JP2014218028A - Corrugate tube manufacturing apparatus and method - Google Patents

Corrugate tube manufacturing apparatus and method Download PDF

Info

Publication number
JP2014218028A
JP2014218028A JP2013099240A JP2013099240A JP2014218028A JP 2014218028 A JP2014218028 A JP 2014218028A JP 2013099240 A JP2013099240 A JP 2013099240A JP 2013099240 A JP2013099240 A JP 2013099240A JP 2014218028 A JP2014218028 A JP 2014218028A
Authority
JP
Japan
Prior art keywords
speed
thick
resin material
thin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013099240A
Other languages
Japanese (ja)
Inventor
活壽 豊田
Katsuju Toyoda
活壽 豊田
涼太 白井
Ryota Shirai
涼太 白井
浩 ▲高▼見澤
浩 ▲高▼見澤
Hiroshi Takamizawa
隆男 仲亀
Takao Nakagame
隆男 仲亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2013099240A priority Critical patent/JP2014218028A/en
Publication of JP2014218028A publication Critical patent/JP2014218028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • B29C47/20
    • B29C47/90
    • B29C47/92
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrugate tube manufacturing apparatus and method which can reduce the length of a thickness changing part.SOLUTION: At the time of shifting between thin molding operation of molding a corrugate tube C into thin thickness and thick molding operation of molding the corrugate tube C into thick thickness, the rotation number of a roller 33 is controlled to make the moving speed of a mold 31 arranged on transportation means 32 lower than that during the thin molding operation and during the thick molding operation, and a gear pump 24 is controlled to perform low speed operation of making the discharge amount of a resin material smaller than that during the thin molding operation and during the thick molding operation, whereby the molding speed of the corrugate tube C is decreased at the time of changing the thickness thereof to reduce the length of a thickness changing part.

Description

本発明は、型を用いてコルゲートチューブを製造するコルゲートチューブ製造装置及びコルゲートチューブ製造方法に関するものである。   The present invention relates to a corrugated tube manufacturing apparatus and a corrugated tube manufacturing method for manufacturing a corrugated tube using a mold.

従来、コルゲートチューブ製造装置として、樹脂材料を吐出する押出機と、一対の環状の搬送手段上に設けられた複数の型によってプレスを行う成形機と、を備えるとともに、型の移動速度が変更可能に構成されたものが提案されている(例えば、特許文献1参照)。特許文献1に記載されたコルゲートチューブ製造装置は、型の移動速度を上昇させることで肉厚を薄くし、低下させることで肉厚を厚くして、任意の肉厚を有するコルゲートチューブが製造できるようになっている。   Conventionally, as a corrugated tube manufacturing device, an extruder for discharging a resin material and a molding machine for pressing with a plurality of molds provided on a pair of annular conveying means, and the moving speed of the mold can be changed. (See, for example, Patent Document 1). The corrugated tube manufacturing apparatus described in Patent Document 1 can manufacture a corrugated tube having an arbitrary thickness by increasing the moving speed of the mold to decrease the thickness and decreasing the thickness to increase the thickness. It is like that.

特開2010−260241号公報JP 2010-260241 A

しかしながら、特許文献1に記載のコルゲートチューブ製造装置では、コルゲートチューブの肉厚を変更しようとする際、型の移動速度を変化させている間にもコルゲートチューブは成形されるため、肉厚が軸方向(チューブの長手方向)に沿って徐々に変化する部位(肉厚変更部)が形成されてしまうという不都合があった。また、急激に速度変化させると装置に大きな負荷がかかるとともに、装置が大型化した場合には慣性力も増大して速度変化を行うためにより大きな力を必要とするため、肉厚変更部の長さ寸法を小さくすることは困難であった。   However, in the corrugated tube manufacturing apparatus described in Patent Document 1, when changing the wall thickness of the corrugated tube, the corrugated tube is formed while the moving speed of the mold is changed. There is a disadvantage that a portion (thickness changing portion) that gradually changes along the direction (longitudinal direction of the tube) is formed. In addition, if the speed is changed suddenly, a large load is applied to the device, and when the device is enlarged, the inertial force increases and a greater force is required to change the speed. It was difficult to reduce the size.

本発明の目的は、肉厚変更部の長さ寸法を小さくすることができるコルゲートチューブ製造装置及びコルゲートチューブ製造方法を提供することにある。   The objective of this invention is providing the corrugated tube manufacturing apparatus and corrugated tube manufacturing method which can make the length dimension of a thickness change part small.

本発明のコルゲートチューブ製造装置は、溶融された樹脂材料を吐出する押出機と、前記樹脂材料を軸方向に送りながらプレスして成形する成形機と、前記押出機及び前記成形機を制御する制御手段と、を備えたコルゲートチューブ製造装置であって、前記成形機は、互いに対向して設けられる一対の環状の搬送手段と、前記一対の搬送手段を回転させて互いの対向面を前記軸方向に移動させる移動手段と、前記搬送手段上に並設された複数の型と、を有して構成され、前記押出機の出口側には、前記樹脂材料の通過量を変化させることで該樹脂材料の吐出量を調節する絞り部が設けられ、前記制御手段は、前記移動手段及び前記絞り部を制御して前記型の移動速度及び前記樹脂材料の吐出量を変化させることで、コルゲートチューブの肉厚を薄く成形する薄肉成形運転と、前記肉厚を厚く成形する厚肉成形運転と、を切り替えるものであって、前記薄肉成形運転時には前記型の移動速度を高くして薄肉成形速度とし、前記厚肉成形運転時には前記型の移動速度を低くして厚肉成形速度とし、前記薄肉成形運転と前記厚肉成形運転との移行時には、前記型の移動速度を前記厚肉成形速度よりも低くするとともに、前記樹脂材料の吐出量を前記薄肉成形運転時及び前記厚肉成形運転時よりも少なくする低速運転を行うことを特徴とする。   The corrugated tube manufacturing apparatus of the present invention includes an extruder for discharging a molten resin material, a molding machine for pressing and molding the resin material while feeding the resin material in an axial direction, and a control for controlling the extruder and the molding machine. A corrugated tube manufacturing apparatus comprising: a pair of annular conveying means provided to face each other; and the pair of conveying means to rotate the opposing surfaces to each other in the axial direction. And a plurality of dies arranged side by side on the conveying means, and the resin is disposed on the outlet side of the extruder by changing the passage amount of the resin material. A restricting portion for adjusting the discharge amount of the material is provided, and the control means controls the moving means and the restricting portion to change the moving speed of the mold and the discharge amount of the resin material. Thickness Switching between a thin molding operation for thin molding and a thick molding operation for molding the thick wall, and during the thin molding operation, the moving speed of the mold is increased to a thin molding speed, and the thick wall molding operation is performed. During the molding operation, the mold moving speed is reduced to a thick molding speed, and during the transition between the thin molding operation and the thick molding operation, the mold moving speed is made lower than the thick molding speed, A low-speed operation is performed in which the discharge amount of the resin material is less than that during the thin-wall molding operation and during the thick-wall molding operation.

以上のような本発明によれば、薄肉成形運転と厚肉成形運転との移行時に型の移動速度を低くするとともに、樹脂材料の吐出量を少なくする低速運転が行われることで、肉厚変更時のコルゲートチューブの成形速度が低くなる。ここで、肉厚変更部の長さ寸法は、コルゲートチューブの成形速度を肉厚の変更に要する時間で積分した値であり、コルゲートチューブの成形速度が低くなることから、型の移動速度を短時間で変化させることなく肉厚変更部の長さ寸法を小さくすることができる。また、低速運転においてのみ型が低い速度で移動するように制御されていることで、製造効率が低下することを抑えることができる。   According to the present invention as described above, the wall thickness is changed by performing low-speed operation that lowers the moving speed of the mold at the time of transition between the thin-wall molding operation and the thick-wall molding operation and reduces the discharge amount of the resin material The forming speed of the corrugated tube at the time becomes low. Here, the length dimension of the thickness change part is a value obtained by integrating the molding speed of the corrugated tube with the time required to change the thickness, and since the molding speed of the corrugated tube is lowered, the moving speed of the mold is shortened. The length dimension of the thickness changing portion can be reduced without changing with time. Further, since the mold is controlled so as to move at a low speed only in the low-speed operation, it is possible to suppress a decrease in manufacturing efficiency.

この際、本発明のコルゲートチューブ製造装置では、前記制御手段は、前記薄肉成形運転と前記厚肉成形運転との移行時において、前記型の移動速度と前記樹脂材料の吐出量との比率が前記薄肉成形運転時と等しい第一移行運転と、前記比率が変化するとともに前記低速運転を含む第二移行運転と、前記比率が前記厚肉成形運転時と等しい第三移行運転と、を切り替えることが好ましい。このような構成によれば、第一移行運転時には肉厚を薄肉成形運転時から変化させることがなく、第三移行運転時には肉厚を厚肉成形運転時から変化させることがなく、低速運転を含む第二移行運転においてのみ肉厚が変化することで、肉厚の変更が行われる時間を短縮することができるとともに、肉厚の変更時のコルゲートチューブの成形速度を極小速度とすることができ、肉厚変更部の長さ寸法をさらに小さくすることができる。   At this time, in the corrugated tube manufacturing apparatus of the present invention, the control means is configured such that the ratio between the moving speed of the mold and the discharge amount of the resin material is the ratio at the time of transition between the thin wall molding operation and the thick wall molding operation. Switching between a first transition operation equal to that during thin-wall molding operation, a second transition operation including the low-speed operation while the ratio changes, and a third transition operation where the ratio is equal to that during the thick-wall molding operation. preferable. According to such a configuration, the wall thickness does not change from the thin molding operation during the first transition operation, and the wall thickness does not change from the thick molding operation during the third transition operation. By changing the wall thickness only in the second transition operation, the time for changing the wall thickness can be shortened and the forming speed of the corrugated tube when changing the wall thickness can be minimized. Further, the length dimension of the thickness changing portion can be further reduced.

さらに、本発明のコルゲートチューブ製造装置では、前記複数の型のうち少なくとも一つの型には、肉厚変化の開始位置を示すマーカが設けられ、前記マーカを検出するマーカ検出手段を備えることが好ましい。このような構成によれば、型に設けられたマーカを検出することで、肉厚変化の開始位置を正確に決めることができる。ここで、マーカは一つの型に設けられていてもよいし、二以上の複数の型に設けられていてもよいし、全ての型に設けられていてもよく、全ての型にそれぞれを識別できるようにマーカが設けられていれば、肉厚の変更を任意の位置で正確に行うことができる。   Furthermore, in the corrugated tube manufacturing apparatus of the present invention, it is preferable that at least one of the plurality of molds is provided with a marker that indicates a start position of thickness change, and includes a marker detection unit that detects the marker. . According to such a configuration, the start position of the thickness change can be accurately determined by detecting the marker provided on the mold. Here, the marker may be provided in one mold, may be provided in a plurality of two or more molds, may be provided in all molds, and each type is identified. If the marker is provided so that it can be done, the thickness can be accurately changed at an arbitrary position.

一方、本発明のコルゲートチューブ製造方法は、溶融された樹脂材料を吐出し、前記樹脂材料を軸方向に送りながらプレスして成形するコルゲートチューブ製造方法であって、互いに対向して設けられる一対の環状の搬送手段を互いの対向面が前記軸方向に移動するように回転させることで、該搬送手段上に並設された複数の型によってプレスを行い、前記樹脂材料の吐出量を調節し、前記型を高い速度で移動させてコルゲートチューブの肉厚を薄く成形する薄肉成形工程と、前記型を低い速度で移動させて前記肉厚を厚く成形する厚肉成形工程と、前記薄肉成形工程と前記厚肉成形工程との間において、前記型の移動速度を厚肉成形工程よりも低くするとともに前記樹脂材料の吐出量を前記薄肉成形工程及び前記厚肉成形工程よりも低くする低速工程と、を備えることを特徴とする。   On the other hand, the corrugated tube manufacturing method of the present invention is a corrugated tube manufacturing method in which a molten resin material is discharged and the resin material is pressed while being fed in the axial direction. By rotating the annular conveying means so that the opposing surfaces move in the axial direction, pressing is performed by a plurality of molds arranged in parallel on the conveying means, and the discharge amount of the resin material is adjusted, A thin-wall molding process for forming the corrugated tube thinly by moving the mold at a high speed, a thick-wall molding process for forming the thick wall by moving the mold at a low speed, and the thin-wall molding process Between the thick molding process, the moving speed of the mold is made lower than that in the thick molding process, and the discharge amount of the resin material is made lower than in the thin molding process and the thick molding process. Characterized in that it comprises a low speed step.

このような本発明によれば、前述したコルゲートチューブ製造装置と同様に、製造効率を低下させることなく肉厚変更部の長さ寸法を小さくしたコルゲートチューブを製造することができる。   According to the present invention as described above, similarly to the corrugated tube manufacturing apparatus described above, it is possible to manufacture a corrugated tube in which the length dimension of the thickness changing portion is reduced without reducing the manufacturing efficiency.

以上のような本発明のコルゲートチューブ製造装置及びコルゲートチューブ製造方法によれば、薄肉成形運転(薄肉成形工程)と厚肉成形運転(厚肉成形工程)との間に低速運転(低速工程)が行われることで、コルゲートチューブの肉厚変更部の長さ寸法を小さくすることができる。   According to the corrugated tube manufacturing apparatus and the corrugated tube manufacturing method of the present invention as described above, the low speed operation (low speed process) is performed between the thin wall molding operation (thin wall molding process) and the thick wall molding operation (thick wall molding process). By being performed, the length dimension of the thickness change part of a corrugated tube can be made small.

本発明の実施形態に係るコルゲートチューブ製造装置を示す全体図である。1 is an overall view showing a corrugated tube manufacturing apparatus according to an embodiment of the present invention. 前記コルゲートチューブ製造装置によるコルゲートチューブ製造時の制御の手順を示すタイミングチャートである。It is a timing chart which shows the procedure of the control at the time of corrugated tube manufacture by the said corrugated tube manufacturing apparatus. 前記コルゲートチューブを示す断面図である。It is sectional drawing which shows the said corrugated tube. 本発明の変形例に係るコルゲートチューブを示す断面図である。It is sectional drawing which shows the corrugated tube which concerns on the modification of this invention. 従来技術のコルゲートチューブ製造装置によるコルゲートチューブ製造時の制御の手順を示すタイミングチャートである。It is a timing chart which shows the procedure of control at the time of corrugated tube manufacture by the corrugated tube manufacturing apparatus of a prior art.

以下、本発明の実施形態を図面に基づいて説明する。図1において、本実施形態のコルゲートチューブ製造装置1は、熱可塑性の樹脂材料が供給されて樹脂材料を吐出する押出機2と、吐出された樹脂材料を複数の型としての複数の金型31によってプレスしてコルゲートチューブCを成形する成形機3と、複数の金型31を識別するマーカ検出手段としての識別センサ4と、を備えて構成されている。本実施形態において、図1における左右方向をX方向とし、紙面に対する前後方向をY方向とし、上下方向をZ方向とし、前後上下左右は図1を基準とする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a corrugated tube manufacturing apparatus 1 according to this embodiment includes an extruder 2 that is supplied with a thermoplastic resin material and discharges the resin material, and a plurality of molds 31 that use the discharged resin material as a plurality of molds. And a forming machine 3 for forming the corrugated tube C by pressing and an identification sensor 4 as marker detecting means for identifying the plurality of molds 31. In the present embodiment, the left-right direction in FIG. 1 is the X direction, the front-rear direction with respect to the page is the Y direction, the up-down direction is the Z direction, and the front-rear, up-down, left-right is based on FIG.

押出機2は、樹脂材料が投入される供給部21と、螺旋状の襞を有してX方向に延びるとともに図示しないモータによって回転して樹脂材料をX方向右側に送りつつ溶融するスクリュー22と、スクリュー22を収容するとともに樹脂材料の通過経路を形成するシリンダー23と、シリンダー23の出口であるX方向右側に設けられるとともに樹脂材料の通過量を調節する絞り部としてのギアポンプ24と、ギアポンプ24の出口側であるX方向右側に設けられるノズル25と、を有して構成され、樹脂材料をX方向右側に吐出する。   The extruder 2 includes a supply unit 21 into which a resin material is charged, a screw 22 that has a spiral ridge, extends in the X direction, rotates by a motor (not shown), and melts while feeding the resin material to the right in the X direction; A cylinder 23 that accommodates the screw 22 and forms a passage for resin material; a gear pump 24 that is provided on the right side in the X direction as an outlet of the cylinder 23 and adjusts the passage amount of the resin material; and a gear pump 24 And a nozzle 25 provided on the right side in the X direction, which is the outlet side of the resin, and discharges the resin material to the right side in the X direction.

ギアポンプ24は、Z方向に並設されるとともにY方向に回転軸を有する一対のギア241を備え、図示しない制御手段としてのコンピュータによってギア241の回転数が制御され、樹脂材料の通過量が変化する。本実施形態では、押出機2の運転時においてスクリュー22は一定速度で回転するものとし、即ち、樹脂材料の吐出量はギアポンプ24における通過量によって決まるものとする。ここで、コンピュータは、ギアポンプ24の出口から樹脂材料がプレスされる位置までの距離とスクリュー22の回転数とに基づいて、樹脂材料が吐出されてからプレスされるまでの到達時間Δtを算出する。   The gear pump 24 includes a pair of gears 241 arranged in parallel in the Z direction and having a rotation shaft in the Y direction. The number of rotations of the gear 241 is controlled by a computer (not shown) as control means, and the amount of resin material passing therethrough changes. To do. In the present embodiment, it is assumed that the screw 22 rotates at a constant speed during operation of the extruder 2, that is, the discharge amount of the resin material is determined by the passage amount in the gear pump 24. Here, the computer calculates the arrival time Δt from when the resin material is discharged until it is pressed based on the distance from the outlet of the gear pump 24 to the position where the resin material is pressed and the number of rotations of the screw 22. .

成形機3は、Z方向に並設されて対向面32aを有するとともに複数のキャリアベースが環状に配置された一対の搬送手段32と、搬送手段32の内側に配されてY方向に回転軸を有するローラ33と、搬送手段32の内側に配されてY方向に回転軸を有するプーリ34と、各キャリアベース上に設けられた複数の金型31と、を有して構成されている。ローラ33は図示しないモータによって回転して搬送手段32を移動させ、プーリ34は搬送手段32の移動に従って回転することで、モータと、ローラ33と、プーリ34と、が移動手段として機能する。複数の金型31には、図示しない互いに異なるマーカが設けられて(例えば、ナンバリングされて)いる。   The molding machine 3 has a pair of conveying means 32 arranged in parallel in the Z direction and having an opposing surface 32a, and a plurality of carrier bases arranged in an annular shape, and a rotating shaft in the Y direction arranged inside the conveying means 32. And a plurality of dies 31 provided on each carrier base. The pulley 33 is disposed inside the conveying means 32 and has a pulley 34 having a rotation axis in the Y direction. The roller 33 is rotated by a motor (not shown) to move the conveying means 32, and the pulley 34 is rotated according to the movement of the conveying means 32, so that the motor, the roller 33, and the pulley 34 function as moving means. The plurality of molds 31 are provided with different markers (not shown) (not shown), for example.

Z方向上側のローラ33は反時計回りに回転し、Z方向下側のローラ33は時計回りに回転することで、対向面32aはX方向右側に移動する。ここで、複数の金型31は対向面32aのX方向左端において樹脂材料のプレスを開始し、成形されたコルゲートチューブCをX方向右側に送る。ローラ33の回転数はコンピュータによって制御されており、金型31は移動速度が可変に設けられている。ここで、ローラ33の回転は搬送手段32に直接伝わるため、ローラ33の回転(モータの回転)と搬送手段32の移動との間に時間差はないものとする。   The roller 33 on the upper side in the Z direction rotates counterclockwise, and the roller 33 on the lower side in the Z direction rotates clockwise, so that the facing surface 32a moves to the right in the X direction. Here, the plurality of molds 31 starts pressing the resin material at the left end in the X direction of the facing surface 32a, and sends the molded corrugated tube C to the right side in the X direction. The number of rotations of the roller 33 is controlled by a computer, and the mold 31 is provided with a variable moving speed. Here, since the rotation of the roller 33 is directly transmitted to the conveying means 32, it is assumed that there is no time difference between the rotation of the roller 33 (rotation of the motor) and the movement of the conveying means 32.

識別センサ4は、プレスを行う直前の金型31のマーカを検出し、検出信号をコンピュータに送信する。このようにして検出信号を受信したコンピュータは、ローラ33の回転数(即ち、金型31の移動速度)に基づいて、それぞれの金型31が検出されてからプレスを開始するまでの時間を計算する。   The identification sensor 4 detects the marker of the mold 31 immediately before pressing and transmits a detection signal to the computer. The computer that has received the detection signal in this way calculates the time from the detection of each die 31 to the start of pressing based on the number of rotations of the roller 33 (that is, the moving speed of the die 31). To do.

以下、コルゲートチューブ製造装置1の動作手順及びコルゲートチューブCの製造方法を図2も参照して説明する。コルゲートチューブCの成形速度は、金型31の移動速度Vと等しく、コルゲートチューブCの肉厚Dは、移動速度Vと樹脂材料の吐出量Qとの比率Rで決定し、コルゲートチューブCの肉厚が変化する部位(肉厚変更部)のX方向寸法Lは、比率Rの変化に要する時間Tにおける成形速度の時間積分VTで与えられる。本実施形態においては、肉厚を薄肉のD1から厚肉のD2に変更する第一工程と、D2からD1に変更する第二工程とを例示して説明する。本実施形態において、第一工程及び第二工程は、図3に示すように、凹凸が形成されるコルゲート部C1と凹凸が形成されないストレート部C2との境界付近で行われるものとする。   Hereinafter, the operation procedure of the corrugated tube manufacturing apparatus 1 and the manufacturing method of the corrugated tube C will be described with reference to FIG. The forming speed of the corrugated tube C is equal to the moving speed V of the mold 31, and the thickness D of the corrugated tube C is determined by the ratio R between the moving speed V and the discharge amount Q of the resin material. The dimension L in the X direction of the portion where the thickness changes (thickness changing portion) is given by the time integral VT of the molding speed at the time T required for the change in the ratio R. In the present embodiment, a first process for changing the thickness from thin D1 to a thick D2 and a second process for changing from D2 to D1 will be described as an example. In the present embodiment, as shown in FIG. 3, the first step and the second step are performed near the boundary between the corrugated portion C1 where unevenness is formed and the straight portion C2 where unevenness is not formed.

第一工程において、まず、金型31の移動速度を薄肉成形速度Vh1とし、樹脂材料の吐出量を定常吐出量Qh(ギアポンプ24の回転数を定常回転数Fh)として肉厚をD1とする薄肉成形運転が行われている(薄肉成形工程)。次に、肉厚をD1に保ちつつコルゲートチューブCの成形速度を低下させる(第一移行運転)ために、肉厚変更を開始する金型31を識別センサ4が検出したら、ギアポンプ24の回転数の設定値を極小回転数Fl(樹脂材料の吐出量を極小吐出量Ql)として低下を開始させ、到達時間Δt経過後には、金型31の移動速度の設定値を薄肉極小速度Vl1として低下を開始させる。ここで、Vh1とQhとの比率Rh1はVl1とQlとの比率Rl1に等しく、変化の最中で肉厚をD1に保つようにギアポンプ24の回転数F(樹脂材料の吐出量Q)と金型31の移動速度Vとを略同一の時間(T1)で線形に変化させる。また、到達時間ΔtとT1との合計時間は、金型31が検出されてからプレスを開始するまでの時間と等しくなるように制御されている。   In the first step, first, the thin wall thickness is set to D1, where the moving speed of the mold 31 is the thin molding speed Vh1, the discharge amount of the resin material is the steady discharge amount Qh (the rotation speed of the gear pump 24 is the steady rotation speed Fh). Molding operation is performed (thin-wall molding process). Next, in order to reduce the molding speed of the corrugated tube C while maintaining the thickness at D1 (first transition operation), when the identification sensor 4 detects the mold 31 for starting the thickness change, the rotational speed of the gear pump 24 Is set to the minimum rotational speed Fl (the discharge amount of the resin material is the minimum discharge amount Ql), and after the arrival time Δt has elapsed, the set value of the moving speed of the mold 31 is reduced to the thin minimum speed Vl1. Let it begin. Here, the ratio Rh1 between Vh1 and Qh is equal to the ratio Rl1 between Vl1 and Ql, and the rotation speed F of the gear pump 24 (the discharge amount Q of the resin material) and the gold so as to keep the wall thickness D1 during the change. The moving speed V of the mold 31 is linearly changed at substantially the same time (T1). Further, the total time of the arrival time Δt and T1 is controlled to be equal to the time from the detection of the mold 31 to the start of pressing.

次に、比率Rを変えて肉厚D1からD2に変更する(第二移行運転)ために、移動速度の設定値を厚肉極小速度Vl2として低下を開始させる(低速工程)。このとき、金型31の移動速度は薄肉極小速度Vl1から厚肉極小速度Vl2の間であるとともに、樹脂材料の吐出量は極小吐出量Qlであり、低速運転が行われている。ここで、肉厚変更部のX方向寸法Lは、変化に要する時間T2を高さとしてVl1及びVl2を上底及び下底とする台形VTの面積に比例する。   Next, in order to change the ratio R to change from the thickness D1 to D2 (second transition operation), the reduction is started with the set value of the moving speed as the thickness minimum speed V12 (low speed process). At this time, the moving speed of the mold 31 is between the thin-wall minimum speed Vl1 and the thick-wall minimum speed Vl2, and the discharge amount of the resin material is the minimum discharge amount Ql, and the low-speed operation is performed. Here, the dimension L in the X direction of the thickness changing portion is proportional to the area of the trapezoid VT with the time T2 required for the change as the height and Vl1 and Vl2 as the upper and lower bases.

次に、肉厚をD2に保ちつつコルゲートチューブCの成形速度を上昇させる(第三移行運転)ために、金型31の移動速度の設定値を厚肉成形速度Vh2として上昇を開始させる。この際、金型31の移動速度がVl2となって第二移行運転が終了するよりも到達時間Δtだけ先にギアポンプ24の回転数の設定値を定常回転数Fh(樹脂材料の吐出量を定常吐出量Qh)として上昇を開始させておく。ここで、Vl2とQlとの比率Rl2はVh2とQhとの比率Rh2に等しく、変化の最中で肉厚をD2に保つようにギアポンプ24の回転数Fと金型31の移動速度V(樹脂材料の吐出量Q)とを略同一の時間(T3)で線形に変化させる。T3経過後には厚肉成形運転となる(厚肉成形工程)。   Next, in order to increase the molding speed of the corrugated tube C while maintaining the thickness at D2 (third transition operation), the set value of the moving speed of the mold 31 is set to the thick molding speed Vh2 to start the increase. At this time, the set value of the rotation speed of the gear pump 24 is set to the steady rotation speed Fh (the discharge amount of the resin material is steady) before the arrival time Δt before the moving speed of the mold 31 becomes Vl2 and the second transition operation ends. The discharge amount Qh) starts to rise. Here, the ratio Rl2 between Vl2 and Ql is equal to the ratio Rh2 between Vh2 and Qh, and the rotational speed F of the gear pump 24 and the moving speed V of the mold 31 (resin so as to keep the wall thickness D2 during the change. The material discharge amount Q) is linearly changed at substantially the same time (T3). After T3 has elapsed, a thick molding operation is performed (thick molding process).

第二工程においては、第一工程と逆の手順で肉厚Dの変更が行われる。厚肉成形運転時に金型31が検出されると、ギアポンプ24の回転数の設定値をFl(樹脂材料の吐出量を極小吐出量Ql)として低下を開始させ、到達時間Δt経過後には、金型31の移動速度の設定値を厚肉極小速度Vl2として低下を開始させる(第三移行運転)。次に、金型31の移動速度の設定値を薄肉極小速度Vl1として上昇を開始させて、肉厚をD2からD1に変更する(第二移行運転及び低速運転)。次に、第二移行運転の終了よりも到達時間Δtだけ先にギアポンプ24の回転数の設定値を定常回転数Fh(樹脂材料の吐出量を定常吐出量Qh)として上昇を開始させ、第二移行運転の終了後には、金型31の移動速度の設定値を薄肉成形速度Vh1として上昇を開始させる(第一移行運転)。T1経過後には再び薄肉成形運転に戻る。   In the second step, the thickness D is changed in the reverse procedure of the first step. When the mold 31 is detected during the thick molding operation, the reduction is started with the set value of the rotation speed of the gear pump 24 as Fl (the discharge amount of the resin material is the minimum discharge amount Ql). The set value of the moving speed of the mold 31 is set to the thick minimum speed Vl2 to start the decrease (third transition operation). Next, the set value of the moving speed of the mold 31 is set to the thin minimum speed Vl1 to start the increase, and the thickness is changed from D2 to D1 (second transition operation and low speed operation). Next, an increase is started with the set value of the rotation speed of the gear pump 24 as the steady rotation speed Fh (the discharge amount of the resin material is the steady discharge quantity Qh) earlier than the end of the second transition operation by the arrival time Δt. After the transition operation is completed, the moving speed of the mold 31 is set as the thin molding speed Vh1 to start the increase (first transition operation). After T1 has elapsed, the process returns to the thin-wall molding operation again.

このような本実施形態によれば、以下のような効果がある。即ち、低速運転において肉厚Dの変更が行われることで、図5に示すような従来技術のコルゲートチューブ製造方法と比較して、台形VTの面積が小さくなり、コルゲートチューブCの肉厚変更部位のX方向寸法Lを小さくすることができる。このように、金型31の移動速度Vの変化に要する時間(T2)を短縮することなく台形VTの面積を小さくすることができ、急激な速度変化によって成形機3に負荷がかかることを防ぐことができる。   According to this embodiment, there are the following effects. That is, when the thickness D is changed during low-speed operation, the area of the trapezoid VT is reduced as compared with the conventional corrugated tube manufacturing method as shown in FIG. The dimension L in the X direction can be reduced. In this way, the area of the trapezoid VT can be reduced without reducing the time (T2) required for the change in the moving speed V of the mold 31, and a load on the molding machine 3 due to a sudden speed change is prevented. be able to.

さらに、肉厚Dの変更時にのみ低速運転が行われることで、肉厚Dが変更されないときには薄肉成形速度Vh1又は厚肉成形速度Vh2で金型31を移動させてコルゲートチューブCの成形することができ、製造効率が低下することを防ぐことができる。   Further, since the low speed operation is performed only when the thickness D is changed, the corrugated tube C can be formed by moving the mold 31 at the thin molding speed Vh1 or the thick molding speed Vh2 when the thickness D is not changed. It is possible to prevent the manufacturing efficiency from being lowered.

また、ギアポンプ24の回転数Fの変化を金型31の移動速度Vの変化よりも到達時間Δtだけ先に開始することで、樹脂材料の吐出量Qの変化を金型31の移動速度Vの変化と同時に開始することができる。   Further, by starting the change of the rotational speed F of the gear pump 24 before the change of the moving speed V of the mold 31 by the arrival time Δt, the change of the discharge amount Q of the resin material is changed to the moving speed V of the mold 31. Can start at the same time as the change.

また、識別センサ4が互いに異なるマーカが設けられた金型31を識別することで、任意の位置で肉厚の変更を行うことができる。   Further, the identification sensor 4 identifies the mold 31 provided with different markers, so that the thickness can be changed at an arbitrary position.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記実施形態では、低速運転の前後において金型31の移動速度と樹脂材料の吐出量Qとの比率Rを保ちつつコルゲートチューブCの成形速度を上下させる第一移行運転及び第三移行運転が行われるものとしたが、低速運転時に肉厚Dの変更が行われる制御であれば低速運転の前後において比率R(肉厚D)が保たれていなくてもよい。比率Rを保つ制御、即ち、ギアポンプ24の回転数F(樹脂材料の吐出量Q)と金型31の移動速度Vとを同期させる制御を省略すれば、制御を簡単化することができる。   In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention. For example, in the embodiment, the first transition operation and the third transition operation in which the molding speed of the corrugated tube C is increased and decreased while maintaining the ratio R between the moving speed of the mold 31 and the discharge amount Q of the resin material before and after the low speed operation. However, the ratio R (thickness D) does not have to be maintained before and after the low-speed operation as long as the thickness D is changed during the low-speed operation. If the control for maintaining the ratio R, that is, the control for synchronizing the rotational speed F of the gear pump 24 (the discharge amount Q of the resin material) and the moving speed V of the mold 31 is omitted, the control can be simplified.

また、前記実施形態では、複数の金型31には互いに異なるマーカが設けられて識別センサ4によって検出されるものとしたが、少なくとも一つの金型31にマーカが設けられて搬送手段32の周期に合わせて肉厚Dの変更が行われてもよく、マーカの種類を少なくすれば、識別センサ4の構成を簡単化することができる。また、マーカ及び識別センサ4が省略されてもよく、例えば、ローラ33の回転数及び径に基づいてコンピュータが搬送手段32の移動距離を計算することで肉厚Dの変更位置を決定すれば、肉厚Dを任意の位置で変更することができるとともに、マーカ及び識別センサ4を省略して構成を簡単化することができる。   In the above embodiment, the plurality of molds 31 are provided with different markers and detected by the identification sensor 4. However, at least one mold 31 is provided with a marker and the period of the conveying means 32 is determined. Accordingly, the thickness D may be changed. If the number of markers is reduced, the configuration of the identification sensor 4 can be simplified. Further, the marker and the identification sensor 4 may be omitted. For example, if the computer determines the change position of the thickness D by calculating the moving distance of the conveying means 32 based on the rotation speed and diameter of the roller 33, The thickness D can be changed at an arbitrary position, and the marker and the identification sensor 4 can be omitted to simplify the configuration.

また、前記実施形態では、ギアポンプ24の回転数Fの変化を金型31の移動速度Vの変化よりも樹脂材料の到達時間Δtだけ先に開始するものとしたが、ギアポンプ24の回転数Fと金型31の移動速度Vとの変化を同時に開始してもよく、到達時間Δtを考慮しない制御とすれば、制御を簡単化することができる。   In the embodiment, the change in the rotation speed F of the gear pump 24 is started earlier than the change in the moving speed V of the mold 31 by the arrival time Δt of the resin material. The change with the moving speed V of the mold 31 may be started at the same time, and if the control does not take the arrival time Δt into consideration, the control can be simplified.

また、前記実施形態では、低速運転時において金型31の移動速度Vのみを変化させて肉厚Dを変更するものとしたが、金型31の移動速度Vと樹脂材料の吐出量Qとを変化させて両者の比率Rを変化させることで肉厚Dを変更してもよい。両者を変化させる制御を行えば、比率Rの変化に要する時間を短縮することができ、肉厚変更部のX方向寸法Lをさらに小さくすることができる。   In the above embodiment, the thickness D is changed by changing only the moving speed V of the mold 31 during low-speed operation. However, the moving speed V of the mold 31 and the discharge amount Q of the resin material are set as follows. The thickness D may be changed by changing the ratio R between the two. If the control for changing both is performed, the time required for changing the ratio R can be shortened, and the dimension L in the X direction of the thickness changing portion can be further reduced.

また、前記実施形態では、スクリュー22の回転数を一定としたが、ギアポンプ24と同時に制御が行われて回転数が変化し、スクリュー22とギアポンプ24とで樹脂材料の吐出量Qが決定される制御としてもよい。このような制御とすれば、樹脂材料の吐出量Qの変化に要する時間を短縮することができる。   In the above-described embodiment, the rotation speed of the screw 22 is constant. However, the rotation speed is changed simultaneously with the gear pump 24, and the discharge amount Q of the resin material is determined by the screw 22 and the gear pump 24. It is good also as control. With such control, the time required for changing the discharge amount Q of the resin material can be shortened.

また、前記実施形態では、熱可塑性樹脂の樹脂材料及び金型31を例示したが、コルゲートチューブCを成形するための適宜な材料が用いられれば良く、材料に適した適宜な型が用いられればよい。   Moreover, in the said embodiment, although the resin material of the thermoplastic resin and the metal mold | die 31 were illustrated, the appropriate material for shape | molding the corrugated tube C should just be used, and if the appropriate mold | type suitable for material is used. Good.

また、前記実施形態では、肉厚Dを二種類の肉厚D1、D2の間で変更する第一工程と第二工程とを例示したが、三種類以上の肉厚の間で変更が行われてもよい。また、第一工程又は第二工程として例示した制御のタイミングに限らず、低速運転時に比率Rの変更が行われれば、各パラメータは任意のタイミングで変化を開始すればよい。   Moreover, in the said embodiment, although the 1st process and 2nd process which change the thickness D between two types of thickness D1 and D2 were illustrated, a change is performed between three or more types of thickness. May be. Further, not only the control timing exemplified as the first step or the second step, but also if the ratio R is changed during low-speed operation, each parameter may start to change at an arbitrary timing.

また、前記実施形態では、肉厚Dがコルゲート部C1とストレート部C2との間で変更されるものとしたが、図4に示すように、肉厚の変更は、コルゲート部C1において行われてもよいし、ストレート部C2において行われてもよい。   In the embodiment, the thickness D is changed between the corrugated portion C1 and the straight portion C2. However, as shown in FIG. 4, the thickness change is performed in the corrugated portion C1. Alternatively, it may be performed in the straight portion C2.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of materials, quantity, and other detailed configurations. Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

1 コルゲートチューブ製造装置
2 押出機
3 成形機
4 識別センサ(マーカ検出手段)
24 ギアポンプ(絞り手段)
31 金型(型)
32 搬送手段
32a 対向面
33 ローラ(移動手段)
34 プーリ(移動手段)
DESCRIPTION OF SYMBOLS 1 Corrugated tube manufacturing apparatus 2 Extruder 3 Molding machine 4 Identification sensor (marker detection means)
24 Gear pump (throttle means)
31 Mold
32 Conveying means 32a Opposing surface 33 Roller (moving means)
34 Pulley (moving means)

Claims (4)

溶融された樹脂材料を吐出する押出機と、前記樹脂材料を軸方向に送りながらプレスして成形する成形機と、前記押出機及び前記成形機を制御する制御手段と、を備えたコルゲートチューブ製造装置であって、
前記成形機は、互いに対向して設けられる一対の環状の搬送手段と、前記一対の搬送手段を回転させて互いの対向面を前記軸方向に移動させる移動手段と、前記搬送手段上に並設された複数の型と、を有して構成され、
前記押出機の出口側には、前記樹脂材料の通過量を変化させることで該樹脂材料の吐出量を調節する絞り部が設けられ、
前記制御手段は、前記移動手段及び前記絞り部を制御して前記型の移動速度及び前記樹脂材料の吐出量を変化させることで、コルゲートチューブの肉厚を薄く成形する薄肉成形運転と、前記肉厚を厚く成形する厚肉成形運転と、を切り替えるものであって、前記薄肉成形運転時には前記型の移動速度を高くして薄肉成形速度とし、前記厚肉成形運転時には前記型の移動速度を低くして厚肉成形速度とし、前記薄肉成形運転と前記厚肉成形運転との移行時には、前記型の移動速度を前記厚肉成形速度よりも低くするとともに、前記樹脂材料の吐出量を前記薄肉成形運転時及び前記厚肉成形運転時よりも少なくする低速運転を行うことを特徴とするコルゲートチューブ製造装置。
Corrugated tube manufacturing comprising: an extruder that discharges a molten resin material; a molding machine that presses and molds the resin material while feeding the resin material in an axial direction; and a control unit that controls the extruder and the molding machine. A device,
The molding machine includes a pair of annular conveying means provided opposite to each other, a moving means for rotating the pair of conveying means to move the opposing surfaces in the axial direction, and a parallel arrangement on the conveying means. A plurality of molds configured, and
On the outlet side of the extruder, there is provided a throttle portion that adjusts the discharge amount of the resin material by changing the passage amount of the resin material,
The control means controls the moving means and the throttle part to change the moving speed of the mold and the discharge amount of the resin material, thereby reducing the thickness of the corrugated tube and reducing the thickness of the corrugated tube. Switching between a thick-wall molding operation for forming a thick thickness, and during the thin-wall molding operation, the mold moving speed is increased to a thin-wall molding speed, and during the thick-wall molding operation, the mold moving speed is decreased. Then, when moving between the thin wall molding operation and the thick wall molding operation, the moving speed of the mold is made lower than the thick wall molding speed, and the discharge amount of the resin material is set to the thin wall molding speed. A corrugated tube manufacturing apparatus that performs low-speed operation that is less than during operation and during the thick-wall molding operation.
前記制御手段は、前記薄肉成形運転と前記厚肉成形運転との移行時において、前記型の移動速度と前記樹脂材料の吐出量との比率が前記薄肉成形運転時と等しい第一移行運転と、前記比率が変化するとともに前記低速運転を含む第二移行運転と、前記比率が前記厚肉成形運転時と等しい第三移行運転と、を切り替えることを特徴とする請求項1に記載のコルゲートチューブ製造装置。   The control means, at the time of transition between the thin-wall molding operation and the thick-wall molding operation, a first transition operation in which the ratio between the moving speed of the mold and the discharge amount of the resin material is equal to the thin-wall molding operation, The corrugated tube manufacturing according to claim 1, wherein the second transition operation including the low speed operation and the third transition operation in which the ratio is equal to that in the thick molding operation are switched while the ratio is changed. apparatus. 前記複数の型のうち少なくとも一つの型には、肉厚変化の開始位置を示すマーカが設けられ、
前記マーカを検出するマーカ検出手段を備えることを特徴とする請求項1又は2に記載のコルゲートチューブ製造装置。
At least one of the plurality of molds is provided with a marker indicating a start position of thickness change,
The corrugated tube manufacturing apparatus according to claim 1, further comprising marker detection means for detecting the marker.
溶融された樹脂材料を吐出し、前記樹脂材料を軸方向に送りながらプレスして成形するコルゲートチューブ製造方法であって、
互いに対向して設けられる一対の環状の搬送手段を互いの対向面が前記軸方向に移動するように回転させることで、該搬送手段上に並設された複数の型によってプレスを行い、
前記型を高い速度で移動させてコルゲートチューブの肉厚を薄く成形する薄肉成形工程と、
前記型を低い速度で移動させて前記肉厚を厚く成形する厚肉成形工程と、
前記薄肉成形工程と前記厚肉成形工程との間において、前記型の移動速度を厚肉成形工程よりも低くするとともに前記樹脂材料の吐出量を前記薄肉成形工程及び前記厚肉成形工程よりも低くする低速工程と、を備えることを特徴とするコルゲートチューブ製造方法。
A corrugated tube manufacturing method in which molten resin material is discharged, and the resin material is pressed while being fed in the axial direction.
By rotating a pair of annular conveying means provided opposite to each other so that their opposing surfaces move in the axial direction, pressing is performed by a plurality of molds arranged in parallel on the conveying means,
A thin-wall molding process in which the mold is moved at a high speed to form a thin corrugated tube;
A thick-wall molding step in which the mold is moved at a low speed to thicken the wall thickness;
Between the thin-wall molding step and the thick-wall molding step, the movement speed of the mold is made lower than that in the thick-wall molding step, and the discharge amount of the resin material is lower than those in the thin-wall molding step and the thick-wall molding step. A corrugated tube manufacturing method comprising: a low-speed process.
JP2013099240A 2013-05-09 2013-05-09 Corrugate tube manufacturing apparatus and method Pending JP2014218028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099240A JP2014218028A (en) 2013-05-09 2013-05-09 Corrugate tube manufacturing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099240A JP2014218028A (en) 2013-05-09 2013-05-09 Corrugate tube manufacturing apparatus and method

Publications (1)

Publication Number Publication Date
JP2014218028A true JP2014218028A (en) 2014-11-20

Family

ID=51936966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099240A Pending JP2014218028A (en) 2013-05-09 2013-05-09 Corrugate tube manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP2014218028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091166A1 (en) * 2016-11-16 2018-05-24 Leoni Kabel Gmbh Method and device for producing an extrudate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091166A1 (en) * 2016-11-16 2018-05-24 Leoni Kabel Gmbh Method and device for producing an extrudate
CN110087853A (en) * 2016-11-16 2019-08-02 莱尼电缆有限公司 Method and apparatus for manufacturing strand product
US11289242B2 (en) 2016-11-16 2022-03-29 Leoni Kabel Gmbh Method and apparatus for producing an extrudate

Similar Documents

Publication Publication Date Title
TW201313353A (en) Press forming method
KR101751160B1 (en) Press molding method for cup-shaped member
JPH1119745A (en) Manufacture of ring and ring manufacturing device
JP2014218028A (en) Corrugate tube manufacturing apparatus and method
CN103727107B (en) Be applicable to the foil gauge paster apparatus of weighing and force-measuring transducer
TWI597106B (en) Double-acting variable cross-section extrusion device and extrusion method
JP2013216069A (en) Die unit
JP4731210B2 (en) Rubber strip lamination molding method
WO2013157343A1 (en) Method for molding cylindrical rubber member
JP2005238799A (en) Device and method for molding rubber strip material for tire production and method for producing tire
US6324887B1 (en) Thread rolling dies and process for forming same
CN111216297B (en) Press molding device, press molding method, and press molding program
JP6391509B2 (en) Sheave and its manufacturing method
JP3546682B2 (en) Gear manufacturing method and gear
JP4798139B2 (en) Forging apparatus and forging method
CN106001360B (en) The progressive upsetting shaping dies of thin-wall part and manufacturing process
JP7488597B2 (en) Food dough forming device and food dough forming method
JP2009195916A (en) Inner gear member forming method and forming apparatus
JP2009160627A (en) Plastic working method and its apparatus
WO2018090989A1 (en) Pressure forming device and pressure forming method
JPH0242331B2 (en)
JP2007216258A (en) Method for manufacturing special shaped tube
JP2002283440A (en) Method and apparatus for manufacturing bar-like material made of synthetic resin
JP5773809B2 (en) Rubber roller extrusion molding machine
CN211360504U (en) Forging and pressing device for ring rolling process of aluminum alloy thin-wall conical ring piece