JP2014222128A - 空気圧縮機の吸気冷却装置および冷却方法 - Google Patents

空気圧縮機の吸気冷却装置および冷却方法 Download PDF

Info

Publication number
JP2014222128A
JP2014222128A JP2013102120A JP2013102120A JP2014222128A JP 2014222128 A JP2014222128 A JP 2014222128A JP 2013102120 A JP2013102120 A JP 2013102120A JP 2013102120 A JP2013102120 A JP 2013102120A JP 2014222128 A JP2014222128 A JP 2014222128A
Authority
JP
Japan
Prior art keywords
cooling
air
air compressor
intake air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102120A
Other languages
English (en)
Inventor
容次 矢野
Hirotsugu Yano
容次 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013102120A priority Critical patent/JP2014222128A/ja
Publication of JP2014222128A publication Critical patent/JP2014222128A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

【課題】より低いランニングコストで空気圧縮機の吸気を冷却する。【解決手段】高炉1を冷却することで排熱回収した排熱回収用流体L5を、熱音響機関21の排熱回収機構部12の加熱熱交換器12aに導き、熱音響機関21での熱エネルギ変換により、冷熱発生機構部13の冷熱発生熱交換器13bの温度をより低くする。低温になった冷熱発生熱交換器13bに、吸気配管冷却用の流体L22を導入することにより、吸気配管冷却用の流体L22を冷却し、この冷却された吸気配管冷却用の流体L22を吸気冷却設備22に導入することにより、タービン空気圧縮機3の吸気配管3aに導入された、タービン空気圧縮機3用の吸気G1を冷却する。【選択図】図1

Description

本発明は、高炉送風機、ガスタービン、酸素・窒素製造用原料空気圧縮機、工場内プロセス空気圧縮機などの、外気を吸入して昇圧させる空気圧縮機の吸気冷却装置およびその冷却方法に関する。
一般に、空気圧縮機の圧縮効率は、吸気温度の絶対値に依存するため、吸気温度を下げることで省エネルギ化を図ることができることが知られている。
吸気温度を下げるための冷却方法として、例えば、空気圧縮機の入力側で空気を冷水散布冷却流路や氷蓄熱水槽内を通過させることにより、冷却する方法(例えば、特許文献1参照)、あるいは、氷水スラリー中を通過させることで空気を冷却する方法(例えば、特許文献2参照)、空気圧縮機の吸気口に冷水を散布することにより、空気圧縮機に冷却空気を供給する方法(例えば、特許文献3)、などが提案されている。
特開平7−19067号公報 特開平9−310892号公報 特開2006−138263号公報
しかしながら、上述のように、冷水散布や氷水スラリーを通過させることで吸気を冷却する方法にあっては、冷却水を貯水する貯水設備や製氷設備などが必要であり、これら貯水設備や製氷設備の保守や、これら設備の消費電力によるランニングコストがかかるといった問題がある。
そこで、本発明は、上記従来の問題点に着目してなされたものであり、より低いランニングコストで空気圧縮機の吸気を冷却することの可能な、空気圧縮機の吸気冷却装置およびその冷却方法を提供することを目的としている。
本発明の一態様は、空気圧縮機の吸気を冷却する空気圧縮機の吸気冷却装置において、熱源から排出される熱エネルギを、より低温の熱エネルギとして回収する熱音響機関を備え、当該熱音響機関で回収した前記低温の熱エネルギを用いて、前記空気圧縮機の吸気を冷却することを特徴とする空気圧縮機の吸気冷却装置、である。
前記空気圧縮機は、前記吸気となる空気が供給される吸気配管を冷却する吸気冷却設備を有し、前記熱音響機関で回収した前記低温の熱エネルギを、前記吸気冷却設備における前記吸気配管冷却用のエネルギとして用いるものであってよい。
前記熱音響機関は、前記熱源から排出される熱エネルギを回収する排熱回収機構部と、前記排熱回収機構部で回収した熱エネルギを、より低温の熱エネルギとして排出する冷熱発生機構部と、を備え、前記冷熱発生機構部は、前記空気圧縮機の吸気となる空気を入力し、当該空気を前記低温の熱エネルギで冷却し、冷却後の空気を前記空気圧縮機用の吸気として排出するものであってよい。
前記熱源は、鉄鋼製造設備内の高温設備による排熱であってよい。
前記空気圧縮機はインタークーラーを有し、前記熱源は、前記インタークーラーによる排熱であってよい。
本発明の他の態様は、空気圧縮機の吸気を冷却する空気圧縮機の吸気冷却方法であって、熱源から排出される熱エネルギを、熱音響機関によって、より低温の熱エネルギとして回収し、回収された前記低温の熱エネルギを、前記空気圧縮機の吸気を冷却する冷却用エネルギとして用いることを特徴とする空気圧縮機の吸気冷却方法、である。
本発明の一態様によれば、高炉などの熱源から排出される熱エネルギを、熱音響機関を用いて、より低温の熱エネルギとして回収し、この低温の熱エネルギを用いて空気圧縮機の吸気を冷却するため、冷却用の、製氷設備などを設ける必要はなく、その分ランニングコストを低減することができる。
本発明の空気圧縮機の吸気冷却装置を適用した設備の一例を示す全体構成図である。 熱音響機関の排熱回収機構部の一例を示す部分切欠き平面図である。 熱音響機関の冷熱発生機構部の一例を示す部分切欠き平面図である。 図2のX−X線に沿う断面図である。 吸気冷却設備の一例を示す概略構成図である。 吸気冷却装置のその他の例を示す全体構成図である。 吸気冷却装置のその他の例を示す全体構成図である。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明を適用した空気圧縮機の吸気冷却装置を用いた設備の全体構成の一例を示す概略構成図である。
この設備では、排熱を回収する設備高温部を高炉とし、且つ排熱により熱音響機関を作動させて、タービン空気圧縮機の吸気を冷却するものである。
図1において、1は設備高温部としての高炉、2は吸気冷却装置、3はタービン空気圧縮機である。
また、図1中、5は、高炉1の炉壁に設置される炉壁冷却用のステーブである。ステーブ5は鋳鉄、銅、銅合金などの金属材料で構成されるもので、炉壁の外殻を構成する鉄皮の内側に固定される。このステーブ5は、内部に冷媒(水)用の流路5aを有しており、外部から配管5bを通じて供給される排熱回収用流体L5を、流路5aに流すことで冷却される。ステーブ5内の流路5aを通過した排熱回収用流体L5は、配管5cを通じて系外に排出される。
なお、ここでは、設備高温部を高炉1とした場合について説明するが、これに限るものではなく、スラグ冷却設備や、加熱炉などの排熱を利用することも可能である。また、必ずしもステーブ5を介して排熱回収を行う必要はなく、排熱回収を行うことができれば排熱回収方法は限定されない。
また、タービン空気圧縮機3に限らず、高炉送風機、ガスタービン、酸素・窒素製造用現用空気圧縮機、工場内プロセス空気圧縮機など、圧縮空気を生成する装置であれば適用することができる。
吸気冷却装置2は、熱音響機関21とタービン空気圧縮機3の吸気配管3aに配設された吸気配管3a冷却用の吸気冷却設備22とを備える。
熱音響機関21は、環状に形成されたループ管11を備えており、このループ管11の内部には作動ガス(例えば、空気、アルゴン、ヘリウムなど)が所定の圧力で充填されている。このループ管11の途中には、排熱回収機構部12と冷熱発生機構部13とが配設される。
排熱回収機構部12は、図2に示すように、配管5cを通じてステーブ5内の流路5aを通過した排熱回収用流体L5が供給される加熱熱交換器12aと、基準温度に保たれた放熱用流体L12が供給される放熱熱交換器12bと、蓄熱器としてのスタック12cと、を備え、加熱熱交換器12aおよび放熱熱交換器12bによりスタック12cの上下が挟まれてなる。
冷熱発生機構部13は、図3に示すように、基準温度に保たれた放熱用流体L13が供給される放熱熱交換器13aと、タービン空気圧縮機3の吸気配管冷却用の流体L22が供給される冷熱発生熱交換器13bと、蓄熱器としてのスタック13cとを備え、放熱熱交換器13aおよび冷熱発生熱交換器13bによりスタック13cの上下が挟まれてなる。
スタック12c、13cは、図4に示すように、微小間隔の格子状またはハニカム状にループ管11側面に平行して配置されるステンレス綱やセラミックによって、形成される。なお、図4は、図2のX−X線に沿う断面図である。なお、図3に示す、冷熱発生機構部13も同様の構成を有する。
図5は、吸気冷却設備22の一例を示す構成図である。
図5において、3aは、タービン空気圧縮機3の吸気G1となる空気が導入されるタービン空気圧縮機3の吸気配管、22aは、熱音響機関21の冷熱発生機構部13の冷熱発生熱交換器13bから排出された吸気配管冷却用の流体L22が導入される冷却用流体導入配管、22bは、吸気配管冷却用のL22が排出される冷却用流体排出配管である。
図1に示す構成の設備において、設備高温部としての高炉1を冷却することで排熱回収した排熱回収用流体L5を、熱音響機関21の排熱回収機構部12の加熱熱交換器12aに導くことにより、加熱熱交換器12aを加熱するとともに、排熱回収機構部12の放熱熱交換器12bに放熱用流体L12を導くことにより、排熱回収機構部12のスタック12c内に急激な温度勾配が形成され、これにより熱音響自励振動によりスタック12c内の作動ガスが自励発振する。
その振動波が熱音響機関21のループ管11内の作動ガスにより伝搬し、熱音響機関21の冷熱発生機構部13に伝達され、そのスタック13c内の作動ガスに圧力変動を生じさせ、冷熱発生機構部13内のスタック13c内に温度勾配が形成される。このとき、冷熱発生機構部13の放熱熱交換器13aに放熱用流体L13を導くことにより、冷熱発生機構部13の冷熱発生熱交換器13bの温度をより低くすることができる。
その低温になった冷熱発生熱交換器13bに、吸気配管冷却用の流体L22を導入することによって、吸気配管冷却用の流体L22が冷却され、この冷却された吸気配管冷却用の流体L22が、吸気冷却設備22の冷却用流体導入配管22aに供給される。そして、この吸気配管冷却用の流体L22により、タービン空気圧縮機3の吸気配管3aに導入された、タービン空気圧縮機3用の吸気G1が冷却されてタービン空気圧縮機3本体に供給される。
ここで、例えば、設備高温部としての高炉1から排熱量Qa(J/s)を回収した場合、熱音響機関21において回収エネルギの5〜10%を冷却に再利用することができる。そのため、冷却熱量Qb(J/s)=(0.05〜0.1)×Qaが吸気配管冷却用の流体L22と熱交換を行うことになる。
このとき、吸気配管冷却用の流体L22の冷熱発生熱交換器13bへの入り口温度をT1(K)、冷熱発生熱交換器13bからの出口温度をT1′(K)、吸気配管冷却用の流体L22の冷熱発生熱交換器13bとの接触面積をA1(m)、熱伝達率をh1(J/K・m・s)とすると、吸気配管冷却用の流体L22の冷熱発生熱交換器13bの出口温度T1′は、次式(1)で表すことができる。
T1′=−〔(Qb/h1)×A1〕+T1 ……(1)
このように、高温設備の排熱を有効利用することで、吸気配管冷却用の流体L22を冷却することができるため、タービン空気圧縮機3の吸気冷却装置2の冷媒を冷却するランニングコストの低減を図ることができる。
また、従来のように、製氷設備が必要ないため、製氷の保守や消費電力相当だけランニングコストを低減することができる。
また、工場内の、高炉、スラグ冷却設備、加熱炉などの高熱設備の排熱を利用することができるため、排熱を有効利用することができる。
また、これら高熱設備はもともと冷却を必要としている設備であって、このように、冷却を必要としている設備高温部から排熱回収を行い、排熱回収に用いた流体の熱で、熱音響機関21により冷熱を得ることができるため、冷熱源となる製氷装置などが不要となるため、安定的に稼動させることができる。また、電力を用いて吸気を冷却するのではなく排熱を利用して吸気を冷却しているため、低いランニングコストでタービン空気圧縮機3の吸気を冷却することができる。
なお、上記実施形態では、熱音響機関21を用いて吸気冷却設備22の冷媒を冷却する吸気冷却装置について説明したが、これに限るものではない。例えば図6に示すように、熱音響機関21の冷熱発生熱交換器13bとタービン空気圧縮機3との間で、直接熱交換することによって吸気G1を冷却するようにしてもよい。
つまり、図6に示すように、冷熱発生熱交換器13bに、吸気配管冷却用の流体L22を供給する代わりに、タービン空気圧縮機3用の吸気G1となる空気を供給し、冷熱発生熱交換器13bで冷却した空気をタービン空気圧縮機3用の吸気G1として、直接タービン空気圧縮機3に供給するようにしてもよい。
また、上記実施形態では、排熱回収の熱源として、高炉1などの設備高温部を用いているが、例えば図7に示すように、タービン空気圧縮機3のインタークーラー3bの排熱を利用してもよい。
つまり、図7に示すように、インタークーラー3bの排熱を回収するための排熱回収配管3cを設け、排熱回収用の流体を排熱回収配管3cに通すことによりインタークーラー3bの排熱を回収し、この排熱回収用の流体を熱音響機関21の加熱熱交換器12aに供給する。そして、冷熱発生熱交換器13bで冷却したタービン空気圧縮機3用の吸気G1としての空気を、直接タービン空気圧縮機3に供給する。
なお、排熱回収の熱源としては、より高温である方が好ましい。
ここで、上記実施形態において、タービン空気圧縮機3が空気圧縮機に対応し、高炉1が熱源および鉄鋼製造設備内の高温設備に対応している。
1 高炉
2 吸気冷却装置
3 タービン空気圧縮機
11 ループ管
12 排熱回収機構部
12a 加熱熱交換器
12b 放熱熱交換器
13 冷熱発生機構部
13a 放熱熱交換器
13b 冷熱発生熱交換器
21 熱音響機関
22 吸気冷却設備

Claims (6)

  1. 空気圧縮機の吸気を冷却する空気圧縮機の吸気冷却装置において、
    熱源から排出される熱エネルギを、より低温の熱エネルギとして回収する熱音響機関を備え、
    当該熱音響機関で回収した前記低温の熱エネルギを用いて、前記空気圧縮機の吸気を冷却することを特徴とする空気圧縮機の吸気冷却装置。
  2. 前記空気圧縮機は、前記吸気となる空気が供給される吸気配管を冷却する吸気冷却設備を有し、
    前記熱音響機関で回収した前記低温の熱エネルギを、前記吸気冷却設備における前記吸気配管冷却用のエネルギとして用いることを特徴とする請求項1記載の空気圧縮機の吸気冷却装置。
  3. 前記熱音響機関は、前記熱源から排出される熱エネルギを回収する排熱回収機構部と、前記排熱回収機構部で回収した熱エネルギを、より低温の熱エネルギとして排出する冷熱発生機構部と、を備え、
    前記冷熱発生機構部は、前記空気圧縮機の吸気となる空気を入力し、当該空気を前記低温の熱エネルギで冷却し、冷却後の空気を前記空気圧縮機用の吸気として排出することを特徴とする請求項1記載の空気圧縮機の吸気冷却装置。
  4. 前記熱源は、鉄鋼製造設備内の高温設備による排熱であることを特徴とする請求項1から請求項3のいずれか1項に記載の空気圧縮機の吸気冷却装置。
  5. 前記空気圧縮機はインタークーラーを有し、
    前記熱源は、前記インタークーラーによる排熱であることを特徴とする請求項1から請求項3のいずれか1項に記載の空気圧縮機の吸気冷却装置。
  6. 空気圧縮機の吸気を冷却する空気圧縮機の吸気冷却方法であって、
    熱源から排出される熱エネルギを、熱音響機関によって、より低温の熱エネルギとして回収し、回収された前記低温の熱エネルギを、前記空気圧縮機の吸気を冷却する冷却用エネルギとして用いることを特徴とする空気圧縮機の吸気冷却方法。
JP2013102120A 2013-05-14 2013-05-14 空気圧縮機の吸気冷却装置および冷却方法 Pending JP2014222128A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102120A JP2014222128A (ja) 2013-05-14 2013-05-14 空気圧縮機の吸気冷却装置および冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102120A JP2014222128A (ja) 2013-05-14 2013-05-14 空気圧縮機の吸気冷却装置および冷却方法

Publications (1)

Publication Number Publication Date
JP2014222128A true JP2014222128A (ja) 2014-11-27

Family

ID=52121729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102120A Pending JP2014222128A (ja) 2013-05-14 2013-05-14 空気圧縮機の吸気冷却装置および冷却方法

Country Status (1)

Country Link
JP (1) JP2014222128A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220672A1 (de) 2015-11-16 2017-05-18 Ford Global Technologies, Llc Kraftfahrzeug mit Wärmenutzvorrichtung
CN107835582A (zh) * 2016-09-15 2018-03-23 株式会社捷太格特 传送装置
WO2018163419A1 (ja) * 2017-03-10 2018-09-13 日揮株式会社 吸気排気装置、及び天然ガス処理設備
WO2019087952A1 (ja) * 2017-11-02 2019-05-09 株式会社デンソー 工業炉

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220672A1 (de) 2015-11-16 2017-05-18 Ford Global Technologies, Llc Kraftfahrzeug mit Wärmenutzvorrichtung
DE102016220672B4 (de) * 2015-11-16 2021-03-11 Ford Global Technologies, Llc Kraftfahrzeug mit Wärmenutzvorrichtung
CN107835582A (zh) * 2016-09-15 2018-03-23 株式会社捷太格特 传送装置
US10739043B2 (en) 2016-09-15 2020-08-11 Jtekt Corporation Conveying device
CN107835582B (zh) * 2016-09-15 2021-10-15 株式会社捷太格特 传送装置
WO2018163419A1 (ja) * 2017-03-10 2018-09-13 日揮株式会社 吸気排気装置、及び天然ガス処理設備
WO2019087952A1 (ja) * 2017-11-02 2019-05-09 株式会社デンソー 工業炉
JP2019086176A (ja) * 2017-11-02 2019-06-06 株式会社Soken 工業炉

Similar Documents

Publication Publication Date Title
RU2455399C2 (ru) Система охлаждения и очистки дымового газа
US20130125546A1 (en) Thermal energy storage and recovery system comprising a storage arrangement and a charging/discharging arrangement being connected via a heat exchanger
JP2014222128A (ja) 空気圧縮機の吸気冷却装置および冷却方法
CN103648252B (zh) 一种电气设备的冷却系统
JP5542958B2 (ja) 廃熱回収システム
US20110056227A1 (en) Heat recovery system of plant using heat pump
JP2011208507A (ja) 設備高温部の排熱からのエネルギー回収方法
JP6152296B2 (ja) 電気アーク炉用の一体化されたガス冷却システム
CN109595947B (zh) 一种工业炉渣显热回收系统及其回收方法
US20180156075A1 (en) Supercritical co2 generation system for series recuperative type
KR20130101723A (ko) 증기의 소모없이 용존산소를 제거할 수 있는 선박의 폐열회수시스템
US20150047813A1 (en) Heat exchanger with recuperating and condensing functions and heat cycle system and method using the same
JP2008292161A (ja) 核熱利用コンパクト型コジェネレーション装置
CN211851944U (zh) 一种用于电解槽余热回收的发电系统
CN103206866A (zh) 一种闪速熔炼炉体冷却余热回收的方法及其装置
JP2010261688A (ja) 熱音響機関
CN106568221A (zh) 一种声功回收放大型多级级联脉管制冷机
CN203222592U (zh) 一种炼钢炉渣余热的回收利用系统
CN201561660U (zh) 热能回收换热器
JP2019168207A (ja) 液化ガス製造システム
CN102917568B (zh) 电子设备的冷却系统
CN115597304B (zh) Orc发电装置用可控制过冷度的冷却系统及控制方法
CN203614144U (zh) 乏汽余热回收机组
JP6284734B2 (ja) ランキンサイクルシステム
CN202836281U (zh) 压缩机所用换热器