JP2014216043A - Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk - Google Patents

Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk Download PDF

Info

Publication number
JP2014216043A
JP2014216043A JP2013095285A JP2013095285A JP2014216043A JP 2014216043 A JP2014216043 A JP 2014216043A JP 2013095285 A JP2013095285 A JP 2013095285A JP 2013095285 A JP2013095285 A JP 2013095285A JP 2014216043 A JP2014216043 A JP 2014216043A
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic disk
glass
polishing
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013095285A
Other languages
Japanese (ja)
Inventor
大西 勝
Masaru Onishi
勝 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013095285A priority Critical patent/JP2014216043A/en
Publication of JP2014216043A publication Critical patent/JP2014216043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a magnetic disk glass substrate composed of a crystallized glass having small strength variations between substrates.SOLUTION: The manufacturing method of a magnetic disk glass substrate includes: end face shape processing of performing a step of fabricating a disk-shaped amorphous glass substrate having a hole in the centre, and shape processing including chamfering an end face of the fabricated amorphous glass substrate; and end face polishing processing that is performed after the end face shape processing and polishes the end face. Crystallization processing of crystallizing the amorphous glass substrate is performed at least after the end face shape processing.

Description

本発明は、ハードディスクドライブ(以下、「HDD」と略称する。)等の磁気記録装置に搭載される磁気ディスクに用いられる磁気ディスク用ガラス基板の製造方法に関する。   The present invention relates to a method of manufacturing a glass substrate for a magnetic disk used for a magnetic disk mounted on a magnetic recording apparatus such as a hard disk drive (hereinafter abbreviated as “HDD”).

HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化が必要になってきている。 One of information recording media mounted on a magnetic recording device such as an HDD is a magnetic disk. A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing. Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, demands for further increase in recording capacity of HDDs are increasing, and in order to realize this, it is necessary to further improve the quality of glass substrates for magnetic disks.

このようなガラス基板の材質としては、たとえば、アルミノシリケートガラス、ソーダライムガラス、アルミノポロシリケートガラス、または、結晶化ガラス等のガラスセラミックなどが挙げられる。
特許文献1には、熔融ガラスから、円盤状のガラス素材を成形することを含む情報記録媒体用ガラス基板の製造方法が開示されており、上記ガラス素材は、さらに熱処理して結晶化ガラスとすることができることが記載されている。
Examples of the material of such a glass substrate include aluminosilicate glass, soda lime glass, aluminoporosilicate glass, or glass ceramic such as crystallized glass.
Patent Document 1 discloses a method for producing a glass substrate for an information recording medium including forming a disk-shaped glass material from molten glass, and the glass material is further heat-treated to obtain crystallized glass. It is described that it can be.

特開2008−169061号公報JP 2008-169061 A

たとえば、熔融ガラスをプレス成形することにより円盤状のガラス素材を得て、この円盤状のガラス素材の中心に孔をあけ、次いで内外周端面加工、主表面の研磨加工等を行うことで磁気ディスク用ガラス基板は製造されるが、上記特許文献1には、ガラス素材の結晶化は、ディスクを得るための孔あけの前または後のいずれかで行うことができることが記載されている。   For example, a disk-shaped glass material is obtained by press-molding molten glass, a hole is made in the center of the disk-shaped glass material, and then inner and outer peripheral end faces, main surface polishing, etc. are performed to obtain a magnetic disk Although the glass substrate for manufacture is manufactured, the said patent document 1 describes that crystallization of a glass raw material can be performed either before or after perforating for obtaining a disk.

ところが、本発明者の検討によると、上記特許文献1に記載されているように、孔あけの前または後のいずれかでガラス素材の結晶化を行い、次いで面取り加工などの内外周の端面加工、主表面の研磨加工等を行って、磁気ディスク用ガラス基板を製造したところ、得られた磁気ディスク用ガラス基板の基板間の強度のばらつきが大きいという問題が生じた。   However, according to the study of the present inventor, as described in Patent Document 1, the glass material is crystallized either before or after drilling, and then the inner and outer peripheral end faces such as chamfering are processed. When the glass substrate for a magnetic disk was manufactured by polishing the main surface, etc., there was a problem that the variation in strength between the obtained glass substrates for the magnetic disk was large.

本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、基板の強度のばらつきを小さくできる結晶化ガラスからなる磁気ディスク用ガラス基板の製造方法を提供することである。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk made of crystallized glass, which can reduce variation in strength of the substrate. is there.

本発明者は、上記特許文献1に開示の製造方法に従って製造されたガラス基板の強度のばらつきが大きい理由を分析した。その結果、ガラス素材を結晶化した後に、端面の面取り加工などの機械加工を行った場合、面取り加工時に形成された潜在(内部)クラックが残存し、最終的にクラックを十分に除去しきれない可能性があることを見出した。 The inventor has analyzed the reason why the variation in strength of the glass substrate manufactured according to the manufacturing method disclosed in Patent Document 1 is large. As a result, if the glass material is crystallized and then machined such as chamfering of the end face, latent (internal) cracks formed during the chamfering process remain, and finally the cracks cannot be removed sufficiently. I found that there is a possibility.

また、本発明者は、強度ばらつきの小さい結晶化ガラスからなるガラス基板を得るために、結晶化を行うタイミングに着目して、さらに検討を進めた結果、一連のガラス基板製造プロセスの中でガラスの結晶化をどの段階で行うかによって、最終的に得られるガラス基板の強度ばらつきに差異が生じることを見出した。
そこで、本発明者は、得られた知見に基づき、以下の構成による発明によれば上記課題を解決できることを見出し、本発明を完成させるに至った。
In addition, the present inventor has conducted further investigation focusing on the timing of crystallization in order to obtain a glass substrate made of crystallized glass with small strength variation. It has been found that there is a difference in the intensity variation of the finally obtained glass substrate depending on which stage of crystallization is performed.
Therefore, the present inventor has found that the above problems can be solved according to the invention having the following configuration based on the obtained knowledge, and has completed the present invention.

すなわち、本発明は上記課題を達成するために、以下の構成を有する。
(構成1)
中央に円孔を有する円盤状の非晶質のガラス基板の端面を機械加工することで側壁面と主表面および側壁面の間を介在する面取面とを形成する端面形状加工と、前記端面形状加工の後に行われ、側壁面および面取面を鏡面研磨する端面研磨処理とを含み、前記端面研磨処理の後に前記ガラス基板を構成しているガラスを結晶化する結晶化処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
That is, this invention has the following structures in order to achieve the said subject.
(Configuration 1)
End surface shape processing for forming a side wall surface and a chamfering surface interposed between the main surface and the side wall surface by machining an end surface of a disk-shaped amorphous glass substrate having a circular hole in the center; and the end surface An end surface polishing process that is performed after the shape processing and mirrors the side wall surface and the chamfered surface, and a crystallization process for crystallizing the glass constituting the glass substrate is performed after the end surface polishing process. A method for producing a glass substrate for a magnetic disk.

(構成2)
前記結晶化処理を行うガラス基板の側壁面および面取面の少なくとも一方の最大谷深さRvが0.3μm以下である前記端面研磨工程の後に、前記結晶化処理を行うことを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(構成3)
結晶化処理を行う前の主表面と面取面との成す角(A)の角度と、結晶化処理を行った後の主表面と面取面との成す角(B)の角度との対応関係を予め求めておき、上記対応関係に基づいて上記角(B)の角度が所望の値になるように端面形状加工および端面研磨処理を行うことを特徴とする構成1または2に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
The crystallization treatment is performed after the end surface polishing step in which the maximum valley depth Rv of at least one of the side wall surface and the chamfered surface of the glass substrate on which the crystallization treatment is performed is 0.3 μm or less. 2. A method for producing a glass substrate for a magnetic disk according to 1.
(Configuration 3)
Correspondence between angle (A) formed by main surface and chamfered surface before crystallization treatment and angle (B) formed by main surface and chamfered surface after crystallization treatment The magnetic field according to Configuration 1 or 2, wherein a relationship is obtained in advance, and end face shape processing and end face polishing processing are performed based on the correspondence relationship so that the angle (B) has a desired value. A method for producing a glass substrate for a disk.

(構成4)
結晶化処理を行う前の円孔の直径と、結晶化処理を行った後の円孔の直径との対応関係を予め求めておき、上記対応関係に基づいて結晶化後の円孔の直径が所望の値となるように、端面形状加工を行うことを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
The correspondence between the diameter of the circular hole before the crystallization treatment and the diameter of the circular hole after the crystallization treatment is obtained in advance, and the diameter of the circular hole after crystallization is determined based on the correspondence. 4. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 3, wherein the end surface shape processing is performed so as to obtain a desired value.

(構成5)
構成1乃至4のいずれかに記載の製造方法によって得られた磁気ディスク用ガラス基板上に、少なくとも磁性層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 5)
A magnetic disk manufacturing method comprising forming at least a magnetic layer on a glass substrate for a magnetic disk obtained by the manufacturing method according to any one of Structures 1 to 4.

本発明の構成とすることで、基板の強度(例えば抗折強度)の基板間のばらつきが小さい結晶化ガラスからなる磁気ディスク用ガラス基板を製造することが可能である。 By adopting the configuration of the present invention, it is possible to manufacture a glass substrate for a magnetic disk made of crystallized glass with small variations in substrate strength (for example, bending strength) between substrates.

以下、本発明の実施の形態を詳述する。
本発明は、磁気ディスク用結晶化ガラスの製造方法であって、通常、研削工程、端面形状加工、端面研磨処理、主表面研磨工程、化学強化工程、等を経て製造され、少なくとも端面研磨処理の後で、ガラスを結晶化する結晶化処理を行うものである。なお、端面形状加工、端面研磨処理以外の工程は、一例であって、ここで記載した順序に限定されるものではなく、また、工程自体を行わなくてもよい。
これらの工程のうち、端面形状加工および端面研磨処理は、基板の端面(側壁面および面取面)に対して施される工程であり、研削工程および主表面研磨工程は、基板の主表面に対して施される工程である。
ここで、結晶化ガラスとは、ガラスセラミックスとも呼ばれ、ガラスを加熱することでガラス内部に結晶を析出させてなる材料である。つまり、ガラスの中に結晶化した部分と非晶質の部分の両方を有するものである。
なお、本発明において、磁気ディスク用ガラス基板とは、後述する結晶化処理が施されたものを意味する。具体的には、例えば、本発明にかかる磁気ディスク用ガラス基板とは、結晶化処理が施された直後のものであってもよく、また、結晶化処理の後に行われる、主表面研磨加工、化学強化加工等の後加工が施され、磁性膜等が成膜される前の状態のものであってもよい。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is a method for producing a crystallized glass for a magnetic disk, which is usually produced through a grinding step, end face shape processing, end face polishing treatment, main surface polishing step, chemical strengthening step, etc., and at least end face polishing treatment. Later, a crystallization process for crystallizing the glass is performed. In addition, processes other than the end face shape processing and the end face polishing process are examples, and are not limited to the order described here, and the process itself may not be performed.
Among these processes, the end face shape processing and the end face polishing process are processes performed on the end face (side wall face and chamfered face) of the substrate, and the grinding step and the main surface polishing step are performed on the main surface of the substrate. It is a process applied to.
Here, crystallized glass is also called glass ceramics, and is a material formed by precipitating crystals in the glass by heating the glass. That is, the glass has both a crystallized part and an amorphous part.
In the present invention, the magnetic disk glass substrate means one that has been subjected to a crystallization treatment described later. Specifically, for example, the glass substrate for a magnetic disk according to the present invention may be one immediately after the crystallization treatment is performed, or a main surface polishing process performed after the crystallization treatment, It may be in a state before post-processing such as chemical strengthening processing and before the magnetic film or the like is formed.

ここで、磁気ディスク用ガラス基板の製造方法の概略について説明する。
中央に円孔を有する円盤状の非晶質ガラス基板を作製する方法としては、たとえば、熔融ガラスからダイレクトプレスにより円盤状のガラスブランクディスクを成型した後で、円孔を形成する方法がある。具体的には、成型された円盤状のガラスディスクブランクの中心に所定の大きさの円孔を例えばコアドリル等を用いて機械加工によりあけて、中央に円孔を有する円盤状の非晶質ガラス基板を作製する。また、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出して、中央に円孔を有する円盤状の非晶質ガラス基板を作製することもできる。
Here, the outline of the manufacturing method of the glass substrate for magnetic disks is demonstrated.
As a method of producing a disk-shaped amorphous glass substrate having a circular hole in the center, for example, there is a method of forming a circular hole after molding a disk-shaped glass blank disk from molten glass by direct pressing. Specifically, a disk-shaped amorphous glass having a circular hole in the center by opening a circular hole of a predetermined size in the center of a molded disk-shaped glass disk blank by using, for example, a core drill or the like. A substrate is produced. In addition to such a direct press, a disc-shaped amorphous glass substrate having a circular hole in the center can be produced by cutting out to a predetermined size from a plate glass produced by a downdraw method or a float method. .

次に、上記のようにして作製したガラス基板の主表面に対して寸法精度及び形状精度を向上させるための研削工程行う。この研削工程は、通常両面ラッピング装置を用い、ダイヤモンドやアルミナ等の砥粒を用いてガラス基板の主表面の研削を行う。こうしてガラス基板の主表面を研削することにより、所定の板厚、平坦度に加工することができる。なお、用いるガラス基板の板厚、平坦度によっては、前記研削工程は省略してもよい。 Next, a grinding process for improving dimensional accuracy and shape accuracy is performed on the main surface of the glass substrate manufactured as described above. In this grinding process, a main surface of the glass substrate is usually ground using a double-sided lapping machine and using abrasive grains such as diamond and alumina. By grinding the main surface of the glass substrate in this way, it can be processed to a predetermined plate thickness and flatness. The grinding step may be omitted depending on the thickness and flatness of the glass substrate used.

前記研削工程の終了後、端面形状加工を行う。この端面形状加工は、ガラス基板の端面を機械加工することにより、側壁面とガラス基板の主表面および側壁面の間に介在する面取面とを形成するものである。この端面形状加工は、溝形状を有する回転砥石を用いた機械加工により行うことができる。この回転砥石は、ガラス基板の内外周端面に、側壁面(基板主表面と略直交する面)と、面取面(側壁面と表裏の主表面との間にそれぞれ形成される面取りした面)の両方の面を形状転写できる溝形状を有している。つまり、端面形状加工では、回転砥石の溝形状を形状転写することにより、主表面と面取面との成す角、および、面取面と側壁面との成す角が所望の形状になるように加工することができる。 After the grinding step, end face shape processing is performed. In this end face shape processing, the end surface of the glass substrate is machined to form a side wall surface, a main surface of the glass substrate, and a chamfered surface interposed between the side wall surfaces. This end face shape processing can be performed by machining using a rotating grindstone having a groove shape. This rotating grindstone has a side wall surface (a surface substantially orthogonal to the main surface of the substrate) and a chamfered surface (a chamfered surface formed between the side wall surface and the main surface of the front and back surfaces) on the inner and outer peripheral end surfaces of the glass substrate. It has a groove shape capable of transferring the shape of both surfaces. In other words, in the end face shape processing, the groove shape of the rotating grindstone is transferred so that the angle formed by the main surface and the chamfered surface and the angle formed by the chamfered surface and the side wall surface become a desired shape. Can be processed.

以上の端面形状加工の後は、ガラス基板の端面である側壁面および面取面を鏡面化するために端面研磨処理を行う。この端面研磨処理は、たとえば、ブラシ研磨によって行われるが、ブラシ研磨以外に、砥粒の粒度の小さな砥石、または、研磨パッドを用いて端面研磨を行うこともできる。この端面研磨処理によって、基板端面を所定の鏡面状態に仕上げる。このとき、端面研磨処理によって形成される、前記面取面および側壁面の少なくとも一方の最大谷深さ(Rv)は、0.3μm以下、より好ましくは0.2μm以下であることが好ましい。また、前記面取面および側壁面の少なくとも一方の算術平均粗さ(Ra)は、0.02μm以下、より好ましくは0.015μm以下であることが好ましい。また、面取面および側壁面の両方が、上記最大谷深さおよび算術平均粗さ(Ra)の範囲内であることがより好ましい。 After the above end face shape processing, an end face polishing process is performed to mirror the side wall face and the chamfered face, which are the end faces of the glass substrate. This end surface polishing treatment is performed, for example, by brush polishing, but in addition to brush polishing, end surface polishing can also be performed using a grindstone having a small abrasive grain size or a polishing pad. By this end surface polishing treatment, the end surface of the substrate is finished to a predetermined mirror surface state. At this time, the maximum valley depth (Rv) of at least one of the chamfered surface and the side wall surface formed by the end surface polishing treatment is preferably 0.3 μm or less, more preferably 0.2 μm or less. The arithmetic average roughness (Ra) of at least one of the chamfered surface and the side wall surface is preferably 0.02 μm or less, more preferably 0.015 μm or less. Moreover, it is more preferable that both the chamfered surface and the side wall surface are within the range of the maximum valley depth and the arithmetic average roughness (Ra).

ところで、本発明においては、非晶質のガラスを結晶化して結晶化ガラスとしたものを磁気ディスク用ガラス基板として用いるため、非晶質のガラスを結晶化する結晶化処理を行う。 By the way, in the present invention, since a crystallized glass obtained by crystallizing amorphous glass is used as a glass substrate for a magnetic disk, a crystallization process for crystallizing amorphous glass is performed.

本発明の磁気ディスク用ガラス基板の製造方法は、端面研磨処理後に非晶質ガラス基板を構成しているガラスを結晶化する結晶化処理を行う構成である。 The manufacturing method of the glass substrate for magnetic disks of this invention is the structure which performs the crystallization process which crystallizes the glass which comprises the amorphous glass substrate after an end surface grinding | polishing process.

本発明者の検討によると、従来技術(上記特許文献1)に記載されているように、熔融ガラスからダイレクトプレスにより成型された円盤状のガラスブランクの中心に所定の大きさの円孔をあける工程の前または後のいずれかでガラス素材の結晶化を行い、次いで面取り加工などの内外周の端面形状加工、主表面の研磨加工等を経て得られたガラス基板の中には、上記端面形状加工の条件によっては、強度(例えば抗折強度)のばらつきが大きいガラス基板があることが判明した。 According to the study of the present inventor, as described in the prior art (Patent Document 1), a circular hole having a predetermined size is formed in the center of a disk-shaped glass blank formed by direct press from molten glass. In the glass substrate obtained by crystallization of the glass material either before or after the process, and then through inner and outer end face shape processing such as chamfering, main surface polishing, etc. Depending on the processing conditions, it has been found that there is a glass substrate with a large variation in strength (for example, bending strength).

そこで、本発明者は、強度ばらつきが大きい点について分析した結果、ガラス素材を結晶化した後に、端面の面取り加工などの機械加工を行った場合、加工条件によっては、面取り加工時に形成された潜在(内部)クラックが残存し、最終的にクラックを十分に除去しきれず、それが原因で強度ばらつきが大きくなる可能性があることを見出した。 Therefore, as a result of analyzing the point where the strength variation is large, the present inventor has found that the latent material formed during the chamfering process depends on the processing conditions when the glass material is crystallized and then machined such as chamfering of the end face. It was found that (internal) cracks remained, and finally the cracks could not be sufficiently removed, and that the strength variation might increase due to the cracks.

そして、本発明者は、かかる知見をもとに、結晶化処理を行う前に、端面に生じるクラックを予め除去することにより、強度のばらつきを低減できることを見出した。 And based on this knowledge, this inventor discovered that the dispersion | variation in intensity | strength could be reduced by removing the crack which arises in an end surface before performing a crystallization process.

上記従来技術のように、前記端面形状加工の前に結晶化処理を行った場合、ガラスを結晶化した後に、端面の面取り加工などの機械加工を行うことになるので、結晶化の影響で面取り加工時に潜在(内部)クラックが深く入り、端面研磨加工を行った後でも、面取り加工時に端面に形成されたクラックが十分に除去しきれずに内部に残存するため、それが原因で強度ばらつきの低下を生じると考えられる。 When the crystallization treatment is performed before the end face shape processing as in the above prior art, the chamfering process is performed after the glass is crystallized, so that the chamfering process such as the chamfering of the end face is performed. The latent (internal) cracks deeply enter during processing, and even after polishing the end face, cracks formed on the end face during chamfering processing cannot be fully removed and remain inside, resulting in reduced strength variation. It is thought to produce.

これに対し、本発明では、前記非晶質のガラス基板に対して端面研磨処理を行い、その後で結晶化処理を行っており、機械加工である端面形状加工を行った後にガラスの結晶化を行うことになるので、端面形状加工時は結晶化の影響を受けることが無い。そして、端面形状加工時に端面に形成されたクラックは、その後の非晶質のガラス基板に対する端面研磨処理により十分に除去することが可能であり、最終的に内部に残存するクラックの深さを従来技術と比べて低減することができる。そのため、強度のばらつきを抑えることが可能となる。 In contrast, in the present invention, the amorphous glass substrate is subjected to an end surface polishing treatment, and then a crystallization treatment is performed. After the end surface shape processing, which is a machining process, is performed, the glass is crystallized. Therefore, it is not affected by crystallization during the end face shape processing. And the crack formed in the end face at the time of end face shape processing can be sufficiently removed by the end face polishing treatment for the subsequent amorphous glass substrate, and finally the depth of the crack remaining inside is conventionally reduced. It can be reduced compared to technology. For this reason, it is possible to suppress variations in strength.

また、本発明は、端面研磨処理後に結晶化を行うことにより、ガラス基板の端面の表面粗さを従来技術と比べて向上させやすい。これについて以下に説明する。ガラスの結晶化を行うことで、ガラスは、結晶化された部分と結晶化されていない部分すなわち非晶質の部分との両方の部分を有することになる。これにより、結晶化された部分は非晶質の部分と比べて密度が高くなる。そして、この結晶化ガラスを研磨すると、結晶化された部分に比べて非晶質の部分は加工されやすくなる。つまり、結晶化ガラスを研磨すると、結晶化部分は研磨され難い一方で、非晶質部分は研磨されやすいため、研磨後の表面粗さを低減することは困難となる。
ところが、本発明では、ガラス基板の端面について非晶質ガラスの状態で端面を鏡面研磨し、磁気ディスク用ガラス基板として要求する表面粗さを実現した場合には、結晶化後に研磨を行わなくてもよい。また、非晶質のガラス基板に対して端面研磨処理を行うために、従来の結晶化後に端面研磨処理を行う構成と比べてガラス基板の端面の鏡面化を容易に行うことができる。
なお、本発明において、結晶化処理前に端面研磨を行い、さらに結晶化処理後に端面研磨を行ってよい。ただし、この場合であっても、結晶化処理後の端面研磨における取り代を低減させることができる。
Moreover, this invention is easy to improve the surface roughness of the end surface of a glass substrate compared with a prior art by performing crystallization after an end surface grinding | polishing process. This will be described below. By performing the crystallization of the glass, the glass has both a crystallized part and a non-crystallized or amorphous part. As a result, the crystallized portion has a higher density than the amorphous portion. When this crystallized glass is polished, the amorphous part is more easily processed than the crystallized part. That is, when crystallized glass is polished, the crystallized portion is difficult to be polished, while the amorphous portion is easily polished. Therefore, it is difficult to reduce the surface roughness after polishing.
However, in the present invention, when the end surface of the glass substrate is mirror-polished in an amorphous glass state to achieve the required surface roughness as a glass substrate for a magnetic disk, polishing is not performed after crystallization. Also good. In addition, since the end surface polishing process is performed on the amorphous glass substrate, the end surface of the glass substrate can be easily mirror-finished as compared with the conventional configuration in which the end surface polishing process is performed after crystallization.
In the present invention, end face polishing may be performed before the crystallization treatment, and further end face polishing may be performed after the crystallization treatment. However, even in this case, the machining allowance in the end surface polishing after the crystallization treatment can be reduced.

なお、結晶化処理を行うことによりガラス基板の体積は縮小するため、結晶化処理前後で、ガラス基板の形状が異なることになる。また、特に本発明における磁気ディスク用ガラス基板は、板厚に比べて直径が非常に大きい(アスペクト比が高い)ため、結晶化処理による形状変化は、板厚方向と主表面の方向とで異なることになる。したがって、結晶化処理前の端面形状加工、および/または端面研磨処理については、結晶化処理により変化する形状変化の影響を考慮して、加工条件を設定することが好ましい。
具体的には、端面の形状については、結晶化処理を行う前の主表面と面取面との成す角(A)の角度と、結晶化処理を行った後の主表面と面取面との成す角(B)の角度との対応関係を予め求めておき、上記対応関係に基づいて上記角(B)の角度が所望の値になるように端面形状加工および端面研磨処理を行うことがより好ましい。これにより、結晶化工程を経た後のガラス基板の端面形状を磁気ディスク用ガラス基板として要求される端面形状とすることができる。
これについて、詳細に説明する。面取面および側壁面の形状が決定される製造プロセスとしては、端面形状加工および端面研磨処理が特に影響する。そして、これらの加工条件を変更して、主表面と面取面との成す角の角度を予め異ならせた複数のガラス基板を作成し、これらのガラス基板を結晶化処理した後、結晶化前と同様にして主表面と面取面との成す角の角度を求めて、結晶化処理前後における前記角の対応関係を求めておく。そして、得られた対応関係に基づいて、結晶化処理後に得られる主表面と面取面との成す角の角度が、磁気ディスク用ガラス基板として要求される角度となる加工条件を選択して、上記端面形状加工および端面研磨処理を行えばよい。また、上記の説明では、主表面と面取面との成す角の角度についての対応関係を求めることについて説明したが、上記に限定されるものではなく、例えば、面取面の長さ、側壁面の長さ、および/または、面取面と側壁面との成す角の角度についてもそれぞれ結晶化処理前後で対応関係を求めておき、結晶化処理後の端面形状(面取面および側壁面の形状)が磁気ディスク用ガラス基板として要求される形状となるように、結晶化処理前に行われる端面形状加工および端面研磨処理を行えばよい。
また、円孔の大きさについても上記と同様であり、例えば、結晶化処理を行う前の円孔の直径と、結晶化処理を行った後の円孔の直径との対応関係を予め求めておき、上記対応関係に基づいて結晶化後の円孔の直径が所望の値となるように、端面形状加工および端面研磨処理を行うことがより好ましい。これにより、結晶化工程後の円孔の直径を、磁気ディスク用ガラス基板として要求される直径とすることができる。
Since the volume of the glass substrate is reduced by performing the crystallization treatment, the shape of the glass substrate is different before and after the crystallization treatment. In particular, since the glass substrate for magnetic disk in the present invention has a very large diameter (high aspect ratio) compared to the plate thickness, the shape change due to the crystallization treatment differs between the plate thickness direction and the main surface direction. It will be. Therefore, it is preferable to set the processing conditions for the end face shape processing and / or the end face polishing processing before the crystallization processing in consideration of the influence of the shape change that changes due to the crystallization processing.
Specifically, regarding the shape of the end face, the angle (A) formed by the main surface and the chamfered surface before the crystallization treatment, and the main surface and the chamfered surface after the crystallization treatment are performed. Is obtained in advance, and the end face shape processing and the end face polishing treatment are performed so that the angle of the angle (B) becomes a desired value based on the correspondence relation. More preferred. Thereby, the end surface shape of the glass substrate after passing through a crystallization process can be made into the end surface shape requested | required as a glass substrate for magnetic discs.
This will be described in detail. As a manufacturing process in which the shape of the chamfered surface and the side wall surface is determined, the end surface shape processing and the end surface polishing treatment are particularly affected. Then, by changing these processing conditions to create a plurality of glass substrates in which the angle between the main surface and the chamfered surface is made different in advance, after crystallizing these glass substrates, before crystallization In the same manner as described above, the angle between the main surface and the chamfered surface is obtained, and the correspondence relationship between the angles before and after the crystallization treatment is obtained. And, based on the obtained correspondence, select the processing condition that the angle formed by the main surface and the chamfered surface obtained after the crystallization process is an angle required for the glass substrate for magnetic disk, What is necessary is just to perform the said end surface shape process and an end surface grinding | polishing process. Further, in the above description, it has been described that the correspondence relationship between the angles formed by the main surface and the chamfered surface is obtained. However, the present invention is not limited to the above. The correspondence between the length of the wall surface and / or the angle between the chamfered surface and the side wall surface is obtained before and after the crystallization process, and the end face shape after the crystallization process (the chamfered surface and the side wall surface). The end face shape processing and the end face polishing process performed before the crystallization process may be performed so that the shape of the glass substrate for the magnetic disk becomes a shape required for the magnetic disk.
Further, the size of the circular hole is the same as described above. For example, the correspondence between the diameter of the circular hole before the crystallization treatment and the diameter of the circular hole after the crystallization treatment is obtained in advance. In addition, it is more preferable to perform the end face shape processing and the end face polishing treatment so that the diameter of the circular hole after crystallization becomes a desired value based on the above correspondence. Thereby, the diameter of the circular hole after a crystallization process can be made into the diameter requested | required as a glass substrate for magnetic discs.

本発明においては、前記結晶化処理後のガラス基板の抗折強度は、耐衝撃性を向上させる観点から7kgf以上であることが好ましく、特に8kgf以上であることが好ましい。 In the present invention, the bending strength of the glass substrate after the crystallization treatment is preferably 7 kgf or more, and particularly preferably 8 kgf or more from the viewpoint of improving impact resistance.

次に、結晶化処理について説明する。結晶化処理は、例えばガラスを熱処理することでガラス内部に結晶核を生成させる。なお、結晶核を成長させて大きな結晶粒を得てもよい。結晶化処理における熱処理の条件は、得られる結晶化ガラスの結晶化度によって適宜設定すればよい。
上記結晶化処理によって生成する結晶粒の大きさとしては、10nm以下が好ましく、5nm以下がより好ましい。結晶粒を上記範囲とすることにより、後述する最終製品である磁気ディスク用ガラス基板に求められる表面粗さを形成しやすいため好ましい。
また、本発明にかかる磁気ディスク用ガラス基板のヤング率としては、100GPa以上、より好ましくは120GPa以上であることが好ましい。ヤング率を100GPa以上とするには、結晶化度を上げることが考えられるが、このような場合には、エッチングよる表面あれの度合いが、結晶化度が低い結晶化ガラスと比べて大きくなる。したがって、上記ヤング率が100GPa以上であり、側壁面および面取面の最大谷深さ(Rv)が0.3μm以下のような磁気ディスク用ガラス基板を製造するためには本発明を適用することがより好ましい。
Next, the crystallization process will be described. In the crystallization treatment, for example, crystal nuclei are generated inside the glass by heat-treating the glass. Note that large crystal grains may be obtained by growing crystal nuclei. What is necessary is just to set suitably the conditions of the heat processing in a crystallization process according to the crystallinity degree of the crystallized glass obtained.
The size of the crystal grains generated by the crystallization treatment is preferably 10 nm or less, and more preferably 5 nm or less. By making the crystal grains in the above range, it is preferable because the surface roughness required for a glass substrate for a magnetic disk, which is the final product described later, can be easily formed.
The Young's modulus of the magnetic disk glass substrate according to the present invention is preferably 100 GPa or more, more preferably 120 GPa or more. In order to increase the Young's modulus to 100 GPa or more, it is conceivable to increase the degree of crystallinity. In such a case, however, the degree of surface roughness due to etching becomes larger than that of crystallized glass having a low degree of crystallinity. Therefore, the present invention is applied to manufacture a glass substrate for a magnetic disk having a Young's modulus of 100 GPa or more and a maximum valley depth (Rv) of a side wall surface and a chamfered surface of 0.3 μm or less. Is more preferable.

また、結晶化されたガラスは結晶化前のガラスと比べてヤング率が高いため加工レートが低くなるが、本発明のように、端面研磨を行った後にガラスの結晶化を行うことにより、加工レートの高い非晶質のガラスに対して加工を行えるので、加工に要する時間を短縮化することが可能である。 The crystallized glass has a lower Young's modulus than the glass before crystallization, so the processing rate is low, but as in the present invention, the glass is crystallized after end-face polishing, thereby processing the glass. Since processing can be performed on amorphous glass having a high rate, the time required for processing can be shortened.

上記結晶化処理を経た後、高精度な主表面を得るための主表面鏡面研磨加工を行う。ガラス基板主表面の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、発泡ポリウレタン等の研磨パッドを用いて行うのが好適である。研磨方法は特に限定されるものではないが、例えば、ガラス基板と研磨パッドとを接触させ、研磨砥粒を含む研磨液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の表面を鏡面状に研磨すればよい。 After passing through the crystallization treatment, a main surface mirror polishing process for obtaining a highly accurate main surface is performed. As a mirror polishing method for the main surface of the glass substrate, it is preferable to use a polishing pad such as foamed polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. It is. Although the polishing method is not particularly limited, for example, the glass substrate and the polishing pad are brought into contact with each other, and the polishing pad and the glass substrate are relatively moved while supplying the polishing liquid containing the abrasive grains. The surface of the glass substrate may be polished in a mirror shape.

本発明においては、ガラス基板を構成するガラス(の硝種)は、SiO2を主成分とし、さらにアルミナを含むアルミノシリケートガラスを用いることが好ましい。このようなガラスを用いたガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。また、化学強化によってさらに強度を上げることもできる。 In the present invention, the glass (the glass type) constituting the glass substrate is preferably an aluminosilicate glass containing SiO2 as a main component and further containing alumina. A glass substrate using such glass can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. Further, the strength can be further increased by chemical strengthening.

本発明においては、上記鏡面研磨処理後のガラス基板の主表面は、算術平均表面粗さRaが0.20nm以下、特に0.15nm以下である鏡面とされることが好ましい。更に、最大粗さRmaxが2.0nm以下である鏡面とされることが好ましい。なお、本発明においてRa、Rmaxというときは、日本工業規格(JIS)B0601に準拠して算出される粗さのことである。
また、本発明において表面粗さ(例えば、最大粗さRmax、算術平均粗さRa)は、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を256×256ピクセルの解像度で測定したときに得られる値である。
In the present invention, the main surface of the glass substrate after the mirror polishing is preferably a mirror surface having an arithmetic average surface roughness Ra of 0.20 nm or less, particularly 0.15 nm or less. Furthermore, it is preferable that the mirror surface has a maximum roughness Rmax of 2.0 nm or less. In the present invention, Ra and Rmax are roughnesses calculated in accordance with Japanese Industrial Standard (JIS) B0601.
Further, in the present invention, the surface roughness (for example, the maximum roughness Rmax, the arithmetic average roughness Ra) is measured with a resolution of 256 × 256 pixels in a range of 1 μm × 1 μm using an atomic force microscope (AFM). Is the value obtained.

また、本発明においては、最終的に得られる磁気ディスク用ガラス基板の端面(面取面および側壁面の少なくとも一方)の最大谷深さ(Rz)が0.3μm以下、より好ましくは0.2μm以下であることが好ましい。また、算術平均粗さ(Ra)は、0.02μm以下、より好ましくは0.015μm以下であることが好ましい。なお、端面の表面粗さの測定は、例えば、レーザー顕微鏡を用いて測定すればよい。 In the present invention, the maximum valley depth (Rz) of the end surface (at least one of the chamfered surface and the side wall surface) of the finally obtained magnetic disk glass substrate is 0.3 μm or less, more preferably 0.2 μm. The following is preferable. The arithmetic average roughness (Ra) is preferably 0.02 μm or less, more preferably 0.015 μm or less. In addition, what is necessary is just to measure the surface roughness of an end surface, for example using a laser microscope.

本発明においては、結晶化処理の後であって、主表面の鏡面研磨加工工程の前または後に、化学強化処理を施してもよい。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。 In the present invention, chemical strengthening treatment may be performed after the crystallization treatment and before or after the mirror polishing process of the main surface. As a method of the chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable. The chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate. This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.

また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供するものである。磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。またガラス基板と磁性層との間に、下地層を介挿することにより磁性層の磁性グレインの配向方向や磁性グレインの大きさを制御することができる。例えば、RuやTiを含む六方晶系下地層を用いることにより、例えば磁性層の磁化容易方向を磁気ディスク面の法線に沿って配向させることができる。この場合、垂直磁気記録方式の磁気ディスクが製造される。下地層は磁性層同様にスパッタリング法により形成することができる。 The present invention also provides a method for producing a magnetic disk using the above glass substrate for a magnetic disk. The magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method. Further, by interposing an underlayer between the glass substrate and the magnetic layer, the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled. For example, by using a hexagonal underlayer containing Ru or Ti, for example, the easy magnetization direction of the magnetic layer can be oriented along the normal of the magnetic disk surface. In this case, a perpendicular magnetic recording type magnetic disk is manufactured. The underlayer can be formed by sputtering as with the magnetic layer.

また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。取り分け、極性官能基として水酸基を末端に備えるパーフルオロポリエーテル化合物を主成分とすることが好ましい。潤滑層はディップ法により塗布形成することができる。
本発明によって得られるガラス基板を利用することにより、信頼性の高い磁気ディスクを得ることができる。
さらに、本発明によって得られる結晶化ガラスからなる磁気ディスク用ガラス基板は、エネルギーアシスト磁気記録方式の磁気ディスクに用いられることが好ましい。ガラス中に結晶粒を有することにより、エネルギーアシスト磁気記録方式の磁気ディスクを製造する際に必要な高温環境下でも変形し難いために好適である。
In addition, a protective layer and a lubricating layer may be formed in this order on the magnetic layer. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. For example, the protective layer can be formed by a plasma CVD method. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used. In particular, it is preferable that the main component is a perfluoropolyether compound having a terminal hydroxyl group as a polar functional group. The lubricating layer can be applied and formed by a dip method.
By using the glass substrate obtained by the present invention, a highly reliable magnetic disk can be obtained.
Furthermore, the glass substrate for magnetic disk made of crystallized glass obtained by the present invention is preferably used for an energy-assisted magnetic recording type magnetic disk. By having crystal grains in glass, it is preferable because it is difficult to be deformed even in a high-temperature environment necessary for manufacturing an energy-assisted magnetic recording type magnetic disk.

以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1、比較例1、2、3)
以下の(1)ガラスブランク作製工程、(2)研削工程、(3)下穴工程、(4)端面形状加工、(5)端面研磨処理、(6)主表面研磨工程(第1研磨工程)、(7)化学強化工程、(8)主表面研磨工程(第2研磨工程)を経て磁気ディスク用ガラス基板を製造した。また、これらの工程の他に、後述の結晶化処理を行った。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
(Example 1, Comparative Examples 1, 2, and 3)
The following (1) glass blank preparation process, (2) grinding process, (3) pilot hole process, (4) end face shape processing, (5) end face polishing process, (6) main surface polishing process (first polishing process) (7) A glass substrate for a magnetic disk was manufactured through a chemical strengthening step and (8) a main surface polishing step (second polishing step). In addition to these steps, a crystallization treatment described later was performed.

(1)ガラスブランク作製工程
まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円盤状のアルミノシリゲートガラスからなるガラスディスクブランクを得た。
(1) Glass blank production process First, a glass disk blank made of disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper mold, a lower mold, and a trunk mold. .

(2)研削工程
次いで、このガラス基板に寸法精度及び形状精度の向上させるため研削工程を行った。この研削工程は両面研削装置を用いて行った。
(3)下穴工程
次いで、円筒状の砥石コアドリルを用いてガラスディスクブランクの中央部分に孔をあけて(孔あけ加工)、中央に円孔を有する円盤状の非晶質ガラス基板を作製した。
(4)端面形状加工
次に、円筒状の砥石を用いて、外周端面および内周端面に所定の面取り加工を施した。
(2) Grinding step Next, a grinding step was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy. This grinding process was performed using a double-side grinding apparatus.
(3) Pilot hole process Next, using a cylindrical grindstone core drill, a hole was made in the center part of the glass disk blank (drilling process), and a disk-shaped amorphous glass substrate having a circular hole in the center was produced. .
(4) End face shape processing Next, predetermined chamfering was given to the outer peripheral end face and the inner peripheral end face using a cylindrical grindstone.

(5)端面研磨処理
次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)を研磨した。そして、上記端面研磨を終えたガラス基板の表面を洗浄した。
(5) End face polishing treatment Next, the end face (inner periphery, outer periphery) of the glass substrate was polished by brush polishing while rotating the glass substrate. And the surface of the glass substrate which finished the said end surface grinding | polishing was wash | cleaned.

(6)主表面研磨工程(第1研磨工程)
次に、第1研磨工程を遊星歯車方式の両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャを用い、第1研磨工程を実施した。研磨液としては酸化セリウムを研磨剤として分散したものとした。上記第1研磨工程を終えたガラス基板を、洗浄し、乾燥した。
(6) Main surface polishing step (first polishing step)
Next, the first polishing process was performed using a planetary gear type double-side polishing apparatus. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces. Specifically, a hard polisher was used as the polisher, and the first polishing process was performed. As the polishing liquid, cerium oxide was dispersed as an abrasive. The glass substrate after the first polishing step was washed and dried.

(7)化学強化工程
次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化については公知の方法を用いて行った。
(7) Chemical strengthening step Next, chemical strengthening was performed on the glass substrate after the cleaning. The chemical strengthening was performed using a known method.

(8)主表面研磨工程(第2研磨工程)
次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャの研磨パッドに替えて第2研磨工程を実施した。研磨砥粒としてはコロイダルシリカを用いた。上記第2研磨工程を終えたガラス基板を、洗浄し、乾燥することにより、磁気ディスク用ガラス基板を得た。後述する実施例2にかかる磁気ディスク用ガラス基板の主表面粗さ(Ra)は、0.15nmであった。
(8) Main surface polishing step (second polishing step)
Next, using the same double-side polishing apparatus as that used in the first polishing step, the second polishing step was performed by replacing the polisher with a polishing pad of a soft polisher. Colloidal silica was used as the abrasive grains. The glass substrate for the magnetic disk was obtained by washing and drying the glass substrate after the second polishing step. The main surface roughness (Ra) of the magnetic disk glass substrate according to Example 2 described later was 0.15 nm.

そして、実施例として、前記(5)端面研磨処理と(6)主表面研磨工程との間に結晶化処理を行った磁気ディスク用ガラス基板を作成した。また、比較例としては、ダイレクトプレスにより成型したガラスブランクに対して結晶化処理を行い、その後に、孔あけ、端面形状加工等を行ったものを比較例1、ガラスブランクに孔あけを行って中央に円孔を有する円盤状ガラス基板を作製した後に、結晶化処理を行い、その後に、端面形状加工等を行ったものを比較例2、(4)端面形状加工と(5)端面研磨処理との間に結晶化処理を行ったものを比較例3として、それぞれ磁気ディスク用ガラス基板を作成した。結晶化処理は、ガラス基板に対して、結晶粒の平均結晶粒子径が10nm以下となるように熱処理の条件を設定して行った。ここで、「平均結晶粒径」とはTEM(透過型電子顕微鏡)を用いて得られた画像に現われた結晶を平行な2直線で挟んだ時の最長距離の平均値とした。 Then, as an example, a glass substrate for a magnetic disk was prepared in which a crystallization process was performed between the (5) end surface polishing process and the (6) main surface polishing process. Moreover, as a comparative example, a glass blank molded by direct press is subjected to crystallization treatment, and then subjected to drilling, end face shape processing, etc., to Comparative Example 1 and glass blank. Comparative Example 2 (4) End face shape processing and (5) End face polishing treatment were performed after producing a disk-shaped glass substrate having a circular hole in the center, followed by crystallization treatment, followed by end face shape processing. A glass substrate for a magnetic disk was prepared as Comparative Example 3 in which crystallization treatment was performed in between. The crystallization treatment was performed by setting the heat treatment conditions for the glass substrate so that the average crystal grain size of the crystal grains was 10 nm or less. Here, the “average crystal grain size” is the average value of the longest distance when crystals appearing in an image obtained using a TEM (transmission electron microscope) are sandwiched between two parallel straight lines.

そして、実施例および比較例1、2、3ともに、それぞれ100枚の磁気ディスク用ガラス基板を作成し、抗折強度試験機を用いて抗折強度を求めた。そして、比較例1の磁気ディスク用ガラス基板から測定された抗折強度の最大値と最小値との差を100%としたとき、実施例1および比較例2、3における抗折強度の最大値と最小値の差がそれぞれ何%に相当するか評価した。その結果、実施例は55%であり、比較例2は95%、比較例3は84%であった。
つまり、実施例は、比較例1、2、3と比べて、抗折強度のばらつきが小さいことがわかる。換言すると、端面形状加工によって形成されたクラックを除去した後で、結晶化処理を行うことで抗折強度のばらつきを小さくすることができることがわかる。なお、上記実施例および比較例1、2、3について、(7)化学強化工程を行わずに作成した磁気ディスク用ガラス基板を作成し、抗折強度のばらつきについても調べたが、上記と同様の傾向を示した。ガラス基板に対して化学強化処理を施すことにより、抗折強度のばらつきの大きさは、化学強化処理を施さないガラス基板に比べて小さくすることができるが、結晶化処理前に端面研磨処理を行いガラス基板の端面を鏡面化した実施例は、特にばらつきを小さくすることができた。
次に、実施例と比較例3で、面取面の最大谷深さ(Rv)を比較した。なお、実施例と比較例3とで、(4)端面形状加工、および(5)端面研磨処理における加工条件および取代を同じにしている。その結果、実施例のRvは0.27μmである一方、比較例3のRvは、0.43μmであった。つまり、端面研磨処理後に結晶化処理を行うほうが、端面粗さを低くすることができることがわかる。
In each of Examples and Comparative Examples 1, 2, and 3, 100 magnetic disk glass substrates were prepared, and the bending strength was determined using a bending strength tester. And when the difference between the maximum value and the minimum value of the bending strength measured from the glass substrate for magnetic disk of Comparative Example 1 is 100%, the maximum value of the bending strength in Example 1 and Comparative Examples 2 and 3 It was evaluated how much the difference between each and the minimum value corresponds to. As a result, Example was 55%, Comparative Example 2 was 95%, and Comparative Example 3 was 84%.
That is, it can be seen that the variation in bending strength is smaller in the example than in Comparative Examples 1, 2, and 3. In other words, it is understood that the variation in the bending strength can be reduced by performing the crystallization process after removing the cracks formed by the end face shape processing. In addition, about the said Example and Comparative Examples 1, 2, and 3, the glass substrate for magnetic discs produced without performing a (7) chemical strengthening process was created, and the variation in bending strength was investigated, but it is the same as the above Showed the trend. By applying a chemical strengthening treatment to the glass substrate, the magnitude of the variation in bending strength can be reduced compared to a glass substrate not subjected to the chemical strengthening treatment, but the end surface polishing treatment is performed before the crystallization treatment. In the embodiment in which the end face of the glass substrate was mirror-finished, the variation could be particularly reduced.
Next, in Example and Comparative Example 3, the maximum valley depth (Rv) of the chamfered surface was compared. In the example and the comparative example 3, the processing conditions and machining allowances in (4) end face shape processing and (5) end face polishing processing are the same. As a result, the Rv of Example was 0.27 μm, while the Rv of Comparative Example 3 was 0.43 μm. That is, it can be seen that the end surface roughness can be lowered by performing the crystallization process after the end surface polishing process.

(磁気ディスクの製造)
上記実施例で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
(Manufacture of magnetic disk)
The following film forming steps were performed on the magnetic disk glass substrate obtained in the above example to obtain a magnetic disk for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.

Claims (5)

中央に円孔を有する円盤状の非晶質のガラス基板の端面を機械加工することで側壁面と主表面および側壁面の間を介在する面取面とを形成する端面形状加工と、
前記端面形状加工の後に行われ、側壁面および面取面を鏡面研磨する端面研磨処理とを含み、
前記端面研磨処理の後に前記ガラス基板を構成しているガラスを結晶化する結晶化処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
End face shape processing that forms a side wall surface and a chamfered surface interposed between the main surface and the side wall surface by machining an end surface of a disk-shaped amorphous glass substrate having a circular hole in the center;
It is performed after the end surface shape processing, and includes an end surface polishing treatment for mirror polishing the side wall surface and the chamfered surface,
A method for producing a glass substrate for a magnetic disk, comprising performing a crystallization process for crystallizing the glass constituting the glass substrate after the end face polishing process.
前記結晶化処理前のガラス基板の側壁面および面取面の少なくとも一方の最大谷深さRvが0.3μm以下であることを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。   2. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the maximum valley depth Rv of at least one of the side wall surface and the chamfered surface of the glass substrate before crystallization treatment is 0.3 [mu] m or less. . 結晶化処理を行う前の主表面と面取面との成す角(A)の角度と、結晶化処理を行った後の主表面と面取面との成す角(B)の角度との対応関係を予め求めておき、上記対応関係に基づいて上記角(B)の角度が所望の値になるように端面形状加工および端面研磨処理を行うことを特徴とする請求項1または2に記載の磁気ディスク用ガラス基板の製造方法。   Correspondence between angle (A) formed by main surface and chamfered surface before crystallization treatment and angle (B) formed by main surface and chamfered surface after crystallization treatment The end surface shape processing and the end surface polishing processing are performed so that the relationship is obtained in advance and the angle (B) becomes a desired value based on the correspondence relationship. Manufacturing method of glass substrate for magnetic disk. 結晶化処理を行う前の円孔の直径と、結晶化処理を行った後の円孔の直径との対応関係を予め求めておき、上記対応関係に基づいて結晶化後の円孔の直径が所望の値となるように、端面形状加工を行うことを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   The correspondence between the diameter of the circular hole before the crystallization treatment and the diameter of the circular hole after the crystallization treatment is obtained in advance, and the diameter of the circular hole after crystallization is determined based on the correspondence. 4. The method for manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the end surface shape processing is performed so as to obtain a desired value. 請求項1乃至4のいずれかに記載の製造方法によって得られた磁気ディスク用ガラス基板上に、少なくとも磁性層を形成することを特徴とする磁気ディスクの製造方法。

5. A method for manufacturing a magnetic disk, comprising forming at least a magnetic layer on a glass substrate for a magnetic disk obtained by the manufacturing method according to claim 1.

JP2013095285A 2013-04-30 2013-04-30 Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk Pending JP2014216043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095285A JP2014216043A (en) 2013-04-30 2013-04-30 Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095285A JP2014216043A (en) 2013-04-30 2013-04-30 Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk

Publications (1)

Publication Number Publication Date
JP2014216043A true JP2014216043A (en) 2014-11-17

Family

ID=51941663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095285A Pending JP2014216043A (en) 2013-04-30 2013-04-30 Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk

Country Status (1)

Country Link
JP (1) JP2014216043A (en)

Similar Documents

Publication Publication Date Title
US8728638B2 (en) Magnetic disk substrate, method for manufacturing the same, and magnetic disk
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6078942B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate
JP6089039B2 (en) Glass substrate for magnetic disk, magnetic disk
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP6141636B2 (en) Substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
WO2010041537A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2010041536A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
JP2014188668A (en) Method of manufacturing glass substrate
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP6388233B2 (en) Method for manufacturing glass substrate for glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2010080015A (en) Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2014216043A (en) Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk
JP5306758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2014216044A (en) Manufacturing method of magnetic disk glass substrate, and manufacturing method of magnetic disk
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
JP2013012282A (en) Method for manufacturing glass substrate for hdd
JP5704777B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2008262675A (en) Glass substrate for magnetic disk
WO2014156798A1 (en) Method of manufacturing glass substrate for information recording medium
WO2013146131A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium