 マルチセグメント損失の保護

Publications (1)

Publication Number Publication Date
JP2014225900A true JP2014225900A (ja) 2014-12-04

Family

ID=52124212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143732A Pending JP2014225900A (ja) 2008-12-23 2014-07-11 マルチセグメント損失の保護

Country Status (1)

Country Link
JP (1) JP2014225900A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015551A (ja) * 2002-06-07 2004-01-15 Sumitomo Electric Ind Ltd 中継装置、中継用プログラム及び自律型誤り訂正ネットワーク
JP2005012753A (ja) * 2003-05-29 2005-01-13 Nippon Telegr & Teleph Corp <Ntt> パケット中継装置及びその方法と、パケット受信装置及びその方法と、パケット中継プログラム及びそのプログラムを記録した記録媒体と、パケット受信プログラム及びそのプログラムを記録した記録媒体
JP2005065100A (ja) * 2003-08-19 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> データ配信方法、中継装置及びコンピュータプログラム
WO2005086436A1 (ja) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha パケット転送装置、パケット転送ネットワークシステム、および、端末装置
JP2005323171A (ja) * 2004-05-10 2005-11-17 Sumitomo Electric Ind Ltd 送信装置、誤り訂正装置、ネットワーク接続装置およびパケット中継方法
JP2008131153A (ja) * 2006-11-17 2008-06-05 Toshiba Corp 通信装置、通信方法および通信プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015551A (ja) * 2002-06-07 2004-01-15 Sumitomo Electric Ind Ltd 中継装置、中継用プログラム及び自律型誤り訂正ネットワーク
JP2005012753A (ja) * 2003-05-29 2005-01-13 Nippon Telegr & Teleph Corp <Ntt> パケット中継装置及びその方法と、パケット受信装置及びその方法と、パケット中継プログラム及びそのプログラムを記録した記録媒体と、パケット受信プログラム及びそのプログラムを記録した記録媒体
JP2005065100A (ja) * 2003-08-19 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> データ配信方法、中継装置及びコンピュータプログラム
WO2005086436A1 (ja) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha パケット転送装置、パケット転送ネットワークシステム、および、端末装置
JP2005323171A (ja) * 2004-05-10 2005-11-17 Sumitomo Electric Ind Ltd 送信装置、誤り訂正装置、ネットワーク接続装置およびパケット中継方法
JP2008131153A (ja) * 2006-11-17 2008-06-05 Toshiba Corp 通信装置、通信方法および通信プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013036069; 権藤 俊一: 'IPTVにおけるPro-MPEG FEC適用に関する検討及び実験的な評価' 映像情報メディア学会技術報告 Vol.31 No.42, 200709, p.177-182, (社)映像情報メディア学会 *

Similar Documents

Publication Publication Date Title
US20100023842A1 (en) Multisegment loss protection
US8787153B2 (en) Forward error correction based data recovery with path diversity
US8145975B2 (en) Universal packet loss recovery system for delivery of real-time streaming multimedia content over packet-switched networks
US6754277B1 (en) Error protection for compressed video
US20070266398A1 (en) Method for fast zapping between tv channels
US9661053B2 (en) Generating a plurality of streams
US20100027560A1 (en) System and method for service mitigation in a communication system
US20070130393A1 (en) Expedited digitial signal decoding
CN104737514A (zh) 用于分布媒体内容服务的方法和设备
US20090164550A1 (en) Media monitoring
EP1834409A2 (en) Adaptive information delivery system using fec feedback
JP3701956B2 (ja) パケット中継装置及びその方法と、パケット受信装置及びその方法と、パケット中継プログラム及びそのプログラムを記録した記録媒体と、パケット受信プログラム及びそのプログラムを記録した記録媒体
US20070107025A1 (en) System and method for placement of servers in an internet protocol television network
US20030009578A1 (en) Method and system for delivering streaming media to fixed clients or mobile clients with multiple description bitstreams
CN101197642A (zh) 一种网络电视直播丢包的解决方法
JP2012513689A (ja) マルチセグメント損失の保護
US7512650B2 (en) Physical layer recovery in a streaming data delivery system
Begen Error control for IPTV over xDSL networks
JP5544984B2 (ja) 符号化装置、符号化システム及び信号伝送方法
JP2014225900A (ja) マルチセグメント損失の保護
CN101645903A (zh) 一种多媒体数据的传输方法及装置
US7177315B2 (en) Method and communications arrangement for the transmitting multiple destination data and/or retrievable data in a communications network
Mammi et al. Evaluation of AL-FEC performance for IP television services QoS
WO2009089755A1 (fr) Procédé et dispositif pour améliorer l&#39;expérience de l&#39;utilisateur de la télévision par ip
Heneghan Image transport quality? No problem

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006