WO2019026829A1 - Method for producing conductive film, conductive film, and metal nanowire ink - Google Patents

Method for producing conductive film, conductive film, and metal nanowire ink Download PDF

Info

Publication number
WO2019026829A1
WO2019026829A1 PCT/JP2018/028412 JP2018028412W WO2019026829A1 WO 2019026829 A1 WO2019026829 A1 WO 2019026829A1 JP 2018028412 W JP2018028412 W JP 2018028412W WO 2019026829 A1 WO2019026829 A1 WO 2019026829A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
metal nanowire
metal
nanowires
average
Prior art date
Application number
PCT/JP2018/028412
Other languages
French (fr)
Japanese (ja)
Inventor
山木 繁
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201880038335.9A priority Critical patent/CN110720129B/en
Priority to JP2019534490A priority patent/JP7300991B2/en
Priority to KR1020197036305A priority patent/KR102393615B1/en
Publication of WO2019026829A1 publication Critical patent/WO2019026829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a method of producing a conductive film, a conductive film and a metal nanowire ink.
  • metal nanowires have attracted attention as a raw material of a highly transparent and highly conductive thin film as an alternative to an ITO (indium tin oxide) film used for transparent electrodes of touch panels and the like.
  • ITO indium tin oxide
  • Such metal nanowires are generally manufactured by heating a metal compound in the presence of polyvinyl pyrrolidone and a polyol such as ethylene glycol (Non-patent Document 1).
  • Patent Document 1 describes a method for producing a transparent conductor, which comprises the step of drying a fluid in which metal nanowires are dispersed to form a metal nanowire network layer on a substrate, and carboxymethylcellulose and 2-hydroxyethylcellulose. Hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, tripropylene glycol, and xanthan gum may be included in the fluid.
  • Patent Document 2 includes a coated transparent support and a random network of silver nanowires dispersed in a cellulose ester polymer (cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, or a mixture thereof)
  • a transparent conductive article comprising: a transparent conductive film.
  • Patent Document 3 describes metal nanowires, binders (binder (A): polysaccharides (hydroxypropyl guar gum and derivatives thereof, hydroxypropyl methylcellulose and derivatives thereof, and methylcellulose and derivatives thereof) and binders (B): aqueous A metal nanowire-containing coating film formed by a composition containing a metal nanowire containing a polyester resin, an aqueous polyurethane resin, at least one selected from an aqueous acrylic resin and an aqueous epoxy resin, a surfactant, and a solvent is on a substrate There is disclosed a transparent conductor formed in
  • Patent Document 4 includes metal nanowires as conductive fibers, gelatin as a polymer, gelatin derivative, casein, agar, starch, polyvinyl alcohol, a copolymer of polyacrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl pyrrolidone, A conductive membrane containing dextran, etc. is disclosed.
  • Patent Documents 1 to 4 it is suggested that it is intended to obtain a conductive film having a surface resistance value of 1000 ⁇ / ⁇ or less.
  • a conductive film having a surface resistance value 1000 ⁇ / ⁇ or less.
  • it is necessary to use a corresponding conductive material which causes problems in cost and optical characteristics, and causes a problem in that anisotropy occurs in the conductivity.
  • a dilute coating solution containing metal nanowires is applied to a substrate film to obtain a conductive film having a surface resistance value not so low as 1000 ⁇ / ⁇ or more, the metal nanowires are coated or coated in the coating solution. Cohesion occurs in the subsequent drying step, and as a result, a uniform coated state can not be obtained, and high and low portions of the surface resistance value are generated in the film surface, which causes a problem of increased variation.
  • An object of the present invention is to provide a conductive film which has a reduced amount of metal nanowires used and which has a surface resistance value in the range of 1000 to 10000 ⁇ / ⁇ and which has a small variation in the surface resistance value in the plane.
  • Another object of the present invention is to provide a method for producing a conductive film excellent in productivity and a metal nanowire ink therefor.
  • the present invention includes the following embodiments.
  • Metal nanowire (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 ⁇ m, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose
  • a metal nanowires ink comprising: a binder resin (B) comprising: and a solvent (C) comprising diethylene glycol monoethyl ether, wherein the content of the metal nanowires (A) is 0.005 to 0.05% by mass,
  • a method for producing a conductive film comprising the steps of applying and drying on at least one side of a polymer film.
  • the mass ratio of the metal nanowire (A) to the binder resin (B) [metal nanowire (A) / binder resin (B)] is in the range of 0.01 to 0.5, [3] or [3] 4] conductive film.
  • Metal nanowire ink having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 ⁇ m, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose And a solvent (C) containing diethylene glycol monoethyl ether, and the content of the metal nanowire (A) is 0.005 to 0.05% by mass.
  • Metal nanowire ink having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 ⁇ m, and an average aspect ratio of 100
  • a conductive film having a small amount of metal nanowires and a surface resistance of 1000 to 10000 ⁇ / ⁇ , a conductive film with little in-plane variation, a method for producing the same, and metal nanowire ink used therefor are provided. You can do it.
  • the conductive film which concerns on embodiment of this invention can be used suitably for the conductive film use for a touch panel and electronic paper excellent in low cost and resistance value stability.
  • a conductive layer is formed on at least one side of a polymer film as a substrate, and the conductive layer has an average diameter of 1 to 100 nm and an average major axis length of 1 to 100 ⁇ m.
  • a metal nanowire (A) having an average aspect ratio of 100 to 2000, and a binder resin (B) containing at least one of ethyl cellulose and hydroxypropyl cellulose, and the surface resistivity of the conductive layer is 1,000. It is characterized in that it is ⁇ 10000 ⁇ / ⁇ , and the variation of the in-plane surface resistance value is 35% or less.
  • the polymer film is not particularly limited as long as it has sufficient adhesion to the conductive layer.
  • a film made of a polymer such as polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate, acrylic resin, polycycloolefin, polysulfone, polyamide, polyimide, etc. is suitably used. I can do things.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonate acrylic resin
  • acrylic resin polycycloolefin
  • polysulfone polyamide
  • polyimide polyimide
  • a conductive film having excellent transparency can be obtained. It can.
  • the preferred polymer film is a film made of any of polycycloolefin, polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), and a film made of polycycloolefin, polyethylene terephthalate (PET) Is more preferred.
  • the thickness of the polymer film is not particularly limited and may be appropriately selected depending on the application and type, but is usually 25 to 500 ⁇ m, more preferably 38 to 400 ⁇ m from the viewpoint of mechanical strength, handling property, etc. More preferably, it is 50 to 300 ⁇ m.
  • various additives may be added to the polymer film, for example, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, nucleating agents, etc. It may be added to an extent that does not deteriorate the characteristics.
  • the polymer film may be used as it is without surface treatment.
  • the polymer film may be subjected to surface treatment such as corona treatment or plasma treatment.
  • the conductive layer is obtained by applying and drying a metal nanowire ink on at least one surface of a polymer film.
  • the metal nanowires ink comprises metal nanowires (A), a binder resin (B), and a solvent (C).
  • the conductive layer is a conductive layer in which metal nanowires (A) are dispersed in a binder resin (B), the surface resistance value is 1000 to 10000 ⁇ / ⁇ , and the variation of the surface resistance value is 35% or less
  • the conductive layer is formed on at least one side of the polymer film to constitute the conductive film of the present embodiment.
  • the content of the metal nanowires (A) in the conductive layer is preferably 0.5 to 1.5%, preferably 1.0 to 1.4% in terms of the occupied area ratio of the metal nanowires (A) to the conductive film. Is more preferred.
  • the occupied area ratio of the metal nanowires to the conductive film is 0.5% or more, a conductive film having a surface resistance value of 10000 ⁇ / ⁇ or less can be obtained.
  • the occupied area ratio of the metal nanowires to the conductive film at 1.5% or less, it is possible to obtain a conductive film having a high total light transmittance, a low haze, and excellent transparency.
  • the “occupied area ratio of the metal nanowires to the conductive film” means the ratio of the projected area of the metal nanowires observed from the direction perpendicular to the plane of the conductive layer of the conductive film.
  • Metal nanowire (A)> The metal nanowire is a metal having a diameter of nanometer order size, and is a conductive material having a wire-like or tube-like shape.
  • wire-like and tube-like are both linear, but the former is intended not to be hollow in the center and the latter to be hollow in the center.
  • the properties may be flexible or rigid.
  • the former is referred to as "metal nanowire in a narrow sense” and the latter is referred to as "metal nanotube in a narrow sense”.
  • metal nanowire (A)” is used to encompass metal nanowires in a narrow sense and metal nanotubes in a narrow sense.
  • the narrow sense metal nanowires and the narrow sense metal nanotubes may be used alone or in combination.
  • the average diameter (diameter) of the metal nanowires (A) is 1 to 100 nm, preferably 5 to 80 nm, more preferably 10 to 60 nm, and still more preferably 10 to 50 nm.
  • the average length of the major axes of the metal nanowires is 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 2 to 50 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the metal nanowire (A) has an average diameter thickness and an average long axis length satisfying the above range, and an average aspect ratio of 100 to 2000, preferably 200 to 1000, and 300 to 300 It is more preferably 1000, and still more preferably 300 to 700.
  • the aspect ratio is a value obtained by a / b when the average diameter of the diameter of the metal nanowire is b and the average length of the major axis is a.
  • a and b can be measured using a scanning electron microscope (SEM).
  • Optimal embodiments include silver nanowires.
  • a well-known manufacturing method can be used as a manufacturing method of metal nanowire (A).
  • silver nanowires in a narrow sense
  • silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinyl pyrrolidone using the polyol (Poly-ol) method (see Chem. Mater., 2002, 14, 4736).
  • Gold nanowires in a narrow sense
  • WO 2008/073143 and WO 2008/046058 provide a detailed description of large scale synthesis and purification techniques of silver nanowires and gold nanowires.
  • Gold nanotubes (in a narrow sense) having a porous structure can be synthesized by reducing a chloroauric acid solution using silver nanowires as a template.
  • the silver nanowires used as the template are dissolved in the solution by the redox reaction with chloroauric acid, and as a result, gold nanotubes having a porous structure can be formed (J. Am. Chem. Soc., 2004, 126, 3892 -3901).
  • the binder resin (B) used for the metal nanowire ink disperses and immobilizes the metal nanowire (A) in the conductive layer, and contains at least one of ethyl cellulose and hydroxypropyl cellulose.
  • the metal nanowires (A) can be uniformly dispersed in the binder resin (B), and uniformly dispersed and immobilized on the polymer film.
  • transparency and the like can be provided.
  • a resin other than ethylcellulose and hydroxypropylcellulose can be used in combination as long as it dissolves in the solvent (C) described later, but the compounding amount thereof is 50 mass of the whole binder resin (B)
  • the content is preferably less than%, more preferably less than 30% by mass, and still more preferably less than 20% by mass.
  • the mass ratio of the metal nanowires (A) to the binder resin (B) in the metal nanowires ink is preferably in the range of 0.01 to 0.5, and more preferably Is from 0.03 to 0.4, more preferably from 0.05 to 0.2.
  • the conductivity of the metal nanowire (A) can be sufficiently expressed by setting the mass ratio of the metal nanowire (A) to the binder resin (B) to 0.01 or more.
  • the solvent (C) contained in the metal nanowires ink needs to have a composition capable of dissolving the binder resin (B), dispersing the metal nanowires (A), and capable of being favorably applied to the surface of the polymer film. Therefore, the solvent contains diethylene glycol monoethyl ether.
  • the amount of solvent used is not particularly limited as long as it can provide a uniform conductive layer when the metal nanowires ink is applied on the polymer film. In this case, the amount of the solvent is adjusted so that the total amount of the metal nanowires (A) and the binder resin (B) contained in the metal nanowires ink is about 0.1 to 0.5% by mass with respect to the entire metal nanowires ink. It is preferable to adjust the
  • the solvent (C) preferably contains an alcohol other than diethylene glycol monoethyl ether. It is also preferable to use a mixed solvent with water.
  • alcohols other than diethylene glycol monoethyl ether include methanol, ethanol, propanol, propylene glycol, propylene glycol monomethyl ether and the like, and one or more of these can be used in combination.
  • diethylene glycol monoethyl ether is preferably contained in the range of 10 to 50% by mass in all solvents.
  • the preferred range of alcohol in the total solvent is 90 to 100% by weight, and the preferred range of water is 0 to 10% by weight.
  • the metal nanowires ink may contain additives such as a surfactant, an antioxidant, and a filler as long as the performance such as printing characteristics, conductivity and optical characteristics is not adversely affected. Fillers such as fumed silica can be used to adjust the viscosity of the composition. The total amount of these components is preferably 5% by mass or less.
  • the metal nanowires (A), the binder resin (B), the solvent (C), and the additive that can be added as needed are added in the above-mentioned mixing ratio (% by mass). It mix
  • the viscosity of the metal nanowires ink is preferably 1 to 50 mPa ⁇ s.
  • the conductive film of the embodiment is obtained by applying a metal nanowire ink to the surface of the polymer film.
  • the content of the metal nanowires (A) in the metal nanowires ink is 0.005 to 0.05% by mass. If the amount is less than 0.005% by mass, the conductivity is too low, the sheet resistance can not be measured by the measurement method described in the examples described later, and if it exceeds 0.05% by mass, the conductivity is too high. Preferably, it is 0.01 to 0.05% by mass, more preferably 0.02 to 0.04% by mass.
  • the metal nanowire ink can be applied to the polymer film by any known method such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, and a blade coating method. Moreover, drying can be performed by arbitrary systems, such as a hot blast furnace and a far-infrared furnace.
  • the conductive film is a conductive film formed on a polymer film, and has a surface resistance value of 1000 to 10000 ⁇ / ⁇ , and a surface It is possible to obtain a conductive film having a variation in resistance of 35% or less.
  • the conductive film of the present embodiment is manufactured using a metal nanowire ink in which metal nanowires are well dispersed, containing a small amount of metal nanowires (A), a specific binder resin (B), and a solvent (C). Accordingly, a conductive film having a total light transmittance of 80% or more, preferably 85% or more, and a haze value of 0.1 to 1.5%, preferably 0.3 to 1.0% can be obtained. By setting the total light transmittance to 80% or more and the haze value to 0.1 to 1.5%, it is possible to obtain a conductive film having excellent transparency and less clouding.
  • the shape (length and diameter) of silver nanowires is the diameter and length of 50 nanowires arbitrarily selected using Hitachi High-Technologies Corporation high-resolution field-emission scanning electron microscope SU8020 (acceleration voltage 3 to 10 kV) Were observed and their arithmetic mean value was determined. Specifically, several drops of silver nanowire dispersion were dropped onto a silicon wafer, and after drying, the shape of the silver nanowire deposited on the silicon wafer was observed by the above-mentioned scanning electron microscope. The aspect ratio (average) was calculated from [average value of length of major axis of nanowire] / [average diameter of nanowire].
  • this ratio is preferably in the range of 0.1 to 0.5, and the smaller the ratio, the smaller the number of spherical particles generated at the time of silver nanowire synthesis. When spherical particles do not exist, it becomes about 0.1.
  • the surface resistance value and the variation is a resistance value up to 5000 ⁇ / ⁇ , using a non-contact resistance measuring instrument EC-80P manufactured by Napson Co., Ltd., and a resistance value of 5000 ⁇ / ⁇ or more, manufactured by Mitsubishi Chemical Analytic Co., Ltd. It was determined by the following method using a 4-probe contact type resistance measuring device Loresta-GP.
  • a sheet sample of 210 mm ⁇ 300 mm in size is divided into a total of 70 areas of 7 rows ⁇ 10 columns of 30 mm ⁇ 30 mm, and the surface resistance value near the center of the hatched area in FIG.
  • the average value of 12 points was taken as the surface resistance value. In this case, if the surface resistance value can not be measured even at one point, that is, there is non-conduction (1 ⁇ 10 7 ⁇ / ⁇ or more), the surface resistance value is not calculated.
  • ⁇ Synthesis of silver nanowires 100 g of propylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a 200 mL glass container, 2.3 g (13 mmol) of silver nitrate (manufactured by Toyo Kagaku Kogyo) is added as a metal salt, and the silver nitrate solution is stirred at room temperature for 2 hours Prepared.
  • this silver nitrate solution is referred to as a second solution.
  • the silver nitrate solution (second solution) prepared above is added to the dropping funnel, and the above first solution is maintained at a temperature of 150 ° C., so that the average supply mole number of silver nitrate is 0.087 mmol / min.
  • Silver nanowire was synthesize
  • the molar ratio calculated from the number of moles of the ionic derivative and the average number of moles of silver nitrate supplied is 0.22.
  • the silver ion concentration in the first solution was measured during the reaction, the molar ratio of the ionic derivative to the metal salt (metal salt / ionic derivative) was in the range of 0.2 to 6.7. After completion of the dropwise addition, heating and stirring were continued for 1 hour to complete the reaction.
  • the silver ion concentration was measured by an ammonium thiocyanate titration method using an automatic titration apparatus AUT-301 manufactured by Toa DKK.
  • reaction mixture (reaction solution) containing the synthetic silver nanowires is diluted 5 times with methanol (manufactured by Wako Pure Chemical Industries, Ltd.), and centrifugal force is applied for 5 minutes at a rotational speed of 6000 rpm using a centrifuge.
  • the silver nanowires were allowed to settle.
  • the operation of adding methanol and treating at 6000 rpm for 5 minutes was further repeated twice to wash and remove the PVP and the solvent remaining in the system.
  • the diameter and length of the obtained silver nanowires were determined from images of ultra-high resolution field emission scanning electron microscope SU8020 (acceleration voltage: 3 to 10 kV) manufactured by Hitachi High-Technologies Corp. by the above method.
  • the length was 20.5 ⁇ m.
  • the aspect ratio is 560.
  • Example 1 As a binder resin, a cellulose ETHOCEL TM STD100CPS (Dow Chemical Company, Standard 100 Industrial Ethylcellulose) was used.
  • the viscosity of the obtained silver nanowire ink was measured at 25 ° C. using a Brookfield digital viscometer DV-E (spindle: SC4-18).
  • ⁇ Silver content> A sample liquid containing silver nanowires in a dispersed state is collected from the obtained silver nanowire ink, nitric acid is added to the liquid to dissolve the silver nanowires, and atomic absorption spectrophotometer (apparatus: furnace made by Agilent Technologies, Inc. The amount of silver was measured by atomic absorption spectrophotometer AA280Z). As a result, the silver content was 0.02% by mass, and the same value as the targeted 0.02% by mass was obtained. Therefore, in Table 1, the silver content is shown by the nominal value (target value) (the same in each of the following examples).
  • a coating machine 70F0 manufactured by Imoto Manufacturing Co., Ltd. using a bar coater with a wet film thickness of about 20 ⁇ m, at a coating speed of 100 mm / sec, a PET film as a polymer film substrate It was applied to the surface.
  • a PET film a 125 ⁇ m thick film of Cosmo Shine (registered trademark) A4100 manufactured by Toyobo Co., Ltd. was used.
  • the surface of the PET film is an untreated surface. Then, it was dried at 130 ° C. for 10 minutes with a blower drier (ETAC HS 350 manufactured by Kushimoto Chemical Co., Ltd.) to form a transparent conductive film having a transparent conductive layer.
  • a blower drier (ETAC HS 350 manufactured by Kushimoto Chemical Co., Ltd.)
  • the characteristic evaluation results of the obtained conductive film are shown in Table 1 together with the composition of the metal nanowires ink used.
  • the occupied area ratio of the silver nanowires of the obtained conductive film was 1.02%.
  • the average surface resistance was 2668 ⁇ / ⁇ , and the variation in the surface resistance was as small as 27.7%, confirming that the conductive film had a substantially uniform conductivity.
  • the total light transmittance was as high as 90%, the haze was as low as 0.4%, and the transparency was extremely excellent.
  • Examples 2-6 The conductive film was obtained like Example 1 except having prepared and used the silver nanowire ink which made the compounding quantity of silver nanowire, binder resin, and the solvent as Table 1. Hydroxypropylcellulose 1000 to 5000 cP and hydroxypropyl cellulose 150 to 400 cP used in Examples 3 to 6 in Table 1 are manufactured by Wako Pure Chemical Industries, Ltd.
  • the occupied area ratio of silver nanowires is in the range of 1.0 to 1.4%, and the average surface resistance value is in the range of 2500 to 4000 ⁇ / ⁇ .
  • the total light transmittance was as high as 90%, the haze was as low as 0.4%, and the transparency was extremely excellent.
  • Comparative Example 1 The difference from Example 2 is that the solvent diethylene glycol monoethyl ether was changed to ethanol, and the amount of binder resin was changed from 0.2 parts by mass to 0.4 parts by mass. The same procedure as in Example 2 was followed except for this point.
  • the results are shown in Table 1.
  • the occupied area ratio of silver nanowires of the obtained conductive film was 1.47%.
  • the average surface resistance was 4367 ⁇ / ⁇ , and the variation in the surface resistance was as high as 36.7%, confirming that the film was a conductive film.
  • the haze was very high at 2.8% and the transparency was not excellent.
  • Example 2 The difference from Example 2 is that the solvent propylene glycol monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) and diethylene glycol monoethyl ether were changed to ethanol. The same procedure as in Example 2 was followed except for this point.
  • the results are shown in Table 1.
  • the occupied area rate of silver nanowires of the obtained conductive film was 1.49%. It was confirmed that the average surface resistance value is 1689 ⁇ / ⁇ , and the variation of the surface resistance value is as high as 57.2%, which is a conductive film. In addition, it was confirmed that the haze was as high as 4.3% and the transparency was not excellent.
  • Example 3 The difference from Example 3 is that the solvent diethylene glycol monoethyl ether was changed to ethanol. The same procedure as in Example 3 was followed except for this point.
  • Example 4 The difference from Example 4 is that the solvent diethylene glycol monoethyl ether was changed to diethylene glycol monobutyl ether (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 4 was followed except for this point.
  • Comparative Example 5 The difference from Example 1 is that the silver concentration was changed from 0.02 to 0.04, and the binder resin was changed to poly-N-vinylacetamide (manufactured by Showa Denko KK). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 6 The difference from Example 1 is that the binder resin is changed to methylcellulose 4000 (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 7 The difference from Example 1 is that the binder resin is changed to cellulose acetate (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 8 The difference from Example 1 is that the binder resin is changed to cellulose triacetate (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 9 The difference from Example 1 is that the binder resin was changed to hydroxypropyl methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 10 The difference from Example 1 is that the binder resin is changed to hydroxyethyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
  • Comparative Example 11 The difference from Example 1 is that the binder resin was changed to sodium carboxymethylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

[Problem] Provided is a conducive film for which the amount of a metal nanowire to be used can be reduced, and which has a surface resistivity ranging from 1000 to 10000 Ω/□, and has a small degree of variation in in-plane surface resistivities. Also provided are: a method suitable for the production of a conductive film, which has excellent production efficiency; and a metal nanowire ink which can be used for the method. [Solution] A conductive film which can be produced by a production method including a step of applying a metal nanowire ink onto at least one surface of a polymer film and then drying the metal nanowire ink, wherein the metal nanowire ink contains a metal nanowire (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 μm and an average aspect ratio of 100 to 2000, a binder resin (B) containing at least one of ethyl cellulose and hydroxypropyl cellulose and a solvent (C) containing diethylene glycol monoethyl ether, the content of the metal nanowire (A) in the metal nanowire ink is 0.005 to 0.05% by mass, the surface resistivity of a conductive layer in the conductive film is 1000 to 10000 Ω/□, and the degree of variation in the in-plane surface resistivity is 35% or less.

Description

導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインクMethod of manufacturing conductive film, conductive film and metal nanowire ink
 本発明は、導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインクに関する。 The present invention relates to a method of producing a conductive film, a conductive film and a metal nanowire ink.
 タッチパネル等の透明電極に使用されるITO(酸化インジウムスズ)膜の代替となる高透明性・高導電性薄膜の原料として、金属ナノワイヤが近年注目されている。かかる金属ナノワイヤは、一般に、ポリビニルピロリドンとエチレングリコール等のポリオールの存在下に金属化合物を加熱することによって製造されている(非特許文献1)。 In recent years, metal nanowires have attracted attention as a raw material of a highly transparent and highly conductive thin film as an alternative to an ITO (indium tin oxide) film used for transparent electrodes of touch panels and the like. Such metal nanowires are generally manufactured by heating a metal compound in the presence of polyvinyl pyrrolidone and a polyol such as ethylene glycol (Non-patent Document 1).
 下記特許文献1には、金属ナノワイヤが分散された流体を乾燥させて金属ナノワイヤ網層を基板上に形成するステップを含む透明導電体の作製方法が記載されており、カルボキシメチルセルロース、2-ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ポリビニルアルコール、トリプロピレングリコール、及びキサンタンゴムを流体に含んでもよい旨記載がある。 Patent Document 1 below describes a method for producing a transparent conductor, which comprises the step of drying a fluid in which metal nanowires are dispersed to form a metal nanowire network layer on a substrate, and carboxymethylcellulose and 2-hydroxyethylcellulose. Hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, tripropylene glycol, and xanthan gum may be included in the fluid.
 また、下記特許文献2には、被覆された透明支持体と、セルロースエステルポリマ(酢酸セルロース、酢酸酪酸セルロース、酢酸プロピオン酸セルロース、またはそれらの混合物)内に分散された銀ナノワイヤのランダムネットワークを含む透明導電フィルムと、を含む、透明導電物品が開示されている。 In addition, Patent Document 2 below includes a coated transparent support and a random network of silver nanowires dispersed in a cellulose ester polymer (cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, or a mixture thereof) A transparent conductive article is disclosed, comprising: a transparent conductive film.
 また、下記特許文献3には、金属ナノワイヤ、バインダー(バインダー(A):多糖類(ヒドロキシプロピルグアーガム及びその誘導体、ヒドロキシプロピルメチルセルロース及びその誘導体、並びに、メチルセルロース及びその誘導体)及びバインダー(B):水性ポリエステル樹脂、水性ポリウレタン樹脂、水性アクリル樹脂及び水性エポキシ樹脂から選ばれる少なくとも1種を含む)、界面活性剤、及び溶媒を含有する金属ナノワイヤ含有組成物によって形成された金属ナノワイヤ含有塗膜が基板上に形成された透明導電体が開示されている。 Patent Document 3 below describes metal nanowires, binders (binder (A): polysaccharides (hydroxypropyl guar gum and derivatives thereof, hydroxypropyl methylcellulose and derivatives thereof, and methylcellulose and derivatives thereof) and binders (B): aqueous A metal nanowire-containing coating film formed by a composition containing a metal nanowire containing a polyester resin, an aqueous polyurethane resin, at least one selected from an aqueous acrylic resin and an aqueous epoxy resin, a surfactant, and a solvent is on a substrate There is disclosed a transparent conductor formed in
 また、下記特許文献4には、導電性繊維として金属ナノワイヤを含み、ポリマーとしてゼラチン、ゼラチン誘導体、ガゼイン、寒天、でんぷん、ポリビニルアルコール、ポリアクリル酸共重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、デキストラン、などを含有する導電膜が開示されている。 In addition, Patent Document 4 below includes metal nanowires as conductive fibers, gelatin as a polymer, gelatin derivative, casein, agar, starch, polyvinyl alcohol, a copolymer of polyacrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl pyrrolidone, A conductive membrane containing dextran, etc. is disclosed.
特表2009-505358号公報Japanese Patent Application Publication No. 2009-505358 特表2012-533846号公報JP 2012-533846 gazette 国際公開第2014/196354号パンフレットInternational Publication No. 2014/196354 brochure 特開2011-233514号公報JP 2011-233514 A
 特許文献1~4によれば、表面抵抗が1000Ω/□以下の表面抵抗値を有する導電膜を得ることを意図するものであることが示唆される。このような低抵抗な導電膜を得るためには、相応の導電材料を用いる必要があるためコスト面や光学特性に問題があったり、導電性に異方性が発現したりする問題が有る。一方、表面抵抗値が1000Ω/□以上であるさほど低くない表面抵抗値を有する導電フィルムを得るために金属ナノワイヤを含む希薄塗布液を基材フィルムに塗布する場合、金属ナノワイヤが塗布液中や塗布後の乾燥工程において凝集が起こり、その結果、均一な塗布状態が得られず、フィルム面内で表面抵抗値の高い箇所と低い箇所が生じ、ばらつきが増大する問題がある。 According to Patent Documents 1 to 4, it is suggested that it is intended to obtain a conductive film having a surface resistance value of 1000 Ω / □ or less. In order to obtain such a low-resistance conductive film, it is necessary to use a corresponding conductive material, which causes problems in cost and optical characteristics, and causes a problem in that anisotropy occurs in the conductivity. On the other hand, when a dilute coating solution containing metal nanowires is applied to a substrate film to obtain a conductive film having a surface resistance value not so low as 1000 Ω / □ or more, the metal nanowires are coated or coated in the coating solution. Cohesion occurs in the subsequent drying step, and as a result, a uniform coated state can not be obtained, and high and low portions of the surface resistance value are generated in the film surface, which causes a problem of increased variation.
 本発明の目的は、金属ナノワイヤの使用量を抑え、1000~10000Ω/□の範囲の表面抵抗値を有する、面内の表面抵抗値のばらつきが小さい導電フィルムを提供することにある。さらには生産性に優れた導電フィルムの好適な製造方法及びそのための金属ナノワイヤインクを提供することにある。 An object of the present invention is to provide a conductive film which has a reduced amount of metal nanowires used and which has a surface resistance value in the range of 1000 to 10000 Ω / □ and which has a small variation in the surface resistance value in the plane. Another object of the present invention is to provide a method for producing a conductive film excellent in productivity and a metal nanowire ink therefor.
 上記目的を達成するために、本発明は、以下の実施態様を含む。 In order to achieve the above object, the present invention includes the following embodiments.
 [1]平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、ジエチレングリコールモノエチルエーテルを含む溶剤(C)と、を含み、前記金属ナノワイヤ(A)の含有率が0.005~0.05質量%である金属ナノワイヤインクを、高分子フィルムの少なくとも片面に塗布、乾燥させる工程を含む、導電フィルムの製造方法。 [1] Metal nanowire (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 μm, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose A metal nanowires ink comprising: a binder resin (B) comprising: and a solvent (C) comprising diethylene glycol monoethyl ether, wherein the content of the metal nanowires (A) is 0.005 to 0.05% by mass, A method for producing a conductive film, comprising the steps of applying and drying on at least one side of a polymer film.
 [2]前記溶剤(C)が、ジエチレングリコールモノエチルエーテルを10~50質量%含有する、[1]に記載の導電フィルムの製造方法。 [2] The method for producing a conductive film according to [1], wherein the solvent (C) contains 10 to 50% by mass of diethylene glycol monoethyl ether.
 [3]高分子フィルムの少なくとも片面に導電層が形成された導電フィルムであって、前記導電層が、平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、を含み、前記導電層の表面抵抗値が1000~10000Ω/□であり、且つ面内の表面抵抗値のばらつきが35%以下であることを特徴とする導電フィルム。 [3] A conductive film having a conductive layer formed on at least one surface of a polymer film, wherein the conductive layer has an average diameter of 1 to 100 nm and an average length of the major axis of 1 to 100 μm, and an aspect The metal nanowires (A) having an average ratio of 100 to 2000 and a binder resin (B) containing at least one of ethyl cellulose and hydroxypropyl cellulose, and the surface resistivity of the conductive layer is 1000 to 10000 Ω / □ What is claimed is: 1. A conductive film characterized by having a variation in surface resistance value of 35% or less.
 [4]前記金属ナノワイヤ(A)が銀ナノワイヤであり、その占有面積率が0.5~1.5%の範囲である、[3]に記載の導電フィルム。 [4] The conductive film according to [3], wherein the metal nanowires (A) are silver nanowires and the occupied area ratio is in the range of 0.5 to 1.5%.
 [5]前記金属ナノワイヤ(A)とバインダー樹脂(B)との質量比[金属ナノワイヤ(A)/バインダー樹脂(B)]が0.01~0.5の範囲である、[3]又は[4]に記載の導電フィルム。 [5] The mass ratio of the metal nanowire (A) to the binder resin (B) [metal nanowire (A) / binder resin (B)] is in the range of 0.01 to 0.5, [3] or [3] 4] conductive film.
 [6]前記高分子フィルムが、ポリエステル、ポリカーボネート、アクリル樹脂、ポリシクロオレフィンからなる群から選択されるいずれかの高分子からなるフィルムである、[3]~[5]のいずれか一に記載の導電フィルム。 [6] The polymer film according to any one of [3] to [5], which is a film made of any polymer selected from the group consisting of polyester, polycarbonate, acrylic resin, and polycycloolefin. Conductive film.
 [7]全光線透過率が80%以上で且つヘーズ値が0.1~1.5%である、[3]~[6]のいずれか一に記載の導電フィルム。 [7] The conductive film according to any one of [3] to [6], having a total light transmittance of 80% or more and a haze value of 0.1 to 1.5%.
 [8]平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、ジエチレングリコールモノエチルエーテルを含む溶剤(C)と、を含み、前記金属ナノワイヤ(A)の含有率が0.005~0.05質量%であることを特徴とする金属ナノワイヤインク。 [8] A metal nanowire (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 μm, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose And a solvent (C) containing diethylene glycol monoethyl ether, and the content of the metal nanowire (A) is 0.005 to 0.05% by mass. Metal nanowire ink.
 [9]前記溶剤(C)が、ジエチレングリコールモノエチルエーテルを10~50質量%含有する、[8]に記載の金属ナノワイヤインク。 [9] The metal nanowire ink according to [8], wherein the solvent (C) contains 10 to 50% by mass of diethylene glycol monoethyl ether.
 本発明の実施形態によれば金属ナノワイヤの使用量が少なく、且つ表面抵抗値が1000~10000Ω/□である、面内ばらつきが少ない導電フィルム及びその製造方法並びにこれに使用する金属ナノワイヤインクを提供することが出来る。また、本発明の実施形態に係る導電フィルムは、低コスト且つ抵抗値安定性に優れたタッチパネルや電子ペーパー向けの導電フィルム用途に好適に用いることが出来る。 According to an embodiment of the present invention, a conductive film having a small amount of metal nanowires and a surface resistance of 1000 to 10000 Ω / □, a conductive film with little in-plane variation, a method for producing the same, and metal nanowire ink used therefor are provided. You can do it. Moreover, the conductive film which concerns on embodiment of this invention can be used suitably for the conductive film use for a touch panel and electronic paper excellent in low cost and resistance value stability.
実施例、比較例における導電フィルムの表面抵抗値のばらつき(面内均一性)の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the dispersion | variation (in-plane uniformity) of the surface resistance value of the electroconductive film in an Example and a comparative example.
 以下、本発明を実施するための形態(以下、実施形態という)の各構成について詳細に説明する。 Hereinafter, each configuration of a mode for carrying out the present invention (hereinafter, referred to as an embodiment) will be described in detail.
 実施形態にかかる導電フィルムは、基材としての高分子フィルムの少なくとも片面に導電層が形成されており、上記導電層が、平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、を含み、上記導電層の表面抵抗値が1000~10000Ω/□であり、且つ面内の表面抵抗値のばらつきが35%以下であることを特徴とする。 In the conductive film according to the embodiment, a conductive layer is formed on at least one side of a polymer film as a substrate, and the conductive layer has an average diameter of 1 to 100 nm and an average major axis length of 1 to 100 μm. And a metal nanowire (A) having an average aspect ratio of 100 to 2000, and a binder resin (B) containing at least one of ethyl cellulose and hydroxypropyl cellulose, and the surface resistivity of the conductive layer is 1,000. It is characterized in that it is ̃10000 Ω / □, and the variation of the in-plane surface resistance value is 35% or less.
<高分子フィルム>
 上記高分子フィルムは導電層と十分な密着性を有するものであれば特に限定されない。高分子フィルムは、例えばポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリカーボネート、アクリル樹脂、ポリシクロオレフィン、ポリスルフォン、ポリアミド、ポリイミド等の高分子からなるフィルムを好適に使用する事が出来る。ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリカーボネート、アクリル樹脂、ポリシクロオレフィンの何れかの高分子からなるフィルムを用いることで、透明性に優れた導電フィルムを得ることが出来る。好ましい高分子フィルムは、ポリシクロオレフィン、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)の何れかの高分子からなるフィルムであり、ポリシクロオレフィン、ポリエチレンテレフタレート(PET)からなるフィルムがより好ましい。
<Polymer film>
The polymer film is not particularly limited as long as it has sufficient adhesion to the conductive layer. As the polymer film, for example, a film made of a polymer such as polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate, acrylic resin, polycycloolefin, polysulfone, polyamide, polyimide, etc. is suitably used. I can do things. By using a film made of polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate, acrylic resin, or polycycloolefin, a conductive film having excellent transparency can be obtained. It can. The preferred polymer film is a film made of any of polycycloolefin, polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), and a film made of polycycloolefin, polyethylene terephthalate (PET) Is more preferred.
 高分子フィルムの厚みは、特に制限されるものではなく、用途や種類に応じて適宜選択されるが、機械的強度、ハンドリング性などの点から、通常は25~500μm、より好ましくは38~400μm、さらに好ましくは50~300μmである。また、高分子フィルムには各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機又は無機微粒子、充填剤、核剤などがその特性を悪化させない程度に添加されていてもよい。 The thickness of the polymer film is not particularly limited and may be appropriately selected depending on the application and type, but is usually 25 to 500 μm, more preferably 38 to 400 μm from the viewpoint of mechanical strength, handling property, etc. More preferably, it is 50 to 300 μm. In addition, various additives may be added to the polymer film, for example, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, nucleating agents, etc. It may be added to an extent that does not deteriorate the characteristics.
 高分子フィルムは表面処理を行うことなくそのまま使用しても良い。また、高分子フィルム上に形成する導電層との密着性や導電層の均一性を高めるために、高分子フィルムに対して、コロナ処理やプラズマ処理等の表面処理を行っても良い。 The polymer film may be used as it is without surface treatment. In order to enhance the adhesion with the conductive layer formed on the polymer film and the uniformity of the conductive layer, the polymer film may be subjected to surface treatment such as corona treatment or plasma treatment.
<導電層>
 上記導電層は金属ナノワイヤインクを高分子フィルムの少なくとも片面に塗布、乾燥して形成することで得られる。金属ナノワイヤインクは金属ナノワイヤ(A)、バインダー樹脂(B)、および溶剤(C)を含む。導電層はバインダー樹脂(B)中に金属ナノワイヤ(A)が分散されており、その表面抵抗値が1000~10000Ω/□であり、表面抵抗値のばらつきが35%以下の導電性の層であって、この導電層が高分子フィルムの少なくとも片面に形成されて本実施形態の導電フィルムを構成する。
<Conductive layer>
The conductive layer is obtained by applying and drying a metal nanowire ink on at least one surface of a polymer film. The metal nanowires ink comprises metal nanowires (A), a binder resin (B), and a solvent (C). The conductive layer is a conductive layer in which metal nanowires (A) are dispersed in a binder resin (B), the surface resistance value is 1000 to 10000 Ω / □, and the variation of the surface resistance value is 35% or less The conductive layer is formed on at least one side of the polymer film to constitute the conductive film of the present embodiment.
 導電層における金属ナノワイヤ(A)の含有量は導電フィルムに対する金属ナノワイヤ(A)の占有面積率で0.5~1.5%であることが好ましく、1.0~1.4%であることがより好ましい。この場合、金属ナノワイヤの導電フィルムに対する占有面積率を0.5%以上とすることで表面抵抗値が10000Ω/□以下の導電性を有する導電フィルムを得ることができる。また、金属ナノワイヤの導電フィルムに対する占有面積率を1.5%以下とすることで、全光線透過率が高く、ヘーズの低い、透明性に優れた導電フィルムを得ることができる。すなわち、金属ナノワイヤの導電フィルムに対する占有面積率を0.5%以上で且つ1.5%以下とすることで、導電性及び透明性に優れると共に、高価な金属ナノワイヤの使用量が少なく経済性にも優れた導電フィルムを得ることができる。ここで、「導電フィルムに対する金属ナノワイヤの占有面積率」とは、導電フィルムの導電層平面に対して垂直方向から観察した金属ナノワイヤの投影面積の割合を意味する。 The content of the metal nanowires (A) in the conductive layer is preferably 0.5 to 1.5%, preferably 1.0 to 1.4% in terms of the occupied area ratio of the metal nanowires (A) to the conductive film. Is more preferred. In this case, when the occupied area ratio of the metal nanowires to the conductive film is 0.5% or more, a conductive film having a surface resistance value of 10000 Ω / □ or less can be obtained. Further, by setting the occupied area ratio of the metal nanowires to the conductive film at 1.5% or less, it is possible to obtain a conductive film having a high total light transmittance, a low haze, and excellent transparency. That is, by setting the occupied area ratio of the metal nanowires to the conductive film at 0.5% or more and 1.5% or less, the conductivity and transparency are excellent, and the amount of the expensive metal nanowires used is small and the economy is economical An excellent conductive film can be obtained. Here, the “occupied area ratio of the metal nanowires to the conductive film” means the ratio of the projected area of the metal nanowires observed from the direction perpendicular to the plane of the conductive layer of the conductive film.
<金属ナノワイヤ(A)>
 金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状またはチューブ状の形状を有する導電材料である。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。前者を「狭義の金属ナノワイヤ」、後者を「狭義の金属ナノチューブ」と呼び、以下、本明細書において「金属ナノワイヤ(A)」は狭義の金属ナノワイヤと狭義の金属ナノチューブを包括する意味で用いる。狭義の金属ナノワイヤ、狭義の金属ナノチューブは、単独で用いてもよく、混合して用いてもよい。
<Metal nanowire (A)>
The metal nanowire is a metal having a diameter of nanometer order size, and is a conductive material having a wire-like or tube-like shape. In the present specification, "wire-like" and "tube-like" are both linear, but the former is intended not to be hollow in the center and the latter to be hollow in the center. The properties may be flexible or rigid. The former is referred to as "metal nanowire in a narrow sense" and the latter is referred to as "metal nanotube in a narrow sense". Hereinafter, in the present specification, "metal nanowire (A)" is used to encompass metal nanowires in a narrow sense and metal nanotubes in a narrow sense. The narrow sense metal nanowires and the narrow sense metal nanotubes may be used alone or in combination.
 金属ナノワイヤ(A)の径の太さの平均(平均径)は、1~100nmであり、5~80nmが好ましく、10~60nmがより好ましく、10~50nmがさらに好ましい。また、金属ナノワイヤの長軸の長さの平均は、1~100μmであり、1~50μmが好ましく、2~50μmがより好ましく、5~30μmがさらに好ましい。 The average diameter (diameter) of the metal nanowires (A) is 1 to 100 nm, preferably 5 to 80 nm, more preferably 10 to 60 nm, and still more preferably 10 to 50 nm. The average length of the major axes of the metal nanowires is 1 to 100 μm, preferably 1 to 50 μm, more preferably 2 to 50 μm, and still more preferably 5 to 30 μm.
 金属ナノワイヤ(A)は、径の太さの平均および長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が100~2000であり、200~1000であることが好ましく、300~1000であることがより好ましく、300~700であることがさらに好ましい。ここで、アスペクト比は、金属ナノワイヤの径の平均径をb、長軸の平均的な長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)を用いて測定できる。 The metal nanowire (A) has an average diameter thickness and an average long axis length satisfying the above range, and an average aspect ratio of 100 to 2000, preferably 200 to 1000, and 300 to 300 It is more preferably 1000, and still more preferably 300 to 700. Here, the aspect ratio is a value obtained by a / b when the average diameter of the diameter of the metal nanowire is b and the average length of the major axis is a. a and b can be measured using a scanning electron microscope (SEM).
 金属の種類としては、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、イリジウムからなる群から選ばれる少なくとも1種およびこれら金属を組み合わせた合金等が挙げられる。低い表面抵抗かつ高い全光線透過率を有する透明導電膜を得るためには、金、銀および銅のいずれかを少なくとも1種含むことが好ましい。これらの金属は導電性が高いため、一定の表面抵抗を得る際に、面に占める金属の密度を減らすことができるので、高い全光線透過率を実現できる。 As the type of metal, at least one metal selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, iridium and alloys combining these metals, etc. Can be mentioned. In order to obtain a transparent conductive film having low surface resistance and high total light transmittance, it is preferable to include at least one of gold, silver and copper. Since these metals have high conductivity, the density of the metal occupied on the surface can be reduced when obtaining a constant surface resistance, so that high total light transmittance can be realized.
 これらの金属の中でも、金または銀の少なくとも1種を含むことがより好ましい。最適な態様としては、銀のナノワイヤが挙げられる。 Among these metals, it is more preferable to include at least one of gold and silver. Optimal embodiments include silver nanowires.
 金属ナノワイヤ(A)の製造方法としては、公知の製造方法を用いることができる。例えば、銀ナノワイヤ(狭義)は、ポリオール(Poly-ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤ(狭義)も同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤおよび金ナノワイヤの大規模な合成および精製の技術に関しては国際公開第2008/073143号パンフレットと国際公開第2008/046058号パンフレットに詳細な記述がある。ポーラス構造を有する金ナノチューブ(狭義)は、銀ナノワイヤを鋳型にして、塩化金酸溶液を還元することにより合成することができる。ここで、鋳型に用いた銀ナノワイヤは塩化金酸との酸化還元反応により溶液中に溶け出し、結果としてポーラス構造を有する金ナノチューブができる(J.Am.Chem.Soc.,2004,126,3892-3901参照)。 A well-known manufacturing method can be used as a manufacturing method of metal nanowire (A). For example, silver nanowires (in a narrow sense) can be synthesized by reducing silver nitrate in the presence of polyvinyl pyrrolidone using the polyol (Poly-ol) method (see Chem. Mater., 2002, 14, 4736). Gold nanowires (in a narrow sense) can be similarly synthesized by reducing chloroauric acid hydrate in the presence of polyvinyl pyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). WO 2008/073143 and WO 2008/046058 provide a detailed description of large scale synthesis and purification techniques of silver nanowires and gold nanowires. Gold nanotubes (in a narrow sense) having a porous structure can be synthesized by reducing a chloroauric acid solution using silver nanowires as a template. Here, the silver nanowires used as the template are dissolved in the solution by the redox reaction with chloroauric acid, and as a result, gold nanotubes having a porous structure can be formed (J. Am. Chem. Soc., 2004, 126, 3892 -3901).
<バインダー樹脂(B)>
 金属ナノワイヤインクに用いるバインダー樹脂(B)は、導電層中に金属ナノワイヤ(A)を分散・固定化させるものであり、エチルセルロース、ヒドロキシプロピルセルロースの少なくとも一方を含む。バインダー樹脂(B)としてエチルセルロース、ヒドロキシプロピルセルロースを用いることで、金属ナノワイヤ(A)をバインダー樹脂(B)中に均一に分散させることができ、高分子フィルム上へ均一に分散、固定化させることができるだけでなく、透明性等も付与できるためである。バインダー樹脂(B)には、エチルセルロース、ヒドロキシプロピルセルロース以外の樹脂を、後述する溶剤(C)に溶解する範囲内で併用することができるが、その配合量はバインダー樹脂(B)全体の50質量%未満とすることが好ましく、30質量%未満とすることがより好ましく、20質量%未満とすることがさらに好ましい。
<Binder resin (B)>
The binder resin (B) used for the metal nanowire ink disperses and immobilizes the metal nanowire (A) in the conductive layer, and contains at least one of ethyl cellulose and hydroxypropyl cellulose. By using ethyl cellulose and hydroxypropyl cellulose as the binder resin (B), the metal nanowires (A) can be uniformly dispersed in the binder resin (B), and uniformly dispersed and immobilized on the polymer film. In addition to the above, transparency and the like can be provided. For the binder resin (B), a resin other than ethylcellulose and hydroxypropylcellulose can be used in combination as long as it dissolves in the solvent (C) described later, but the compounding amount thereof is 50 mass of the whole binder resin (B) The content is preferably less than%, more preferably less than 30% by mass, and still more preferably less than 20% by mass.
 金属ナノワイヤインク中の金属ナノワイヤ(A)とバインダー樹脂(B)の質量比[金属ナノワイヤ(A)/バインダー樹脂(B)]は0.01~0.5の範囲であることが好ましく、より好ましくは0.03~0.4、さらに好ましくは0.05~0.2である。金属ナノワイヤ(A)とバインダー樹脂(B)との質量比が0.5以下とすることで均一な塗膜の形成ができる。またバインダー樹脂(B)の各種特性や効果を導電フィルムへ付与することができる。金属ナノワイヤ(A)とバインダー樹脂(B)との質量比を0.01以上にすることで金属ナノワイヤ(A)の導電性を十分に発現させることができる。 The mass ratio of the metal nanowires (A) to the binder resin (B) in the metal nanowires ink [metal nanowires (A) / binder resin (B)] is preferably in the range of 0.01 to 0.5, and more preferably Is from 0.03 to 0.4, more preferably from 0.05 to 0.2. When the mass ratio of the metal nanowires (A) to the binder resin (B) is 0.5 or less, a uniform coating can be formed. Moreover, various characteristics and effects of the binder resin (B) can be imparted to the conductive film. The conductivity of the metal nanowire (A) can be sufficiently expressed by setting the mass ratio of the metal nanowire (A) to the binder resin (B) to 0.01 or more.
<溶剤(C)>
 金属ナノワイヤインクに含まれる溶剤(C)は、バインダー樹脂(B)を溶解させ、金属ナノワイヤを(A)分散させることができ、高分子フィルム表面に良好に塗布できる組成である必要がある。そのため、溶剤にはジエチレングリコールモノエチルエーテルを含む。使用する溶剤量は高分子フィルム上に金属ナノワイヤインクを塗布した際に均一な導電層を与えることができる量であれば、特に制約はない。この場合、金属ナノワイヤインクに含有される金属ナノワイヤ(A)およびバインダー樹脂(B)の合計量を金属ナノワイヤインク全体に対して約0.1~0.5質量%になるように、溶剤の量を調整することが好ましい。
<Solvent (C)>
The solvent (C) contained in the metal nanowires ink needs to have a composition capable of dissolving the binder resin (B), dispersing the metal nanowires (A), and capable of being favorably applied to the surface of the polymer film. Therefore, the solvent contains diethylene glycol monoethyl ether. The amount of solvent used is not particularly limited as long as it can provide a uniform conductive layer when the metal nanowires ink is applied on the polymer film. In this case, the amount of the solvent is adjusted so that the total amount of the metal nanowires (A) and the binder resin (B) contained in the metal nanowires ink is about 0.1 to 0.5% by mass with respect to the entire metal nanowires ink. It is preferable to adjust the
 溶剤(C)はジエチレングリコールモノエチルエーテル以外のアルコールを含むことが好ましい。また、水との混合溶剤を用いることも好ましい。ジエチレングリコールモノエチルエーテル以外のアルコールとしては、メタノール、エタノール、プロパノール、プロピレングリコール、プロピレングリコールモノメチルエーテル等が挙げられ、これらの1種または複数種を組み合わせて用いることができる。この場合、ジエチレングリコールモノエチルエーテルは全溶剤中で10~50質量%の範囲内で含まれたものであることが好ましい。全溶剤中のアルコールの好ましい範囲は90~100質量%であり、水の好ましい範囲は0~10質量%である。 The solvent (C) preferably contains an alcohol other than diethylene glycol monoethyl ether. It is also preferable to use a mixed solvent with water. Examples of alcohols other than diethylene glycol monoethyl ether include methanol, ethanol, propanol, propylene glycol, propylene glycol monomethyl ether and the like, and one or more of these can be used in combination. In this case, diethylene glycol monoethyl ether is preferably contained in the range of 10 to 50% by mass in all solvents. The preferred range of alcohol in the total solvent is 90 to 100% by weight, and the preferred range of water is 0 to 10% by weight.
<金属ナノワイヤインク>
 金属ナノワイヤインクには、その印刷特性、導電性、光学特性等の性能に悪影響を及ぼさない限りにおいて、界面活性剤、酸化防止剤、フィラー等の添加剤を含有しても良い。組成物の粘性を調整するためにヒュームドシリカ等のフィラーを用いることができる。これらの配合量はトータルで5質量%以内とすることが好ましい。
<Metal nanowire ink>
The metal nanowires ink may contain additives such as a surfactant, an antioxidant, and a filler as long as the performance such as printing characteristics, conductivity and optical characteristics is not adversely affected. Fillers such as fumed silica can be used to adjust the viscosity of the composition. The total amount of these components is preferably 5% by mass or less.
 実施形態にかかる金属ナノワイヤインクは、以上に述べた金属ナノワイヤ(A)、バインダー樹脂(B)、溶剤(C)、必要に応じて添加することができる添加剤を上記配合比(質量%)で配合し、自転公転攪拌機等で攪拌して混合することができる。金属ナノワイヤインクの粘度は1~50mPa・sであることが好ましい。 In the metal nanowires ink according to the embodiment, the metal nanowires (A), the binder resin (B), the solvent (C), and the additive that can be added as needed are added in the above-mentioned mixing ratio (% by mass). It mix | blends and it can stir and mix with a rotation revolution stirrer etc. The viscosity of the metal nanowires ink is preferably 1 to 50 mPa · s.
 実施形態の導電フィルムは、前記高分子フィルムの表面に金属ナノワイヤインクを塗布することにより得られる。金属ナノワイヤインク中の金属ナノワイヤ(A)の含有率は、0.005~0.05質量%である。0.005質量%未満では、導電性が低過ぎ、後述の実施例に記載の測定方法によるシート抵抗の測定が不可となり、また、0.05質量%を超えると、導電性が高過ぎる。好ましくは0.01~0.05質量%、より好ましくは0.02~0.04質量%である。 The conductive film of the embodiment is obtained by applying a metal nanowire ink to the surface of the polymer film. The content of the metal nanowires (A) in the metal nanowires ink is 0.005 to 0.05% by mass. If the amount is less than 0.005% by mass, the conductivity is too low, the sheet resistance can not be measured by the measurement method described in the examples described later, and if it exceeds 0.05% by mass, the conductivity is too high. Preferably, it is 0.01 to 0.05% by mass, more preferably 0.02 to 0.04% by mass.
 金属ナノワイヤインクの高分子フィルムへの塗布は、公知の塗布方式、例えばバーコート法、リバースコート法、グラビアコート法、ダイコート法、ブレードコート法等の任意の方式を用いることが出来る。また、乾燥は、熱風炉、遠赤外炉など、任意の方式で行うことができる。 The metal nanowire ink can be applied to the polymer film by any known method such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, and a blade coating method. Moreover, drying can be performed by arbitrary systems, such as a hot blast furnace and a far-infrared furnace.
 上記特定のバインダー樹脂と溶剤を含む金属ナノワイヤインクを用いる製造方法によれば、高分子フィルムに導電層が形成された導電フィルムであって、表面抵抗値が1000~10000Ω/□であり、且つ表面抵抗値のばらつきが35%以下の導電フィルムを得ることができる。 According to a manufacturing method using a metal nanowire ink containing the above specific binder resin and a solvent, the conductive film is a conductive film formed on a polymer film, and has a surface resistance value of 1000 to 10000 Ω / □, and a surface It is possible to obtain a conductive film having a variation in resistance of 35% or less.
 本実施形態の導電フィルムは、少量の金属ナノワイヤ(A)、特定のバインダー樹脂(B)、および溶剤(C)を含む、金属ナノワイヤが良好に分散している金属ナノワイヤインクを用いて製造しているため、全光線透過率が80%以上、好ましくは85%以上であり、ヘーズ値が0.1~1.5%、好ましくは0.3~1.0%である導電フィルムが得られる。全光線透過率を80%以上、ヘーズ値を0.1~1.5%とすることで、透明性に優れ、曇りの少ない導電フィルムを得ることができる。 The conductive film of the present embodiment is manufactured using a metal nanowire ink in which metal nanowires are well dispersed, containing a small amount of metal nanowires (A), a specific binder resin (B), and a solvent (C). Accordingly, a conductive film having a total light transmittance of 80% or more, preferably 85% or more, and a haze value of 0.1 to 1.5%, preferably 0.3 to 1.0% can be obtained. By setting the total light transmittance to 80% or more and the haze value to 0.1 to 1.5%, it is possible to obtain a conductive film having excellent transparency and less clouding.
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。以下の各実施例及び比較例では、金属ナノワイヤとして銀ナノワイヤを用いた。 Examples of the present invention will be specifically described below. The following examples are provided to facilitate the understanding of the present invention, and the present invention is not limited to these examples. In each of the following examples and comparative examples, silver nanowires were used as metal nanowires.
<銀ナノワイヤの形状の観測>
 銀ナノワイヤの形状(長さ・直径)は、株式会社日立ハイテクノロジーズ製超高分解能電界放出形走査電子顕微鏡SU8020(加速電圧3~10kV)を用いて任意に選択した50本のナノワイヤの径および長さを観測し、その算術平均値を求めた。具体的には、シリコンウェハ上に銀ナノワイヤ分散液を数滴滴下、乾燥後シリコンウェハ上に堆積した銀ナノワイヤの形状を上記走査電子顕微鏡にて観測した。アスペクト比(平均)は、[ナノワイヤの長軸の長さの平均値]/[ナノワイヤの平均径]より算出した。
<Observation of the shape of silver nanowires>
The shape (length and diameter) of silver nanowires is the diameter and length of 50 nanowires arbitrarily selected using Hitachi High-Technologies Corporation high-resolution field-emission scanning electron microscope SU8020 (acceleration voltage 3 to 10 kV) Were observed and their arithmetic mean value was determined. Specifically, several drops of silver nanowire dispersion were dropped onto a silicon wafer, and after drying, the shape of the silver nanowire deposited on the silicon wafer was observed by the above-mentioned scanning electron microscope. The aspect ratio (average) was calculated from [average value of length of major axis of nanowire] / [average diameter of nanowire].
 また、日本分光株式会社製の紫外可視近赤外分光光度計V-670を用いて、後述する銀ナノワイヤの合成で得られた銀ナノワイヤをメタノールに分散させた液(液中の銀ナノワイヤ含有量:0.003質量%)の300~600nmにおける紫外可視吸収スペクトルを測定し、銀ナノワイヤに基づく370nm~380nmにおける吸光度の最大ピーク値Abs(λmax)と銀の球状粒子に基づく波長450nmにおける吸光度値Abs(λ450)との比率(Abs(λ450)/Abs(λmax))を求めた。銀ナノワイヤの形状にもよるが、この比率が0.1~0.5の範囲が好適であり、この比率が小さいほど銀ナノワイヤ合成時に生成した球状粒子が少ないことを意味する。球状粒子が存在しない場合0.1程度となる。 In addition, a solution in which silver nanowires obtained by the synthesis of silver nanowires described later are dispersed in methanol using an ultraviolet visible near infrared spectrophotometer V-670 manufactured by JASCO Ltd. (silver nanowire content in the solution UV-visible absorption spectrum at 300-600 nm): 0.003 mass%, maximum peak value Abs (λ max) of absorbance at 370 nm-380 nm based on silver nanowires and absorbance value Abs at wavelength 450 nm based on silver spherical particles The ratio (Abs (λ450) / Abs (λmax)) to (λ450) was determined. Although depending on the shape of the silver nanowires, this ratio is preferably in the range of 0.1 to 0.5, and the smaller the ratio, the smaller the number of spherical particles generated at the time of silver nanowire synthesis. When spherical particles do not exist, it becomes about 0.1.
<表面抵抗値及びばらつきの測定>
 表面抵抗値及びばらつきは、5000Ω/□までの抵抗値であればナプソン株式会社製非接触式抵抗測定器EC-80Pを用いて、5000Ω/□以上の抵抗値であれば三菱化学アナリック株式会社製4探針接触式抵抗測定機Loresta-GPを用いて以下の方法により求めた。
<Measurement of surface resistance value and variation>
The surface resistance value and the variation is a resistance value up to 5000 Ω / □, using a non-contact resistance measuring instrument EC-80P manufactured by Napson Co., Ltd., and a resistance value of 5000 Ω / □ or more, manufactured by Mitsubishi Chemical Analytic Co., Ltd. It was determined by the following method using a 4-probe contact type resistance measuring device Loresta-GP.
 210mm×300mmの大きさのシートサンプルを、30mm×30mmの大きさの7行×10列の合計70個のエリアに区切り、図1の斜線を付したエリアの中央付近の表面抵抗値を測定し、12点の平均値を表面抵抗値とした。この場合、表面抵抗値が1点でも測定出来ない、すなわち不導通(1×10Ω/□以上)があった場合、表面抵抗値を算出していない。 A sheet sample of 210 mm × 300 mm in size is divided into a total of 70 areas of 7 rows × 10 columns of 30 mm × 30 mm, and the surface resistance value near the center of the hatched area in FIG. The average value of 12 points was taken as the surface resistance value. In this case, if the surface resistance value can not be measured even at one point, that is, there is non-conduction (1 × 10 7 Ω / □ or more), the surface resistance value is not calculated.
 12点の表面抵抗値の中で最大値をRmax、最小値をRminとして、式(1)に基づいて、ばらつきを算出した。
ばらつき[%]=[(Rmax-Rmin)/(Rmax+Rmin)]×100 (1)
Among the surface resistance values of 12 points, the variation was calculated based on the equation (1) with Rmax as the maximum value and Rmin as the minimum value.
Variation [%] = [(Rmax−Rmin) / (Rmax + Rmin)] × 100 (1)
<金属ナノワイヤの占有面積率の算出>
 導電フィルムの表面を走査電子顕微鏡(日立製作所製S5000、加速電圧5kV)にて導電層平面に対して垂直方向から10000倍にてその形態を5箇所撮影し、画像として保存した。1箇所の画像面積は6μm×4.5μmとした。得られた画像を、キーエンス製解析アプリケーションソフトVK-H1XAを用いて画像解析を行い、その5箇所における導電層の平面内において金属ナノワイヤが占める面積の平均値を算出した。
<Calculation of occupied area ratio of metal nanowires>
The surface of the conductive film was photographed at five places with a scanning electron microscope (S5000 manufactured by Hitachi, Ltd .; accelerating voltage 5 kV) at a magnification of 10000 from the direction perpendicular to the plane of the conductive layer, and stored as an image. The image area of one place was 6 μm × 4.5 μm. The obtained image was subjected to image analysis using Keyence's analysis application software VK-H1XA, and the average value of the area occupied by the metal nanowires in the plane of the conductive layer at the five locations was calculated.
<光学特性の測定>
 この導電フィルムの光学特性として、全光線透過率およびヘーズを、日本電色工業社製、ヘーズメーターNDH2000により測定した。光学特性測定のリファレンスは空気を用いて測定を行った。サンプルは一辺30mm角のものを3サンプル準備し、それぞれ1回ずつ、合計3回測定した平均値をサンプルの全光線透過率、ヘーズとした。
<Measurement of optical characteristics>
As an optical characteristic of this conductive film, total light transmittance and haze were measured by Nippon Denshoku Industries Co., Ltd. make, haze meter NDH2000. The reference for optical property measurement was measured using air. Three samples having a side of 30 mm square were prepared, and the average value measured three times in total each time was taken as the total light transmittance and haze of the sample.
<銀ナノワイヤの合成>
 200mLガラス容器にプロピレングリコール100g(和光純薬工業社製)を秤量し、金属塩として硝酸銀2.3g(13mmol)(東洋化学工業社製)を加えて室温で2時間撹拌することで硝酸銀溶液を調製した。以下、この硝酸銀溶液を第二溶液と称する。
<Synthesis of silver nanowires>
100 g of propylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a 200 mL glass container, 2.3 g (13 mmol) of silver nitrate (manufactured by Toyo Kagaku Kogyo) is added as a metal salt, and the silver nitrate solution is stirred at room temperature for 2 hours Prepared. Hereinafter, this silver nitrate solution is referred to as a second solution.
 1L四つ口フラスコ(メカニカルスターラー、滴下漏斗、還流管、温度計、窒素ガス導入管)に、窒素ガス雰囲気下、プロピレングリコール600g、イオン性誘導体としての塩化テトラエチルアンモニウム0.052g(0.32mmol)(ライオンスペシャリティケミカルズ社製)および臭化ナトリウム0.008g(0.08mmol)(マナック社製)、構造規定剤としてポリビニルピロリドンK-90(PVP)7.2g(和光純薬工業社製、重量平均分子量35万)を仕込み、200rpmの回転数で150℃にて1時間撹拌することで完全に溶解させ、第一溶液を得た。 In a nitrogen gas atmosphere, 600 g of propylene glycol, 0.052 g (0.32 mmol) of tetraethylammonium chloride as an ionic derivative in a 1 L four-necked flask (mechanical stirrer, dropping funnel, reflux tube, thermometer, nitrogen gas inlet tube) (Lion Specialty Chemicals Co., Ltd.) and sodium bromide 0.008 g (0.08 mmol) (Manuc Co., Ltd.), 7.2 g of polyvinyl pyrrolidone K-90 (PVP) as a structure defining agent (Wako Pure Chemical Industries, Ltd., weight average) The molecular weight was 350,000, and the mixture was completely dissolved by stirring at 150 ° C. for 1 hour at a rotational speed of 200 rpm to obtain a first solution.
 先に調製した硝酸銀溶液(第二溶液)を滴下漏斗に入れ、上記第一溶液を温度150℃に維持した状態で、硝酸銀の平均供給モル数が0.087mmol/minとなるように2.5時間かけて第二溶液を滴下することで銀ナノワイヤを合成した。この場合、イオン性誘導体のモル数と硝酸銀の平均供給モル数から演算したモル比は0.22となっている。また、反応中に第一溶液中の銀イオン濃度を測定したところ、イオン性誘導体と金属塩とのモル比(金属塩/イオン性誘導体)は0.2~6.7の範囲であった。滴下終了後さらに1時間加熱撹拌を継続し反応を完結させた。なお、銀イオン濃度は、東亜ディーケーケー株式会社製自動滴定装置AUT-301を用い、チオシアン酸アンモニウム滴定法により測定した。 The silver nitrate solution (second solution) prepared above is added to the dropping funnel, and the above first solution is maintained at a temperature of 150 ° C., so that the average supply mole number of silver nitrate is 0.087 mmol / min. Silver nanowire was synthesize | combined by dripping a 2nd solution over time. In this case, the molar ratio calculated from the number of moles of the ionic derivative and the average number of moles of silver nitrate supplied is 0.22. In addition, when the silver ion concentration in the first solution was measured during the reaction, the molar ratio of the ionic derivative to the metal salt (metal salt / ionic derivative) was in the range of 0.2 to 6.7. After completion of the dropwise addition, heating and stirring were continued for 1 hour to complete the reaction. The silver ion concentration was measured by an ammonium thiocyanate titration method using an automatic titration apparatus AUT-301 manufactured by Toa DKK.
 次に、前記合成銀ナノワイヤを含む反応混合物(反応液)をメタノール(和光純薬工業社製)で5倍に希釈し、遠心分離機を用いて6000rpmの回転数で5分間遠心力をかけることで銀ナノワイヤを沈降させた。上澄み液を除去した後、メタノールを添加し6000rpmで5分間処理する操作をさらに2回行い系中に残存するPVP及び溶媒を洗浄、除去した。 Next, the reaction mixture (reaction solution) containing the synthetic silver nanowires is diluted 5 times with methanol (manufactured by Wako Pure Chemical Industries, Ltd.), and centrifugal force is applied for 5 minutes at a rotational speed of 6000 rpm using a centrifuge. The silver nanowires were allowed to settle. After the supernatant was removed, the operation of adding methanol and treating at 6000 rpm for 5 minutes was further repeated twice to wash and remove the PVP and the solvent remaining in the system.
 得られた銀ナノワイヤについて上記方法により株式会社日立ハイテクノロジーズ製超高分解能電界放出形走査電子顕微鏡SU8020(加速電圧3~10kV)画像から径および長さを求めたところ、平均径26.3nm、平均長20.5μmであった。この結果、アスペクト比は560となる。 The diameter and length of the obtained silver nanowires were determined from images of ultra-high resolution field emission scanning electron microscope SU8020 (acceleration voltage: 3 to 10 kV) manufactured by Hitachi High-Technologies Corp. by the above method. The length was 20.5 μm. As a result, the aspect ratio is 560.
 また、得られた銀ナノワイヤの紫外可視吸収スペクトルからAbs(λ450)/Abs(λmax)を求めたところ、0.21であった。 Moreover, it was 0.21 when Abs ((lambda) 450) / Abs ((lambda) max) was calculated | required from the ultraviolet visible absorption spectrum of the obtained silver nanowire.
実施例1.
<インク化>
 バインダー樹脂として、エチルセルロースであるETHOCELTM STD100CPS(Dow Chemical Company、Standard 100 Industrial Ethylcellulose)を用いた。
Example 1
<Inking>
As a binder resin, a cellulose ETHOCEL TM STD100CPS (Dow Chemical Company, Standard 100 Industrial Ethylcellulose) was used.
 上記銀ナノワイヤ分散液の溶媒であるメタノールと混合して、水+アルコール混合溶媒とするために、水、エタノール(和光純薬工業社製)、ジエチレングリコールモノエチルエーテル(和光純薬工業社製)、プロピレングリコールを用意した。 Water, ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), diethylene glycol monoethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), to be mixed with methanol, which is a solvent for the silver nanowire dispersion, to form a water + alcohol mixed solvent Propylene glycol was prepared.
 蓋付きの容器に、上記で得られた銀ナノワイヤ分散液(溶媒がメタノールであるもの)と水、メタノール、エタノール、ジエチレングリコールモノエチルエーテル、プロピレングリコール、ETHOCELTMを添加して、蓋をしたのち、自転公転攪拌機で混合し、粘度が5mPa・sの銀ナノワイヤインクを得た。 In a container with a lid, add the silver nanowire dispersion obtained above (where the solvent is methanol) and water, methanol, ethanol, diethylene glycol monoethyl ether, propylene glycol, ETHOCEL TM, and add lid, It mixed by the rotation revolution stirrer, and obtained the silver nanowire ink whose viscosity is 5 mPa * s.
 得られた銀ナノワイヤインクの粘度は、25℃でブルックフィールド社製デジタル粘度計DV-E(スピンドル:SC4-18)を用いて測定した。 The viscosity of the obtained silver nanowire ink was measured at 25 ° C. using a Brookfield digital viscometer DV-E (spindle: SC4-18).
 溶剤の組成(質量比)は、水:メタノール:エタノール:ジエチレングリコールモノエチルエーテル:プロピレングリコール=5:21:34:34:6とした。また溶剤100質量部に対し、ETHOCELTMの量が0.2質量部、銀ナノワイヤによって供給される金属銀の量が0.02質量部となるように調製した。 The composition (mass ratio) of the solvent was water: methanol: ethanol: diethylene glycol monoethyl ether: propylene glycol = 5: 21: 34: 34: 6. The 100 parts by weight of solvent relative to the amount of 0.2 parts by weight of ETHOCEL TM, the amount of metallic silver supplied by silver nanowires was adjusted to 0.02 parts by weight.
<銀含有量>
 得られた銀ナノワイヤインクから、銀ナノワイヤが分散状態にあるサンプル液を採取し、その液に硝酸を添加して銀ナノワイヤを溶解させ、原子吸光分光光度計(装置:アジレント・テクノロジー株式会社製ファーネス原子吸光分光光度計AA280Z)で銀の量を測定した。その結果、銀含有量は0.02質量%であり、インク化に際して目標とした0.02質量%と同じ値が得られた。したがって、表1においては、銀含有量を公称値(目標値)で示した(以下の各例において同じ)。
<Silver content>
A sample liquid containing silver nanowires in a dispersed state is collected from the obtained silver nanowire ink, nitric acid is added to the liquid to dissolve the silver nanowires, and atomic absorption spectrophotometer (apparatus: furnace made by Agilent Technologies, Inc. The amount of silver was measured by atomic absorption spectrophotometer AA280Z). As a result, the silver content was 0.02% by mass, and the same value as the targeted 0.02% by mass was obtained. Therefore, in Table 1, the silver content is shown by the nominal value (target value) (the same in each of the following examples).
<導電層の形成>
 上記銀ナノワイヤインクを、株式会社井元製作所製塗工機70F0を用い、ウエット膜厚が約20μmとなるバーコーターを使用して、塗布速度100mm/secで、高分子フィルム基材としてのPETフィルムの表面に塗布した。PETフィルムには東洋紡株式会社製コスモシャイン(登録商標)A4100の厚み125μmのフィルムを用いた。この場合、PETフィルムの表面は未処理面である。その後、送風乾燥機(楠本化成株式会社製 ETAC HS350)により130℃で10分間乾燥させ、透明導電層を有する透明な導電フィルムを形成した。
<Formation of conductive layer>
Using the above-described silver nanowire ink, using a coating machine 70F0 manufactured by Imoto Manufacturing Co., Ltd., using a bar coater with a wet film thickness of about 20 μm, at a coating speed of 100 mm / sec, a PET film as a polymer film substrate It was applied to the surface. As a PET film, a 125 μm thick film of Cosmo Shine (registered trademark) A4100 manufactured by Toyobo Co., Ltd. was used. In this case, the surface of the PET film is an untreated surface. Then, it was dried at 130 ° C. for 10 minutes with a blower drier (ETAC HS 350 manufactured by Kushimoto Chemical Co., Ltd.) to form a transparent conductive film having a transparent conductive layer.
 得られた導電フィルムの特性評価結果を、用いた金属ナノワイヤインクの組成とあわせて表1に示す。得られた導電フィルムの銀ナノワイヤの占有面積率は1.02%であった。平均表面抵抗値は2668Ω/□であって、表面抵抗値のばらつきは27.7%と小さく、略均一な導電性を有する導電フィルムであることが確認された。また、全光線透過率は90%と高く、ヘーズは0.4%と低く、極めて透明性に優れていることが確認された。 The characteristic evaluation results of the obtained conductive film are shown in Table 1 together with the composition of the metal nanowires ink used. The occupied area ratio of the silver nanowires of the obtained conductive film was 1.02%. The average surface resistance was 2668 Ω / □, and the variation in the surface resistance was as small as 27.7%, confirming that the conductive film had a substantially uniform conductivity. In addition, it was confirmed that the total light transmittance was as high as 90%, the haze was as low as 0.4%, and the transparency was extremely excellent.
実施例2~6.
 銀ナノワイヤ、バインダー樹脂、溶剤の配合量を表1の通りとした銀ナノワイヤインクを調製し用いた以外は実施例1同様に導電フィルムを得た。なお、表1中の実施例3~6で使用しているヒドロキシプロピルセルロース1000~5000cP及びヒドロキシプロピルセルロース150~400cPは、和光純薬工業社製である。
Examples 2-6.
The conductive film was obtained like Example 1 except having prepared and used the silver nanowire ink which made the compounding quantity of silver nanowire, binder resin, and the solvent as Table 1. Hydroxypropylcellulose 1000 to 5000 cP and hydroxypropyl cellulose 150 to 400 cP used in Examples 3 to 6 in Table 1 are manufactured by Wako Pure Chemical Industries, Ltd.
 実施例1~6で得られた導電フィルムは、銀ナノワイヤの占有面積率が1.0~1.4%、平均表面抵抗値が2500~4000Ω/□の範囲内であり、表面抵抗値のばらつきが30%以下と小さく、均一な導電性を有する導電フィルムであることが確認された。また、全光線透過率は90%と高く、ヘーズは0.4%と低く、極めて透明性に優れていることが確認された。 In the conductive films obtained in Examples 1 to 6, the occupied area ratio of silver nanowires is in the range of 1.0 to 1.4%, and the average surface resistance value is in the range of 2500 to 4000 Ω / □. Was as small as 30% or less, and it was confirmed to be a conductive film having uniform conductivity. In addition, it was confirmed that the total light transmittance was as high as 90%, the haze was as low as 0.4%, and the transparency was extremely excellent.
比較例1.
 実施例2との相違点は溶剤のジエチレングリコールモノエチルエーテルをエタノールに変更した点とバインダー樹脂量を0.2質量部から0.4質量部に変更した点である。この点を除き実施例2と同様に行った。
Comparative Example 1
The difference from Example 2 is that the solvent diethylene glycol monoethyl ether was changed to ethanol, and the amount of binder resin was changed from 0.2 parts by mass to 0.4 parts by mass. The same procedure as in Example 2 was followed except for this point.
 結果を表1に示す。得られた導電フィルムの銀ナノワイヤの占有面積率は1.47%であった。平均表面抵抗値は4367Ω/□であって、表面抵抗値のばらつきは36.7%と高い、導電フィルムであることが確認された。また、ヘーズは2.8%と非常に高く、透明性に優れていないことが確認された。 The results are shown in Table 1. The occupied area ratio of silver nanowires of the obtained conductive film was 1.47%. The average surface resistance was 4367 Ω / □, and the variation in the surface resistance was as high as 36.7%, confirming that the film was a conductive film. In addition, it was confirmed that the haze was very high at 2.8% and the transparency was not excellent.
比較例2.
 実施例2との相違点は溶剤のプロピレングリコールモノメチルエーテル(和光純薬工業社製)とジエチレングリコールモノエチルエーテルとをエタノールに変更した点である。この点を除き実施例2と同様に行った。
Comparative Example 2
The difference from Example 2 is that the solvent propylene glycol monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) and diethylene glycol monoethyl ether were changed to ethanol. The same procedure as in Example 2 was followed except for this point.
 結果を表1に示す。得られた導電フィルムの銀ナノワイヤの占有面積率は1.49%であった。平均表面抵抗値は1689Ω/□であって、表面抵抗値のばらつきは57.2%と高い、導電フィルムであることが確認された。また、ヘーズは4.3%と非常に高く、透明性に優れていないことが確認された。 The results are shown in Table 1. The occupied area rate of silver nanowires of the obtained conductive film was 1.49%. It was confirmed that the average surface resistance value is 1689 Ω / □, and the variation of the surface resistance value is as high as 57.2%, which is a conductive film. In addition, it was confirmed that the haze was as high as 4.3% and the transparency was not excellent.
比較例3.
 実施例3との相違点は溶剤のジエチレングリコールモノエチルエーテルをエタノールに変更した点である。この点を除き実施例3と同様に行った。
Comparative Example 3
The difference from Example 3 is that the solvent diethylene glycol monoethyl ether was changed to ethanol. The same procedure as in Example 3 was followed except for this point.
 結果を表1に示す。12点中1点以上表面抵抗値を測定出来ない箇所があり、その部分は不導通部分であった。よって均一な導電性を有する導電フィルムでないことが確認された。 The results are shown in Table 1. One or more points out of 12 points could not measure the surface resistance value, and that part was a non-conducting part. Therefore, it was confirmed that it was not a conductive film which has uniform conductivity.
比較例4.
 実施例4との相違点は溶剤のジエチレングリコールモノエチルエーテルをジエチレングリコールモノブチルエーテル(和光純薬工業社製)に変更した点である。この点を除き実施例4と同様に行った。
Comparative Example 4
The difference from Example 4 is that the solvent diethylene glycol monoethyl ether was changed to diethylene glycol monobutyl ether (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 4 was followed except for this point.
 結果を表1に示す。12点中1点以上表面抵抗値を測定出来ない箇所があり、その部分は不導通部分であった。よって均一な導電性を有する導電フィルムでないことが確認された。 The results are shown in Table 1. One or more points out of 12 points could not measure the surface resistance value, and that part was a non-conducting part. Therefore, it was confirmed that it was not a conductive film which has uniform conductivity.
比較例5.
 実施例1との相違点は銀濃度を0.02から0.04に変更し、バインダー樹脂をポリ-N-ビニルアセトアミド(昭和電工社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 5
The difference from Example 1 is that the silver concentration was changed from 0.02 to 0.04, and the binder resin was changed to poly-N-vinylacetamide (manufactured by Showa Denko KK). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これはポリ-N-ビニルアセトアミドがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because poly-N-vinylacetamide did not dissolve in diethylene glycol monoethyl ether.
比較例6.
 実施例1との相違点は、バインダー樹脂をメチルセルロース4000(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 6
The difference from Example 1 is that the binder resin is changed to methylcellulose 4000 (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これはメチルセルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because methyl cellulose was not soluble in diethylene glycol monoethyl ether.
比較例7.
 実施例1との相違点は、バインダー樹脂を酢酸セルロース(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 7
The difference from Example 1 is that the binder resin is changed to cellulose acetate (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これは酢酸セルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because cellulose acetate did not dissolve in diethylene glycol monoethyl ether.
比較例8.
 実施例1との相違点は、バインダー樹脂を三酢酸セルロース(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 8
The difference from Example 1 is that the binder resin is changed to cellulose triacetate (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これは三酢酸セルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because cellulose triacetate was not soluble in diethylene glycol monoethyl ether.
比較例9.
 実施例1との相違点は、バインダー樹脂をヒドロキシプロピルメチルセルロース(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 9
The difference from Example 1 is that the binder resin was changed to hydroxypropyl methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これはヒドロキシプロピルメチルセルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because hydroxypropyl methylcellulose was not soluble in diethylene glycol monoethyl ether.
比較例10.
 実施例1との相違点は、バインダー樹脂をヒドロキシエチルセルロース(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 10
The difference from Example 1 is that the binder resin is changed to hydroxyethyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これはヒドロキシエチルセルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because hydroxyethyl cellulose did not dissolve in diethylene glycol monoethyl ether.
比較例11.
 実施例1との相違点は、バインダー樹脂をカルボキシメチルセルロースナトリウム(和光純薬工業社製)に変更した点である。この点を除き実施例1と同様に行った。
Comparative Example 11.
The difference from Example 1 is that the binder resin was changed to sodium carboxymethylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.). The same procedure as in Example 1 was followed except for this point.
 結果を表1に示す。銀ナノワイヤインクを作製中に不溶物が析出した。これはカルボキシメチルセルロースがジエチレングリコールモノエチルエーテルに溶解しないためであった。 The results are shown in Table 1. Insoluble matter was deposited during preparation of the silver nanowires ink. This was because carboxymethylcellulose was not soluble in diethylene glycol monoethyl ether.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、ジエチレングリコールモノエチルエーテルを含む溶剤(C)と、を含み、前記金属ナノワイヤ(A)の含有率が0.005~0.05質量%である金属ナノワイヤインクを、高分子フィルムの少なくとも片面に塗布、乾燥させる工程を含む、導電フィルムの製造方法。 A binder comprising metal nanowires (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 μm, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose A polymer film of metal nanowire ink comprising a resin (B) and a solvent (C) containing diethylene glycol monoethyl ether, wherein the content of the metal nanowire (A) is 0.005 to 0.05% by mass. A method for producing a conductive film, comprising the steps of applying and drying on at least one surface of
  2.  前記溶剤(C)が、ジエチレングリコールモノエチルエーテルを10~50質量%含有する、請求項1に記載の導電フィルムの製造方法。 The method for producing a conductive film according to claim 1, wherein the solvent (C) contains 10 to 50% by mass of diethylene glycol monoethyl ether.
  3.  高分子フィルムの少なくとも片面に導電層が形成された導電フィルムであって、前記導電層が、平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、を含み、前記導電層の表面抵抗値が1000~10000Ω/□であり、且つ面内の表面抵抗値のばらつきが35%以下であることを特徴とする、導電フィルム。 A conductive film in which a conductive layer is formed on at least one surface of a polymer film, wherein the conductive layer has an average diameter of 1 to 100 nm, an average length of the major axis of 1 to 100 μm, and an average aspect ratio And a binder resin (B) containing at least one of ethyl cellulose and hydroxypropyl cellulose, wherein the surface resistance value of the conductive layer is 1000 to 10000 Ω / □, and A conductive film characterized in that a variation in surface resistance value in a plane is 35% or less.
  4.  前記金属ナノワイヤ(A)が銀ナノワイヤであり、その占有面積率が0.5~1.5%の範囲である、請求項3に記載の導電フィルム。 The conductive film according to claim 3, wherein the metal nanowires (A) are silver nanowires, and the occupied area ratio thereof is in the range of 0.5 to 1.5%.
  5.  前記金属ナノワイヤ(A)とバインダー樹脂(B)との質量比[金属ナノワイヤ(A)/バインダー樹脂(B)]が0.01~0.5の範囲である、請求項3又は4に記載の導電フィルム。 The mass ratio of the metal nanowire (A) to the binder resin (B) [metal nanowire (A) / binder resin (B)] is in the range of 0.01 to 0.5. Conductive film.
  6.  前記高分子フィルムが、ポリエステル、ポリカーボネート、アクリル樹脂、ポリシクロオレフィンからなる群から選択されるいずれかの高分子からなるフィルムである、請求項3~5のいずれか一に記載の導電フィルム。 The conductive film according to any one of claims 3 to 5, wherein the polymer film is a film made of any polymer selected from the group consisting of polyester, polycarbonate, acrylic resin, and polycycloolefin.
  7.  全光線透過率が80%以上で且つヘーズ値が0.1~1.5%である、請求項3~6のいずれか一に記載の導電フィルム。 The conductive film according to any one of claims 3 to 6, wherein the total light transmittance is 80% or more and the haze value is 0.1 to 1.5%.
  8.  平均径が1~100nm、長軸の長さの平均が1~100μmであり、且つアスペクト比の平均が100~2000である金属ナノワイヤ(A)と、エチルセルロース及びヒドロキシプロピルセルロースの少なくとも一方を含むバインダー樹脂(B)と、ジエチレングリコールモノエチルエーテルを含む溶剤(C)と、を含み、前記金属ナノワイヤ(A)の含有率が0.005~0.05質量%であることを特徴とする金属ナノワイヤインク。 A binder comprising metal nanowires (A) having an average diameter of 1 to 100 nm, an average long axis length of 1 to 100 μm, and an average aspect ratio of 100 to 2000, and at least one of ethyl cellulose and hydroxypropyl cellulose A metal nanowire ink comprising: a resin (B) and a solvent (C) containing diethylene glycol monoethyl ether, wherein the content of the metal nanowire (A) is 0.005 to 0.05% by mass. .
  9.  前記溶剤(C)が、ジエチレングリコールモノエチルエーテルを10~50質量%含有する、請求項8に記載の金属ナノワイヤインク。
     
    The metal nanowires ink according to claim 8, wherein the solvent (C) contains 10 to 50% by mass of diethylene glycol monoethyl ether.
PCT/JP2018/028412 2017-08-02 2018-07-30 Method for producing conductive film, conductive film, and metal nanowire ink WO2019026829A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880038335.9A CN110720129B (en) 2017-08-02 2018-07-30 Method for manufacturing conductive film, and metal nanowire ink
JP2019534490A JP7300991B2 (en) 2017-08-02 2018-07-30 Method for producing conductive film, conductive film and metal nanowire ink
KR1020197036305A KR102393615B1 (en) 2017-08-02 2018-07-30 Method for manufacturing conductive film, conductive film, and metal nanowire ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-149806 2017-08-02
JP2017149806 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019026829A1 true WO2019026829A1 (en) 2019-02-07

Family

ID=65233872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028412 WO2019026829A1 (en) 2017-08-02 2018-07-30 Method for producing conductive film, conductive film, and metal nanowire ink

Country Status (5)

Country Link
JP (1) JP7300991B2 (en)
KR (1) KR102393615B1 (en)
CN (1) CN110720129B (en)
TW (1) TW201920508A (en)
WO (1) WO2019026829A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241842A1 (en) * 2019-05-31 2020-12-03 昭和電工株式会社 Method for manufacturing transparent conductive film
JP6855648B1 (en) * 2019-12-27 2021-04-07 昭和電工株式会社 Manufacturing method of transparent conductive film
WO2021131099A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for manufacturing transparent conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177967A1 (en) * 2014-05-20 2015-11-26 デクセリアルズ株式会社 Method for manufacturing transparent electrically-conductive film and transparent electrically-conductive film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362B (en) 2005-08-12 2011-06-08 凯博瑞奥斯技术公司 Transparent conductors and its preparation method, lamination structure and display device
JP5599461B2 (en) 2009-07-17 2014-10-01 ケアストリーム ヘルス インク Transparent conductive article containing cellulose SL
JP5638437B2 (en) 2010-04-09 2014-12-10 富士フイルム株式会社 Conductive film and manufacturing method thereof, touch panel and solar cell
CN101944398B (en) * 2010-09-27 2012-09-19 彩虹集团公司 Preparation method of conducting paste by using oxides as adhesive
JP5899673B2 (en) * 2011-06-14 2016-04-06 東レ株式会社 Conductive film and method for producing the same
US20130341071A1 (en) * 2012-06-26 2013-12-26 Carestream Health, Inc. Transparent conductive film
US20140030590A1 (en) * 2012-07-25 2014-01-30 Mingchao Wang Solvent-free process based graphene electrode for energy storage devices
KR20150064030A (en) * 2012-09-27 2015-06-10 도레이 카부시키가이샤 Transparent conductive laminate
KR20140046923A (en) * 2012-10-11 2014-04-21 제일모직주식회사 Transparent conductor, composition for manufacturing the same and optical display apparatus comprising the same
US20160118156A1 (en) 2013-06-07 2016-04-28 Seiko Pmc Corporation Metal nanowire-containing composition
JP6563811B2 (en) * 2013-08-22 2019-08-21 昭和電工株式会社 Transparent electrode and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177967A1 (en) * 2014-05-20 2015-11-26 デクセリアルズ株式会社 Method for manufacturing transparent electrically-conductive film and transparent electrically-conductive film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241842A1 (en) * 2019-05-31 2020-12-03 昭和電工株式会社 Method for manufacturing transparent conductive film
JP6855647B1 (en) * 2019-05-31 2021-04-07 昭和電工株式会社 Manufacturing method of transparent conductive film
US11535047B2 (en) 2019-05-31 2022-12-27 Showa Denko K.K. Method for producing transparent conducting film
JP6855648B1 (en) * 2019-12-27 2021-04-07 昭和電工株式会社 Manufacturing method of transparent conductive film
WO2021131099A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for manufacturing transparent conductive film
KR20210084478A (en) * 2019-12-27 2021-07-07 쇼와 덴코 가부시키가이샤 Manufacturing method of transparent conductive film
KR102316141B1 (en) 2019-12-27 2021-10-22 쇼와 덴코 가부시키가이샤 Manufacturing method of transparent conductive film
TWI749570B (en) * 2019-12-27 2021-12-11 日商昭和電工股份有限公司 Method for producing transparent conductive film
US11538603B2 (en) 2019-12-27 2022-12-27 Showa Denko K.K. Method for producing transparent conducting film

Also Published As

Publication number Publication date
CN110720129A (en) 2020-01-21
TW201920508A (en) 2019-06-01
JPWO2019026829A1 (en) 2020-06-18
KR102393615B1 (en) 2022-05-03
JP7300991B2 (en) 2023-06-30
CN110720129B (en) 2022-06-03
KR20200006998A (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP6217395B2 (en) Dispersion of carbon nanotube-containing composition and conductive molded body
JP6274309B2 (en) Carbon nanotube dispersion and conductive film manufacturing method
TWI673328B (en) Transparent conductive film and method for manufacturing transparent conductive pattern
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
WO2015133453A1 (en) Method for producing silver nanowires, silver nanowires and ink using same
TWI671766B (en) Conductive film and method for producing conductive film
JP7300991B2 (en) Method for producing conductive film, conductive film and metal nanowire ink
JP6723343B2 (en) Metal nanowire ink, transparent conductive substrate and transparent antistatic substrate
KR20110108272A (en) Low temperature sinterable metal nano particle composition and electronic article formed by using the composition
JP2018166033A (en) Silver nanowire ink and method for producing transparent conductive film
Mao et al. Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film
JP2016204203A (en) Dispersion of carbon nanotube-containing composition and conductive molded body
JP2010049869A (en) Transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534490

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840166

Country of ref document: EP

Kind code of ref document: A1