JP2014224291A - Method of charging object to be charged into blast furnace - Google Patents

Method of charging object to be charged into blast furnace Download PDF

Info

Publication number
JP2014224291A
JP2014224291A JP2013103933A JP2013103933A JP2014224291A JP 2014224291 A JP2014224291 A JP 2014224291A JP 2013103933 A JP2013103933 A JP 2013103933A JP 2013103933 A JP2013103933 A JP 2013103933A JP 2014224291 A JP2014224291 A JP 2014224291A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
charged
center
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103933A
Other languages
Japanese (ja)
Other versions
JP6119416B2 (en
Inventor
耕祐 松井
Kosuke Matsui
耕祐 松井
正具 門脇
Masatomo Kadowaki
正具 門脇
洋平 坪根
Yohei Tsubone
洋平 坪根
良諭 西河
Yoshitsugu Nishikawa
良諭 西河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013103933A priority Critical patent/JP6119416B2/en
Publication of JP2014224291A publication Critical patent/JP2014224291A/en
Application granted granted Critical
Publication of JP6119416B2 publication Critical patent/JP6119416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To catch a sign of instability of a blast furnace and prevent the instability in advance before an operation of the blast furnace becomes unstable.SOLUTION: A method of charging an object to be charged into the blast furnace, which method is used in such the bell-less blast furnace that a coke batch (C) and an ore batch (O) are charged into the blast furnace as one charge and in which method another coke batch (Cc) is charged in a center part of the blast furnace before the coke batch (C) is charged, is characterized in that when a difference between the inside pressure of a middle part of a shaft of the blast furnace and that of a furnace throat part becomes 1.5 times or larger of the difference at the steady-state time, the coke batch (Cc) of 5-20 mass% of the total coke amount (Cc+C) of one charge is charged into the center part of the blast furnace by 1-10 charges.

Description

本発明は、高炉への装入物装入方法に関する。特に、高炉操業の不安定化を未然に防止する高炉への装入物装入方法に関する。   The present invention relates to a charging method for charging a blast furnace. In particular, the present invention relates to a method of charging a blast furnace to prevent instability of blast furnace operation.

高炉は、製鉄所の上工程にあり、安定して銑鉄を生産することが重要である。しかし、高炉は、いろいろな原因により、安定した操業の維持ができなくなることがある。高炉の安定操業が損なわれると、次工程以降への原料供給ができなくなり、製鉄所全体の生産に支障をきたす。   The blast furnace is in the upper process of the steel plant, and it is important to stably produce pig iron. However, the blast furnace may not be able to maintain stable operation due to various reasons. If the stable operation of the blast furnace is impaired, it will not be possible to supply raw materials to the next and subsequent processes, which will hinder the production of the entire steelworks.

高炉操業が不調に陥る原因はいろいろある。例えば、入荷原料の性状が悪化し高炉装入原料の品質が悪化する場合、又は、高炉の炉壁が損傷し炉内ガスの流れに変調をきたす場合等がある。又、経済状態が良い場合は増産を、景気悪化で、需要が減退した場合は、減産をしなければならない。高炉の生産弾力性は、必ずしも良いとは言えず、特に、高炉の減産操業は困難を極める場合がある。   There are various reasons why blast furnace operation may be sluggish. For example, there are cases where the properties of the incoming raw material deteriorate and the quality of the raw material charged in the blast furnace deteriorates, or the furnace wall of the blast furnace is damaged and the flow of the gas in the furnace is modulated. If the economy is in good condition, the production must be increased. If the economy deteriorates and demand declines, the production must be reduced. The production elasticity of a blast furnace is not always good, and in particular, it may be extremely difficult to reduce the production of a blast furnace.

高炉は、設備保全のため一定期間、送風を停止する休風を余儀なくされることもある。長時間休風を行うと、休風中は、高炉内でのコークスの燃焼が停止するので、高炉内の装入物、半溶融物は、保有熱を失う。従って、長時間休風後の送風立ち上がりは、高炉に炉熱をつけ、早期に定常の高炉操業に戻ることが肝要である。
休風立ち上がりに限らず、定常操業時においても、前述のように、原料の品質悪化その他の原因で高炉の炉熱が低下することがあり、操業不安定状態からの早期に回復する高炉操業方法が望まれる。
The blast furnace may be forced to stop air blowing for a certain period of time for equipment maintenance. If the wind is rested for a long time, the combustion of coke in the blast furnace stops during the rest period, so the charge and the semi-molten material in the blast furnace lose their retained heat. Therefore, it is important that the rising of the air blow after a long period of off-air is applied to the blast furnace with furnace heat and returned to the normal blast furnace operation at an early stage.
As mentioned above, the blast furnace operation method that recovers early from an unstable operation state may occur due to a deterioration in raw material quality or other causes, as described above, not only during the start of rest wind but also during steady operation. Is desired.

高炉の炉内状況は、炉内における融着帯の形状で説明される。図1(A)に高炉の安定操業時の融着帯1のプロフィルAを示す。高炉装入物であるコークスと鉱石は、炉頂から炉内に層状に装入される。鉱石層は、羽口4の前でコークスの燃焼により発生し炉内を上昇する炉内ガスにより加熱され、1000℃程度で、軟化を開始し、融着帯1を形成する。融着帯1は、融着層2とその間にあるコークススリット3から成る。融着層2の温度が上昇し、鉱石の還元が進行すると、融着層2の温度は1200〜1300℃に達し、鉱石は溶融し、融着層2の下面は溶け落ちる。融着層2の内部では、鉱石の軟化・溶融により鉱石間の空隙は減少し、炉内ガスは、通過が困難となる。その結果、炉内ガスは、融着層2と融着層2の間のコークススリット3に限られ、通気抵抗が急激に上昇する。このように、融着層2とコークススリット3から形成された融着帯1のプロフィルは、高炉内の通気抵抗に影響を与える。
安定操業時の融着帯1の形状は、炉内中心部にある融着層2の頂部の位置が、ある程度の高さの位置にあり、融着層2の頂部の幅は、炉周辺にある融着層2の幅より小さい。その結果、炉中心部の通気抵抗は、炉周辺部より小さく、炉中心部の炉内ガス流れが多くなる。そして、融着帯1の全体のプロフィルはスリムであり、個々の融着層2の幅が狭いので、全体としての通気抵抗は小さく、安定操業が可能となる。
The in-furnace situation in the blast furnace is explained by the shape of the cohesive zone in the furnace. FIG. 1A shows the profile A of the cohesive zone 1 during stable operation of the blast furnace. Coke and ore, which are blast furnace charges, are charged in layers from the top of the furnace into the furnace. The ore layer is heated by the in-furnace gas generated by the combustion of coke in front of the tuyere 4 and rising in the furnace, starts softening at about 1000 ° C., and forms the cohesive zone 1. The fusion zone 1 includes a fusion layer 2 and a coke slit 3 interposed therebetween. When the temperature of the fusion layer 2 rises and the reduction of the ore proceeds, the temperature of the fusion layer 2 reaches 1200 to 1300 ° C., the ore melts, and the lower surface of the fusion layer 2 melts down. Inside the fusion layer 2, voids between the ores are reduced due to softening and melting of the ores, and it is difficult for the gas in the furnace to pass through. As a result, the in-furnace gas is limited to the coke slit 3 between the fusion layer 2 and the fusion layer 2, and the ventilation resistance increases rapidly. As described above, the profile of the fusion zone 1 formed from the fusion layer 2 and the coke slit 3 affects the ventilation resistance in the blast furnace.
The shape of the fusion zone 1 during stable operation is such that the position of the top of the fusion layer 2 in the center of the furnace is at a certain height, and the width of the top of the fusion layer 2 is around the furnace. It is smaller than the width of a certain fusion layer 2. As a result, the ventilation resistance in the furnace center is smaller than that in the furnace periphery, and the gas flow in the furnace in the furnace center increases. The entire profile of the fusion zone 1 is slim, and the width of the individual fusion layers 2 is narrow. Therefore, the overall ventilation resistance is small, and stable operation is possible.

図1(C)に操業不安定状態の融着帯1のプロフィルCの一例を示す。前記の高炉不安定化要因があると、安定操業時の炉中心部の炉内ガス流れが抑制され、中心流が確保されなくなる。その結果、炉内ガスによる炉中心部の装入物の加熱が遅れ、炉内中心部にある融着層2の頂部の位置が低下する。炉中心部の炉内ガス流の抑制により、ガスは、通気抵抗が大きい炉中間部、炉周辺部に回り、炉内ガス流れは不安定となる。ガス流の不安定化により、中間部、炉周辺部の装入物の加熱が遅れ、炉中間部、炉周辺部の融着帯1の位置も低下する。一方、炉内中心部にある融着層2の頂部の位置の低下により、融着帯1の幅方向の長さが長くなる。その結果、融着層間のコークススリット3の通気抵抗も増大し、ガス流は不安定化する。コークススリット3を通過するガスによる融着層2の加熱も遅れ、鉱石の溶融滴下が遅れ、その結果、融着帯1の中間、周辺部の位置も低下する。
炉内中心部にある融着層2の頂部の位置は低く、融着層2の幅が長くなっている。融着帯1の全体のプロフィルは、ずんぐり型になり、最下部の融着帯1で炉壁に接する部分(以下、融着帯の根と記す。)は、分厚く幅が長い。高炉の炉熱低下時は、融着帯1の上面軟化速度に対し、融着帯1の下面の鉱石の溶け落ち速度が遅く、融着帯1が肥大化してしまい、炉中間部、炉周辺部の炉内ガスの通気抵抗は増大する。
FIG. 1C shows an example of the profile C of the cohesive zone 1 in an unstable operation state. If there is the above-mentioned blast furnace destabilization factor, the gas flow in the furnace at the center of the furnace during stable operation is suppressed, and the center flow cannot be secured. As a result, the heating of the charge in the furnace center by the furnace gas is delayed, and the top position of the fusion layer 2 in the furnace center is lowered. Due to the suppression of the in-furnace gas flow in the center of the furnace, the gas flows to the middle part of the furnace and the periphery of the furnace where the ventilation resistance is large, and the in-furnace gas flow becomes unstable. Due to destabilization of the gas flow, heating of the charge in the intermediate part and the furnace peripheral part is delayed, and the position of the fusion zone 1 in the furnace intermediate part and the furnace peripheral part is also lowered. On the other hand, the length of the fusion zone 1 in the width direction becomes longer due to the lower position of the top portion of the fusion layer 2 in the center of the furnace. As a result, the ventilation resistance of the coke slit 3 between the fusion layers also increases, and the gas flow becomes unstable. Heating of the fusion layer 2 by the gas passing through the coke slit 3 is also delayed, and the ore melting and dropping are delayed. As a result, the positions of the middle and peripheral portions of the fusion zone 1 are also lowered.
The position of the top of the fusion layer 2 in the center of the furnace is low, and the width of the fusion layer 2 is long. The entire profile of the cohesive zone 1 is a stubby type, and the portion of the lowermost cohesive zone 1 that contacts the furnace wall (hereinafter referred to as the root of the cohesive zone) is thick and long. When the furnace heat of the blast furnace decreases, the melting rate of the ore on the lower surface of the cohesive zone 1 is slower than the upper surface softening rate of the cohesive zone 1, and the cohesive zone 1 is enlarged, and the middle part of the furnace and the periphery of the furnace The ventilation resistance of the in-furnace gas increases.

高炉操業が不安定となり、融着帯1がプロフィルCになった場合の高炉操業方法として、炉内中心に多量のコークスを装入する中心コークス装入法がある(特許文献1)。   As a blast furnace operation method when the blast furnace operation becomes unstable and the cohesive zone 1 becomes a profile C, there is a central coke charging method in which a large amount of coke is charged in the center of the furnace (Patent Document 1).

高炉操業が不安定となり、融着帯1がプロフィルCになった場合の高炉操業方法として、高炉操業が安定化するまで、コークス層と鉱石層の質量比(以下、O/Cと記す。)を連続して低下させる方法がある。この方法は、高炉操業が不安定化し、炉熱が低下した場合に、コークス装入量を増加することにより、炉熱を回復させ、融着帯1をプロフィルCからプロフィルAに戻す方法であり、従来から、一般的に用いられている方法である(以下、従来法と記す。)。   As the blast furnace operation method when the blast furnace operation becomes unstable and the cohesive zone 1 becomes the profile C, the mass ratio of the coke layer to the ore layer (hereinafter referred to as O / C) until the blast furnace operation is stabilized. There is a method for continuously lowering. This method is a method in which when the operation of the blast furnace becomes unstable and the furnace heat decreases, the furnace heat is recovered by increasing the coke charging amount, and the cohesive zone 1 is returned from the profile C to the profile A. This is a conventionally used method (hereinafter referred to as a conventional method).

特開平7−268412号公報JP-A-7-268212

特許文献1に記載の発明は、炉内ガスを中心流化し、高炉の通気性を確保し、炉中心部の炉熱を上げることによりプロフィルCで押し潰された炉中心部の融着帯1の位置を高く持ち上げることができる。しかし、プロフィルCで肥大化した融着帯1の根を改善するものではなく、高炉操業には、時間がかかるという問題がある。   In the invention described in Patent Document 1, the gas in the furnace is centrally flowed, the air permeability of the blast furnace is ensured, and the furnace zone cohesive zone 1 crushed by the profile C by raising the furnace heat in the furnace center. Can be lifted high. However, it does not improve the root of the cohesive zone 1 enlarged by the profile C, and there is a problem that blast furnace operation takes time.

前記の従来法によれば、高炉操業が不安定時に、O/Cを低下させることで、炉熱が回復し、融着帯プロフィルは改善されるが、低O/Cチャージが羽口に到るまで、低O/Cチャージを連続して装入するので、炉内の熱が過剰となり、熱バランスを崩してしまう。その結果、熱バランスの調整に時間がかかるという問題がある。   According to the conventional method described above, when the operation of the blast furnace is unstable, the furnace heat is recovered by reducing the O / C, and the cohesive zone profile is improved, but the low O / C charge reaches the tuyere. Until then, the low O / C charge is continuously charged, so the heat in the furnace becomes excessive and the heat balance is lost. As a result, there is a problem that it takes time to adjust the heat balance.

高炉操業が不安定化し融着帯1の形状が、プロフィルCになると、その回復に大幅な燃料比の増加と、長い回復期間が必要であるが、高炉操業が不安定になる前に、不安定化の兆候をキャッチし、高炉の不安定化を未然に防止することができれば、高炉操業の安定化に大きく寄与できる。   If blast furnace operation becomes unstable and the shape of the cohesive zone 1 becomes Profile C, a significant increase in fuel ratio and a long recovery period are required for its recovery, but before the blast furnace operation becomes unstable, If the signs of stabilization can be caught and instability of the blast furnace can be prevented, it can greatly contribute to stabilization of blast furnace operation.

本発明の課題は、高炉操業が不安定になる前に、不安定化の兆候をキャッチし、高炉の不安定化を未然に防止することを課題とする。
本発明の目的は、高炉操業の不安定化を未然に防止する高炉への装入物装入方法を提供することである。
It is an object of the present invention to catch signs of destabilization and prevent instability of the blast furnace before the blast furnace operation becomes unstable.
An object of the present invention is to provide a method for charging a blast furnace to prevent instability of blast furnace operation.

本発明者は、高炉のシャフト中部と炉口部の炉内圧力の差により高炉の不安定化の兆候をキャッチし、差圧が所定値以上になった場合に、高炉中心部に所定のコークスを装入することで、高炉操業の不安定化を未然に防止することができるという知見を得た。本発明は、かかる知見に基づくものであり、その要旨は、以下のとおりである。   The present inventor catches a sign of instability of the blast furnace due to the difference in the furnace pressure between the center of the shaft of the blast furnace and the furnace mouth, and when the differential pressure exceeds a predetermined value, a predetermined coke is placed in the center of the blast furnace. It was found that the destabilization of blast furnace operation can be prevented by charging the blast furnace. The present invention is based on such knowledge, and the gist thereof is as follows.

(1) コークスバッチ(C)と鉱石バッチ(O)を1チャージとして炉内に装入するベルレス高炉において、前記コークスバッチ(C)を装入する前に、高炉中心部にコークスバッチ(Cc)を装入する高炉への装入物装入方法であって、
高炉のシャフト中部の炉内圧力と炉口部の炉内圧力の差が、定常時に対し、1.5倍以上になったときに、1チャージの総コークス量(Cc+C)に対し、5質量%以上20質量%以下の前記コークス(Cc)を1チャージ〜10チャージ、高炉中心部に装入することを特徴とする高炉への装入物装入方法。
ただし、高炉のシャフト中部の炉内圧力とは、羽口からストックラインまでの高さに対し羽口から48〜55%の部分の炉内圧力をいい、炉口部の炉内圧力とは、羽口からストックラインまでの高さに対し羽口から70〜80%の部分の炉内圧力をいう。
(1) In a bell-less blast furnace in which a coke batch (C) and an ore batch (O) are charged into the furnace as one charge, the coke batch (Cc) is placed in the center of the blast furnace before the coke batch (C) is charged. A method of charging a charge into a blast furnace for charging
When the difference between the furnace pressure at the middle of the shaft of the blast furnace and the furnace pressure at the furnace mouth becomes 1.5 times or more of the steady state, it is 5% by mass with respect to the total coke amount of one charge (Cc + C). A method of charging a charge into a blast furnace, characterized in that the coke (Cc) of 20% by mass or less is charged into the center of the blast furnace for 1 to 10 charges.
However, the furnace pressure at the middle of the shaft of the blast furnace means the furnace pressure at a portion of 48 to 55% from the tuyere to the height from the tuyere to the stock line. The pressure in the furnace is 70-80% of the height from the tuyere to the stock line.

高炉操業の不安定化を未然に防止する高炉への装入物装入方法高炉への装入物装入方法を提供することができる。   It is possible to provide a charging method for charging a blast furnace to prevent instability of blast furnace operation.

融着帯プロフィルを示す。(A)は、安定操業の融着帯プロフィルである。(B)は、融着層の頂部の位置が低下した融着帯プロフィルである。(C)は、不安定操業の融着帯プロフィルである。The cohesive zone profile is shown. (A) is a stable operation cohesive zone profile. (B) is a cohesive zone profile in which the position of the top of the fused layer is lowered. (C) is a cohesive zone profile of unstable operation. 実炉における炉内圧力の検出位置を示す図。The figure which shows the detection position of the in-furnace pressure in a real furnace. 1/3縮尺模型実験装置を示す図。The figure which shows a 1/3 scale model experiment apparatus. 1/3縮尺実験装置におけるコークス及び鉱石を投入する方法を示す図。The figure which shows the method to throw in the coke and the ore in a 1/3 scale experimental apparatus. 1/3縮尺模型実験により、中心LC装入時の装入物堆積状況を示す図。The figure which shows the deposit accumulation condition at the time of center LC insertion by 1/3 scale model experiment. 1/3縮尺模型実験により、中心LC装入時の装入物の層厚比を示す図。The figure which shows the layer thickness ratio of the charge at the time of center LC insertion by 1/3 scale model experiment. 実炉における中心LC実施時の高炉操業を示す図。The figure which shows the blast furnace operation at the time of center LC implementation in a real furnace. 実炉における中心LC実施時の炉内ガスフローの検出情報を示す図。The figure which shows the detection information of the gas flow in a furnace at the time of center LC implementation in a real furnace. 実炉における中心LC実施時の上部ゾンデηCO(%)分布を示す図。The figure which shows upper sonde (eta) CO (%) distribution at the time of center LC implementation in a real furnace.

高炉が不安定化するのは、炉内の中心ガス量が抑制され、融着帯頂部が低下することに起因する。
本発明は、高炉のシャフト中部の炉内圧力と炉口部の炉内圧力の差により融着帯頂部の低下をキャッチし、差圧が所定値以上になったときに、高炉中心部に少量のコークス(ライトチャージ、以下、中心LCと記す。)を装入することで、高炉操業の不安定化を未然に防止することを特徴とする。
以下、(1)融着帯頂部の低下による高炉の不安定化、(2)高炉のシャフト中部と炉口部の炉内圧力の差による融着帯頂部低下のキャッチ及び(3)中心LCによる高炉操業の不安定化の未然防止について述べる。
The blast furnace destabilizes because the amount of central gas in the furnace is suppressed and the top of the cohesive zone is lowered.
The present invention catches a decrease in the top of the cohesive zone due to the difference between the furnace pressure at the center of the shaft of the blast furnace and the furnace pressure at the furnace port, and a small amount is placed in the center of the blast furnace when the differential pressure exceeds a predetermined value. It is characterized by preventing instability of blast furnace operation by charging the coke (light charge, hereinafter referred to as the center LC).
Hereinafter, (1) destabilization of the blast furnace due to the lowering of the cohesive zone top, (2) catching of the lowering of the cohesive zone top due to the difference in the pressure inside the shaft of the blast furnace and the furnace port, and (3) due to the center LC The prevention of destabilization of blast furnace operation is described.

(融着帯頂部の低下による高炉の不安定化)
前述のように、図1(A)は、高炉の安定操業時の融着帯1のプロフィルAであり、図1(C)は、高炉の不安定状態の融着帯1のプロフィルCである。図1(B)は、高炉の安定操業時に対し、融着帯1の頂部の位置が低下した融着帯プロフィルである。図1(A)から図1(C)に移行する際、まず、炉内中心ガスが抑制され、中心ガス量の減少により、中心部分の装入物の加熱が遅れ、融着帯頂部が低下する。融着帯1のプロフィルが図1(B)のようになっていることを早期にキャッチできれば、それに対応することにより、融着帯1がプロフィルCに移行することなく、高炉の安定操業が維持できると考えられる。
(Blast furnace destabilization due to lowering of the top of the cohesive zone)
As described above, FIG. 1 (A) is the profile A of the cohesive zone 1 during stable operation of the blast furnace, and FIG. 1 (C) is the profile C of the cohesive zone 1 in an unstable state of the blast furnace. . FIG. 1 (B) is a cohesive zone profile in which the position of the top of the cohesive zone 1 is lowered with respect to the stable operation of the blast furnace. When shifting from FIG. 1 (A) to FIG. 1 (C), first, the central gas in the furnace is suppressed, and due to the decrease in the amount of central gas, the heating of the charge in the central portion is delayed, and the top of the cohesive zone decreases. To do. If it can catch early that the profile of the cohesive zone 1 is as shown in FIG. 1 (B), stable operation of the blast furnace will be maintained without shifting the cohesive zone 1 to the profile C. It is considered possible.

(高炉のシャフト中部と炉口部の炉内圧力の差による融着帯頂部低下のキャッチ)
本発明者は、高炉の操業においての融着帯頂部の低下を早期にキャッチする方法を検討した。図2に炉内の圧力を測定する検出端位置を示す。羽口からストックライン(SL)の間隔に対する羽口からの割合で示している。その他の検出端としては、ステーブクーラのリブに埋め込まれたリブ温度計がある。また、スキンフロー温度は、炉口部のステーブクーラを貫通して設置してある温度計である。
(Catch of lowering of the cohesive zone top due to the difference in furnace pressure between the shaft center of the blast furnace and the furnace port)
The present inventor has studied a method for catching a decrease in the cohesive zone top at an early stage in the operation of a blast furnace. FIG. 2 shows the detection end position for measuring the pressure in the furnace. The ratio from the tuyere to the interval from the tuyere to the stock line (SL) is shown. As another detection end, there is a rib thermometer embedded in the rib of the stave cooler. The skin flow temperature is a thermometer installed through the stave cooler in the furnace opening.

本発明者は、高炉の操業において、融着帯頂部が低下する際に、上記の各種検出端のうちシャフト中部と炉口部に設置した炉内圧力計の圧力差により、最も早く融着帯頂部の低下の兆候をキャッチできることを見出した。融着帯頂部が低下しかかると、炉内ガス流が変化し、シャフト中部と炉口部間の炉内圧力が変動し、圧力差に変化をもたらすものと考えられる。
ここで、高炉のシャフト中部の炉内圧力とは、羽口からストックラインまでの高さに対し羽口から48〜55%の部分の炉内圧力をいう。シャフト中部の炉内圧力と炉口部の炉内圧力の差の変動を察知する。この範囲の炉内圧力が、図1に示す融着帯の頂部の低下に敏感に変動するからである。
In operation of the blast furnace, the present inventor, when the top of the cohesive zone is lowered, among the various detection ends, the cohesive zone is the earliest due to the pressure difference of the pressure gauge in the furnace installed in the central part of the shaft and the furnace port part. We have found that we can catch signs of a drop in the top. If the top of the cohesive zone starts to decrease, the gas flow in the furnace changes, and the pressure in the furnace between the middle part of the shaft and the furnace port part fluctuates, which is considered to cause a change in the pressure difference.
Here, the in-furnace pressure in the middle part of the shaft of the blast furnace refers to the in-furnace pressure of 48 to 55% from the tuyere to the height from the tuyere to the stock line. A change in the difference between the furnace pressure at the center of the shaft and the furnace pressure at the furnace port is detected. This is because the pressure in the furnace within this range varies sensitively to the decrease in the top of the cohesive zone shown in FIG.

(中心LCによる高炉操業の不安定化の未然防止について)
従来は、融着帯1がプロフィルCになり、高炉が不安定状態になった際は、鉱石層とコークス層の比(以下O/Cと記す。)を、例えば、O/C=5.0から、O/C=3.0程度まで大幅に下げ、更に回復までの長時間にわたり低O/Cを継続してプロフィルAへの回復を図ってきた。その結果、高炉熱バランスを失し、回復に長時間を要したことは、すでに述べたところである。これに対し、本発明は、融着帯頂部の低下の兆候が表れた際に対応するものであるから、O/Cの低下は小さくてもよい。
表1に5000mクラスの大型炉における中心LCの一例を示す。表1において、中心C(以下Ccと記す。)は、中心に装入するコークス質量を示し、ベース条件でCc比率は、1チャージの総コークス量(Cc+C)に対し、8.3質量%である。これに対し、中心LC操業では、1チャージの総コークス量(Cc+C)に対し、17.9質量%×5ch+13.4質量%×5chを装入するケースである。本発明に係る中心LCは、1チャージのコークス量(Cc+C)に対し、5質量%〜20質量%の中心コークス比率(Cc比率)を1チャージ〜10チャージ、高炉中心部に装入する。
尚、表1で、ベース3ダンプとは、1チャージをCc、C、Oの3ダンプで装入する方式であり、Cc比率とはCc/(Cc+C)×100で計算される、塊CB中のCcの比率を指す。
(Preventing instability of blast furnace operation due to central LC)
Conventionally, when the cohesive zone 1 becomes a profile C and the blast furnace becomes unstable, the ratio of the ore layer to the coke layer (hereinafter referred to as O / C) is, for example, O / C = 5. From 0, it was drastically lowered to about O / C = 3.0, and further, low O / C was continued for a long time until recovery, and recovery to profile A was attempted. As a result, it was already mentioned that the blast furnace heat balance was lost and it took a long time to recover. On the other hand, since this invention respond | corresponds when the sign of the fall of a cohesive zone top appears, the fall of O / C may be small.
Table 1 shows an example of the center LC in a large furnace of 5000 m 3 class. In Table 1, the center C (hereinafter referred to as Cc) represents the mass of coke charged in the center, and the Cc ratio in the base condition was 8.3 mass% with respect to the total coke amount (Cc + C) of one charge. is there. On the other hand, in the central LC operation, 17.9 mass% × 5 ch + 13.4 mass% × 5 ch is charged with respect to the total coke amount (Cc + C) of one charge. The center LC according to the present invention is charged in the center of the blast furnace at a center coke ratio (Cc ratio) of 5% by mass to 20% by mass with respect to the amount of coke of one charge (Cc + C).
In Table 1, the base 3 dump is a system in which 1 charge is charged with 3 dumps of Cc, C, and O, and the Cc ratio is calculated as Cc / (Cc + C) × 100. The ratio of Cc.

(中心LCによる高炉装入時の装入物堆積状況について)
中心LCによる高炉装入時の装入物堆積状況を1/3縮尺模型実験装置により調査した。
図3に5000m級高炉を対象とした1/3縮尺模型実験装置を示す。サージホッパー11から装入コンベア12、炉頂ホッパー13、旋回シュート14、炉体シャフト部15までを対象としている。また、装置下部の切り出し装置16により炉内荷下がりを考慮し、装置下部からの送風によりガス流分布を考慮している。
(Regarding the charge accumulation at the time of blast furnace charging by the central LC)
The state of charge accumulation during blast furnace charging by the central LC was investigated using a 1/3 scale model experimental device.
Fig. 3 shows a 1/3 scale model experimental apparatus for a 5000m class 3 blast furnace. The surge hopper 11, the charging conveyor 12, the furnace top hopper 13, the turning chute 14, and the furnace body shaft portion 15 are targeted. Moreover, the dropping in the furnace is taken into account by the cutting device 16 at the lower part of the apparatus, and the gas flow distribution is taken into consideration by the blowing from the lower part of the apparatus.

図4に1/3縮尺の実験装置における装入物の投入方法を示す。旋回シュート14は、俯仰角度が変更でき、原料落下位置を炉壁位置から炉中心位置に変更させながら、かつ、炉軸を中心に旋回させながら、原料をリング状に炉壁位置から炉中心位置に装入する(順傾動)。   FIG. 4 shows a charging method in a 1/3 scale experimental apparatus. The swivel chute 14 can change the elevation angle, and while changing the raw material fall position from the furnace wall position to the furnace center position and turning around the furnace axis, the raw material is ring-shaped from the furnace wall position to the furnace center position. Is inserted (forward tilt).

表1に示す装入物の装入条件で、1/3縮尺模型実験装置により測定した装入物の堆積状況を図5に示す。横軸は、炉中心を0とし、炉壁位置を1.0とした場合の相対位置であり、縦軸は、ストックライン(SL)の下1800mmの位置を1.0とした場合の相対位置を示している。ベース3ダンプにおいては、中心部に8.3質量%のCが存在し、中心流の確保に貢献している。中心LC装入時は、Ccが17.9質量%の場合である。図1(B)のように融着帯頂部が低下した際に、中心部Ccの堆積量が増加し、融着帯頂部が低下に対して、その上昇に寄与すると考えられる。
表1に示す装入物の装入条件で、1/3縮尺模型実験装置により測定した装入物の層厚比を図6に示す。Loは、鉱石層の厚み、Lcは、コークス層の厚みを示す。中心LC装入時は、低層厚比の領域が中心から0.22位置までの範囲に拡大し、コークス単独層の領域が広がっている。中心から0.22〜0.50の範囲は、ベースに対して層厚比が上昇しており、Ccにより鉱石の流れ込みが堰止められた結果であると考えられる。0.55から壁際にかけては、中心LCが中心部へのコークス単独増加であるためベースと略同じ堆積形状、層厚比分布であった。
FIG. 5 shows the deposit accumulation measured by the 1/3 scale model experimental apparatus under the charging conditions shown in Table 1. The horizontal axis is the relative position when the furnace center is 0 and the furnace wall position is 1.0, and the vertical axis is the relative position when the position 1800 mm below the stock line (SL) is 1.0. Is shown. In the base 3 dump, 8.3% by mass of CC is present in the center, which contributes to securing the central flow. When the central LC is charged, Cc is 17.9% by mass. When the top of the cohesive zone is lowered as shown in FIG. 1B, it is considered that the deposition amount of the central portion Cc is increased, and the top of the cohesive zone contributes to the rise of the decline.
FIG. 6 shows the layer thickness ratio of the charge measured by the 1/3 scale model experimental apparatus under the charge condition shown in Table 1. Lo represents the thickness of the ore layer, and Lc represents the thickness of the coke layer. When the center LC is charged, the low layer thickness ratio region is expanded to the range from the center to the 0.22 position, and the coke single layer region is expanded. The range from 0.22 to 0.50 from the center is thought to be the result of the increase in the layer thickness ratio relative to the base, and the inflow of ore was blocked by Cc. From 0.55 to the edge of the wall, the center LC was a single increase in coke to the center, so the deposition shape and layer thickness ratio distribution were almost the same as the base.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。
内容積が5000m級の大型高炉において、本発明を実施した。図7及び図8に、中心LC装入時による高炉操業の不安定化を未然に防止する実施結果を示す。横軸は、時間の経過を示す。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
Internal volume in a large blast furnace tertiary 5000 m, embodying the present invention. 7 and 8 show the results of preventing instability of blast furnace operation due to the central LC charging. The horizontal axis shows the passage of time.

図7及び図8において、時刻Tまでは、図7における送風流量(Nm/min),K値(−)、図8におけるリブ温度(℃)、スキンフロー温度(℃)、シャフト中部と炉口部の差圧(hPa)は、略安定していた。リブ温度は、羽口からストックラインまでの高さに対し
羽口から25%と35%の位置のステーブクーラのリブに埋め込まれた温度計の温度である。スキンフロー温度は、炉口部のステーブクーラを貫通して設置してある温度計である。
また、K値とは、通気性を評価するものであり、下記式で算出した。
羽口からストックラインまでの高さに対し
K=(P1−P2)/G1.7
ただし、P1:送風圧力(MPa)
P2:高炉炉頂部の圧力(MPa)
G:高炉のボッシュガス量(Nm3/min)
時刻Tまでは、他の検出端情報は安定していたが、時刻Tにおいて、シャフト中部の圧力(P)と炉口部の圧力(P)の差が略150hPaから、1.6倍の略240hPaに振れた。この情報に基づき表1に示す中心LCのステップ1を実施した。ステップ1は、1チャージのCc比率8.3質量%でベース操業をしていたものから、Cc比率17.9質量%に増量したものを、5ch装入するものである。尚、シャフト中部と炉口部の圧力計は、炉体の円周方向に4か所に設置しているが、その1箇所のシャフト中部と炉口部の差圧が振れた場合でも、融着帯頂部低下の兆候があると判断し、中心LCを実施して、融着帯の低下の未然防止を行った。
その後、ステップ1の後にステップ2としてCc比率13.4質量%に増量したものを5ch装入し、段階的にベースレベルにもどした。
以上の中心LCのステップ1及びステップ2を実施することにより、時刻T+24時間後には、高炉内のガス流れを示す上記の検出端情報が安定し、高炉操業の不安定化を未然に防止することができた。
7 and 8, until the time T, the air flow rate (Nm 3 / min), the K value (−) in FIG. 7, the rib temperature (° C.), the skin flow temperature (° C.) in FIG. The differential pressure (hPa) at the mouth was substantially stable. The rib temperature is a temperature of a thermometer embedded in the rib of the stave cooler at positions of 25% and 35% from the tuyere to the height from the tuyere to the stock line. The skin flow temperature is a thermometer installed through the stave cooler at the furnace port.
Moreover, K value is what evaluates air permeability and was computed by the following formula.
For the height from the tuyere to the stock line, K = (P1 2 −P2 2 ) / G 1.7
However, P1: ventilation pressure (MPa)
P2: Pressure at the top of the blast furnace (MPa)
G: Bosch gas amount in blast furnace (Nm 3 / min)
Until the time T, the other detection end information was stable, but at the time T, the difference between the pressure in the shaft middle part (P 2 ) and the pressure in the furnace port part (P 3 ) is about 1.6 h from about 150 hPa. Of about 240 hPa. Based on this information, Step 1 of the center LC shown in Table 1 was performed. Step 1 is for charging 5ch of a base that has been operated at a Cc ratio of 8.3% by mass, and then increased to a Cc ratio of 17.9% by mass. Note that the pressure gauges at the center of the shaft and the furnace port are installed at four locations in the circumferential direction of the furnace body, but even if the differential pressure between the center of the shaft and the furnace port varies. Judging that there was a sign of a decrease in the top of the bandage, the center LC was performed to prevent the decrease in the bandage.
Then, after Step 1, as Step 2, the amount increased to 13.4% by mass of Cc was charged into 5ch, and the level was gradually returned to the base level.
By performing Step 1 and Step 2 of the center LC as described above, after the time T + 24 hours, the above-mentioned detection end information indicating the gas flow in the blast furnace is stabilized, and instability of the blast furnace operation is prevented in advance. I was able to.

図9にベース時、中心LC装入直前及び中心LC装入後の上部ゾンデηCO(%)分布を示す。中心LC装入直前の上部ゾンデηCO(%)分布は、ベース時に対し中心部ηCO(%)が高く、中心流が抑えられたガス流れ分布になっている。融着帯頂部が低下したことによると考えられる。中心LC装入後は、中心部ηCO(%)が低下し、高炉操業の不安定化を未然に防止することができた。
ここで、上部ゾンデηCO(%)分布とは、装入物表面の直上に沿って炉内にゾンデを挿入し、炉半径方向のガス利用率を測定したものであり、炉半径方向のガス分布を評価したものである。
FIG. 9 shows the upper sonde η CO (%) distribution at the base time, immediately before the center LC charging and after the center LC charging. The upper sonde η CO (%) distribution immediately before the central LC is charged is a gas flow distribution in which the central portion η CO (%) is higher than the base time and the central flow is suppressed. This is probably because the top of the cohesive zone has been lowered. After the center LC was charged, the center η CO (%) decreased, and the blast furnace operation could be prevented from becoming unstable.
Here, the upper sonde η CO (%) distribution is obtained by inserting a sonde into the furnace directly above the charge surface and measuring the gas utilization rate in the furnace radial direction. The distribution is evaluated.

以上より、シャフト中部と炉口部の差圧(hPa)の情報をキャッチし、早期に融着帯頂部が低下を把握し、中心LC装入を実施することにより、高炉操業の不安定化を未然に防止することができることが分かった。   From the above, catching information on the differential pressure (hPa) between the shaft center and the furnace port, grasping the decrease in the cohesive zone top at an early stage, and carrying out central LC charging, destabilizing blast furnace operation It was found that it can be prevented beforehand.

高炉操業が不安定になる前に、不安定化の兆候をキャッチし、高炉の不安定化を未然に防止することに利用することができる。   Before blast furnace operation becomes unstable, it can be used to catch signs of instability and to prevent instability of the blast furnace.

1…融着帯、2…融着層、3…コークススリット、4…羽口、5…ステーブクーラ、11…サージホッパー、12…装入コンベア、13…炉頂ホッパー、14…旋回シュート、15…炉体シャフト部、16…装置下部の切り出し装置。   DESCRIPTION OF SYMBOLS 1 ... Fusion zone, 2 ... Fusion layer, 3 ... Coke slit, 4 ... Feather, 5 ... Stave cooler, 11 ... Surge hopper, 12 ... Loading conveyor, 13 ... Furnace top hopper, 14 ... Turning chute, 15 ... furnace body shaft part, 16 ... cutting device at the lower part of the apparatus.

Claims (1)

コークスバッチ(C)と鉱石バッチ(O)を1チャージとして炉内に装入するベルレス高炉において、前記コークスバッチ(C)を装入する前に、高炉中心部にコークスバッチ(Cc)を装入する高炉への装入物装入方法であって、
高炉のシャフト中部の炉内圧力と炉口部の炉内圧力の差が、定常時に対し、1.5倍以上になったときに、1チャージの総コークス量(Cc+C)に対し、5質量%以上20質量%以下の前記コークス(Cc)を1チャージ〜10チャージ、高炉中心部に装入することを特徴とする高炉への装入物装入方法。
ただし、高炉のシャフト中部の炉内圧力とは、羽口からストックラインまでの高さに対し羽口から48〜55%の部分の炉内圧力をいい、炉口部の炉内圧力とは、羽口からストックラインまでの高さに対し羽口から70〜80%の部分の炉内圧力をいう。
In the bell-less blast furnace where the coke batch (C) and the ore batch (O) are charged into the furnace as one charge, the coke batch (Cc) is charged at the center of the blast furnace before the coke batch (C) is charged. A charging method for charging the blast furnace,
When the difference between the furnace pressure at the middle of the shaft of the blast furnace and the furnace pressure at the furnace mouth becomes 1.5 times or more of the steady state, it is 5% by mass with respect to the total coke amount of one charge (Cc + C). A method of charging a charge into a blast furnace, characterized in that the coke (Cc) of 20% by mass or less is charged into the center of the blast furnace for 1 to 10 charges.
However, the furnace pressure at the middle of the shaft of the blast furnace means the furnace pressure at a portion of 48 to 55% from the tuyere to the height from the tuyere to the stock line. The pressure in the furnace is 70-80% of the height from the tuyere to the stock line.
JP2013103933A 2013-05-16 2013-05-16 How to charge the blast furnace Active JP6119416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103933A JP6119416B2 (en) 2013-05-16 2013-05-16 How to charge the blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103933A JP6119416B2 (en) 2013-05-16 2013-05-16 How to charge the blast furnace

Publications (2)

Publication Number Publication Date
JP2014224291A true JP2014224291A (en) 2014-12-04
JP6119416B2 JP6119416B2 (en) 2017-04-26

Family

ID=52123175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103933A Active JP6119416B2 (en) 2013-05-16 2013-05-16 How to charge the blast furnace

Country Status (1)

Country Link
JP (1) JP6119416B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277414A (en) * 1985-09-30 1987-04-09 Nippon Steel Corp Operating method for blast furnace
JPS63282483A (en) * 1987-05-15 1988-11-18 日本鋼管株式会社 Method of detecting state of inside of vertical type furnace
JPS6465215A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for stabilizing furnace condition in blast furnace operation
JPH03170607A (en) * 1989-11-28 1991-07-24 Nippon Steel Corp Method for operating blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277414A (en) * 1985-09-30 1987-04-09 Nippon Steel Corp Operating method for blast furnace
JPS63282483A (en) * 1987-05-15 1988-11-18 日本鋼管株式会社 Method of detecting state of inside of vertical type furnace
JPS6465215A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for stabilizing furnace condition in blast furnace operation
JPH03170607A (en) * 1989-11-28 1991-07-24 Nippon Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JP6119416B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP6119416B2 (en) How to charge the blast furnace
JP4743332B2 (en) Blast furnace operation method
JP5862519B2 (en) Blast furnace operation method
JP2008184626A (en) Method for operating blast furnace
CN109628670B (en) Air supply recovery method
JP2019014951A (en) Raw material charging method for charging coke to central portion of blast furnace
JP4765722B2 (en) Blast furnace start-up operation method
JP5515288B2 (en) Raw material charging method to blast furnace
JP4765723B2 (en) Method of charging ore into blast furnace
JP5256982B2 (en) Operation method of vertical melting furnace
JP4331879B2 (en) Blast furnace inner wall structure
JP5811019B2 (en) Reduced blast method for blast furnace
KR20210113339A (en) Method of charging raw materials in bell-less blast furnace and operating method of blast furnace
JP3879539B2 (en) Blast furnace operation method
JP2008260984A (en) Blast furnace operation method
JP2014162989A (en) Raw material charging apparatus and method of charging raw material into blast furnace using the same
JP6743621B2 (en) Blast furnace operation method
JP2018035398A (en) Blast furnace operation method
JP5962912B2 (en) Blast furnace operation method
JP2007046145A (en) Method for operating blast furnace with little variation of furnace heat
JP2008231511A (en) Method for protecting furnace bottom refractory in blast furnace
JP2008255402A (en) Blast furnace operation method
JP2021121689A (en) Method for estimating amount of ore layer collapse in bell-armor type blast furnace
JP4584669B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350