JP2014224200A - Highly thermally conductive mixture and highly thermally conductive molded body - Google Patents
Highly thermally conductive mixture and highly thermally conductive molded body Download PDFInfo
- Publication number
- JP2014224200A JP2014224200A JP2013104417A JP2013104417A JP2014224200A JP 2014224200 A JP2014224200 A JP 2014224200A JP 2013104417 A JP2013104417 A JP 2013104417A JP 2013104417 A JP2013104417 A JP 2013104417A JP 2014224200 A JP2014224200 A JP 2014224200A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- ethylene
- heat
- olefin
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
この発明は、高熱伝導性混和物及び高熱伝導性成形体に関し、さらに詳しくは、発熱性電子部品の放熱用として好適な高熱伝導性混和物及び高熱伝導性成形体に関する。 The present invention relates to a high thermal conductivity mixture and a high thermal conductivity molded body, and more particularly to a high thermal conductivity mixture and a high thermal conductivity molded body suitable for heat dissipation of a heat-generating electronic component.
近年の電気・電子機器類は、軽薄短小化、高速動作化が進んでいる。そのため、それらの内部部品として組み込まれるLEDやCPU等の演算素子、パワートランジスタなどの発熱性電子部品においては、その発熱密度が上昇する傾向にある。これらの熱は製品の寿命や正常な動作に対して悪影響を及ぼすことから、これを速やかに拡散、放熱、冷却し、ヒートスポットを解消することがますます重要になっている。
また、これらの熱を拡散などする部材には、安全面から難燃性であること、及び、電気・電子機器類の正常な動作の観点から電気絶縁性を有することも、重要な要求特性になっている。
In recent years, electrical and electronic devices are becoming lighter, thinner, and faster. Therefore, heat generation density tends to increase in heat generating electronic components such as arithmetic elements such as LEDs and CPUs and power transistors incorporated as internal components. Since these heats have an adverse effect on the product life and normal operation, it is becoming increasingly important to quickly diffuse, dissipate, cool, and eliminate the heat spots.
In addition, these members that diffuse heat, etc., are flame retardant for safety and have electrical insulation from the viewpoint of normal operation of electrical and electronic equipment. It has become.
通常、このような熱を放熱させるために、ヒートパイプ、ヒートシンクや、アルミ、銅製の放熱プレート等の放熱部品等を用いて、熱を伝達して逃がす方法が多く採用されている。このような放熱部品としては、発熱性電子部品との接触抵抗を小さくする目的で、シリコーンゴム製の放熱パッドや放熱シート、放熱グリス等が多用されている(例えば、特許文献1及び2)。しかし、シリコーンゴムは、低分子量シロキサンの揮散による電子部品への悪影響が懸念される。 In general, in order to dissipate such heat, many methods of transferring heat by using heat pipes, heat sinks, heat dissipating parts such as aluminum and copper heat dissipating plates, etc. are used. As such heat radiating components, silicone rubber heat radiating pads, heat radiating sheets, heat radiating grease, and the like are frequently used for the purpose of reducing contact resistance with heat-generating electronic components (for example, Patent Documents 1 and 2). However, there is a concern that silicone rubber may adversely affect electronic components due to volatilization of low molecular weight siloxane.
シリコーンゴム組成物で構成された放熱部品に替わるものとして、アクリルゴムを用いたものもある(例えば、特許文献3及び4)。しかし、アクリルゴムは電気絶縁性に劣るという問題がある。 As an alternative to the heat dissipating component composed of a silicone rubber composition, there is one using acrylic rubber (for example, Patent Documents 3 and 4). However, there is a problem that acrylic rubber is inferior in electrical insulation.
ところで、電子部品の動作時に発生する熱により軟化して界面接触熱抵抗が無視できるレベルとなる、ポリオレフィン系熱伝導性組成物からなる熱軟化性放熱シートが特許文献5に記載されている。具体的には、特許文献5に記載の「熱軟化性放熱シート」は、熱軟化成分としての、炭素数が19〜53のα−オレフィン重合体、重合度pが5〜500のエチレン・α−オレフィン共重合体及びエチレン・α−オレフィン・末端ビニル基含有ノルボルネン共重合体の3成分を必須成分とするポリオレフィンと、熱伝導性充填剤とを含有してなる特定の物性を有するポリオレフィン系熱伝導性組成物からなる。 Incidentally, Patent Document 5 discloses a thermosoftening heat-dissipating sheet made of a polyolefin-based heat conductive composition that is softened by heat generated during operation of an electronic component and has a level at which the interfacial contact thermal resistance can be ignored. Specifically, the “thermosoftening heat-dissipating sheet” described in Patent Document 5 is an α-olefin polymer having 19 to 53 carbon atoms and ethylene · α having a polymerization degree p of 5 to 500 as a thermosoftening component. -Polyolefin heat having specific physical properties, comprising a polyolefin comprising three components of an olefin copolymer and an ethylene / α-olefin / terminal vinyl group-containing norbornene copolymer as essential components, and a thermally conductive filler. It consists of a conductive composition.
上述のような放熱部品として、放熱パッドや放熱シートなどは、基板などへの貼り付け作業性を改善するために粘着剤層が設けられることもある。しかし、熱抵抗を小さくするために薄肉にされた放熱部品に粘着剤層を設けると、作業上貼り直す必要が生じたときに基板などから剥離する際に破れやすく、また貼り付け状態に再現性がなく貼り直し作業性が悪化するという問題がある。 As the heat radiation component as described above, a heat radiation pad, a heat radiation sheet, or the like may be provided with an adhesive layer in order to improve workability of attaching to a substrate or the like. However, if an adhesive layer is provided on a heat dissipation component that has been thinned to reduce thermal resistance, it will be easy to tear when it is peeled off from the substrate, etc., and it will be reproducible when attached. There is a problem that the workability of re-sticking deteriorates.
したがって、本発明は、難燃性、高熱伝導性及び電気絶縁性を発揮するうえ、薄肉状に成形され、粘着剤層が設けられたものであっても貼り直し作業性に優れる高熱伝導性混和物、並びに、この高熱伝導性混和物を用いた高熱伝導性成形体を提供することを課題とする。 Therefore, the present invention exhibits flame retardancy, high thermal conductivity and electrical insulation, and also has a high thermal conductivity admixture that is excellent in workability for reattachment even if it is molded into a thin wall and is provided with an adhesive layer. It is an object of the present invention to provide a product and a high thermal conductive molded article using the high thermal conductive mixture.
本発明者らは、上記課題に鑑み、鋭意検討を行ったところ、エチレン−プロピレンゴムとエチレン−ブテンゴムとを特定の質量割合で含有するα−オレフィン共重合ゴムをマトリックスゴムとし、これに対し所定量の熱伝導性フィラーを配合した高熱伝導性混和物を成形することで、難燃性、熱伝導性及び電気絶縁性を併せ持ち、しかも、粘着剤層が設けられた薄肉状のものであっても貼り直し作業性に優れる高熱伝導性成形体が得られることを見出した。しかも、この高熱伝導性混和物は電子部品から発生する熱によって軟化しにくいこともわかった。本発明はこれらの知見に基づいて完成された。 In view of the above-mentioned problems, the present inventors have made extensive studies, and an α-olefin copolymer rubber containing ethylene-propylene rubber and ethylene-butene rubber at a specific mass ratio is used as a matrix rubber. By molding a highly heat conductive blend containing a certain amount of heat conductive filler, it has both flame retardancy, heat conductivity and electrical insulation, and is a thin-walled one with an adhesive layer. It has also been found that a highly heat-conductive molded article excellent in workability can be obtained. In addition, it was also found that this highly heat-conductive mixture is not easily softened by heat generated from electronic components. The present invention has been completed based on these findings.
本発明の課題は、以下の手段によって達成された。
(1)エチレン−プロピレンゴム及びエチレン−α−オレフィン(ただし、プロピレンを除く)ゴムを前記エチレン−プロピレンゴムと前記エチレン−α−オレフィンとの質量割合が10:90〜70:30で含むα−オレフィン共重合ゴム100質量部と、熱伝導性フィラー300〜700質量部とを含有する高熱伝導性混和物。
(2)前記エチレン−α−オレフィンゴムが、エチレン−ブテンゴムである(1)に記載の高熱伝導性混和物。
(3)前記エチレン−α−オレフィンゴムが、40〜100℃の融点を有する(1)又は(2)に記載の高熱伝導性混和物。
(4)前記熱伝導性フィラーが、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種である(1)〜(3)のいずれか1項に記載の高熱伝導性混和物。
(5)前記熱伝導性フィラーが、金属水酸化物を前記α−オレフィン共重合ゴム100質量部に対して少なくとも200質量部含む(1)〜(3)のいずれか1項に記載の高熱伝導性混和物。
(6)(1)〜(5)のいずれか1項に記載の高熱伝導性混和物を成形してなる高熱伝導性成形体。
(7)厚さが0.1〜1.0mmのシート状に成形された(6)に記載の高熱伝導性成形体。
The object of the present invention has been achieved by the following means.
(1) α- containing ethylene-propylene rubber and ethylene-α-olefin (excluding propylene) rubber in a mass ratio of 10:90 to 70:30 of the ethylene-propylene rubber and the ethylene-α-olefin. A high thermal conductive admixture containing 100 parts by mass of an olefin copolymer rubber and 300 to 700 parts by mass of a thermal conductive filler.
(2) The high thermal conductive admixture according to (1), wherein the ethylene-α-olefin rubber is ethylene-butene rubber.
(3) The high thermal conductive admixture according to (1) or (2), wherein the ethylene-α-olefin rubber has a melting point of 40 to 100 ° C.
(4) Any of (1) to (3), wherein the thermally conductive filler is at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum oxide, magnesium oxide, aluminum nitride, and boron nitride. The high thermal conductivity admixture according to claim 1.
(5) The high thermal conductivity according to any one of (1) to (3), wherein the thermally conductive filler includes at least 200 parts by mass of a metal hydroxide with respect to 100 parts by mass of the α-olefin copolymer rubber. Sex admixture.
(6) A high thermal conductivity molded body obtained by molding the high thermal conductivity mixture according to any one of (1) to (5).
(7) The high thermal conductive molded article according to (6), which is molded into a sheet having a thickness of 0.1 to 1.0 mm.
本発明の高熱伝導性混和物及び高熱伝導性成形体の「高熱伝導性」とは、本発明の高熱伝導性混和物及び高熱伝導性成形体が有する性質であって、熱伝導率が1W/mk以上であることをいう。
また、熱伝導性フィラーの「熱伝導性」とは、フィラーが有する性質であって、配合することにより、混和物の熱伝導率を上昇させうるものいう。
The “high thermal conductivity” of the high thermal conductivity mixture and the high thermal conductivity molded body of the present invention is a property of the high thermal conductivity mixture and the high thermal conductivity molding of the present invention, and has a thermal conductivity of 1 W / It means more than mk.
The “thermal conductivity” of the thermally conductive filler refers to a property of the filler, which can increase the thermal conductivity of the mixture when blended.
本発明の高熱伝導性成形体は熱を効率よく伝達することが可能であり、優れた難燃性と電気絶縁性を示す。また、薄肉状に成形され、粘着剤層が設けられたものであっても貼り直し作業性も良く、前述の電気・電子機器類におけるヒートスポットの解消、均熱化、熱拡散等の用途に好適に用いることができる。 The high thermal conductive molded body of the present invention can efficiently transfer heat and exhibits excellent flame retardancy and electrical insulation. In addition, even if it is molded into a thin shape and has an adhesive layer, it is easy to re-attach, and it can be used for applications such as elimination of heat spots, temperature equalization, and heat diffusion in the aforementioned electrical and electronic devices. It can be used suitably.
以下に、本発明の実施の形態について、さらに詳しく説明するが、本発明は下記実施の態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail, but the present invention is not limited to the following embodiments.
本発明の高熱伝導性混和物は、α−オレフィン共重合ゴムとして、エチレン−プロピレンゴム及びエチレン−α−オレフィン(ただし、プロピレンを除く)ゴムを、エチレン−プロピレンゴムとエチレン−α−オレフィンとの質量割合(エチレン−プロピレンゴム:エチレン−α−オレフィン)が10:90〜70:30で、含有し、熱伝導性フィラーをα−オレフィン共重合ゴム100質量部に対して300〜700質量部含有する。 The high thermal conductivity admixture of the present invention comprises an ethylene-propylene rubber and an ethylene-α-olefin (excluding propylene) rubber as an α-olefin copolymer rubber, and an ethylene-propylene rubber and an ethylene-α-olefin. The mass ratio (ethylene-propylene rubber: ethylene-α-olefin) is 10:90 to 70:30, and the heat conductive filler is contained in an amount of 300 to 700 parts by mass with respect to 100 parts by mass of the α-olefin copolymer rubber. To do.
(α−オレフィン共重合ゴム)
本発明に用いるα−オレフィン共重合ゴムは、本発明の高熱伝導性混和物ベースとなるゴム(ベースゴム)であって、エチレン−プロピレンゴム及びエチレン−α−オレフィン(ただし、プロピレンを除く)ゴム(単に「エチレン−α−オレフィンゴム」ということがある。)を含有する。エチレン−α−オレフィンゴムは電気絶縁性に優れ、成形体の強度を強くし、架橋成形体はもちろん非架橋成形体であっても優れた形状保持性がある。エチレン−プロピレンゴムも電気絶縁性に優れ、柔軟性があり熱伝導性フィラー受容性が高く、熱伝導性フィラーを多量に配合するのに適している。このように、α−オレフィン共重合ゴムとして、特定の組み合わせのゴム、すなわちエチレン−プロピレンゴムとエチレン−α−オレフィンゴムとの組み合わせからなるゴムを用いると、後述するように、架橋性であっても非架橋性であっても、難燃性、高熱伝導性及び電気絶縁性を併せ持つことができる。
(Α-olefin copolymer rubber)
The α-olefin copolymer rubber used in the present invention is a rubber (base rubber) that is the base of the high thermal conductivity admixture of the present invention, and is an ethylene-propylene rubber and an ethylene-α-olefin (however, excluding propylene) rubber. (Simply referred to as “ethylene-α-olefin rubber”). Ethylene-α-olefin rubber is excellent in electrical insulation, enhances the strength of the molded body, and has excellent shape retention even in a non-crosslinked molded body as well as a crosslinked molded body. Ethylene-propylene rubber is also excellent in electrical insulation, flexible and has high heat conductive filler receptivity, and is suitable for blending a large amount of heat conductive filler. Thus, as the α-olefin copolymer rubber, when a specific combination of rubbers, that is, a rubber composed of a combination of ethylene-propylene rubber and ethylene-α-olefin rubber is used, it is crosslinkable as described later. Even if it is non-crosslinkable, it can have both flame retardancy, high thermal conductivity and electrical insulation.
エチレン−プロピレンゴムは、エチレンとプロピレンとの二元共重合体(EPM)、エチレンと、プロピレンと、ジシクロペンタジエン(DCPD)、エチリデンノルボルネン(ENB)、1,4−ヘキサジエンのような非共役ジエンとの三元共重合体が挙げられる。エチレン−プロピレンゴムは、各構成成分が交互に重合してなる交互共重合体であってもよく、各構成成分のセグメントが繰り返して結合してなるブロック共重合体でもよく、各構成成分のセグメントが繰り返して結合し、いずれかのセグメントの長さがランダムになっているランダム共重合体であってもよく、いずれかの構成成分がグラフト重合してなるグラフト共重合体でもよく、またこれらの混合物であってもよい。
エチレン−プロピレンゴムは、後述する本発明の高熱伝導性成形体を橋架け(架橋ともいう)する場合は上述のなかでも三元共重合体が好適であり、橋架けしない場合は二元共重合体及び三元共重合体のいずれも好適である。
Ethylene-propylene rubber is a binary copolymer of ethylene and propylene (EPM), non-conjugated dienes such as ethylene, propylene, dicyclopentadiene (DCPD), ethylidene norbornene (ENB), 1,4-hexadiene. And a ternary copolymer. The ethylene-propylene rubber may be an alternating copolymer in which each constituent component is alternately polymerized, or may be a block copolymer in which segments of each constituent component are repeatedly bonded. May be a random copolymer in which the length of any of the segments is random, or may be a graft copolymer obtained by graft polymerization of any of the constituent components. It may be a mixture.
As the ethylene-propylene rubber, a terpolymer is preferable among the above when the high thermal conductive molded body of the present invention described later is crosslinked (also referred to as crosslinking), and a binary copolymer is used when it is not crosslinked. Both coalesced and terpolymers are suitable.
エチレン−プロピレンゴムは、特に限定されるものではないが、低分子量又は中程度の分子量のものが好ましい。具体的には、JIS K6300に規定する「ムーニー粘度ML1+4(100℃)」で100以下のものが好ましい。ムーニー粘度ML1+4(100℃)が100より高いものは、高分子量であるため柔軟性に劣り、熱伝導性フィラー受容性にも劣ることがある。柔軟性及び熱伝導性フィラー受容性に優れる点で、ムーニー粘度ML1+4(100℃)は80以下であるのがより好ましく、80〜20であるのが好ましい。 The ethylene-propylene rubber is not particularly limited, but preferably has a low molecular weight or a medium molecular weight. Specifically, “Mooney viscosity ML1 + 4 (100 ° C.)” defined in JIS K6300 is preferably 100 or less. Those having a Mooney viscosity ML1 + 4 (100 ° C.) higher than 100 are high in molecular weight and thus poor in flexibility and heat conductive filler receptivity. The Mooney viscosity ML1 + 4 (100 ° C.) is more preferably 80 or less, and preferably 80 to 20 in terms of excellent flexibility and heat-conducting filler acceptability.
エチレン−プロピレンゴムは、市販品を用いてもよく、例えば、市販品として、日本合成ゴム製EP11、21、22、24、25、25、51(いずれも商品名)、住友化学製エスプレン201、301、305、400、505A(いずれも商品名)、三井化学製EPT0045、1045、3045、3070(いずれも商品名)等がある。 As the ethylene-propylene rubber, a commercially available product may be used. For example, as a commercially available product, EP11, 21, 22, 24, 25, 25, 51 (all trade names) made by Nippon Synthetic Rubber, Esprene 201 made by Sumitomo Chemical, 301, 305, 400, and 505A (all are trade names), EPT0045, 1045, 3045, and 3070 (all are trade names) manufactured by Mitsui Chemicals.
エチレン−α−オレフィンゴムは、エチレンとプロピレンを除くα−オレフィンとの二元共重合体(EPM)、エチレンと、プロピレンを除くα−オレフィンと、ジシクロペンタジエン(DCPD)、エチリデンノルボルネン(ENB)、1,4−ヘキサジエンのような非共役ジエンとの三元共重合体が挙げられる。エチレン−α−オレフィンゴムは、ブロック共重合体、交互重合体、ランダム共重合体、グラフト共重合体でもよく、またこれらの混合物であってもよい。
エチレン−α−オレフィンゴムは、後述する本発明の高熱伝導性成形体を橋架けする場合は上述のなかでも三元共重合体が好適であり、橋架けしない場合は二元共重合体及び三元共重合体のいずれも好適である。
Ethylene-α-olefin rubber is a binary copolymer (EPM) of α-olefin excluding ethylene and propylene, α-olefin excluding ethylene and propylene, dicyclopentadiene (DCPD), ethylidene norbornene (ENB) And terpolymers with non-conjugated dienes such as 1,4-hexadiene. The ethylene-α-olefin rubber may be a block copolymer, an alternating polymer, a random copolymer, a graft copolymer, or a mixture thereof.
As the ethylene-α-olefin rubber, a terpolymer is preferable among the above when the highly heat-conductive molded article of the present invention to be described later is bridged, and the binary copolymer and ternary are used when the bridge is not bridged. Any of the original copolymers is suitable.
ここで、α−オレフィンは、プロピレンを除くα−オレフィン、すなわち、炭素数4以上のα−オレフィンである。このα−オレフィンは、柔軟性の点で、炭素数が12以下であるのが好ましく、8以下であるのがより好ましい。このようなα−オレフィンとして、ブテン、ヘキセン、オクテン、デセン、ドデセン等が挙げられる。α−オレフィンは、これらの中でも、難燃性、熱伝導性及び電気絶縁性に優れ、しかも適度な柔軟性と高い強度を両立できる点で、ブテンであるのが好ましい。 Here, the α-olefin is an α-olefin excluding propylene, that is, an α-olefin having 4 or more carbon atoms. The α-olefin preferably has 12 or less carbon atoms, and more preferably 8 or less from the viewpoint of flexibility. Examples of such α-olefins include butene, hexene, octene, decene, dodecene and the like. Among these, the α-olefin is preferably butene because it is excellent in flame retardancy, thermal conductivity and electrical insulation, and can achieve both moderate flexibility and high strength.
エチレン−α−オレフィンゴムは、特に限定されるものではないが、加工性の点から、融点が40〜100℃であるのが好ましい。融点が40℃未満では成形時のダレ(変形)が大きくなり、融点が100℃を超えるものでは硬くなって混合加工性が悪くなることがある。この点からより好ましくは融点が50〜90℃である。エチレン−α−オレフィンゴムの融点は、昇温速度10℃/分条件の下、示差走査熱量測定(DSC)により、測定できる。 Although ethylene-alpha-olefin rubber is not specifically limited, It is preferable that melting | fusing point is 40-100 degreeC from the point of workability. When the melting point is less than 40 ° C., sagging (deformation) during molding becomes large, and when the melting point exceeds 100 ° C., it becomes hard and mixing workability may deteriorate. In this respect, the melting point is more preferably 50 to 90 ° C. The melting point of the ethylene-α-olefin rubber can be measured by differential scanning calorimetry (DSC) under a temperature rising rate of 10 ° C./min.
エチレン−α−オレフィンゴムゴムは、市販品を用いてもよく、例えば、市販品として、三井化学製エラストマーK9720(商品名)、三井化学製エラストマーX75(商品名)、住友化学製エクセレンFX301及びFX307(共に商品名)等がある。 As the ethylene-α-olefin rubber rubber, commercially available products may be used. For example, as commercial products, Mitsui Chemicals elastomer K9720 (trade name), Mitsui Chemicals elastomer X75 (trade name), Sumitomo Chemical Exelen FX301 and FX307 ( Both are trade names).
α−オレフィン共重合ゴムは、エチレン−プロピレンゴムとエチレン−α−オレフィンゴムとを10:90〜70:30の質量割合で含有する。エチレン−プロピレンゴム及びエチレン−α−オレフィンゴムを上述の質量割合で含有すると、柔軟性と強度を保ちながら加工性に優れるという効果が得られる。この効果に優れる点で、エチレン−プロピレンゴム及びエチレン−α−オレフィンゴムの質量割合は20:80〜60:40であるのが好ましい。 The α-olefin copolymer rubber contains ethylene-propylene rubber and ethylene-α-olefin rubber in a mass ratio of 10:90 to 70:30. When the ethylene-propylene rubber and the ethylene-α-olefin rubber are contained in the above-described mass ratio, an effect of excellent workability can be obtained while maintaining flexibility and strength. In terms of excellent effects, the mass ratio of the ethylene-propylene rubber and the ethylene-α-olefin rubber is preferably 20:80 to 60:40.
(熱伝導性フィラー)
本発明に用いる熱伝導性フィラーは、放熱部品に通常用いられ、上述の性質を有する熱伝導性フィラーであれば特に制限されることなく、用いることができ、例えば、金属水酸化物、金属酸化物及び熱導電性窒化物などが挙げられる。具体的には、金属水酸化物として、水酸化アルミニウム、水酸化マグネシウム等が挙げられ、金属酸化物として、酸化アルミニウム、酸化マグネシウム、酸化亜鉛等が挙げられ、熱導電性窒化物として、窒化アルミニウム、窒化ホウ素等が挙げられる。
(Thermal conductive filler)
The thermally conductive filler used in the present invention can be used without particular limitation as long as it is a heat conductive filler that is usually used for heat dissipation parts and has the above-described properties. For example, metal hydroxide, metal oxide And thermal conductive nitrides. Specifically, examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide, examples of the metal oxide include aluminum oxide, magnesium oxide, and zinc oxide. Examples of the thermally conductive nitride include aluminum nitride. And boron nitride.
これらの中でも、熱伝導性フィラーは、熱伝導性の点で、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種であるのが好ましい。
特に、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物は、熱伝導性に優れる他、難燃性にも優れており、より優れた難燃性を熱伝導性と同時に付与することが可能であるため、本発明の用途に適している。この場合、熱伝導性フィラーは、少なくとも1種の金属水酸化物を含んでいればよく、金属水酸化物のみを含んでいても、また金属水酸化物の少なくとも1種と金属酸化物及び熱導電性窒化物の少なくとも1種とを含んでいてもよい。少なくとも1種の金属水酸化物と併用される該「金属酸化物及び熱導電性窒化物の少なくとも1種」としては、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種であるのが好ましい。
Among these, the thermally conductive filler is at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide, aluminum oxide, magnesium oxide, aluminum nitride, and boron nitride in terms of thermal conductivity. preferable.
In particular, metal hydroxides such as aluminum hydroxide and magnesium hydroxide are excellent in thermal conductivity and also in flame retardancy, and it is possible to impart more excellent flame retardancy at the same time as thermal conductivity. Therefore, it is suitable for the use of the present invention. In this case, the thermally conductive filler only needs to contain at least one metal hydroxide, and may contain only the metal hydroxide, or at least one metal hydroxide, the metal oxide, and the heat. It may contain at least one kind of conductive nitride. The “at least one of metal oxide and thermally conductive nitride” used in combination with at least one metal hydroxide is at least selected from the group consisting of aluminum oxide, magnesium oxide, aluminum nitride and boron nitride. One type is preferred.
熱伝導性フィラーの含有量は、α−オレフィン共重合ゴム100質量部に対して、300〜700質量部である。この含有量で熱伝導性フィラーが含有されていると、熱伝導性を付与しながらシートとしての柔軟性を保つことができる。熱伝導性と柔軟性とをより高い水準で両立できる点で、熱伝導性フィラーの含有量は400〜600質量部であるのが好ましい。 Content of a heat conductive filler is 300-700 mass parts with respect to 100 mass parts of alpha olefin copolymer rubber. When the thermally conductive filler is contained with this content, the flexibility as a sheet can be maintained while imparting thermal conductivity. It is preferable that content of a heat conductive filler is 400-600 mass parts at the point which can make heat conductivity and a softness compatible at a higher level.
特に、熱伝導性フィラーが金属水酸化物を含む場合は、金属水酸化物の配合量は、熱伝導性フィラー全体の配合量が上述の範囲内になるように設定され、難燃性の点で、α−オレフィン共重合ゴム100質量部に対して、200質量部以上であるのが好ましく、300質量部以上であるのがより好ましく、350質量部以上であるがさらに好ましく、一方、700質量部以下であるのが好ましく、600質量部以下であるのが好ましい。 In particular, when the thermally conductive filler contains a metal hydroxide, the blending amount of the metal hydroxide is set so that the blending amount of the entire thermally conductive filler is within the above-mentioned range. Thus, it is preferably 200 parts by mass or more, more preferably 300 parts by mass or more, further preferably 350 parts by mass or more, more preferably 700 parts by mass with respect to 100 parts by mass of the α-olefin copolymer rubber. Part or less, preferably 600 parts by weight or less.
(その他の成分)
本発明の高熱伝導性混和物は、必要に応じて、上記α−オレフィン共重合ゴム及び熱伝導性フィラー以外の成分を含有していてもよい。このような成分として、例えば、可塑剤、粘着付与剤、酸化防止剤、老化防止剤、光安定剤、銅害防止剤、加工助剤等が挙げられる。
可塑剤は、α−オレフィン共重合ゴムと相溶性の良いパラフィン系鉱物油が好ましく、α−オレフィン共重合ゴムと同量以下の配合量にて用いても良い。また、酸化防止剤や老化防止剤、加工助剤等はα−オレフィン共重合ゴム100質量部に対して、通常、0.1〜5質量部配合されるが、必要に応じて10質量部程度まで配合されることもある。
(Other ingredients)
The high heat conductive admixture of the present invention may contain components other than the α-olefin copolymer rubber and the heat conductive filler as necessary. Examples of such components include plasticizers, tackifiers, antioxidants, anti-aging agents, light stabilizers, copper damage inhibitors, and processing aids.
The plasticizer is preferably a paraffinic mineral oil having good compatibility with the α-olefin copolymer rubber, and may be used in an amount equal to or less than that of the α-olefin copolymer rubber. Moreover, although antioxidant, anti-aging agent, processing aid, etc. are 0.1-5 mass parts normally with respect to 100 mass parts of alpha olefin copolymer rubber, about 10 mass parts is needed as needed. May be blended.
上述のα−オレフィン共重合ゴム及び熱伝導性フィラーを含有する本発明の高熱伝導性混和物は、橋架け構造を有していなくても、すなわち架橋していなくても強度が強く、高温(100℃)環境下に放置しても軟化、流動することもない形状保持性に優れた混和物である。したがって、本発明の高熱伝導性混和物は、成形後も架橋していない高熱伝導性非架橋成形体を形成する材料としての非架橋性混和物であっても、また成形後に架橋された高熱伝導性架橋性成形体を形成する材料としての架橋性混和物であってもよい。
なお、非架橋性混和物は、その全部が非架橋性でなくてもよく、意図しないものであればその一部が橋架け、すなわち架橋しうるものであってもよい。また、架橋性混和物は、通常、その一部、例えば高熱伝導性架橋性成形体の架橋度が後述する範囲を満たす程度に、架橋性であればよい。非架橋性混和物であるとコストを大幅に低減でき、一方、架橋性混和物であるとより一層高い強度および耐熱性を発揮する。
The high thermal conductive admixture of the present invention containing the above-mentioned α-olefin copolymer rubber and the thermal conductive filler has high strength even if it does not have a bridge structure, that is, it is not cross-linked. (100 ° C.) An admixture with excellent shape retention that does not soften or flow even when left in an environment. Therefore, the highly heat-conductive blend of the present invention may be a non-crosslinkable blend as a material for forming a highly heat-conductive non-crosslinked molded article that has not been crosslinked even after molding, It may be a crosslinkable mixture as a material for forming a crosslinkable molded article.
The non-crosslinkable admixture may not be entirely non-crosslinkable, and if it is not intended, a part of the non-crosslinkable admixture may be bridged, that is, crosslinkable. In addition, the crosslinkable admixture may be crosslinkable to such an extent that the crosslinkability of a part thereof, for example, the degree of cross-linking of the highly heat-conductive crosslinkable molded product satisfies a range described later. Non-crosslinkable admixtures can greatly reduce costs, while crosslinkable admixtures exhibit even higher strength and heat resistance.
本発明の高熱伝導性混和物が架橋性混和物である場合は、所望により、架橋剤、架橋助剤、ラジカル重合開始剤等を含有していてもよい。
架橋剤及び架橋助剤は架橋方法によって使用してもしなくてもよい。使用可能な架橋剤及び架橋助剤は、特に限定されず、例えば、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、ジクミルパーオキサイド、ベンゾイルパーオキサイド、イオウ、ジメタクリル酸エチレングリコール、トリアリルイソシアヌレート、ジアリルフタレート、ジビニルベンゼン、メタフェニレンビスマレイミド、パラキノンジオキシム、ベンゾイルキノンジオキシム、ジメチル・ジチオカルバミン酸、2−メルカプトベンゾチアゾール等が挙げられる。架橋剤及び架橋助剤の量は、α−オレフィン共重合ゴム100質量部に対して1〜10質量部が好ましい。
ラジカル重合開始剤は、α−オレフィン共重合ゴム又は架橋剤の架橋反応を開始させるラジカルを発生するものであれば特に限定されず、例えば、熱分解法などの簡易な方法によりラジカルを発生する有機過酸化物が好ましい。このような有機過酸化物としては、特に限定されず、例えば、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシエステル類等が挙げられる。ラジカル重合開始剤の量は、α−オレフィン共重合ゴム100質量部に対して1〜10質量部が好ましい。
When the highly heat-conductive admixture of the present invention is a cross-linkable admixture, it may contain a cross-linking agent, a cross-linking aid, a radical polymerization initiator and the like as desired.
The crosslinking agent and crosslinking aid may or may not be used depending on the crosslinking method. Usable crosslinking agents and crosslinking aids are not particularly limited. For example, 1,1-bis (t-butylperoxy) cyclohexane, dicumyl peroxide, benzoyl peroxide, sulfur, ethylene glycol dimethacrylate, Examples include allyl isocyanurate, diallyl phthalate, divinyl benzene, metaphenylene bismaleimide, paraquinone dioxime, benzoyl quinone dioxime, dimethyl dithiocarbamic acid, 2-mercaptobenzothiazole and the like. As for the quantity of a crosslinking agent and a crosslinking adjuvant, 1-10 mass parts is preferable with respect to 100 mass parts of alpha olefin copolymer rubber.
The radical polymerization initiator is not particularly limited as long as it generates a radical that initiates a crosslinking reaction of an α-olefin copolymer rubber or a crosslinking agent. For example, an organic substance that generates a radical by a simple method such as a thermal decomposition method is used. Peroxides are preferred. Such an organic peroxide is not particularly limited, and examples thereof include hydroperoxides, dialkyl peroxides, and peroxyesters. The amount of the radical polymerization initiator is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the α-olefin copolymer rubber.
本発明の高熱伝導性混和物は、上述の各成分を混練することにより、得ることができる。したがって、本発明の高熱伝導性混和物は高熱伝導性組成物ということもできる。
具体的には、本発明の高熱伝導性混和物は、固形分である、α−オレフィン共重合ゴムと熱伝導性フィラーと所望により各種添加剤等とをバンバリーミキサー、ニーダー等の密閉型混練機、単軸押出機、二軸押出機等の押出機、又はオープンロール等の開放型混練機にて均一になるまで十分よく混練する。このとき用いる混練機、押出機等は、熱伝導性フィラーとα−オレフィン共重合ゴムを十分に混合、攪拌できる装置であれば特に制限はない。熱伝導性フィラーは一括して配合し、混練してもよいし、数回に分けて混練してもよい。なお、上述の各成分を混練のときの混練条件等は特に限定されない。
The highly heat-conductive admixture of the present invention can be obtained by kneading the above-described components. Therefore, the highly heat-conductive mixture of the present invention can also be referred to as a high heat-conductive composition.
Specifically, the high thermal conductive admixture of the present invention is a solid kneader such as an olefin copolymer rubber, a thermal conductive filler, and various additives as desired, such as a Banbury mixer and a kneader. The mixture is kneaded sufficiently with an extruder such as a single-screw extruder or twin-screw extruder or an open kneader such as an open roll until it becomes uniform. The kneader, extruder, etc. used at this time are not particularly limited as long as the heat conductive filler and the α-olefin copolymer rubber can be sufficiently mixed and stirred. The thermally conductive fillers may be mixed and kneaded all at once, or may be kneaded in several times. In addition, the kneading | mixing conditions at the time of kneading | mixing each above-mentioned component are not specifically limited.
本発明の高熱伝導性成形体は、上述した、本発明の高熱伝導性混和物を成形してなる。この高熱伝導性成形体は、用途、適用箇所等に応じた形状、寸法を有していればよく、形状及び寸法は特に限定されない。例えば、高熱伝導性成形体が成形される形状として、帯状、シート状(板状)、パッド状、角柱体状(ブロック状)等が挙げられる。シート状成形体の厚さは、特に限定されないが、例えば、0.1〜1.0mmの厚さが挙げられる。厚さが0.1mm未満であると、高熱伝導性成形体の強度が低下して破れやすくなることがある。パッド状成形体の厚さは、シート状成形体よりも厚く、例えば、1.0mmを越え10mm以下の厚さが挙げられる。 The high thermal conductive molded body of the present invention is formed by molding the above-described high thermal conductive blend of the present invention. This high heat conductive molded body should just have the shape and dimension according to a use, an application location, etc., and a shape and a dimension are not specifically limited. For example, as a shape in which a highly heat-conductive molded object is shape | molded, strip | belt shape, sheet | seat shape (plate shape), pad shape, prismatic body shape (block shape) etc. are mentioned. Although the thickness of a sheet-like molded object is not specifically limited, For example, the thickness of 0.1-1.0 mm is mentioned. If the thickness is less than 0.1 mm, the strength of the high thermal conductive molded body may be reduced and easily broken. The thickness of the pad-shaped molded body is thicker than that of the sheet-shaped molded body, and examples thereof include a thickness exceeding 1.0 mm and 10 mm or less.
本発明の高熱伝導性成形体は、本発明の高熱伝導性混和物を成形して、製造される。本発明の高熱伝導性混和物の成形方法は、特に限定されず、例えば、圧延成形、プレス成形、押出成形等が挙げられる。
本発明の高熱伝導性成形体は、例えば、本発明の高熱伝導性成形体を、オープンロールや押し出し機、カレンダーロールを通すことで帯状又はシート状等に成形して得られる。所望により、この帯状成形体を、再度、成形して必要な厚さに調整してもよいし、押出機や熱圧プレスにかけて成形してもよい。
The high thermal conductive molded article of the present invention is produced by molding the high thermal conductive blend of the present invention. The molding method of the highly heat-conductive admixture of the present invention is not particularly limited, and examples thereof include rolling molding, press molding, and extrusion molding.
The high thermal conductive molded body of the present invention is obtained by molding the high thermal conductive molded body of the present invention into a strip shape or a sheet shape by passing through an open roll, an extruder, or a calendar roll, for example. If desired, this strip-shaped molded body may be molded again and adjusted to the required thickness, or may be molded by an extruder or a hot press.
ここで、本発明の高熱伝導性混和物にラジカル重合開始剤が含有されていない場合、また含有されていても成形温度がラジカル重合開始剤の分解温度よりも低い場合等は、得られる高熱伝導性成形体は、エチレン−プロピレンゴム、エチレン−α−オレフィンゴムが架橋せず、高熱伝導性非架橋成形体になる。なお、本発明の高熱伝導性非架橋成形体は、基本的にα−オレフィンゴムは架橋していないが、意図しない架橋を一部に含んでいてもよい。 Here, when the radical polymerization initiator is not contained in the high thermal conductivity admixture of the present invention, or when the molding temperature is lower than the decomposition temperature of the radical polymerization initiator even if it is contained, the resulting high thermal conductivity is obtained. In the conductive molded body, ethylene-propylene rubber and ethylene-α-olefin rubber are not crosslinked, and become a highly thermally conductive non-crosslinked molded body. In addition, although the α-olefin rubber is basically not crosslinked in the high thermal conductivity non-crosslinked molded article of the present invention, it may contain unintended crosslinking in part.
一方、エチレン−プロピレンゴム、エチレン−α−オレフィンゴムが架橋している高熱伝導性架橋成形体は次のようにして製造できる。すなわち、本発明の高熱伝導性混和物に電子線を照射して高熱伝導性架橋成形体を製造できる。また、本発明の高熱伝導性混和物に上述の架橋剤、架橋助剤及びラジカル重合開始剤の少なくとも1種を加えた後に、加熱等の橋架け手段を施して、高熱伝導性架橋成形体を化学的に橋架けすることにより製造できる。さらに、本発明の高熱伝導性混和物にシランカップリング剤等を加えてエチレン−プロピレンゴム及び/又エチレン−α−オレフィンゴムにシランカップリング剤をグラフト反応させた後に水に接触させてシラノール縮合させて、高熱伝導性架橋成形体を化学的に橋架けすることにより製造できる。
なお、本発明の高熱伝導性架橋成形体は、上述の方法等によってα−オレフィンゴムを架橋させたものであり、特に限定されないが、例えば、架橋度は10〜50%であるのが好ましい。橋架け度(架橋度)の測定方法は、JIS C 3005に準拠して測定を行う。ただし、試料の質量測定ではフィラーの配合量を差し引いて計算する。
On the other hand, a highly heat-conductive crosslinked molded article in which ethylene-propylene rubber and ethylene-α-olefin rubber are crosslinked can be produced as follows. That is, a highly heat-conductive crosslinked molded product can be produced by irradiating the highly heat-conductive mixture of the present invention with an electron beam. In addition, after adding at least one of the above-mentioned crosslinking agent, crosslinking aid and radical polymerization initiator to the high thermal conductive admixture of the present invention, a crosslinking means such as heating is applied to obtain a high thermal conductive crosslinked molded article. It can be manufactured by chemically bridging. Furthermore, a silane coupling agent or the like is added to the high thermal conductive admixture of the present invention, and the silane coupling agent is grafted to ethylene-propylene rubber and / or ethylene-α-olefin rubber, and then contacted with water to cause silanol condensation. Thus, it can be produced by chemically bridging the high thermal conductive crosslinked molded article.
The highly heat-conductive crosslinked molded article of the present invention is obtained by crosslinking α-olefin rubber by the above-described method and the like, and is not particularly limited. For example, the degree of crosslinking is preferably 10 to 50%. The method for measuring the degree of crosslinking (degree of crosslinking) is based on JIS C 3005. However, in the mass measurement of the sample, the calculation is performed by subtracting the blending amount of the filler.
本発明の高熱伝導性成形体は、上述したように熱軟化性に乏しく、また、薄膜であっても引張強さ及び引裂き強さが大きく、破れにくいから、取り扱い性、特に製造段階から梱包・輸送段階までの取り扱い性に優れる。
本発明の高熱伝導性成形体の一主面に粘着剤を薄く塗布して接着剤層を形成すると、高熱伝導性成形体の、基板等への貼り付け作業性をさらに向上させることができる。
As described above, the high thermal conductive molded article of the present invention has poor heat softening properties, and even a thin film has high tensile strength and tear strength, and is difficult to break. Excellent handling up to the transportation stage.
When an adhesive layer is formed by thinly applying a pressure-sensitive adhesive to one main surface of the high thermal conductivity molded body of the present invention, the workability of attaching the high thermal conductive molded body to a substrate or the like can be further improved.
本発明の高熱伝導性成形体は、高熱伝導性に加えて、優れた難燃性と電気絶縁性をも示す。したがって、本発明の高熱伝導性成形体は、高熱伝導性成形体であることに加えて、難燃性成形体とも、電気絶縁性成形体ともいうことができる。
このような高熱伝導性、難燃性及び電気絶縁性を有する本発明の高熱伝導性成形体、特に帯状、シート状、パッド状に成形したものは、電気・電子機器類の筐体等と発熱性電子部品との間に介装され、発熱性電子部品を放熱等させる放熱部品として好適である。
The high thermal conductivity molded body of the present invention exhibits excellent flame retardancy and electrical insulation in addition to high thermal conductivity. Therefore, in addition to being a high thermal conductive molded body, the high thermal conductive molded body of the present invention can be referred to as a flame retardant molded body or an electrically insulating molded body.
The highly heat-conductive molded product of the present invention having such high heat conductivity, flame retardancy and electrical insulation, particularly those formed into a band shape, a sheet shape, and a pad shape, generate heat with the housing of electric / electronic devices. It is suitable as a heat dissipating component that is interposed between the heat dissipating electronic component and radiates heat from the heat generating electronic component.
以下に、本発明を実施例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
エチレン−プロピレンゴム(EPM)70質量部及びエチレン−α−オレフィンゴムとしてエチレン−ブテンゴム30質量部を含有するα−オレフィン共重合ゴム100質量部と、熱伝導性フィラーとして水酸化アルミニウム400質量部とを加圧ニーダーにより130〜150℃の温度で混練して、高熱伝導性混和物を調製した。
この高熱伝導性混和物を押出成形機を用いて、80℃で厚さ0.5mm及び1.0mmのシート状に成形して、高熱伝導性非架橋成形体を製造した。
(Example 1)
70 parts by mass of ethylene-propylene rubber (EPM) and 100 parts by mass of α-olefin copolymer rubber containing 30 parts by mass of ethylene-butene rubber as the ethylene-α-olefin rubber, and 400 parts by mass of aluminum hydroxide as the thermally conductive filler Was kneaded with a pressure kneader at a temperature of 130 to 150 ° C. to prepare a highly heat-conductive mixture.
This highly heat conductive admixture was formed into a sheet having a thickness of 0.5 mm and 1.0 mm at 80 ° C. by using an extruder to produce a highly heat conductive non-crosslinked molded article.
(実施例2)
表1に示す配合に変更したこと以外は実施例1と同様にして高熱伝導性混和物及び高熱伝導性非架橋成形体を製造した。
(Example 2)
A high heat conductive admixture and a high heat conductive non-crosslinked molded article were produced in the same manner as in Example 1 except that the formulation shown in Table 1 was changed.
(実施例3)
エチレン−プロピレンゴム(EPM)40質量部及びエチレン−α−オレフィンゴムとしてエチレン−ブテンゴム60質量部を含有するα−オレフィン共重合ゴム100質量部と、熱伝導性フィラーとして水酸化アルミニウム450質量部及び酸化アルミニウム50質量部と、可塑剤1 5質量部とを加圧ニーダーにより130〜150℃の温度で混練して、高熱伝導性混和物を調製した。
この高熱伝導性混和物を押出装置を用いて、80℃で厚さ0.5mm及び1.0mmのシート状に成形して、高熱伝導性非架橋成形体を製造した。
Example 3
100 parts by mass of an α-olefin copolymer rubber containing 40 parts by mass of ethylene-propylene rubber (EPM) and 60 parts by mass of ethylene-butene rubber as an ethylene-α-olefin rubber, 450 parts by mass of aluminum hydroxide as a thermally conductive filler, and 50 parts by mass of aluminum oxide and 15 parts by mass of a plasticizer were kneaded by a pressure kneader at a temperature of 130 to 150 ° C. to prepare a highly heat-conductive admixture.
This highly heat conductive admixture was formed into a sheet having a thickness of 0.5 mm and 1.0 mm at 80 ° C. using an extrusion apparatus to produce a highly heat conductive non-crosslinked molded body.
(実施例4〜7)
表1に示す配合に変更したこと以外は実施例3と同様にして高熱伝導性混和物及び高熱伝導性非架橋成形体を製造した。
(Examples 4 to 7)
A high heat conductive admixture and a high heat conductive non-crosslinked molded article were produced in the same manner as in Example 3 except that the formulation shown in Table 1 was changed.
(実施例8)
α−オレフィン共重合ゴム及び熱伝導性フィラーにラジカル重合開始剤としてジクミルパーオキサイド1.8質量部を加えたこと以外は実施例3と同様にして高熱伝導性混和物を調製した。
この高熱伝導性混和物を押出成形機を用いて、80℃で厚さ0.6mm及び1.1mmのシート状に成形した。この1次成形体を、熱プレス機でプレス圧500MPa、プレス温度170℃、プレス時間15分間のプレス条件で、プレス成形と共に架橋させて、厚さ0.5mm及び1.0mmの高熱伝導性架橋成形体を製造した。この高熱伝導性架橋成形体の架橋度(上述の測定方法による)は30%であった。
(Example 8)
A highly thermally conductive admixture was prepared in the same manner as in Example 3, except that 1.8 parts by mass of dicumyl peroxide was added as a radical polymerization initiator to the α-olefin copolymer rubber and the thermally conductive filler.
This highly heat-conductive mixture was formed into a sheet having a thickness of 0.6 mm and 1.1 mm at 80 ° C. using an extruder. This primary molded body is cross-linked with press molding under a press condition of a press pressure of 500 MPa, a press temperature of 170 ° C. and a press time of 15 minutes with a hot press machine, and has a high thermal conductive cross-linkage having a thickness of 0.5 mm and 1.0 mm. A molded body was produced. The degree of cross-linking (by the above-described measuring method) of this highly heat-conductive cross-linked molded product was 30%.
(実施例9)
α−オレフィン共重合ゴム及び熱伝導性フィラーにラジカル重合開始剤としてジクミルパーオキサイド1.8質量部を加えたこと以外は実施例6と同様にして高熱伝導性混和物を調製した。
この高熱伝導性混和物を押出成形機を用いて、80℃で厚さmm0.6及び1.1mmのシート状に成形した。この1次成形体を、熱プレス機でプレス圧500MPa、プレス温度170℃、プレス時間15分間のプレス条件で、プレス成形と共に架橋させて、0.5及び1.0mm厚さの高熱伝導性架橋成形体を製造した。この高熱伝導性架橋成形体の架橋度(上述の測定方法による)は30%であった。
Example 9
A highly heat conductive admixture was prepared in the same manner as in Example 6 except that 1.8 parts by mass of dicumyl peroxide was added as a radical polymerization initiator to the α-olefin copolymer rubber and the heat conductive filler.
This highly heat-conductive mixture was formed into sheets having a thickness of 0.6 mm and 1.1 mm at 80 ° C. using an extruder. This primary molded body is cross-linked with press molding under a press condition of a press pressure of 500 MPa, a press temperature of 170 ° C. and a press time of 15 minutes with a hot press machine, and 0.5 and 1.0 mm thick high thermal conductive crosslinks. A molded body was produced. The degree of cross-linking (by the above-described measuring method) of this highly heat-conductive cross-linked molded product was 30%.
(比較例1〜4)
α−オレフィン共重合ゴム、熱伝導性フィラー及び可塑剤1を表2に示す配合量に変更したこと以外は実施例1と同様にして混和物及び成形体を製造した。
なお、比較例2は混合加工性が悪いうえ、混和物が硬すぎて成形できなかった。また、比較例4は各成分が全くまとまらずに混合すらできず、混和物を調製できなかった。
(比較例5)
α−オレフィン共重合ゴムに代えてアクリルゴム100質量部と、熱伝導性フィラーとして水酸化アルミニウム350質量部及び酸化アルミニウム100質量部と、可塑剤2 10質量部とを加圧ニーダー装置により130〜150℃で混練して混和物を調製した。この混和物を押出成形機を用いて、80℃で厚さ0.5mm及び1.0mmのシート状に成形して、成形体を製造した。
(Comparative Examples 1-4)
A blend and a molded article were produced in the same manner as in Example 1 except that the α-olefin copolymer rubber, the heat conductive filler, and the plasticizer 1 were changed to the blending amounts shown in Table 2.
In Comparative Example 2, the mixing processability was poor and the mixture was too hard to be molded. Further, in Comparative Example 4, the components were not mixed at all and could not be mixed, and an admixture could not be prepared.
(Comparative Example 5)
In place of the α-olefin copolymer rubber, 100 parts by mass of acrylic rubber, 350 parts by mass of aluminum hydroxide and 100 parts by mass of aluminum oxide as heat conductive fillers, and 10 parts by mass of plasticizer 210 are added by a pressure kneader device. The mixture was prepared by kneading at 150 ° C. This blend was molded into a sheet having a thickness of 0.5 mm and 1.0 mm at 80 ° C. using an extruder, and a molded body was produced.
実施例及び比較例において用いた混和物の各成分の詳細は以下に示す通りである。
<α−オレフィン共重合ゴム>
エチレン−プロピレンゴム(EPM):エチレン構成成分量52%、ムーニー粘度ML1+4(100℃)40
エチレン−ブテンゴム(EBM):融点68℃、エチレン構成成分量70%、第三構成成分(ジシクロペンタジエン)量及びブテン構成成分量の合計構成成分量30%、重量平均分子量(MW)87,000、数平均分子量(Mn)21,000
<熱伝導性フィラー>
水酸化アルミニウム:ボーキサイトからバイヤー法で製造されたギブサイトで平均粒径8μmの細粒、ドライ品(水分付着量0.1%)
水酸化マグネシウム:平均粒径3.5μmの微細粒粒子品(商品名:マグシーズ10A、神島化学工業製)
酸化アルミニウム:平均粒径35μmの球状品(商品名:AX35-125、新日鉄住金マテリアルズ製)
<可塑剤>
可塑剤1:パラフィン系プロセスオイル(商品名:PW-380、出光石油製)
可塑剤2:ポリエーテル系可塑剤(商品名:アデカサイザーRS700、旭電化製)
<アクリルゴム>
ムーニー粘度ML1+4(100℃)30のアクリルゴム(商品名:ニポールAR54、日本ゼオン製)
<ラジカル重合開始剤>
ジクミルパーオキサイド(DCP、商品名:パークミルD、日本油脂(株)製)
The detail of each component of the mixture used in the Example and the comparative example is as showing below.
<Α-olefin copolymer rubber>
Ethylene-propylene rubber (EPM): ethylene component amount 52%, Mooney viscosity ML1 + 4 (100 ° C.) 40
Ethylene-butene rubber (EBM): melting point 68 ° C., ethylene component amount 70%, third component (dicyclopentadiene) amount and butene component amount 30% total component amount, weight average molecular weight (MW) 87,000 , Number average molecular weight (Mn) 21,000
<Thermal conductive filler>
Aluminum hydroxide: Gibbsite produced from bauxite by the Bayer method, fine particles with an average particle size of 8μm, dry product (water adhesion 0.1%)
Magnesium hydroxide: fine particles with an average particle size of 3.5 μm (trade name: Magseeds 10A, manufactured by Kamishima Chemical Industries)
Aluminum oxide: spherical product with an average particle size of 35 μm (trade name: AX35-125, manufactured by Nippon Steel & Sumikin Materials)
<Plasticizer>
Plasticizer 1: Paraffinic process oil (trade name: PW-380, manufactured by Idemitsu Petroleum)
Plasticizer 2: Polyether plasticizer (trade name: Adeka Sizer RS700, manufactured by Asahi Denka)
<Acrylic rubber>
Acrylic rubber with Mooney viscosity ML1 + 4 (100 ° C) 30 (trade name: Nipol AR54, manufactured by Nippon Zeon)
<Radical polymerization initiator>
Dicumyl peroxide (DCP, trade name: Park Mill D, manufactured by NOF Corporation)
以下の方法によって各混和物及び各成形体を評価した。結果を表1及び表2に示す。
(混合加工性)
混和物を調製する際に、加圧ニーダーでの混練において、混練状態に問題なかったものを「○」、混練状態が悪かったものを「×」とした。
なお、「混練状態に問題ない」とは均一に分散して塊状のコンパウンドになったものをいい、「混練状態が悪い」とはまとまらずに粉状になったものをいう。
(成形性)
混和物を押出機に通して成形体を成形する際に、成形性に問題なかったものを「○」、成形性が悪かったものを「×」とした。
なお、「成形性に問題ない」とは一定の厚さと幅で均一なシート状に押し出されたものをいい、「成形性が悪い」とは硬くて吐出性が悪い、或いは折れや亀裂が入る等で均一なシート状にならないものをいう。
Each blend and each molded body were evaluated by the following method. The results are shown in Tables 1 and 2.
(Mixed workability)
In preparing the admixture, in the kneading with a pressure kneader, “○” indicates that there was no problem in the kneading state, and “x” indicates that the kneading state was bad.
Note that “no problem in kneading state” refers to a material that is uniformly dispersed into a lump compound, and “poor kneading state” refers to a powder that is not settled.
(Formability)
When the mixture was passed through an extruder to form a molded article, “○” was assigned when there was no problem in moldability, and “X” was indicated when the moldability was poor.
“No problem in formability” means that the sheet is extruded into a uniform sheet with a certain thickness and width, and “poor formability” means that it is hard and has poor ejection properties, or has broken or cracked. This means that the sheet does not become a uniform sheet.
(熱伝導性:熱伝導率(W/mk))
各成形体をJIS R 2616に規定の熱線法で測定した。測定値が1.3W/mk以上のものを「高熱伝導性」であるとして合格とする。
(電気絶縁性:体積抵抗率(Ω−cm))
1mm厚さのシートに成形した各成形体の体積抵抗率をJIS K6911に準拠して測定した。測定値が1×1012以上のものを「高電気絶縁性」であるとして合格とする。
(Thermal conductivity: thermal conductivity (W / mk))
Each molded body was measured by a hot wire method specified in JIS R 2616. A measured value of 1.3 W / mk or more is regarded as “high thermal conductivity” and passed.
(Electrical insulation: Volume resistivity (Ω-cm))
The volume resistivity of each molded body molded into a 1 mm thick sheet was measured according to JIS K6911. A measured value of 1 × 10 12 or more is regarded as “high electrical insulation” and passed.
(難燃性:UL94垂直燃焼性試験)
0.5mm厚さ(0.5mmtと表記することがある)のシートに成形した各成形体を用いて、UL94垂直燃焼性試験規格に準拠して、燃焼試験を行った。具体的には、成形体を垂直に支持し、成形体の下端にバーナーの炎を当てて10秒間保ち(第1回接炎)、その後バーナー炎を成形体から離した。その後、炎が消えれば直ちにバーナー炎を更に10秒間当てて(第2回接炎)バーナー炎を離した。評価は、V−0、V−1及び燃焼のいずれに該当するかを、基準にした。評価が「V−0」であった場合を「○」、「V−1」であった場合を「△」、「燃焼」であった場合を「×」とし、「△」以上を合格とする。
(i)成形体の第1回および第2回の接炎の有炎燃焼時間の合計が10秒以内であって、第2回目接炎後の有炎燃焼時間と無炎燃焼時間の合計が30秒以内のものを「V−0」とした。
(ii)成形体の第1回および第2回の接炎の有炎燃焼時間の合計が30秒以内であって、第2回目接炎後の有炎燃焼時間と無炎燃焼時間の合計が60秒以内のものを「V−1」とした。
(iii)成形体がバーナー炎を離した後上端まで継続して燃焼したもの又はV−1の時間を超えて燃焼したものを「燃焼」とした。
(Flame retardance: UL94 vertical flammability test)
Using each molded body formed into a sheet having a thickness of 0.5 mm (sometimes referred to as 0.5 mmt), a combustion test was performed in accordance with UL94 vertical flammability test standard. Specifically, the compact was supported vertically, a burner flame was applied to the lower end of the compact and held for 10 seconds (first flame contact), and then the burner flame was separated from the compact. Then, as soon as the flame disappeared, the burner flame was further applied for 10 seconds (second flame contact) to release the burner flame. The evaluation was based on whether it falls under V-0, V-1, or combustion. The case where the evaluation was “V-0” was “O”, the case where it was “V-1” was “△”, the case where it was “burning” was “X”, and the case where “Δ” or more was passed To do.
(I) The total of the flammable combustion time of the first and second flame contact of the molded body is within 10 seconds, and the total of the flammable combustion time and the flameless combustion time after the second flame contact is Those within 30 seconds were designated as “V-0”.
(Ii) The total of the flammable combustion time of the first and second flame contact of the molded body is within 30 seconds, and the sum of the flammable combustion time and the flameless combustion time after the second flame contact is The thing within 60 seconds was set to "V-1."
(Iii) A case where the molded body burned continuously to the upper end after releasing the burner flame or burned over the time of V-1 was defined as “burning”.
(引張強さ)
JIS K 6251「加硫ゴムの引張試験方法」に準拠し、1mm厚さシートでダンベル1号形試験片を作製して、引張速度500mm/分で測定した。
取り扱い性の目安として、引張強さは0.7N/mm2以上が良好なレベルである。
(引裂き強さ)
JIS K 6252「加硫ゴム及び熱可塑性ゴム引裂き強さの求め方」に準拠し、1mm厚さシートで切り込みなしアングル型試験片を作製して、引張速度500mm/分で測定した。
取り扱い性の目安として、引裂き強さは3N/mm以上が良好なレベルである。
(Tensile strength)
In accordance with JIS K 6251 “Tensile test method for vulcanized rubber”, a dumbbell No. 1 test piece was prepared from a 1 mm thick sheet and measured at a tensile speed of 500 mm / min.
As a measure of handleability, the tensile strength is a good level of 0.7 N / mm 2 or more.
(Tear strength)
In conformity with JIS K 6252 “How to determine the tear strength of vulcanized rubber and thermoplastic rubber”, a 1 mm thick sheet was used to produce an angle-type test piece without cutting and measured at a tensile speed of 500 mm / min.
As a measure of handleability, the tear strength is a good level of 3 N / mm or more.
(貼り直し作業性)
各成形体の一主面にアクリル系粘着剤(商品名:SKダイン1717、綜研化学製)を20μmの厚さで均一に塗布、乾燥して、粘着剤層を形成し、0.5mm×20mm×50mmの寸法に切り出した試験シートを、JIS C 2107に規定された自動圧着装置により、2kgゴムローラー1往復圧着でアルミニウム板に貼り付けた。5分後にアルミニウム板を試験シートから剥したときに試験シートが破れず、剥離前と同じようにアルミニウム板に再度貼り付けることができたものを「○」、試験シートが破れたものを「×」とした。
なお、この貼り直し作業性の試験において、破れることなく剥離できた試験シートは取り扱い性をも十分に満足するものである。
(Re-paste workability)
An acrylic pressure-sensitive adhesive (trade name: SK Dyne 1717, manufactured by Soken Chemical) is uniformly applied to a thickness of 20 μm on one main surface of each molded body and dried to form a pressure-sensitive adhesive layer. 0.5 mm × 20 mm A test sheet cut out to a size of 50 mm was attached to an aluminum plate by a reciprocating pressure of 1 kg of a 2 kg rubber roller by an automatic pressure bonding apparatus defined in JIS C 2107. When the aluminum plate was peeled off from the test sheet after 5 minutes, the test sheet was not torn, and “○” indicates that the aluminum sheet was pasted again in the same manner as before peeling, and “×” indicates that the test sheet was torn. "
In this re-sticking workability test, the test sheet that can be peeled without tearing sufficiently satisfies the handleability.
(硬度)
各成形体の硬度を、JIS K 7312に記載の方法(タイプC(アスカーC型))に準拠して、硬度を測定した。
(hardness)
The hardness of each molded body was measured in accordance with the method described in JIS K 7312 (type C (Asker C type)).
表1に示されるように、実施例1〜9は、いずれも、混合加工性、成形性が良好であり、熱伝導率、体積抵抗率とも合格しており、しかも難燃性もUL94V−0相当であった。さらに、引張強さ及び引裂き強さも大きく、貼り直し作業性試験において、破れることなく剥離でき、しかも同じ状態に再現性よく再度貼り付けることができ、薄肉状に成形され、粘着剤層が設けられても貼り直し作業性に問題はなかった。なお、実施例4及び7は、高熱伝導性混和物が少し硬く、押出速度が遅くなる傾向があったが、その程度は小さく、成形性を損なうほどではなかった。
また、実施例8及び9の高熱伝導性架橋成形体は、実施例1〜7の高熱伝導性非架橋成形体に比して高い硬度を有するものの、混合加工性、成形性、熱伝導率、体積抵抗率、難燃性及び取り扱い性を損なうことはなかった。
As shown in Table 1, each of Examples 1 to 9 has good mixing processability and moldability, passed both thermal conductivity and volume resistivity, and also has flame retardancy of UL94V-0. It was considerable. Furthermore, the tensile strength and tear strength are large, and in the re-working workability test, it can be peeled without tearing, and can be re-applied in the same state with good reproducibility, molded into a thin shape, and provided with an adhesive layer However, there was no problem in re-working workability. In Examples 4 and 7, the high thermal conductive admixture was slightly hard and the extrusion speed tended to be slow, but the degree was small and the moldability was not impaired.
Moreover, although the high heat conductive crosslinked molded object of Example 8 and 9 has high hardness compared with the high heat conductive non-crosslinked molded object of Examples 1-7, mixed workability, moldability, thermal conductivity, The volume resistivity, flame retardancy and handling were not impaired.
一方、表2に示されるように、α−オレフィン共重合ゴムの含有量が上述の範囲外である比較例1は、熱伝導率、体積抵抗率及び難燃性のいずれも本発明の基準を満たし、加えて混合加工性及び成形性にも優れていた。その一方で、引張強さは0.5N/mm2、引裂き強さは2.7N/mmと小さく、貼り直し作業性試験において、破れが発生し、強度的に不合格となった。
熱伝導性フィラーの含有量が上述の範囲外である比較例3は、混合加工性及び成形加工性は良好であったが、熱伝導率が低く、しかもUL94垂直燃焼性試験において成形体が燃焼し、難燃性が不合格であった。
α−オレフィン共重合ゴムを含有しない比較例5は、混合加工性、成形加工性及び熱伝導率は良好であったが、体積抵抗率が低く、電気絶縁性に劣り、しかも引張強さ及び引裂き強さは極めて小さかった。
On the other hand, as shown in Table 2, Comparative Example 1 in which the content of the α-olefin copolymer rubber is out of the above-described range is that the thermal conductivity, the volume resistivity, and the flame retardance are all the standards of the present invention. In addition, it was excellent in mixing processability and moldability. On the other hand, the tensile strength was as small as 0.5 N / mm 2 and the tear strength was as small as 2.7 N / mm. In the reworking workability test, tearing occurred and the strength was rejected.
In Comparative Example 3 in which the content of the heat conductive filler is outside the above range, the mixing workability and the moldability were good, but the heat conductivity was low, and the molded body burned in the UL94 vertical flammability test. However, the flame retardancy was unacceptable.
Comparative Example 5 containing no α-olefin copolymer rubber had good mixing processability, molding processability, and thermal conductivity, but had low volume resistivity, poor electrical insulation, and tensile strength and tearing. The strength was extremely small.
(実施例10)
実施例3で製造したシート状の高熱伝導性非架橋成形体を、さらに圧延して厚さ0.1mmの薄肉シート成形体とした。この薄肉シート体を、上述の「貼り直し作業性」に準拠して貼り直し作業性を評価した。その結果、この薄肉シート体に破れはなく、剥離前と同じようにアルミニウム板に再度貼り付けることができ、薄肉化による貼り直し作業性の低下は確認できなかった。
(Example 10)
The sheet-like high thermal conductive non-crosslinked molded body produced in Example 3 was further rolled to obtain a thin sheet molded body having a thickness of 0.1 mm. This thin sheet body was re-applied in accordance with the above-mentioned “re-attachment workability” and the workability was evaluated. As a result, the thin sheet body was not torn and could be re-applied to the aluminum plate in the same manner as before peeling, and no reduction in re-workability due to thinning could be confirmed.
(実施例11)
厚さを0.07mmに変更したこと以外は実施例10と同様にして薄肉シート体を製造したところ、この薄肉シート体は貼り直し作業性試験において剥離中に破れる場合があった。貼り直し作業性を確保するには厚さは少なくとも0.07mmを超えるのがよく、十分な貼り直し作業性を確保するには実施例10のように厚さは0.10mm以上であるのがよいことが分かった。
(Example 11)
When a thin sheet body was produced in the same manner as in Example 10 except that the thickness was changed to 0.07 mm, this thin sheet body was sometimes re-applied and sometimes torn during peeling in the workability test. In order to ensure re-working workability, the thickness should exceed at least 0.07 mm, and in order to ensure sufficient re-working workability, the thickness should be 0.10 mm or more as in Example 10. I found it good.
Claims (7)
The highly heat-conductive molded article according to claim 6, which is molded into a sheet having a thickness of 0.1 to 1.0 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013104417A JP2014224200A (en) | 2013-05-16 | 2013-05-16 | Highly thermally conductive mixture and highly thermally conductive molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013104417A JP2014224200A (en) | 2013-05-16 | 2013-05-16 | Highly thermally conductive mixture and highly thermally conductive molded body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014224200A true JP2014224200A (en) | 2014-12-04 |
Family
ID=52123124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013104417A Pending JP2014224200A (en) | 2013-05-16 | 2013-05-16 | Highly thermally conductive mixture and highly thermally conductive molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014224200A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110862597A (en) * | 2019-11-11 | 2020-03-06 | 江苏理工学院 | PE-BN-AlN electric insulation high thermal conductivity composite material and preparation method thereof |
CN112280193A (en) * | 2020-10-23 | 2021-01-29 | 上海日之升科技有限公司 | High-thermal-conductivity polypropylene flame-retardant metal clad material based on heat bonding method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145547A (en) * | 1984-01-26 | 1984-08-21 | Denki Kagaku Kogyo Kk | Manufacture of heat radiating sheet |
JPS62280243A (en) * | 1986-05-28 | 1987-12-05 | Idemitsu Petrochem Co Ltd | Polyethylene resin composition |
JPS63210151A (en) * | 1987-02-25 | 1988-08-31 | Idemitsu Petrochem Co Ltd | Polyphenylene polymer composition |
JPH10330575A (en) * | 1997-06-04 | 1998-12-15 | Furukawa Electric Co Ltd:The | Thermally conductive rubber composition and thermally conductive rubber sheet |
JP2002121332A (en) * | 2000-10-12 | 2002-04-23 | Shin Etsu Chem Co Ltd | Thermally softenable heat-radiating sheet |
JP2005075895A (en) * | 2003-08-29 | 2005-03-24 | Riken Technos Corp | Thermoplastic elastomer composition and its molding |
JP2012012424A (en) * | 2010-06-29 | 2012-01-19 | Dainippon Printing Co Ltd | Heat-conductive sheet |
JP2012140509A (en) * | 2010-12-28 | 2012-07-26 | Jsr Corp | Foam-molded article, heat-conductive molded article and method of producing the same, and heat-conductive sheet laminate |
-
2013
- 2013-05-16 JP JP2013104417A patent/JP2014224200A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145547A (en) * | 1984-01-26 | 1984-08-21 | Denki Kagaku Kogyo Kk | Manufacture of heat radiating sheet |
JPS62280243A (en) * | 1986-05-28 | 1987-12-05 | Idemitsu Petrochem Co Ltd | Polyethylene resin composition |
JPS63210151A (en) * | 1987-02-25 | 1988-08-31 | Idemitsu Petrochem Co Ltd | Polyphenylene polymer composition |
JPH10330575A (en) * | 1997-06-04 | 1998-12-15 | Furukawa Electric Co Ltd:The | Thermally conductive rubber composition and thermally conductive rubber sheet |
JP2002121332A (en) * | 2000-10-12 | 2002-04-23 | Shin Etsu Chem Co Ltd | Thermally softenable heat-radiating sheet |
JP2005075895A (en) * | 2003-08-29 | 2005-03-24 | Riken Technos Corp | Thermoplastic elastomer composition and its molding |
JP2012012424A (en) * | 2010-06-29 | 2012-01-19 | Dainippon Printing Co Ltd | Heat-conductive sheet |
JP2012140509A (en) * | 2010-12-28 | 2012-07-26 | Jsr Corp | Foam-molded article, heat-conductive molded article and method of producing the same, and heat-conductive sheet laminate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110862597A (en) * | 2019-11-11 | 2020-03-06 | 江苏理工学院 | PE-BN-AlN electric insulation high thermal conductivity composite material and preparation method thereof |
CN112280193A (en) * | 2020-10-23 | 2021-01-29 | 上海日之升科技有限公司 | High-thermal-conductivity polypropylene flame-retardant metal clad material based on heat bonding method |
CN112280193B (en) * | 2020-10-23 | 2022-07-29 | 上海日之升科技有限公司 | High-thermal-conductivity polypropylene flame-retardant metal coating material based on thermal bonding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6987178B2 (en) | Polyolefin resin foam sheet and adhesive tape | |
US7484556B2 (en) | Heat dissipating member | |
JP6773817B2 (en) | Polyolefin resin foam sheet and adhesive tape | |
JP6453057B2 (en) | Heat-meltable fluororesin composition excellent in thermal conductivity, molded article produced from the composition, and method for producing the same | |
JP5175022B2 (en) | Multi-layer thermal conductive sheet | |
JP2012064691A (en) | Thermal diffusion sheet | |
TW201619255A (en) | Polyolefin resin foam sheet and adhesive tape | |
US20220073805A1 (en) | Thermally conductive resin sheet | |
JP6473846B1 (en) | Resin sheet and resin sheet with adhesive layer | |
WO2016047272A1 (en) | Foam composite sheet | |
JP6133257B2 (en) | Highly heat conductive insulating crosslinkable composition, high heat conductive insulating crosslinkable composition, high heat conductive insulating crosslinkable molded body, and method for producing the same | |
WO2011001760A1 (en) | Thermally conductcive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component | |
JP6062339B2 (en) | High thermal conductive admixture for electric and electronic devices, high thermal conductive molded article for electric and electronic devices, and high thermal conductive laminated sheet for electric and electronic devices and method for producing the same | |
JP2014224200A (en) | Highly thermally conductive mixture and highly thermally conductive molded body | |
TW201842150A (en) | Heat conductive sheet | |
JP2019065170A (en) | Thermally conductive foam sheet | |
TWI447173B (en) | Heat transfer elastic sheet and manufacturing method thereof | |
JP2010077220A (en) | Molded article for heat conduction and heat-conductive non-silicone liquid rubber composition | |
JP2012074173A (en) | Insulated electric wire | |
JPWO2018180319A1 (en) | Thermal conductive foam sheet | |
JP2006278445A (en) | Thermally conductive sheet | |
JP3825035B2 (en) | Thermally conductive molded body | |
JP2015189781A (en) | Heat release sheet | |
WO2023182254A1 (en) | Thermoplastic elastomer composition, thermally conductive sheet, and heat-dissipating structure | |
JP7556079B2 (en) | Sealing materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171114 |