JP2014218737A - Oxide sputtering target and production method thereof - Google Patents

Oxide sputtering target and production method thereof Download PDF

Info

Publication number
JP2014218737A
JP2014218737A JP2014079238A JP2014079238A JP2014218737A JP 2014218737 A JP2014218737 A JP 2014218737A JP 2014079238 A JP2014079238 A JP 2014079238A JP 2014079238 A JP2014079238 A JP 2014079238A JP 2014218737 A JP2014218737 A JP 2014218737A
Authority
JP
Japan
Prior art keywords
oxide
sputtering target
powder
sputtering
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014079238A
Other languages
Japanese (ja)
Other versions
JP6390142B2 (en
Inventor
齋藤 淳
Atsushi Saito
淳 齋藤
理恵 森
Rie Mori
理恵 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014079238A priority Critical patent/JP6390142B2/en
Publication of JP2014218737A publication Critical patent/JP2014218737A/en
Application granted granted Critical
Publication of JP6390142B2 publication Critical patent/JP6390142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide sputtering target for forming an optical recording medium protective film, capable of forming a film that has high preservability, is flexible and hardly cracked, capable of direct-current sputtering, and having few particles.SOLUTION: An oxide sputtering target is an oxide sintered body having a composition in which Sn:7 at% or more and In:0.1-35.0 at% are contained with respect to the total metal component content, the residue comprises Zn and inevitable impurities, the inclusion atomic ratio Sn/(Sn+Zn) of Sn and Zn is 0.5 or less, and ZnSnOhaving solid-dissolved In is a main phase.

Description

本発明は、例えば、Blu-ray Disc(登録商標:以下、BDと称す)等に用いる光記録媒体用保護膜を成膜するための酸化物スパッタリングターゲット及びその製造方法に関するものである。   The present invention relates to an oxide sputtering target for forming a protective film for an optical recording medium used for, for example, a Blu-ray Disc (registered trademark: hereinafter referred to as BD) and a method for manufacturing the same.

近年、写真や動画の高画質化に伴い、光記録媒体等へ記録する際のデジタルデータが増大し、記録媒体の高容量化が求められ、既に、高記録容量の光記録媒体として二層記録方式により50GBの容量を有したBDが販売されている。このBDは、今後もさらなる高容量化が望まれており、記録層の多層化による高容量化の研究が盛んに行われている。   In recent years, with the improvement of the picture quality of photographs and moving images, digital data when recording on an optical recording medium or the like has increased, and there has been a demand for an increase in the capacity of the recording medium. Depending on the system, BDs with a capacity of 50 GB are sold. In the future, it is desired to further increase the capacity of this BD, and research on increasing the capacity by increasing the number of recording layers has been actively conducted.

特開2009−26378号公報JP 2009-26378 A 特開2005−228402号公報JP 2005-228402 A 特開2005−154820号公報JP 2005-154820 A

ここで、従来の技術について、上記特許文献を参照し、以下に説明する。
有機色素を記録層に用いたタイプの記録媒体では、無機物を記録層とした場合と比較して、記録時のレーザー照射による記録層の変形が大きいため、上記特許文献1にも記載されているように、その記録層と隣り合う保護層には、低い硬度が必要である。そのため、従来では、この保護層に、適度な硬度を有した膜であるZnS−SiOやITOが採用されている。
Here, the conventional technique will be described below with reference to the above-mentioned patent document.
In the recording medium of the type using an organic dye for the recording layer, since the deformation of the recording layer due to laser irradiation at the time of recording is large as compared with the case where an inorganic substance is used as the recording layer, it is also described in Patent Document 1. Thus, a low hardness is required for the protective layer adjacent to the recording layer. Therefore, conventionally, ZnS—SiO 2 or ITO, which is a film having an appropriate hardness, is employed for the protective layer.

しかしながら、ZnS−SiOを採用した場合には、上記特許文献2にも記載があるように、硫黄(S)が含まれているため、この硫黄と反射膜中の金属とが反応して、反射膜の反射率が低下し、記録媒体としての保存性が低いという不都合がある。また、ITOの場合には、スパッタリングの際にパーティクルが多く発生し、ディスクの記録特性、保存性に悪影響を与えるため、生産設備の清掃を頻繁に行う必要があり、生産性が悪いという問題があった。さらに、上記特許文献3では、酸化スズ相を主相とした酸化スズと酸化亜鉛と3価以上の元素の酸化物とを主成分としたスパッタリングターゲットが提案されているが、このスパッタリングターゲットにおける組織中の酸化スズ相がノジュールの原因となり、これがパーティクルの発生に繋がってしまうという問題があった。
この様に、従来の技術には、問題点があり、課題が残されている。
However, when ZnS-SiO 2 is employed, as described in Patent Document 2, since sulfur (S) is contained, this sulfur reacts with the metal in the reflective film, There is a disadvantage that the reflectance of the reflective film is lowered and the storage stability as a recording medium is low. In addition, in the case of ITO, many particles are generated during sputtering, which adversely affects the recording characteristics and storability of the disc. Therefore, it is necessary to frequently clean the production equipment, resulting in poor productivity. there were. Further, Patent Document 3 proposes a sputtering target mainly composed of tin oxide, zinc oxide, and an oxide of a trivalent or higher element having a tin oxide phase as a main phase. There was a problem that the tin oxide phase inside caused nodules, which led to the generation of particles.
As described above, there are problems in the conventional technology, and problems remain.

本発明は、上述の課題に鑑みてなされたもので、光記録媒体保護膜形成用として、記録媒体としての保存性が高く、柔らかく割れ難い膜を成膜可能であると共に、直流(DC)スパッタリングが可能で、かつ、パーティクルも少ない酸化物スパッタリングターゲット及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can form a film that is highly storable as a recording medium, is soft and hardly cracked, and is formed by direct current (DC) sputtering. It is an object of the present invention to provide an oxide sputtering target and a method for manufacturing the same.

本発明者らは、酸化スズ(SnO)と酸化亜鉛(ZnO)と3価以上の元素の酸化物とを主成分としたZnO系のスパッタリングターゲットについて研究を進めたところ、ターゲット製造原料に、3価以上の元素の酸化物として、酸化インジウム(In)を加え、非酸化性雰囲気にて加圧焼結すると、Inが固溶したZnSnO相が生じ、かつ若干の酸素欠損が生じることでターゲット自体の比抵抗を一層低下させることが図れ、これにより、安定した直流(DC)スパッタリングが可能であり、このスパッタリングターゲットを用いてスパッタリングすると、硫黄成分が含まれないので、積層された反射層に対して反射率への影響を抑制できて保存性が高く、しかも、柔らかく割れ難いSn−In−Zn−O四元系酸化膜を成膜できるという知見が得られた。 The inventors have conducted research on a ZnO-based sputtering target mainly composed of tin oxide (SnO 2 ), zinc oxide (ZnO), and an oxide of a trivalent or higher element. When indium oxide (In 2 O 3 ) is added as an oxide of a trivalent or higher element and pressure-sintered in a non-oxidizing atmosphere, a Zn 2 SnO 4 phase in which In is dissolved is generated, and some oxygen Since the specific resistance of the target itself can be further reduced by the occurrence of defects, stable direct current (DC) sputtering is possible, and when sputtering using this sputtering target, no sulfur component is contained. Sn-In-Zn-O quaternary oxidation that can suppress the influence on the reflectivity of the laminated reflective layer, has high storage stability, and is soft and difficult to break It is finding that a film can be formed was obtained.

したがって、本発明は、上記知見から、前記課題を解決するために以下の構成を採用した。
(1)本発明の酸化物スパッタリングターゲットは、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnの含有原子比Sn/(Sn+Zn)が0.5以下である組成の酸化物焼結体であり、前記酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有することを特徴とする。
(2)本発明の酸化物スパッタリングターゲットは、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnとの含有原子比Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr,Ge、Znの含有原子比(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体であり、前記酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有することを特徴とする。
(3)本発明の酸化物スパッタリングターゲットの製造方法は、前記(1)の酸化物スパッタリングターゲットの製造方法であって、SnO粉末と、In粉末と、ZnO粉末とを配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成することを特徴とする。
(4)本発明の酸化物スパッタリングターゲットの製造方法は、前記(2)の酸化物スパッタリングターゲットの製造方法であって、SnO粉末と、In粉末と、ZnO粉末とを配合し、さらに、Cr粉末及びGeO粉末のうち1種以上を配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成することを特徴とする。
(5)本発明の光記録媒体用保護膜は、前記(1)の酸化物スパッタリングターゲットを用いてスパッタリング成膜され、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなることを特徴とする。
(6)本発明の光記録媒体用保護膜は、前記(2)の酸化物スパッタリングターゲットを用いてスパッタリング成膜され、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.1at%を含有し、残部がZn及び不可避不純物からなる成分組成の酸化物であることを特徴とする。
Therefore, the present invention adopts the following configuration in order to solve the above-described problems based on the above knowledge.
(1) The oxide sputtering target of the present invention contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, with the balance being Zn and inevitable impurities. , An oxide sintered body having a composition in which the atomic ratio Sn / (Sn + Zn) of Sn and Zn is 0.5 or less, and the oxide sintered body is composed of Zn 2 SnO 4 in which In is a solid solution. It is characterized by having an organization.
(2) The oxide sputtering target of the present invention contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, and 1 of Ge and Cr. Total of at least seeds: 1.0 to 30.0 at%, the balance is made of Zn and inevitable impurities, the atomic ratio Sn / (Sn + Zn) of Sn and Zn is 0.5 or less, and The oxide sintered body has a composition in which the atomic ratio of Sn, Cr, Ge, Zn (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) is 0.6 or less, and the oxide sintered body is Zn 2 in which In is dissolved. It has a structure having SnO 4 as a main phase.
(3) The method for producing an oxide sputtering target of the present invention is the method for producing an oxide sputtering target according to (1) above, wherein SnO 2 powder, In 2 O 3 powder, and ZnO powder are mixed and mixed. The mixed powder thus obtained is subjected to pressure firing at a temperature of 800 to 1100 ° C. in a vacuum or an inert gas for 2 to 9 hours.
(4) The method for producing an oxide sputtering target according to the present invention is the method for producing the oxide sputtering target according to (2) above, wherein SnO 2 powder, In 2 O 3 powder, and ZnO powder are blended, Furthermore, the mixed powder obtained by blending and mixing one or more of Cr 2 O 3 powder and GeO 2 powder is heated for 2 to 9 hours at a temperature of 800 to 1100 ° C. in vacuum or in an inert gas. It is characterized by pressure firing.
(5) The protective film for an optical recording medium of the present invention is formed by sputtering using the oxide sputtering target of (1) above, and Sn: 7 at% or more with respect to the total metal component amount, In: 0.0. 1 to 35.0 at%, and the balance is made of Zn and inevitable impurities.
(6) The protective film for an optical recording medium of the present invention is formed by sputtering using the oxide sputtering target of (2) above, and Sn: 7 at% or more with respect to the total metal component amount, In: 0.0. 1 to 35.0 at%, and a total of one or more of Ge and Cr: 1.0 to 30.1 at%, and the balance is an oxide having a component composition consisting of Zn and inevitable impurities. It is characterized by being.

この酸化物スパッタリングターゲットは、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下である成分組成の酸化物焼結体であり、この酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有するので、比抵抗が低く、安定した直流(DC)スパッタリングが可能であり、反射率への影響が少なく、かつ、柔らかく割れ難い膜を成膜することができ、記録媒体として高い保存性を期待し得る。
なお、酸化物焼結体において、比抵抗の低いInが固溶したZnSnOを主相とした組織とすることにより、比抵抗の高い酸化亜鉛やZnSnOのいずれか、または両方を主相とした組織よりもスパッタリングターゲット自体の比抵抗を下げることができ、スパッタリング時の異常放電や、パーティクル発生を抑制することができ、直流(DC)スパッタリングを安定化できる。
This oxide sputtering target contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, and the balance consists of Zn and inevitable impurities. The atomic ratio R1: Sn / (Sn + Zn) is an oxide sintered body having a component composition of 0.5 or less, and this oxide sintered body has Zn 2 SnO 4 in which In is dissolved as a main phase. Therefore, it has a low specific resistance, enables stable direct current (DC) sputtering, has little influence on the reflectivity, and can form a soft and hard-to-break film, which is highly preserved as a recording medium. You can expect sex.
Note that in the oxide sintered body, a structure having Zn 2 SnO 4 in which In having a low specific resistance is dissolved as a main phase is used, so that either or both of zinc oxide having a high specific resistance and Zn 2 SnO 4 are used. The specific resistance of the sputtering target itself can be lowered as compared with the structure having a main phase of, so that abnormal discharge during sputtering and generation of particles can be suppressed, and direct current (DC) sputtering can be stabilized.

ここで、上記Inの含有量を、0.1〜35.0at%とした理由は、0.1at%未満であると、直流(DC)スパッタリングが不安定になり、形成された膜の割れが発生しやすくなるためである。そして、Inの含有量が、35.0at%を超えると、組織中の酸化インジウム(In)の一部が還元し、金属インジウム(In)が溶出する可能性があるためである。このInが溶出していると、製造時に炉内にInが付着し、炉へのダメージとなるだけでなく、炉内の清掃による生産性の低下をもたらし、さらには溶出した分のInによりスパッタリングターゲットの組成バラつきが問題となる。
Inの含有量としては、8at%以上20at%がより望ましい。
Here, the reason why the content of In is 0.1 to 35.0 at% is that when it is less than 0.1 at%, direct current (DC) sputtering becomes unstable, and the formed film is not cracked. This is because it tends to occur. Then, the content of In is more than 35.0At%, a portion of the indium oxide in the tissue (In 2 O 3) is reduced, there is a possibility that metallic indium (In) is eluted. If this In is eluted, In will adhere to the furnace during production, causing damage to the furnace, as well as reducing productivity due to cleaning in the furnace, and further sputtering by the eluted In. The compositional variation of the target becomes a problem.
The content of In is more preferably 8 at% or more and 20 at%.

また、上記Snの含有量を、7at%以上とした理由は、7at%未満であると、形成された膜の硬度(押込み硬さ)が800mgf/μm以上になり、硬くなってしまうためである。さらに、Snの含有量に関して、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下とした理由は、この比が、0.5を超えると、Snが多すぎて、スパッタリングターゲットの組織中に酸化スズ(SnO)相が多く残存してしまい、スパッタリング時に、パーティクルや、異常放電の原因となりうるため、より安定したスパッタの実現が難しくなるおそれがある。また、同様な観点から、Snの含有量は、46at%以下であることが望ましく、25〜46at%がより望ましい。さらに、SnとZnとの含有原子比R1:Sn/(Sn+Zn)は0.08以上であることが好ましく、0.3〜0.5がより好ましい。 The reason why the Sn content is 7 at% or more is that if it is less than 7 at%, the hardness (indentation hardness) of the formed film becomes 800 mgf / μm 2 or more, and it becomes hard. is there. Furthermore, regarding the Sn content, the reason why the atomic ratio R1: Sn / (Sn + Zn) between Sn and Zn is 0.5 or less is that when this ratio exceeds 0.5, there is too much Sn, Since a lot of tin oxide (SnO 2 ) phase remains in the structure of the sputtering target and may cause particles and abnormal discharge during sputtering, it may be difficult to realize more stable sputtering. From the same viewpoint, the Sn content is desirably 46 at% or less, and more desirably 25 to 46 at%. Furthermore, the atomic ratio R1: Sn / (Sn + Zn) of Sn and Zn is preferably 0.08 or more, and more preferably 0.3 to 0.5.

さらに、CrおよびGeのうちの1種以上を配合するとチャンバーからの膜剥がれを抑制することができる。Sn、Cr、Geの含有量について、含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)=0.6以下とした理由は、0.6を超えると、ターゲットの組織中に酸化スズ相、酸化クロム、酸化ゲルマニウム相が多く残存してしまい、パーティクルや異常放電の原因となるため、より安定したスパッタの実現が難しくなるおそれがある。含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)は0.08以上であることが好ましく、0.3〜0.6がより好ましい。
また、Crの含有量が、30at%を超えると、異常放電が増加し、Geの含有量も、30at%を超えると、異常放電が増加してしまうので、Crの含有量を30at%以下、そして、Geの含有量を30at%以下とすることが好ましい。
また、CrまたはGeを添加させる場合には、確実にチャンバーからの膜剥がれを抑制するため、CrまたはGeの含有量を1.0at%以上とすることが好ましく、より好ましくは、Crの含有量は1.0〜10.0at%であり、Geの含有量は1.0〜10.0at%である。
Furthermore, when one or more of Cr and Ge are blended, film peeling from the chamber can be suppressed. Regarding the content of Sn, Cr, Ge, the reason why the atomic ratio R2: (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) = 0.6 or less is that if it exceeds 0.6, the tin oxide phase, chromium oxide in the target structure Since a large amount of germanium oxide remains, causing particles and abnormal discharge, it may be difficult to realize more stable sputtering. The atomic ratio R2: (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) is preferably 0.08 or more, and more preferably 0.3 to 0.6.
Further, when the Cr content exceeds 30 at%, abnormal discharge increases, and when the Ge content also exceeds 30 at%, abnormal discharge increases, so the Cr content is 30 at% or less, And it is preferable to make content of Ge into 30 at% or less.
In addition, when Cr or Ge is added, the Cr or Ge content is preferably 1.0 at% or more, more preferably Cr content, in order to reliably suppress film peeling from the chamber. Is 1.0 to 10.0 at%, and the Ge content is 1.0 to 10.0 at%.

また、本発明による酸化物スパッタリングターゲットの製造方法では、SnO粉末と、In粉末と、ZnO粉末とを配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成するようにしたので、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下である組成の酸化物焼結体を作製でき、その酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有したものとなる。この様な組織とすることにより、スパッタリングターゲットの比抵抗を一層低くすることができ、安定した直流(DC)スパッタリングが可能となる。 Further, in the method of manufacturing an oxide sputtering target according to the present invention, the SnO 2 powder, an In 2 O 3 powder and a mixed powder obtained by mixing and blending the ZnO powder, in a vacuum or in an inert gas, Since pressure firing was performed at a temperature of 800 to 1100 ° C. for 2 to 9 hours, Sn: 7 at% or more and In: 0.1 to 35.0 at% with respect to the total amount of metal components In addition, an oxide sintered body having a composition in which the balance is made of Zn and inevitable impurities and the Sn / Zn content atomic ratio R1: Sn / (Sn + Zn) is 0.5 or less can be produced. It has a structure whose main phase is Zn 2 SnO 4 in which In is dissolved. By setting it as such a structure, the specific resistance of a sputtering target can be made still lower and stable direct current (DC) sputtering becomes possible.

本発明に係る酸化物スパッタリングターゲットの他の製造方法では、SnO粉末と、In粉末と、ZnO粉末とを配合し、さらに、Cr粉末及びGeO粉末のうち1種以上を配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成する。このため、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr、Ge、Znの含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体を作製でき、その酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有したものとなる。この様な組織とすることにより、スパッタリングターゲットの比抵抗を一層低くすることができ、安定した直流(DC)スパッタリングが可能となる。 In another method of manufacturing an oxide sputtering target according to the present invention, SnO 2 powder, In 2 O 3 powder, and ZnO powder are blended, and at least one of Cr 2 O 3 powder and GeO 2 powder is blended. The mixed powder obtained by blending and mixing is pressure baked in vacuum or in an inert gas at a temperature of 800 to 1100 ° C. for 2 to 9 hours. For this reason, it contains Sn: 7 at% or more and In: 0.1 to 35.0 at% with respect to the total metal component amount, and furthermore, a total of one or more of Ge and Cr: 1.0 to 30.0 at%, the balance is made of Zn and inevitable impurities, the atomic ratio R1: Sn / (Sn + Zn) of Sn and Zn is 0.5 or less, and Sn, Cr, Ge, Zn Contained atomic ratio R2: An oxide sintered body having a composition of (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) of 0.6 or less can be produced, and the oxide sintered body is composed of Zn 2 SnO 4 in which In is dissolved. It will have the organization that. By setting it as such a structure, the specific resistance of a sputtering target can be made still lower and stable direct current (DC) sputtering becomes possible.

以上の様に、この製造された酸化物スパッタリングターゲットを用いた直流(DC)スパッタリングで成膜すると、柔らかく割れ難い膜を成膜することができ、反射層への影響を抑制できるため、反射層の反射率の変化が少なくなり、記録媒体として高い保存性を有するので、この成膜された膜は、有機色素の記録層を使用したBDの保護膜として好適である。   As described above, when a film is formed by direct current (DC) sputtering using the manufactured oxide sputtering target, a soft and hard-to-break film can be formed, and the influence on the reflective layer can be suppressed. Therefore, the formed film is suitable as a protective film for BD using an organic dye recording layer.

本発明に係る酸化物スパッタリングターゲットによれば、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、かつ、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下である成分組成の酸化物焼結体、或いは、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr、Ge、Znの含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体が、Inが固溶したZnSnOを主相とした組織を有するので、ターゲット自体の比抵抗を一層低下させ、安定した直流(DC)スパッタリングを可能としている。 The oxide sputtering target according to the present invention contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, with the balance being Zn and inevitable impurities. And the atomic ratio R1: Sn / (Sn + Zn) of the component composition of Sn and Zn is 0.5 or less, or a total of one or more of Ge and Cr: 1 0.0 to 30.0 at%, Sn: Zn atomic ratio R1: Sn / (Sn + Zn) is 0.5 or less, and Sn, Cr, Ge, Zn atomic ratio R2 :( Since the oxide sintered body having a composition in which Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) is 0.6 or less has a structure whose main phase is Zn 2 SnO 4 in which In is dissolved, the specific resistance of the target itself is further reduced. Stable DC DC) is made possible sputtering.

また、本発明の酸化物スパッタリングターゲットを用いてスパッタリングすると、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物であって、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下である成分組成を有するSn−In−Zn−O四元系酸化物膜、或いは、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr、Ge、Znの含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である成分組成を有したCr及びGeのうちの1種以上を添加したSn−In−Zn−O四元系酸化物膜を成膜でき、しかも、柔らかく割れ難い膜が得られ、記録媒体として高い保存性を有する。そのため、本発明の酸化物スパッタリングターゲットで成膜された酸化物膜は、有機色素の記録層を使用したBD用の誘電体保護膜として好適である。   Further, when sputtering is performed using the oxide sputtering target of the present invention, Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, the balance being Zn and inevitable A Sn—In—Zn—O quaternary oxide film which is an impurity and has a component composition in which the atomic ratio R1: Sn / (Sn + Zn) of Sn and Zn is 0.5 or less; And the total of one or more of Cr: 1.0 to 30.0 at%, the atomic ratio R1: Sn / (Sn + Zn) of Sn and Zn is 0.5 or less, and Sn, Cr , Ge, Zn content atomic ratio R2: (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) Sn—In—Zn—O quaternary having one or more of Cr and Ge having a component composition of 0.6 or less Oxide film It can deposition, moreover, obtained soft cracking hardly film, having a high storage stability as a recording medium. Therefore, the oxide film formed by the oxide sputtering target of the present invention is suitable as a dielectric protective film for BD using an organic dye recording layer.

本発明に係る酸化物スパッタリングターゲット及び光記録媒体用保護膜の実施例において、酸化物スパッタリングターゲットの断面組織をEPMAにより測定した各元素の元素分布像である。In the Example of the oxide sputtering target which concerns on this invention, and the protective film for optical recording media, it is the element distribution image of each element which measured the cross-sectional structure | tissue of the oxide sputtering target by EPMA. 実施例に係る透明酸化物膜形成用スパッタリングターゲットのX線回折(XRD)の分析結果を示すグラフである。It is a graph which shows the analysis result of the X-ray diffraction (XRD) of the sputtering target for transparent oxide film formation which concerns on an Example. 比較例に係る透明酸化物膜形成用スパッタリングターゲットのX線回折(XRD)の分析結果を示すグラフである。It is a graph which shows the analysis result of the X-ray diffraction (XRD) of the sputtering target for transparent oxide film formation concerning a comparative example.

以下に、本発明による酸化物スパッタリングターゲット及びその製造方法の実施形態について、具体的に、実施例を示して説明する。   Hereinafter, embodiments of the oxide sputtering target and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.

〔実施例〕
本実施例の酸化物スパッタリングターゲットは、例えば、BDにおける有機色素で形成された記録層に積層される誘電体保護膜を作製するためのスパッタリングターゲットであって、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、かつ、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下である成分組成に設定された酸化物焼結体、或いは、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr、Ge、Znの含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体で構成される。
なお、酸化物スパッタリングターゲットは、一般的には、絶縁性を示すため、これでスパッタリングを実施する場合には、高周波(RF)スパッタリングが用いられ、直流(DC)スパッタリングを行うことは難しい。そこで、酸化物スパッタリングターゲットで直流(DC)スパッタリングを実施できるようにするためには、スパッタリングターゲット自体の比抵抗を、1Ω・cm以下とすることが望ましい。特に、異常放電が少なく、安定したスパッタリングを行うためには、その比抵抗を、0.1Ω・cm以下、さらには、0.01Ω・cm以下とすることが望ましい。
〔Example〕
The oxide sputtering target of this example is a sputtering target for producing a dielectric protective film laminated on a recording layer formed of an organic dye in BD, for example, Sn: 7 at% or more, and In: 0.1 to 35.0 at%, the balance is made of Zn and inevitable impurities, and the atomic ratio R1: Sn / (Sn + Zn) of Sn and Zn is set to 0.5 or less. Or a total of one or more of Ge and Cr: 1.0 to 30.0 at%, and an atomic ratio of Sn and Zn R1: Sn / (Sn + Zn) Is an oxide sintered body having a composition in which the atomic ratio R2 of Sn, Cr, Ge, Zn: (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn) is 0.6 or less.
Note that, since an oxide sputtering target generally exhibits insulating properties, when sputtering is performed with this, high frequency (RF) sputtering is used, and direct current (DC) sputtering is difficult to perform. Therefore, in order to be able to perform direct current (DC) sputtering with an oxide sputtering target, it is desirable that the specific resistance of the sputtering target itself be 1 Ω · cm or less. In particular, in order to perform stable sputtering with less abnormal discharge, the specific resistance is desirably 0.1 Ω · cm or less, and further 0.01 Ω · cm or less.

そこで、本実施例による酸化物スパッタリングターゲットの製造方法では、全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnとの含有原子比R1:Sn/(Sn+Zn)が0.5以下である組成の酸化物焼結体、或いは、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、SnとZnの含有原子比R1:Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr、Ge、Znの含有原子比R2:(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体が、Inが固溶したZnSnOを主相とした組織を有する酸化物スパッタリングターゲットを製造するために、酸化亜鉛(化学式:ZnO、D50=1μm)、酸化スズ(化学式:SnO、D50=16μm)、酸化インジウム(化学式:In、D50=11μm)、酸化ゲルマニウム(化学式:GeO、D50=1.0μm)、酸化クロム(化学式:Cr、D50=0.4μm)を原料粉末として用意し、各原料粉末を、表1に示す所定の比率で秤量した。
なお、原料粉末の含有量としては、SnO粉末は7〜48mol%、In粉末は0.1〜20mol%、さらにCr粉末とGeO粉末を含む場合には両者の合計:33mol%未満であり、残部がZnO粉末となるように調整することが好ましい。
Therefore, in the method of manufacturing an oxide sputtering target according to this example, Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total metal component amount, with the balance being Zn and inevitable. An oxide sintered body comprising impurities and having a composition of Sn: Zn containing atomic ratio R1: Sn / (Sn + Zn) of 0.5 or less, or a total of at least one of Ge and Cr: 1 0.0 to 30.0 at%, Sn: Zn atomic ratio R1: Sn / (Sn + Zn) is 0.5 or less, and Sn, Cr, Ge, Zn atomic ratio R2 :( Sn + Cr + Ge) / ( Sn + Cr + Ge + Zn) of the composition is 0.6 or less oxide sintered body, in order to produce an oxide sputtering target containing in has a main phase of Zn 2 SnO 4 was dissolved tissue, acid Zinc (chemical formula: ZnO, D 50 = 1μm) , tin oxide (chemical formula: SnO 2, D 50 = 16μm ), indium oxide (chemical formula: In 2 O 3, D 50 = 11μm), germanium oxide (chemical formula: GeO 2, D 50 = 1.0 μm) and chromium oxide (chemical formula: Cr 2 O 3 , D 50 = 0.4 μm) were prepared as raw material powders, and each raw material powder was weighed at a predetermined ratio shown in Table 1.
As the content of the raw powder, the total of both when SnO 2 powder 7~48mol%, In 2 O 3 powder is 0.1 to 20 mol%, further containing Cr 2 O 3 powder and GeO 2 powder : Less than 33 mol%, and it is preferable to adjust so that the remainder becomes ZnO powder.

この秤量した原料粉末とその3倍量(重量比)のジルコニアボール(直径5mm)とをポリ容器に入れ、ボールミル装置にて24時間湿式混合した。なお、この際の溶媒には、例えば、アルコールを用いた。次に、得られた混合粉末を乾燥後、造粒し、800〜1100℃、望ましくは、900〜1000℃にて、2〜9時間、100〜500kgf/cmの圧力にて、真空又は不活性ガス雰囲気中でホットプレスし、実施例1〜21のスパッタリングターゲットを作製した。なお、ターゲットサイズは、直径125mm×厚さ5mmとした。なお、加圧焼結をホットプレスによって行ったが、他の方法として、HIP法(熱間等方加圧式焼結法)等を採用しても構わない。 The weighed raw material powder and 3 times its amount (weight ratio) of zirconia balls (diameter 5 mm) were placed in a plastic container and wet mixed in a ball mill apparatus for 24 hours. In addition, alcohol was used for the solvent in this case, for example. Next, after drying the obtained mixed powder, it is granulated, and 800-1100 ° C., preferably 900-1000 ° C., 2-9 hours at a pressure of 100-500 kgf / cm 2 , vacuum or non- Hot pressing was performed in an active gas atmosphere to prepare sputtering targets of Examples 1 to 21. The target size was 125 mm diameter x 5 mm thickness. In addition, although pressurization sintering was performed by hot press, you may employ | adopt HIP method (hot isostatic press-type sintering method) etc. as another method.

〔比較例〕
実施例と比較するため、比較例を用意した。比較例1は、原料粉末として、酸化インジウム(In)粉末を用いなかった。比較例2〜7では、作成した酸化物スパッタリングターゲットが本発明の組成範囲外となった。具体的には、表1に示す配合割合で、比較例1〜7の酸化物スパッタリングターゲットを作製した。参考として、80mol%のZnSと20mol%のSiOとによるスパッタリングターゲット(比較例8)、そして、ITOによるスパッタリングターゲット(比較例9)を用意した。
[Comparative Example]
A comparative example was prepared for comparison with the examples. In Comparative Example 1, no indium oxide (In 2 O 3 ) powder was used as the raw material powder. In Comparative Examples 2 to 7, the prepared oxide sputtering target was out of the composition range of the present invention. Specifically, oxide sputtering targets of Comparative Examples 1 to 7 were produced at the blending ratio shown in Table 1. For reference, a sputtering target (Comparative Example 8) made of 80 mol% ZnS and 20 mol% SiO 2 and a sputtering target made of ITO (Comparative Example 9) were prepared.


次に、上記で製造された実施例1〜21及び比較例1〜7の酸化物スパッタリングターゲットについて、ICPにより金属成分組成の分析を行った結果を表2に示した。なお、表2では、R1は、SnとZnとの含有原子比Sn/(Sn+Zn)であり、R2は、Sn、Cr、Geの含有原子比(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)である。ここで、各元素記号は、含有量(at%)を表し、該当元素を含まない場合には、その元素の含有量は、0at%として、含有原子比が計算される。   Next, Table 2 shows the results of analyzing the metal component composition by ICP for the oxide sputtering targets of Examples 1 to 21 and Comparative Examples 1 to 7 manufactured above. In Table 2, R1 is the atomic ratio Sn / (Sn + Zn) of Sn and Zn, and R2 is the atomic ratio of Sn, Cr, Ge (Sn + Cr + Ge) / (Sn + Cr + Ge + Zn). Here, each element symbol represents the content (at%), and when the element is not included, the content of the element is 0 at%, and the content atomic ratio is calculated.


次に、これらの実施例1〜21及び比較例1〜9の酸化物スパッタリングターゲットを用いて、以下の成膜条件により、光記録媒体用の保護膜として、Sn−In−Zn−O四元系酸化物膜を成膜し、実施例1〜21及び比較例1〜9の酸化物膜を作製した。それらの酸化物膜について、金属成分組成の分析を行った結果を表3に示した。表3における含有量比R1、R2については、表2の場合と同様にして、各元素の含有量(at%)から計算された。   Next, using these oxide sputtering targets of Examples 1 to 21 and Comparative Examples 1 to 9, Sn-In-Zn-O quaternary as a protective film for an optical recording medium under the following film forming conditions. A system oxide film was formed to prepare oxide films of Examples 1 to 21 and Comparative Examples 1 to 9. Table 3 shows the results of analyzing the metal component composition of these oxide films. The content ratios R1 and R2 in Table 3 were calculated from the content (at%) of each element in the same manner as in Table 2.

<成膜条件>
・電源:DC1000W(一部、高周波(RF)スパッタ)
・全圧:0.4Pa
・スパッタガス:Ar=47.5sccm、0:2.5sccm
・ターゲット−基板間(TS)距離:70mm
<Film formation conditions>
・ Power supply: DC1000W (partly, high frequency (RF) sputtering)
・ Total pressure: 0.4Pa
Sputtering gas: Ar = 47.5 sccm, 0 2 : 2.5 sccm
・ Target-to-board (TS) distance: 70mm


次いで、実施例1〜21及び比較例1〜9の酸化物スパッタリングターゲットについて、密度比、比抵抗、Inの溶出の有無を、そして、それらの酸化物スパッタリングターゲットを用いてスパッタリングを行ったときの異常放電回数、パーティクルの量を評価した。さらに、そのスパッタリングで得られた酸化物膜に関して、膜の押し込み硬さ、膜の割れ、及び反射率の変化を求めた。これらの結果を、表4及び表5に示した。ここで用いられた評価・測定手法は、以下の様である。   Next, for the oxide sputtering targets of Examples 1 to 21 and Comparative Examples 1 to 9, the density ratio, the specific resistance, the presence or absence of elution of In, and when sputtering was performed using those oxide sputtering targets The number of abnormal discharges and the amount of particles were evaluated. Furthermore, regarding the oxide film obtained by the sputtering, the indentation hardness of the film, the cracking of the film, and the change in reflectance were determined. These results are shown in Tables 4 and 5. The evaluation / measurement methods used here are as follows.

<密度比測定>
密度比は、焼結体を所定寸法に機械加工した後、重量を測定し、嵩密度を求めた後、理論密度ρfnで割ることで算出した。なお、理論密度ρfnについては、原料の重量に基づいて、以下に示した式により求めた。
<Density ratio measurement>
The density ratio was calculated by machining the sintered body to a predetermined size, measuring the weight, obtaining the bulk density, and then dividing by the theoretical density ρ fn . The theoretical density ρ fn was determined by the following formula based on the weight of the raw material.

<比抵抗測定>
酸化物スパッタリングターゲット及び酸化物膜の比抵抗測定は、ナプソン株式会社製4探針法抵抗率測定器RT−70を用いて測定した。当該測定器で測定できなかった場合には、「測定可能範囲外」と表記した。
<Specific resistance measurement>
The specific resistance of the oxide sputtering target and the oxide film was measured using a 4-probe resistivity meter RT-70 manufactured by Napson Corporation. When it was not possible to measure with the measuring instrument, it was described as “out of measurable range”.

<異常放電回数>
上述の条件において2時間のスパッタリングを行い、異常放電の回数(回数/時間)を計測した。その後、スパッタリングチャンバーを解放し、チャンバー内のパーティクルを確認した。なお、比較例8の酸化物スパッタリングターゲットの場合には、直流(DC)スパッタリングを実施できなかったため、「直流スパッタ不可」と表記し、成膜には、高周波スパッタリングで実施した。
<Number of abnormal discharge>
Sputtering was performed for 2 hours under the above conditions, and the number of abnormal discharges (number of times / hour) was measured. Thereafter, the sputtering chamber was released and particles in the chamber were confirmed. In the case of the oxide sputtering target of Comparative Example 8, since direct current (DC) sputtering could not be performed, it was described as “DC sputtering impossible” and the film formation was performed by high frequency sputtering.

<Inの溶出>
Inの溶出はターゲット焼結後に目視による確認とXRDによって確認した。
<Elution of In>
In elution was confirmed by visual inspection and XRD after target sintering.

<ターゲットのXRD>
試料の準備:試料はSiC−Paper(grit 180)にて湿式研磨、乾燥の後、測定試料とした。以下の条件でXRDを行い、その結果得られた主相及びZnSnOの(440)反射を示す2θを表4に示した。
装置:株式会社リガク製(RINT−Ultima/PC)
管球:Cu(CuKα1)
管電圧:40kW
管電流:40mA
走査範囲(2θ):5°〜80°
スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.8mm
測定ステップ幅:2θで0.02度
スキャンスピード:毎分2度
試料台回転スピード:30rpm
<Target XRD>
Preparation of sample: The sample was wet-polished with SiC-Paper (grit 180) and dried, and then used as a measurement sample. XRD was performed under the following conditions. Table 4 shows 2θ indicating the main phase and (440) reflection of Zn 2 SnO 4 obtained as a result.
Equipment: Rigaku Corporation (RINT-Ultima / PC)
Tube: Cu (CuKα1)
Tube voltage: 40kW
Tube current: 40 mA
Scanning range (2θ): 5 ° -80 °
Slit size: Divergence (DS) 2/3 degrees, Scattering (SS) 2/3 degrees, Light reception (RS) 0.8mm
Measurement step width: 0.02 degrees at 2θ Scan speed: 2 degrees per minute Sample stage rotation speed: 30 rpm

<パーティクル>
上述の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分の除去を行ったのち、4インチのSiウェハ上に厚さ100nmの膜を成膜した。同じ条件で合計25枚の膜を成膜し、成膜後のウェハについて市販の異物検査装置によりウェハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出した。なお、表4においては、パーティクルの個数がそれぞれ、20以下の場合を「◎」、21〜50の場合を「○」、51〜200の場合を「△」、201以上の場合を「×」と表記した。
<Particle>
Pre-sputtering was performed under the above conditions to remove the target surface processed layer, and then the chamber was once opened to the atmosphere to clean the chamber members such as the deposition preventive plate. Thereafter, evacuation was performed again, and after evacuation, pre-sputtering for 30 minutes was performed to remove atmospheric adsorption components on the target surface, and then a film having a thickness of 100 nm was formed on a 4-inch Si wafer. A total of 25 films were formed under the same conditions, and the number of particles of 1.0 μm or more adhering to the wafer surface was measured with a commercially available foreign substance inspection apparatus for the wafers after film formation, and the average value of 25 sheets was calculated. In Table 4, “◎” indicates that the number of particles is 20 or less, “◯” indicates that the number is 21 to 50, “Δ” indicates that the number is 51 to 200, and “×” indicates that the number is 201 or more. It was written.

<膜の押し込み硬さ>
上述の条件において基板をコーニング社製1737ガラス、膜厚を500nmとして成膜を行い、押し込み加重を35mgfとし、超微小押し込み硬さ試験機(エリオニクス社製ENT−1100a)にて測定を行った。なお、基板は27℃の装置内にセットし、1時間以上経過してから測定した。なお、10点測定の平均値を測定値とした。
<Indentation hardness of film>
Under the above-mentioned conditions, the substrate was formed as 1737 glass made by Corning, the film thickness was 500 nm, the indentation load was 35 mgf, and the measurement was performed with an ultra-fine indentation hardness tester (ENTION 1100a made by Elionix). . The substrate was set in a 27 ° C. apparatus and measured after 1 hour or more had elapsed. In addition, the average value of 10-point measurement was made into the measured value.

<膜の割れ>
上述の条件において、厚さ0.1mmのPETフィルムに100nmの膜厚で成膜し、フィルムを10回折り曲げた後、膜表面を顕微鏡により倍率1000倍にて観察して割れの有無を調べた。
<Membrane cracking>
Under the above-mentioned conditions, a film of 100 nm was formed on a PET film having a thickness of 0.1 mm, the film was bent 10 times, and then the surface of the film was observed with a microscope at a magnification of 1000 to check for cracks. .

<反射率の変化>
ポリカーボネート上にAg98.1Nd1.0Cu0.9合金をスパッタし、下記の色素を成膜した基板を用い、その上に上述の条件において各実施例及び比較例の酸化物膜(保護膜)を厚さ14nm成膜した。その後、80℃、85%の恒温恒湿器に100時間静置して、その前後の反射率の変化を測定した。なお、反射率の測定には、紫外可視分光光度計(日本分光株式会社製V−550)を用いた。また、波長405nmの光に対する反射率を求めた。
<Change in reflectance>
A substrate in which an Ag 98.1 Nd 1.0 Cu 0.9 alloy was sputtered on a polycarbonate and the following dye was formed was used, and the oxide films of the examples and comparative examples (protection) under the above-mentioned conditions on the substrate. Film) was formed to a thickness of 14 nm. Then, it was left to stand in a constant temperature and humidity chamber at 80 ° C. and 85% for 100 hours, and the change in reflectance before and after that was measured. In addition, the ultraviolet visible spectrophotometer (JASCO Corporation V-550) was used for the measurement of a reflectance. Moreover, the reflectance with respect to the light of wavelength 405nm was calculated | required.

色素:
上記基板に成膜した色素には、例えば、アゾ系色素として、6−ヒドロキシ−2−ピリドン構造からなるカップラー成分と、イソキサゾールトリアゾールのジアゾ成分とを有する化合物と、該有機色素化合物が配位する金属イオンとから構成される金属錯体化合物が挙げられ、前記カップラー成分とジアゾ成分とを有する化合物をオクタフルオロペンタノール(OFP)で1.0重量%に希釈した混合溶液をスピンコートで成膜した。
Dye:
The dye formed on the substrate includes, for example, a compound having a coupler component having a 6-hydroxy-2-pyridone structure and a diazo component of isoxazole triazole as an azo dye, and the organic dye compound. A metal complex compound composed of a metal ion, and a mixture solution obtained by diluting the compound having the coupler component and the diazo component with octafluoropentanol (OFP) to 1.0% by weight is formed by spin coating. Filmed.



上記の表4に示された結果からわかるように、実施例1〜21のスパッタリングターゲットは、いずれも比抵抗が0.1Ω・cm以下であり、直流スパッタリングを実施でき、異常放電回数が非常に少ないことが確認でき、そして、いずれにおいても、Inの溶出も見られず、Inが固溶したZnSnOが主相であることも確認された。
これに対して、比較例1のスパッタリングターゲットでは、ZnSnOが主相ではあるが、Inを含有しないものであって、比抵抗が高く、異常放電が多発した。比較例2では、Inの配合が多いため、Inが溶出し、酸化物スパッタリングターゲットの作製に不適であることが確認された。比較例3のスパッタリングターゲットでは、InとSnの含有量の比R1が小さすぎるため、Inが固溶したZnSnOが主相とならなかった。比較例4のスパッタリングターゲットでは、SnOの配合が多すぎたため、SnOが主相になってしまい、Inが固溶したZnSnOが主相とならなかった。比較例5〜7のスパッタリングターゲットでは、Inの溶出は無く、Inが固溶したZnSnOが主相となっているが、いずれも比抵抗が高く、異常放電が多発し、直流スパッタリングには不適であることが確認された。
As can be seen from the results shown in Table 4 above, the sputtering targets of Examples 1 to 21 all have a specific resistance of 0.1 Ω · cm or less, can perform direct current sputtering, and the number of abnormal discharges is extremely high. It was confirmed that there was little, and in any case, no elution of In was observed, and it was also confirmed that Zn 2 SnO 4 in which In was dissolved was the main phase.
On the other hand, in the sputtering target of Comparative Example 1, Zn 2 SnO 4 was the main phase, but it did not contain In, had a high specific resistance, and abnormal discharge occurred frequently. In Comparative Example 2, it was confirmed that since In 2 O 3 was mixed in a large amount, In was eluted and it was unsuitable for producing an oxide sputtering target. In the sputtering target of Comparative Example 3, since the ratio R1 of the In and Sn contents was too small, Zn 2 SnO 4 in which In was dissolved did not become the main phase. In the sputtering target of Comparative Example 4, since SnO 2 was blended too much, SnO 2 became the main phase, and Zn 2 SnO 4 in which In was dissolved did not become the main phase. In the sputtering targets of Comparative Examples 5 to 7, there was no elution of In and Zn 2 SnO 4 in which In was dissolved was the main phase, but both had high specific resistance, frequent abnormal discharges, and DC sputtering. Was found to be inappropriate.

また、成膜された酸化物膜(保護膜)に関しては、上記の表5に示された結果から分かるように、実施例1〜21のスパッタリングターゲットを用いて直流スパッタリングで成膜された場合には、いずれの場合も、柔らかく割れ難く、且つ、反射率の変化が小さい膜が得られることを確認できた。
これに対して、比較例1の場合には、膜の押込み硬さの値が高く、しかも、膜の割れが発生しており、保護膜に適した柔らかい膜が得られなかった。比較例3、4の場合には、膜の割れは発生しなかったものの、膜の押込み硬さの値が高く、保護膜に適した柔らかい膜が得られなかった。
As for the oxide film (protective film) formed, as can be seen from the results shown in Table 5 above, when the film was formed by DC sputtering using the sputtering targets of Examples 1 to 21 In any case, it was confirmed that a film that was soft and difficult to break and had a small change in reflectance was obtained.
On the other hand, in the case of Comparative Example 1, the indentation hardness value of the film was high, and the film was cracked, so that a soft film suitable for the protective film could not be obtained. In Comparative Examples 3 and 4, although the film did not crack, the indentation hardness value of the film was high, and a soft film suitable for the protective film could not be obtained.

以上の様に、上記各実施例の酸化物スパッタリングターゲットによれば、その酸化物焼結体が、Inが固溶したZnSnOを主相とした組織を有し、ターゲット自体の比抵抗を一層低下させ、安定した直流(DC)スパッタリングが可能であることを確認できた。また、各実施例の酸化物スパッタリングターゲットを用いて直流スパッタリングでSn−In−Zn−O四元系酸化物膜を成膜でき、しかも、柔らかく割れ難い膜が得られることを確認できた。そのため、本発明の酸化物スパッタリングターゲットで成膜された酸化物膜は、有機色素の記録層を使用したBD用の誘電体保護膜として好適であり、記録媒体として高い保存性を有するものである。 As described above, according to the oxide sputtering target of each of the above examples, the oxide sintered body has a structure whose main phase is Zn 2 SnO 4 in which In is dissolved, and the specific resistance of the target itself. It was confirmed that stable direct current (DC) sputtering was possible. In addition, it was confirmed that a Sn—In—Zn—O quaternary oxide film could be formed by direct current sputtering using the oxide sputtering target of each example, and that a soft and hard-to-break film could be obtained. Therefore, the oxide film formed with the oxide sputtering target of the present invention is suitable as a dielectric protective film for BD using an organic dye recording layer, and has high storage stability as a recording medium. .

次に、代表的に本発明の実施例1及び比較例1のスパッタリングターゲットについて、X線回折(XRD)した結果を図2及び図3に示す。この結果からわかるように、本発明の実施例では、ZnOに帰属する回折ピークと、SnOとZnOとの複合酸化物であるZnSnOとに帰属する回折ピークが検出され(Powder Diffraction File No.74−2184を参照)、ZnO及びZnSnOの相の存在が確認された。また、実施例1は、ZnSnOの回折ピークがInの固溶により低角側へシフトしていることが確認された。 Next, the results of X-ray diffraction (XRD) of the sputtering targets of Example 1 and Comparative Example 1 of the present invention are shown in FIG. 2 and FIG. As can be seen from this result, in the example of the present invention, a diffraction peak attributed to ZnO and a diffraction peak attributed to Zn 2 SnO 4 , which is a composite oxide of SnO 2 and ZnO, were detected (Powder Diffraction File). No. 74-2184), the presence of ZnO and Zn 2 SnO 4 phases was confirmed. In Example 1, it was confirmed that the diffraction peak of Zn 2 SnO 4 was shifted to the low angle side due to the solid solution of In.

また、実施例1のスパッタリングターゲットについて、EPMA(フィールドエミッション型電子線プローブ)にて、反射電子像(CP)および各元素の組成分布を示す元素分布像を観察した。上記反射電子像および元素分布像を図1に示す。
なお、EPMAによる元素分布像は、本来カラー像であるが、白黒像に変換して記載しているため、濃淡の淡い部分(比較的白い部分)が所定元素の濃度が高い部分となっている。
これら画像から、実施例1のスパッタリングターゲットは、ZnOとZnSnOとの相からなり、InがZnSnO相に非常に均一に分散していることがわかる。
Further, with respect to the sputtering target of Example 1, a reflected electron image (CP) and an element distribution image showing the composition distribution of each element were observed with EPMA (Field Emission Electron Beam Probe). The reflected electron image and element distribution image are shown in FIG.
The element distribution image by EPMA is originally a color image, but is described after being converted into a black and white image, and thus a light and dark portion (relatively white portion) is a portion where the concentration of the predetermined element is high. .
From these images, it can be seen that the sputtering target of Example 1 is composed of a phase of ZnO and Zn 2 SnO 4 and In is very uniformly dispersed in the Zn 2 SnO 4 phase.

なお、本発明を、スパッタリングターゲットとして利用するためには、面粗さ:5.0μm以下、より好ましくは1.0μm以下、粒径:20μm以下より好ましくは10μm以下、金属系不純物濃度:0.1原子%以下、より好ましくは0.05原子%以下、抗折強度:50MPa以上、より好ましくは100MPa以上であることが好ましい。上記各実施例は、いずれもこれらの条件を満たしたものである。   In order to use the present invention as a sputtering target, the surface roughness is 5.0 μm or less, more preferably 1.0 μm or less, the particle size is 20 μm or less, more preferably 10 μm or less, and the metal impurity concentration is 0.00. 1 atomic% or less, more preferably 0.05 atomic% or less, bending strength: 50 MPa or more, more preferably 100 MPa or more. Each of the above-described embodiments satisfies these conditions.

また、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態および上記実施例では、加圧焼結をホットプレスによって行っているが、他の方法としてHIP法(熱間等方加圧式焼結法)等を採用しても構わない。
The technical scope of the present invention is not limited to the above-described embodiment and examples, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment and the above examples, pressure sintering is performed by hot pressing, but as another method, a HIP method (hot isostatic pressing method) or the like may be employed.

Claims (6)

全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnの含有原子比Sn/(Sn+Zn)が0.5以下である組成の酸化物焼結体であり、
前記酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有することを特徴とする酸化物スパッタリングターゲット。
Sn: 7 at% or more and In: 0.1 to 35.0 at% with respect to the total amount of metal components, the balance is made of Zn and inevitable impurities, and the atomic ratio of Sn and Zn Sn / (Sn + Zn ) Is an oxide sintered body having a composition of 0.5 or less,
The oxide sintered body is characterized in that the oxide sintered body has a structure whose main phase is Zn 2 SnO 4 in which In is dissolved.
全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.0at%とを含有し、残部がZn及び不可避不純物からなり、SnとZnの含有原子比Sn/(Sn+Zn)が0.5以下であり、且つ、Sn、Cr,Ge、Znの含有原子比(Sn+Cr+Ge)/(Sn+Cr+Ge+Zn)が0.6以下である組成の酸化物焼結体であり、
前記酸化物焼結体は、Inが固溶したZnSnOを主相とした組織を有することを特徴とする酸化物スパッタリングターゲット。
It contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components. Furthermore, the total of one or more of Ge and Cr: 1.0-30.0 at %, The balance is made of Zn and inevitable impurities, the atomic ratio Sn / (Sn + Zn) of Sn and Zn is 0.5 or less, and the atomic ratio of Sn, Cr, Ge, Zn (Sn + Cr + Ge) ) / (Sn + Cr + Ge + Zn) is an oxide sintered body having a composition of 0.6 or less,
The oxide sintered body is characterized in that the oxide sintered body has a structure whose main phase is Zn 2 SnO 4 in which In is dissolved.
請求項1に記載の酸化物スパッタリングターゲットの製造方法であって、SnO粉末と、In粉末と、ZnO粉末とを配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成することを特徴とする酸化物スパッタリングターゲットの製造方法。 A method of manufacturing an oxide sputtering target according to claim 1, and SnO 2 powder, and In 2 O 3 powder, a mixed powder obtained by mixing and blending the ZnO powder, vacuum or inert The manufacturing method of the oxide sputtering target characterized by carrying out pressure baking for 2 to 9 hours at the temperature of 800-1100 degreeC in gas. 請求項2に記載の酸化物スパッタリングターゲットの製造方法であって、SnO粉末と、In粉末と、ZnO粉末とを配合し、さらに、Cr粉末及びGeO粉末のうち1種以上を配合し混合して得られた混合粉末を、真空中又は不活性ガス中、800〜1100℃の温度で、2〜9時間加圧焼成することを特徴とする酸化物スパッタリングターゲットの製造方法。 A method of manufacturing an oxide sputtering target according to claim 2, and SnO 2 powder was blended with In 2 O 3 powder and ZnO powder, further, Cr 2 O 3 of the powder and GeO 2 powder 1 Production of oxide sputtering target characterized in that mixed powder obtained by blending and mixing seeds or more is subjected to pressure firing in vacuum or inert gas at a temperature of 800 to 1100 ° C. for 2 to 9 hours Method. 請求項1に記載の酸化物スパッタリングターゲットを用いてスパッタリング成膜され、
全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、残部がZn及び不可避不純物からなることを特徴とする光記録媒体用保護膜。
Sputtered using the oxide sputtering target according to claim 1,
A protective film for an optical recording medium, comprising Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total amount of metal components, the balance being made of Zn and inevitable impurities.
請求項2に記載の酸化物スパッタリングターゲットを用いてスパッタリング成膜され、
全金属成分量に対して、Sn:7at%以上と、In:0.1〜35.0at%とを含有し、さらに、Ge及びCrのうち1種以上の合計:1.0〜30.1at%を含有し、残部がZn及び不可避不純物からなる成分組成の酸化物であることを特徴とする光記録媒体用保護膜。



Sputtered using the oxide sputtering target according to claim 2,
It contains Sn: 7 at% or more and In: 0.1-35.0 at% with respect to the total metal component amount, and further, a total of one or more of Ge and Cr: 1.0-30.1 at %, And the balance is an oxide having a component composition consisting of Zn and inevitable impurities.



JP2014079238A 2013-04-08 2014-04-08 Oxide sputtering target and manufacturing method thereof Expired - Fee Related JP6390142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079238A JP6390142B2 (en) 2013-04-08 2014-04-08 Oxide sputtering target and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013080247 2013-04-08
JP2013080247 2013-04-08
JP2014079238A JP6390142B2 (en) 2013-04-08 2014-04-08 Oxide sputtering target and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018023359A Division JP6501008B2 (en) 2013-04-08 2018-02-13 Oxide sputtering target and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014218737A true JP2014218737A (en) 2014-11-20
JP6390142B2 JP6390142B2 (en) 2018-09-19

Family

ID=51689482

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014079238A Expired - Fee Related JP6390142B2 (en) 2013-04-08 2014-04-08 Oxide sputtering target and manufacturing method thereof
JP2018023359A Expired - Fee Related JP6501008B2 (en) 2013-04-08 2018-02-13 Oxide sputtering target and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018023359A Expired - Fee Related JP6501008B2 (en) 2013-04-08 2018-02-13 Oxide sputtering target and method of manufacturing the same

Country Status (4)

Country Link
JP (2) JP6390142B2 (en)
CN (1) CN105074045B (en)
TW (1) TWI631089B (en)
WO (1) WO2014168073A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131866A (en) * 2018-01-31 2019-08-08 住友金属鉱山株式会社 Oxide sputtering film, method for producing oxide sputtering film, oxide sintered body and transparent resin substrate
CN108642458A (en) * 2018-06-20 2018-10-12 江苏瑞尔光学有限公司 A kind of ITO plated films target and preparation method thereof
CN110887871A (en) * 2019-11-27 2020-03-17 哈尔滨师范大学 Oxygen-enriched defect zinc stannate material, synthesis method thereof and hydrogen sulfide early warning sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154820A (en) * 2003-11-25 2005-06-16 Nikko Materials Co Ltd Sputtering target, and optical information recording medium, and method for manufacturing the same
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP2012121791A (en) * 2010-11-16 2012-06-28 Kobelco Kaken:Kk Oxide sintered body and sputtering target
JP2012158512A (en) * 2011-01-14 2012-08-23 Kobelco Kaken:Kk Oxide sintered body and sputtering target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202415A (en) * 1984-12-06 1987-09-07 三井金属鉱業株式会社 Indium oxide system light transmitting conductive film
US8304359B2 (en) * 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
JPWO2010058533A1 (en) * 2008-11-20 2012-04-19 出光興産株式会社 ZnO-SnO2-In2O3-based oxide sintered body and amorphous transparent conductive film
JP2013070010A (en) * 2010-11-26 2013-04-18 Kobe Steel Ltd Semiconductor layer oxide and spattering target for thin film transistor, and thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154820A (en) * 2003-11-25 2005-06-16 Nikko Materials Co Ltd Sputtering target, and optical information recording medium, and method for manufacturing the same
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP2012121791A (en) * 2010-11-16 2012-06-28 Kobelco Kaken:Kk Oxide sintered body and sputtering target
JP2012158512A (en) * 2011-01-14 2012-08-23 Kobelco Kaken:Kk Oxide sintered body and sputtering target

Also Published As

Publication number Publication date
JP2018095972A (en) 2018-06-21
CN105074045B (en) 2017-11-24
WO2014168073A1 (en) 2014-10-16
TWI631089B (en) 2018-08-01
JP6390142B2 (en) 2018-09-19
CN105074045A (en) 2015-11-18
JP6501008B2 (en) 2019-04-17
TW201446700A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP6212869B2 (en) Oxide sputtering target
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
TWI614357B (en) Light absorbing layer, and layer system comprising said layer, method for the production of said layer system and sputtering target suitable for that purpose
WO2012017659A1 (en) Method for producing sputtering target, and sputtering target
JP6501008B2 (en) Oxide sputtering target and method of manufacturing the same
WO2019176552A1 (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
WO2016121367A1 (en) Mn-Zn-W-O SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR
JP4697404B2 (en) Sputtering target for forming an optical recording medium protective film
TW201917229A (en) Mn-W-Cu-O-based sputtering target and method for manufacturing the same capable of inhibiting abnormal discharge and stably forming a film
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP5896121B2 (en) Oxide sputtering target and protective film for optical recording medium
JP5440388B2 (en) Oxide sputtering target and oxide film for optical recording medium
TWI554626B (en) Oxide sputtering target and protective film for optical recording medium
JP2013144820A (en) Oxide sputtering target and protective film for optical recording medium
JP6134368B2 (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP5954620B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
JP2012224903A (en) Oxide sputtering target, and method for manufacturing the same
JP2013237893A (en) Oxide sputtering target and protective film for optical recording medium
JP5847308B2 (en) Zinc oxide-based sintered body, zinc oxide-based sputtering target comprising the sintered body, and zinc oxide-based thin film obtained by sputtering the target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6390142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees