JP2014224199A - Production method for silver nanowire ink, and silver nanowire ink - Google Patents

Production method for silver nanowire ink, and silver nanowire ink Download PDF

Info

Publication number
JP2014224199A
JP2014224199A JP2013104349A JP2013104349A JP2014224199A JP 2014224199 A JP2014224199 A JP 2014224199A JP 2013104349 A JP2013104349 A JP 2013104349A JP 2013104349 A JP2013104349 A JP 2013104349A JP 2014224199 A JP2014224199 A JP 2014224199A
Authority
JP
Japan
Prior art keywords
silver
silver nanowire
dispersant
solution
nanowire ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013104349A
Other languages
Japanese (ja)
Inventor
大輔 兒玉
Daisuke Kodama
大輔 兒玉
宏敏 齋藤
Hirotoshi Saito
宏敏 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013104349A priority Critical patent/JP2014224199A/en
Publication of JP2014224199A publication Critical patent/JP2014224199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for a silver nanowire ink and a silver nanowire ink which shows high conductivity and no decrease in transmittance even when a dispersant or a viscosity modifier is added to improve coating property.SOLUTION: A production method for a silver nanowire ink includes a step of adding a dispersant and a viscosity modifier to a dispersion liquid of silver nanowires prepared by dispersing silver nanowires in a solvent, wherein the dispersant is added by 0.01 to 0.5 wt.% of the ink total amount. Further, the viscosity modifier is added by 0.01 to 0.5 wt.% of the ink total amount. Fluorine-based, nonionic or cationic surfactants can be used for the dispersant.

Description

本発明は、透明導電膜の導電体として用いられる銀ナノワイヤインクの製造方法および銀ナノワイヤインクに関する。   The present invention relates to a method for producing a silver nanowire ink used as a conductor of a transparent conductive film and a silver nanowire ink.

液晶、プラズマ、有機エレクトロルミネッセンス等の各種ディスプレイや各種太陽電池において、透明導電膜を用いた透明電極は必須の構成技術となっている。この透明導電膜の材料としては、ITOをはじめとする金属酸化物薄膜が主に用いられている。金属酸化物薄膜は、光透過性と導電性との両立が可能で耐久性にも優れており、特に、ITOは、光透過性と導電性とのバランスが良く、ウェットエッチングによる電極微細パターン形成が容易であることから、各種オプトエレクトロニクス用の透明電極として多用されている。   In various displays such as liquid crystal, plasma, organic electroluminescence, and various solar cells, a transparent electrode using a transparent conductive film is an essential constituent technology. As a material for the transparent conductive film, a metal oxide thin film such as ITO is mainly used. The metal oxide thin film can achieve both light transmittance and conductivity, and has excellent durability. In particular, ITO has a good balance between light transmittance and conductivity, and electrode fine pattern formation by wet etching. Therefore, it is widely used as a transparent electrode for various optoelectronics.

透明導電膜に使用される金属酸化物薄膜は、一般的に真空蒸着法やスパッタ法により製造されるが、薄膜は金属酸化物であることから曲げに弱く、最終製品のフレキシブル化の障害になる場合がある。また、真空蒸着法やスパッタ法は真空環境を必要とするため、処理装置が大掛りかつ複雑なものとなることや、成膜に大量のエネルギーを消費する等の課題があり、これらの課題に対する改善技術の開発が要求されている。   Metal oxide thin films used for transparent conductive films are generally manufactured by vacuum deposition or sputtering, but the thin films are metal oxides, so they are vulnerable to bending and hinder the flexibility of the final product. There is a case. In addition, since the vacuum deposition method and the sputtering method require a vacuum environment, there are problems such as a large and complicated processing apparatus and a large amount of energy consumed for film formation. Development of improved technology is required.

このような要求に対し、透明導電膜の導電体として、金属ナノワイヤを用いることが提案されている。金属ナノワイヤを導電体として用いる場合、金属ナノワイヤが接触し合うことによって導電ネットワークを形成し、導電性を発現する。そして、太さが300nm以下で、長さが3μm以上の金属ナノワイヤを用いた場合には、透明導電膜の導電性と透明性の両立が可能となる。金属ナノワイヤを構成する金属については、Ag、Cu、Au等が検討されているが、電気導電性や耐酸化性に優れ、かつ金属価格が著しく高くないことからAgが好ましいと考えられ、銀ナノワイヤに関する技術が盛んに開発されている。このような透明導電体としての銀ナノワイヤに関しては、例えば特許文献1〜4に開示されている。   In response to such demands, it has been proposed to use metal nanowires as the conductor of the transparent conductive film. When the metal nanowire is used as a conductor, the metal nanowire comes into contact with each other to form a conductive network and develop conductivity. When a metal nanowire having a thickness of 300 nm or less and a length of 3 μm or more is used, both the conductivity and transparency of the transparent conductive film can be achieved. Ag, Cu, Au, and the like have been studied for the metal constituting the metal nanowire, but Ag is considered preferable because it is excellent in electrical conductivity and oxidation resistance, and the metal price is not significantly high. Technology is actively developed. Such silver nanowires as transparent conductors are disclosed in Patent Documents 1 to 4, for example.

US2007/0074316号公報US2007 / 0074316 Publication US2009/0129004号公報US2009 / 0129004 gazette US2010/0272993号公報US2010 / 0272993 US2010/0243295号公報US2010 / 0243295

透明導電材料としての銀ナノワイヤの特性は、銀ナノワイヤ分散液そのものの塗布、またはこの分散液に粘度調整剤や分散剤を投入したインク化後の状態で基材上に塗布した際の、塗布膜のシート抵抗や光学特性により評価される。   The characteristics of silver nanowires as a transparent conductive material are the coating film when the silver nanowire dispersion liquid itself is applied, or when applied onto a substrate in a state after being converted into an ink in which a viscosity modifier or a dispersant is added to this dispersion liquid. It is evaluated by the sheet resistance and optical characteristics.

本発明の目的は、分散剤や粘度調整剤を添加して塗布性を向上させても、光学特性を損なうことなく、かつ高い導電性を有する銀ナノワイヤインクの製造方法および銀ナノワイヤインクを提供することにある。   An object of the present invention is to provide a method for producing a silver nanowire ink and a silver nanowire ink having high conductivity without impairing optical properties even when a coating agent is improved by adding a dispersant or a viscosity modifier. There is.

上記問題を解決するため、本発明は、溶媒に銀ナノワイヤを分散させた銀ナノワイヤの分散液に、インク総量の0.01〜0.5wt%の分散剤と、粘度調整剤を添加することを特徴とする、銀ナノワイヤインクの製造方法を提供する。   In order to solve the above problem, the present invention adds a dispersant of 0.01 to 0.5 wt% of the total amount of ink and a viscosity modifier to a dispersion of silver nanowires in which silver nanowires are dispersed in a solvent. A method for producing a silver nanowire ink is provided.

前記粘度調整剤を、インク総量の0.01〜0.5wt%添加することが好ましい。   The viscosity modifier is preferably added in an amount of 0.01 to 0.5 wt% of the total amount of ink.

また、本発明は、銀ナノワイヤと、溶媒と、分散剤と、粘度調整剤とからなり、前記分散剤の濃度が0.01〜0.5wt%、前記粘度調整剤の濃度が0.01〜0.5wt%であることを特徴とする、銀ナノワイヤインクを提供する。   Further, the present invention comprises a silver nanowire, a solvent, a dispersant, and a viscosity modifier. The concentration of the dispersant is 0.01 to 0.5 wt%, and the concentration of the viscosity modifier is 0.01 to Provided is a silver nanowire ink characterized by being 0.5 wt%.

前記銀ナノワイヤインクにおいて、前記分散剤は、フッ素系、ノニオン系、またはカチオン系の界面活性剤でもよい。前記溶媒は、水またはイソプロピルアルコールでもよい。   In the silver nanowire ink, the dispersant may be a fluorine-based, nonionic-based, or cationic surfactant. The solvent may be water or isopropyl alcohol.

本発明によれば、添加する分散剤の濃度を調整することにより、銀ナノワイヤインクの塗布性が向上するとともに、銀ナノワイヤを導電体として用いた透明導電膜において、高い導電性と良好な光学特性を実現することができる。   According to the present invention, by adjusting the concentration of the dispersant to be added, the coating property of the silver nanowire ink is improved, and in the transparent conductive film using the silver nanowire as a conductor, high conductivity and good optical properties are obtained. Can be realized.

以下、本発明の実施の形態を説明する。本発明の実施の形態では、加熱した第1の溶液(溶液A)と第2の溶液(溶液B)とを混合し、溶液Aと溶液Bとの混合による反応液から銀ナノワイヤを得、これに分散剤および粘度調整剤を添加して、銀ナノワイヤインクを製造する。   Embodiments of the present invention will be described below. In the embodiment of the present invention, the heated first solution (solution A) and the second solution (solution B) are mixed to obtain a silver nanowire from the reaction solution obtained by mixing the solution A and the solution B. A silver nanowire ink is produced by adding a dispersant and a viscosity modifier.

先ず、第1の溶液としての溶液Aの調液について説明する。溶液Aは溶媒、有機保護剤及びハロゲン化合物を含む。   First, preparation of the solution A as the first solution will be described. Solution A contains a solvent, an organic protective agent, and a halogen compound.

溶液Aの溶媒としては、ポリオールを用いることができる。ポリオールの好適な例として、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、グリセロールやこれらの混合溶媒が挙げられる。ポリオールは、銀に対して適度な還元力があり、銀ナノワイヤの生成に適しており、沸点が比較的高く、常圧下で銀ナノワイヤを生成することが可能であるという利点がある。   As the solvent of the solution A, a polyol can be used. Preferable examples of the polyol include ethylene glycol, propylene glycol, 1,3-propanediol, glycerol and a mixed solvent thereof. Polyol has an appropriate reducing power with respect to silver, is suitable for production of silver nanowires, has a relatively high boiling point, and has an advantage that silver nanowires can be produced under normal pressure.

溶液Aに含まれる有機保護剤は、高分子有機物を用いることができ、例えばPVP(ポリビニルピロリドン)を用いることが好適である。一般に、銀が還元される際に特定の結晶面に有機保護剤が付着することによって、還元により生成する銀がワイヤ状になると考えられている。有機保護剤として用いられるPVPは、還元されて生成した銀に対して、特定の結晶面に付着して、特定の結晶面の成長を抑制する効果が大きいと考えられ、ワイヤ状の銀を生成させやすくなる。   As the organic protective agent contained in the solution A, a high molecular organic substance can be used. For example, PVP (polyvinylpyrrolidone) is preferably used. In general, it is considered that when an organic protective agent adheres to a specific crystal plane when silver is reduced, the silver produced by the reduction becomes a wire. PVP used as an organic protective agent is considered to have a great effect of suppressing the growth of a specific crystal face by attaching to a specific crystal face with respect to silver produced by reduction, and produces wire-like silver. It becomes easy to let you.

溶液Aに含まれるハロゲン化合物の種類は特に限定されず、例えばNaCl、KCl、CTAB(臭化セチルトリメチルアンモニウム)、TBAC(テトラブチルアンモニウムクロライド)等を用いることができる。   The kind of the halogen compound contained in the solution A is not particularly limited, and for example, NaCl, KCl, CTAB (cetyltrimethylammonium bromide), TBAC (tetrabutylammonium chloride) or the like can be used.

以上の通り、溶液Aは、ポリオール、有機保護剤及びハロゲン化合物を混合することにより得られる。   As described above, the solution A is obtained by mixing a polyol, an organic protective agent, and a halogen compound.

次に、第2の溶液としての溶液B(第2の溶液)の調液について説明する。溶液Bは溶媒及び銀化合物からなる。   Next, preparation of the solution B (second solution) as the second solution will be described. Solution B consists of a solvent and a silver compound.

溶液Bの溶媒としては、ポリオールを用いることができる。ポリオールの好適な例として、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、グリセロールやこれらの混合溶媒が挙げられる。ポリオールは、銀に対して適度な還元力があって、銀ナノワイヤの生成に適しており、沸点が比較的高く、常圧下で銀ナノワイヤを生成することが可能であるという利点がある。   As the solvent of the solution B, a polyol can be used. Preferable examples of the polyol include ethylene glycol, propylene glycol, 1,3-propanediol, glycerol and a mixed solvent thereof. Polyol has an appropriate reducing power with respect to silver, is suitable for producing silver nanowires, has a relatively high boiling point, and has an advantage that silver nanowires can be produced under normal pressure.

また、溶液Bに含まれる銀化合物の種類は、溶液Bの溶媒に溶解するものであれば特に限定されるものではなく、例えば、硝酸銀、酢酸銀、酸化銀を使用することができる。なお、溶媒に対する溶解度とコストの観点から、硝酸銀を用いることが好ましい。   Moreover, the kind of silver compound contained in the solution B is not particularly limited as long as it dissolves in the solvent of the solution B. For example, silver nitrate, silver acetate, and silver oxide can be used. In addition, it is preferable to use silver nitrate from the viewpoint of solubility in a solvent and cost.

以上の通り、溶液Bは、ポリオール及び銀化合物を混合することにより得られる。なお、溶液Bの温度は、5〜50℃とすることが好ましい。これは、液温が低すぎると銀化合物の溶解工程に時間がかかることがあり、また、液温が高すぎると溶媒であるアルコールにより銀の還元反応が進行してしまうことがあるためである。溶液Bの温度は10〜40℃とすることが、更に好ましい。   As described above, the solution B is obtained by mixing a polyol and a silver compound. In addition, it is preferable that the temperature of the solution B shall be 5-50 degreeC. This is because if the solution temperature is too low, the silver compound dissolution process may take time, and if the solution temperature is too high, the silver reduction reaction may proceed due to the solvent alcohol. . The temperature of the solution B is more preferably 10 to 40 ° C.

次に、銀ナノワイヤの生成反応工程について説明する。   Next, the production | generation reaction process of silver nanowire is demonstrated.

まず、溶液Aを加熱する。このとき、溶液Aの温度を70℃以上、かつ、使用する溶媒の沸点以下とすることが好ましい。この温度の範囲外となる場合には、銀ナノワイヤが十分生成しないことがあるためである。また、銀ナノワイヤの生成に要する時間を短縮するためには、溶液Aの温度を90℃以上、かつ、使用する溶媒の沸点以下とすることが更に好ましい。   First, the solution A is heated. At this time, it is preferable that the temperature of the solution A is 70 ° C. or more and not more than the boiling point of the solvent to be used. This is because when the temperature is out of the range, silver nanowires may not be generated sufficiently. In order to shorten the time required for the production of silver nanowires, it is more preferable that the temperature of the solution A is 90 ° C. or higher and the boiling point of the solvent used.

その後、加熱された溶液Aに溶液Bを添加し攪拌する。これにより、銀ナノワイヤを含有する反応液を得ることができる。   Thereafter, the solution B is added to the heated solution A and stirred. Thereby, the reaction liquid containing a silver nanowire can be obtained.

次に、銀ナノワイヤの洗浄工程について説明する。   Next, the silver nanowire cleaning process will be described.

反応時間が経過した後、銀ナノワイヤを含有する反応液を冷却し、反応液を遠心分離もしくはデカンテーションにより固液分離する。そして、固液分離した銀ナノワイヤに溶媒を添加して攪拌することにより、反応液の反応生成物等が除去され、清浄な溶媒に分散した銀ナノワイヤの分散液を得ることができる。この遠心分離もしくはデカンテーション及び溶媒の添加、攪拌は、繰り返し行われる。   After the reaction time has elapsed, the reaction solution containing silver nanowires is cooled, and the reaction solution is subjected to solid-liquid separation by centrifugation or decantation. Then, by adding a solvent to the solid-liquid separated silver nanowires and stirring, the reaction product of the reaction solution is removed, and a dispersion of silver nanowires dispersed in a clean solvent can be obtained. This centrifugation or decantation, addition of solvent, and stirring are repeated.

以上のようにして、例えば直径1〜500nm、長さ5〜100μm以上の銀ナノワイヤが得られる。そして、清浄な溶媒に分散した銀ナノワイヤの分散液に、分散剤および粘度調整剤を添加することにより、塗布性の向上を図った銀ナノワイヤインクが得られる。   As described above, for example, silver nanowires having a diameter of 1 to 500 nm and a length of 5 to 100 μm or more are obtained. Then, by adding a dispersant and a viscosity modifier to a dispersion of silver nanowires dispersed in a clean solvent, a silver nanowire ink with improved coatability can be obtained.

銀ナノワイヤインクは、銀ナノワイヤと、溶媒と、分散剤と、粘度調整剤とからなる。溶媒としては、水またはイソプロピルアルコール(IPA)等を用いることができる。分散剤としては、フッ素系、ノニオン系、カチオン系などの界面活性剤が使用可能である。市販の分散剤として、ノニオン系の「Zonyl FSO(デュポン社製品)やノニオン系の「Triton X−100(ロシュ・ダイアグノスティックス社製品)」がある。塗布性を向上させるとともに適正な抵抗、透過率を得るために、分散剤濃度は0.01〜0.5wt%とし、更に0.02〜0.3wt%とすることが一層好ましい。また、粘度調整剤は、例えばヒドロキシプロピルメチルセルロース(HPMC)などセルロース系のものが用いられ、粘度調整剤濃度は0.01〜0.5wt%が好ましい。   The silver nanowire ink includes a silver nanowire, a solvent, a dispersant, and a viscosity modifier. As the solvent, water, isopropyl alcohol (IPA), or the like can be used. As the dispersant, a fluorine-based, non-ionic, cationic, or other surfactant can be used. Commercially available dispersants include nonionic “Zonyl FSO (DuPont product)” and nonionic “Triton X-100 (Roche Diagnostics product)”. In order to improve applicability and obtain appropriate resistance and transmittance, the dispersant concentration is preferably 0.01 to 0.5 wt%, and more preferably 0.02 to 0.3 wt%. Moreover, as the viscosity modifier, for example, a cellulose-based one such as hydroxypropylmethylcellulose (HPMC) is used, and the viscosity modifier concentration is preferably 0.01 to 0.5 wt%.

このように分散剤および粘度調整剤の濃度を調整して添加した銀ナノワイヤインクを、基板等に塗布することにより、銀ナノワイヤの塗布膜が形成される。   The silver nanowire coating film is formed by applying the silver nanowire ink added by adjusting the concentration of the dispersant and the viscosity modifier in this manner to a substrate or the like.

以上の通り、本発明によれば、銀ナノワイヤを含む分散液に添加する分散剤および粘度調整剤の濃度を調整することにより、生成される銀ナノワイヤインクの塗布性を向上させると同時に、抵抗、透過率の性能も適正なものとすることができる。その結果、銀ナノワイヤを導電体として用いた透明導電膜において、高い導電性と良好な光学特性を両立させることができる。   As described above, according to the present invention, by adjusting the concentration of the dispersant and the viscosity modifier added to the dispersion containing silver nanowires, the coating property of the silver nanowire ink to be produced is improved, and at the same time, The transmittance performance can also be made appropriate. As a result, in a transparent conductive film using silver nanowires as a conductor, both high conductivity and good optical characteristics can be achieved.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明に係る製造方法により、銀ナノワイヤインクを製造した(実施例1〜5)。   Silver nanowire inks were produced by the production method according to the present invention (Examples 1 to 5).

先ず、90mlのエチレングリコールにPVP(和光純薬工業製)1.04gとNaCl(和光純薬工業製)0.0029gを添加し、溶解させて溶液Aを得た。次に、10mlのエチレングリコールに硝酸銀0.85gを添加し、溶解させて溶液Bを得た。   First, 1.04 g of PVP (manufactured by Wako Pure Chemical Industries) and 0.0029 g of NaCl (manufactured by Wako Pure Chemical Industries) were added to 90 ml of ethylene glycol and dissolved to obtain a solution A. Next, 0.85 g of silver nitrate was added to 10 ml of ethylene glycol and dissolved to obtain a solution B.

その後、溶液Aの全量を室温から105℃まで攪拌しながら加熱した。そこに、溶液Aの温度を105℃に維持しながら、液温が25℃の溶液Bを60minかけて10ml添加し、反応液を得た。この反応液を100rpmの攪拌速度で6時間攪拌しながら、105℃の温度を維持した。その後、反応液を25℃まで冷却し、銀ナノワイヤを含有する溶液を得た。   Thereafter, the entire amount of the solution A was heated from room temperature to 105 ° C. with stirring. Thereto, 10 ml of solution B having a liquid temperature of 25 ° C. was added over 60 min while maintaining the temperature of solution A at 105 ° C. to obtain a reaction solution. While the reaction solution was stirred at a stirring speed of 100 rpm for 6 hours, a temperature of 105 ° C. was maintained. Thereafter, the reaction solution was cooled to 25 ° C. to obtain a solution containing silver nanowires.

この溶液を2500rpm、45minの条件で遠心分離をおこなった後、上澄み液を除去し、その後、純水100mlを加えて攪拌し、銀ナノワイヤを分散させて、分散液を得た。この遠心分離によるデカントおよび分散の操作を3回繰り返すことにより、銀ナノワイヤを洗浄し、銀ナノワイヤを含む分散液を得た。   After centrifuging this solution at 2500 rpm for 45 min, the supernatant was removed, and then 100 ml of pure water was added and stirred to disperse the silver nanowires to obtain a dispersion. By repeating this decanting and dispersing operation by centrifugation three times, the silver nanowires were washed to obtain a dispersion containing silver nanowires.

そして、約0.3wt%の銀ナノワイヤを含む分散液に、分散剤として、「Zonyl FSO(デュポン社製品)」を0.025wt%(実施例1)、0.15wt%(実施例2)、「Triton X−100(ロシュ・ダイアグノスティックス社製品)」を0.05wt%(実施例3)、0.15wt%(実施例4)、0.30wt%(実施例5)、粘度調整剤として、HPMCを0.2wt%(実施例1〜5)、および、約99.45wt%の水(実施例1〜5)を混合し、銀ナノワイヤインクを得た。   Then, in a dispersion containing about 0.3 wt% of silver nanowires, 0.025 wt% (Example 1), 0.15 wt% (Example 2) of “Zonyl FSO (DuPont product)” as a dispersant, "Triton X-100 (Roche Diagnostics)" 0.05 wt% (Example 3), 0.15 wt% (Example 4), 0.30 wt% (Example 5), viscosity modifier As a result, 0.2 wt% of HPMC (Examples 1 to 5) and about 99.45 wt% of water (Examples 1 to 5) were mixed to obtain a silver nanowire ink.

実施例1〜5の銀ナノワイヤインクを、それぞれ、ガラス基材(松浪硝子工業社製、S7213、厚さ0.9mm)の一方の面に、バーコータを用いて塗工し、塗布膜を形成した。塗工後、120℃で10分間加熱して、塗布膜を乾燥させた。   The silver nanowire inks of Examples 1 to 5 were each applied to one surface of a glass substrate (manufactured by Matsunami Glass Industrial Co., Ltd., S7213, thickness 0.9 mm) using a bar coater to form a coating film. . After coating, the coating film was dried by heating at 120 ° C. for 10 minutes.

また、比較例として、銀ナノワイヤを含む分散液を実施例と同じように製造し、分散剤を添加せず、粘度調整剤としてHPMCを0.2wt%添加した銀ナノワイヤインクをガラス基材の面に塗工し、塗布膜を形成した。塗工後、120℃で10分間加熱して、塗布膜を乾燥させた。   Further, as a comparative example, a dispersion containing silver nanowires was produced in the same manner as in the examples, and silver nanowire ink added with 0.2 wt% of HPMC as a viscosity modifier without adding a dispersant was used as the surface of a glass substrate. To form a coating film. After coating, the coating film was dried by heating at 120 ° C. for 10 minutes.

以上のように作製した実施例1〜5、比較例について、ガラス基材に塗布した透明導電性薄膜の表面抵抗値を測定した。測定には、三菱化学アナリテック社製の「ロレスタHP MCP−T410」を用い、四端子法にて測定した。さらに、ガラス基材に塗布した透明導電性薄膜の全光線透過率を測定した。全光線透過率の測定は、測定器として日本電色工業社製、ヘーズメーター「NDH 2000」を使用した。また、光学特性測定のリファレンス試料として未塗布のガラス基材を用い、塗布膜のみの光学特性を測定した。   About Examples 1-5 produced as mentioned above and the comparative example, the surface resistance value of the transparent conductive thin film apply | coated to the glass base material was measured. For the measurement, “Loresta HP MCP-T410” manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used, and measurement was performed by the four-terminal method. Furthermore, the total light transmittance of the transparent conductive thin film applied to the glass substrate was measured. The total light transmittance was measured by using a haze meter “NDH 2000” manufactured by Nippon Denshoku Industries Co., Ltd. as a measuring instrument. Further, an uncoated glass substrate was used as a reference sample for measuring optical characteristics, and the optical characteristics of only the coated film were measured.

上記実施例1〜5および比較例について、分散剤および粘度調整剤の条件と、塗布膜特性の測定結果を表1に示す。   Table 1 shows the conditions of the dispersant and the viscosity modifier, and the measurement results of the coating film characteristics for Examples 1 to 5 and Comparative Example.

Figure 2014224199
Figure 2014224199

表1に示すように、本発明に係る実施例1〜5は、比較例と比べて、いずれも高透過率を実現した。また、抵抗値については、分散剤を使用しない場合とほぼ同等の値であった。   As shown in Table 1, each of Examples 1 to 5 according to the present invention achieved high transmittance as compared with the comparative example. Further, the resistance value was almost the same value as when no dispersant was used.

本発明は、基板に塗布して透明導電膜の導電体として用いられる金属ナノワイヤインクに適用できる。   The present invention can be applied to a metal nanowire ink that is applied to a substrate and used as a conductor of a transparent conductive film.

Claims (5)

溶媒に銀ナノワイヤを分散させた銀ナノワイヤの分散液に、インク総量の0.01〜0.5wt%の分散剤と、粘度調整剤を添加することを特徴とする、銀ナノワイヤインクの製造方法。   A method for producing a silver nanowire ink, comprising adding a dispersant of 0.01 to 0.5 wt% of a total amount of ink and a viscosity modifier to a dispersion of silver nanowires in which silver nanowires are dispersed in a solvent. 前記粘度調整剤を、インク総量の0.01〜0.5wt%添加することを特徴とする、請求項1に記載の銀ナノワイヤインクの製造方法。   The method for producing a silver nanowire ink according to claim 1, wherein the viscosity modifier is added in an amount of 0.01 to 0.5 wt% of the total amount of the ink. 銀ナノワイヤと、溶媒と、分散剤と、粘度調整剤とからなり、前記分散剤の濃度が0.01〜0.5wt%、前記粘度調整剤の濃度が0.01〜0.5wt%であることを特徴とする、銀ナノワイヤインク。   It consists of a silver nanowire, a solvent, a dispersant, and a viscosity modifier, and the concentration of the dispersant is 0.01 to 0.5 wt%, and the concentration of the viscosity modifier is 0.01 to 0.5 wt%. Silver nanowire ink characterized by the above. 前記分散剤は、フッ素系、ノニオン系、またはカチオン系の界面活性剤であることを特徴とする、請求項3に記載の銀ナノワイヤインク。   The silver nanowire ink according to claim 3, wherein the dispersant is a fluorine-based, nonionic-based, or cationic-based surfactant. 前記溶媒は、水またはイソプロピルアルコールであることを特徴とする、請求項3または4に記載の銀ナノワイヤインク。   The silver nanowire ink according to claim 3 or 4, wherein the solvent is water or isopropyl alcohol.
JP2013104349A 2013-05-16 2013-05-16 Production method for silver nanowire ink, and silver nanowire ink Pending JP2014224199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013104349A JP2014224199A (en) 2013-05-16 2013-05-16 Production method for silver nanowire ink, and silver nanowire ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104349A JP2014224199A (en) 2013-05-16 2013-05-16 Production method for silver nanowire ink, and silver nanowire ink

Publications (1)

Publication Number Publication Date
JP2014224199A true JP2014224199A (en) 2014-12-04

Family

ID=52123123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013104349A Pending JP2014224199A (en) 2013-05-16 2013-05-16 Production method for silver nanowire ink, and silver nanowire ink

Country Status (1)

Country Link
JP (1) JP2014224199A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295488A (en) * 2015-12-07 2016-02-03 苏州艾达仕电子科技有限公司 High-transparency waterborne conductive coating based on silver nanowire serving as medium
WO2016115570A1 (en) * 2015-01-16 2016-07-21 The Board Of Regents For Oklahoma State University Method for fabrication of high dispersion polymer nanocomposites
WO2017209230A1 (en) 2016-06-02 2017-12-07 Dowaエレクトロニクス株式会社 Silver nanowire and production method therefor, and silver nanowire ink and transparent conductive film
KR20180028260A (en) * 2016-09-08 2018-03-16 연세대학교 산학협력단 Filter apparatus and manufacture method thereof
KR20210115679A (en) * 2020-03-16 2021-09-27 연세대학교 산학협력단 Filter production method and filter produced by this
US11776710B2 (en) 2018-03-09 2023-10-03 Dai Nippon Printing Co., Ltd. Electroconductive film, sensor, touch panel, and image display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2010507199A (en) * 2006-10-12 2010-03-04 カンブリオス テクノロジーズ コーポレイション Nanowire-based transparent conductor and its application
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
JP2011513534A (en) * 2008-02-26 2011-04-28 カンブリオス テクノロジーズ コーポレイション Methods and compositions for inkjet deposition of conductive features
WO2012122034A1 (en) * 2011-03-04 2012-09-13 Cambrios Technologies Corporation Method of tuning work function of metal nanostructure-based transparent conductor
JP2012526359A (en) * 2009-05-05 2012-10-25 カンブリオス テクノロジーズ コーポレイション Reliable and durable conductive film containing metal nanostructures
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof
JP2013502515A (en) * 2009-08-24 2013-01-24 カンブリオス テクノロジーズ コーポレイション Purification of metal nanostructures to improve haze in transparent conductors made from metal nanostructures
JP2013073828A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Conductive composition, method for producing the same, conductive member, touch panel, and solar cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2010507199A (en) * 2006-10-12 2010-03-04 カンブリオス テクノロジーズ コーポレイション Nanowire-based transparent conductor and its application
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
JP2011513534A (en) * 2008-02-26 2011-04-28 カンブリオス テクノロジーズ コーポレイション Methods and compositions for inkjet deposition of conductive features
JP2012526359A (en) * 2009-05-05 2012-10-25 カンブリオス テクノロジーズ コーポレイション Reliable and durable conductive film containing metal nanostructures
JP2013502515A (en) * 2009-08-24 2013-01-24 カンブリオス テクノロジーズ コーポレイション Purification of metal nanostructures to improve haze in transparent conductors made from metal nanostructures
WO2012122034A1 (en) * 2011-03-04 2012-09-13 Cambrios Technologies Corporation Method of tuning work function of metal nanostructure-based transparent conductor
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof
JP2013073828A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Conductive composition, method for producing the same, conductive member, touch panel, and solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115570A1 (en) * 2015-01-16 2016-07-21 The Board Of Regents For Oklahoma State University Method for fabrication of high dispersion polymer nanocomposites
US10494491B2 (en) 2015-01-16 2019-12-03 The Board Of Regents For Oklahoma State University Method for fabrication of high dispersion polymer nanocomposites
CN105295488A (en) * 2015-12-07 2016-02-03 苏州艾达仕电子科技有限公司 High-transparency waterborne conductive coating based on silver nanowire serving as medium
WO2017209230A1 (en) 2016-06-02 2017-12-07 Dowaエレクトロニクス株式会社 Silver nanowire and production method therefor, and silver nanowire ink and transparent conductive film
US10758977B2 (en) 2016-06-02 2020-09-01 Dowa Electronics Materials Co., Ltd. Silver nanowires and method for producing same, and silver nanowire ink and transparent conductive film
KR20180028260A (en) * 2016-09-08 2018-03-16 연세대학교 산학협력단 Filter apparatus and manufacture method thereof
US11776710B2 (en) 2018-03-09 2023-10-03 Dai Nippon Printing Co., Ltd. Electroconductive film, sensor, touch panel, and image display device
KR20210115679A (en) * 2020-03-16 2021-09-27 연세대학교 산학협력단 Filter production method and filter produced by this
KR102426221B1 (en) * 2020-03-16 2022-07-28 연세대학교 산학협력단 Filter production method and filter produced by this

Similar Documents

Publication Publication Date Title
JP2014224199A (en) Production method for silver nanowire ink, and silver nanowire ink
JP6353671B2 (en) Method for producing silver nanowire ink, silver nanowire ink and transparent conductive film
Yang et al. Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater
CN106575541A (en) Metal nanowire inks for the formation of transparent conductive films with fused networks
WO2015133453A1 (en) Method for producing silver nanowires, silver nanowires and ink using same
JP2017063046A (en) Reliable and durable conductive films comprising metal nanostructures
JP6599245B2 (en) Transparent conductive film containing silver nanowires
JP6266859B2 (en) Method for producing silver nanowires
CN104159985B (en) Transparency electrode formation conductive ink composition
JP6118584B2 (en) Method for producing silver nanowires
JPWO2012144335A1 (en) Conductive paste
CN111029037B (en) Preparation method of high-stability silver nanowire/graphene oxide composite transparent conductive film
CN208637157U (en) A kind of foldable flexible transparent conductive film
JP2016156000A (en) Composition comprising silver nanowires
Tang et al. Fabrication of high-quality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability
KR101319259B1 (en) Silver nano wires water-based ink for a transparent electrode and method for forming the transparent electrode using the same
KR20130024390A (en) Metal paste for electrode of solar cell
US20140072826A1 (en) Anticorrosion agents for transparent conductive film
WO2019026829A1 (en) Method for producing conductive film, conductive film, and metal nanowire ink
JP2012129176A (en) Conductive composition, and transparent conductor, touch panel, and solar cell using the same
JP6750798B2 (en) Short-chain fluorinated surfactant with iodide additive for forming silver nanowire-based transparent conductive film
CN107987636A (en) Nano silver wire coating liquid for flexible photoelectric device
CN106229081A (en) The preparation of the PET/ graphene transparent conductive film that a kind of chemical graft processes with coating
JPWO2010090119A1 (en) Conductive coating composition
JP2017157339A (en) Transparent conductive film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314