JP2014215211A - Flow rate measurement device - Google Patents

Flow rate measurement device Download PDF

Info

Publication number
JP2014215211A
JP2014215211A JP2013093797A JP2013093797A JP2014215211A JP 2014215211 A JP2014215211 A JP 2014215211A JP 2013093797 A JP2013093797 A JP 2013093797A JP 2013093797 A JP2013093797 A JP 2013093797A JP 2014215211 A JP2014215211 A JP 2014215211A
Authority
JP
Japan
Prior art keywords
flow rate
measurement
flow
unit
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093797A
Other languages
Japanese (ja)
Other versions
JP6185746B2 (en
Inventor
裕介 北野
Yusuke Kitano
裕介 北野
後藤 尋一
Hirokazu Goto
尋一 後藤
岩本 龍志
Ryuji Iwamoto
龍志 岩本
光男 横畑
Mitsuo Yokohata
光男 横畑
浅田 昭治
Shoji Asada
昭治 浅田
雄大 増田
Takehiro Masuda
雄大 増田
藤井 泰宏
Yasuhiro Fujii
泰宏 藤井
繁憲 岡村
Shigenori Okamura
繁憲 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Osaka Gas Co Ltd
Original Assignee
Panasonic Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Osaka Gas Co Ltd filed Critical Panasonic Corp
Priority to JP2013093797A priority Critical patent/JP6185746B2/en
Publication of JP2014215211A publication Critical patent/JP2014215211A/en
Application granted granted Critical
Publication of JP6185746B2 publication Critical patent/JP6185746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases

Landscapes

  • Measuring Volume Flow (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measurement device capable of acquiring the total flow rate of a fluid passing through even when there is a measurement flow passage where the flow rate of the fluid cannot be measured correctly.SOLUTION: A gas measurement device 1 includes: a plurality of measurement flow passages 22a-22d provided in parallel between a flow inlet 7 where a fluid flows in and a flow outlet 8 where the fluid flows out; individual flow rate measurement units 31a-31d provided at the measurement flow passages 22a-22d respectively and acquiring the flow rate of the fluid passing through the measurement flow passages 22a-22d; individual measurement abnormality detection units 32a-32d for detecting abnormality of the measurement flow passages 22a-22d; a flow rate information unit 33 for calculating the total flow rate by acquiring the flow rate acquired in the individual flow rate measurement units 31a-31d and abnormality information; and a flow rate ratio storage unit 34 for storing flow rate ratio data showing a flow rate ratio between the respective measurement flow passages.

Description

本発明は、ガスなどの流体の流量を計測する流量計に関し、特に、複数の計測流路を含む流量計測装置に関するものである。   The present invention relates to a flow meter that measures the flow rate of a fluid such as a gas, and more particularly to a flow rate measuring device that includes a plurality of measurement channels.

ガスの使用量を計測するガスメータに用いる流量計として、超音波が流体中を伝搬する時間(伝搬時間)に基づいて流体の流速を検出し、検出した流速に流路の断面積を乗じて流量を測定する超音波式の流量計が周知である。   As a flow meter used in a gas meter that measures the amount of gas used, the flow rate of the fluid is detected based on the time (propagation time) that the ultrasonic wave propagates through the fluid, and the detected flow rate is multiplied by the cross-sectional area of the flow path. Ultrasonic flowmeters that measure are well known.

従来、この種の流量計測装置は、病院や工場など多量のガスを消費する施設では図6に示すように、送受波器駆動部101と、制御回路部102と、複数の計測流路103(103a〜103c)と、送受波器104(104a、104b)と、保安センサ部105と、メモリ部106と、遮断弁駆動部107と、遮断弁108と、表示部109とから構成されていた(例えば、特許文献1参照)。   Conventionally, this type of flow rate measuring apparatus is used in facilities that consume a large amount of gas, such as hospitals and factories, as shown in FIG. 6, such as a transducer drive unit 101, a control circuit unit 102, and a plurality of measurement channels 103 ( 103a to 103c), the transducer 104 (104a, 104b), the safety sensor unit 105, the memory unit 106, the cutoff valve driving unit 107, the cutoff valve 108, and the display unit 109 ( For example, see Patent Document 1).

そして、複数の計測流路103ごとに計測手段に設けられた送受波器104を用いて各計測流路103それぞれの流量が計測され、制御回路部102は、各計測流路103により測定された流量を合算することにより、流入路から流出路までの総流量を求めている。   Then, the flow rate of each measurement flow path 103 is measured for each of the plurality of measurement flow paths 103 using the transducer 104 provided in the measurement means, and the control circuit unit 102 is measured by each measurement flow path 103. The total flow from the inflow path to the outflow path is obtained by adding the flow rates.

また、複数の計測流路103における異常発生を検出した際は、異常を検出した計測流路における流量の代わりに異常が検出されていない正常な計測流路における流量を等倍した流量を用いて、異常が発生した計測流路を流れる流量を算出している。   In addition, when the occurrence of an abnormality in a plurality of measurement channels 103 is detected, a flow rate obtained by multiplying the flow rate in a normal measurement channel in which no abnormality is detected is used instead of the flow rate in the measurement channel in which the abnormality is detected. The flow rate flowing through the measurement channel in which an abnormality has occurred is calculated.

特開2004−20395号公報JP 2004-20395 A

しかしながら、前記従来の構成は、複数の計測流路に均一に流量が流れることを前提としているものの、実際は前記複数の計測流路には均一に流量が流れない為、異常を検出した計測流路における流量の代わりに異常が検出されていない正常な計測流路における流量を等倍した流量を用いても正確な流量を算出することはできない。即ち、何れかの計測流路で送受波器の故障、測定流路の変形又は送受波器を接続する配線の断線などの異常が発生すると、正確な流量を計測することができないという課題がある。   However, although the conventional configuration is based on the premise that the flow rate uniformly flows in the plurality of measurement channels, the flow rate does not flow uniformly in the plurality of measurement channels. An accurate flow rate cannot be calculated by using a flow rate that is equal to the flow rate in a normal measurement channel in which no abnormality is detected in place of the flow rate in FIG. That is, there is a problem that an accurate flow rate cannot be measured if an abnormality such as a failure of a transducer, a deformation of the measurement channel, or a disconnection of a wiring connecting the transducer occurs in any of the measurement channels. .

本発明は、前記従来の課題を解決するもので、複数の計測流路に対し、均一に流量が流れない場合において、前記複数の計測流路の何れかにおいて異常が発生した際でも正確な流量を計測することができる流量計測装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problem, and when a flow rate does not flow uniformly with respect to a plurality of measurement channels, an accurate flow rate even when an abnormality occurs in any of the plurality of measurement channels. It aims at providing the flow measuring device which can measure.

本発明に係る流量計測装置は、流体が流れ込む流入口と該流体が流出する流出口との間において並列に設けられた複数の計測流路と、前記複数の計測流路のそれぞれに対応して設けられ通過する流体の個別流量を計測する個別流量計測部と、前記個別流量計測部における計測異常を検出する個別計測異常検出部と、前記個別流量計測部からの流量の出力を受け前記流入口から前記流出口を通過する流体の流量の総和を求める流量情報部とを備え、前記流量情報部は、予め前記個別流量計測部が正常であるときの前記複数の計測流路を通過する流体の流量比率を記憶する流量比率記憶部を有し、前記個別計測異常検出部にて異常が検出された際、異常が検出された計測流路の流量を正常な前記計測流路の流量情報と前記流量比率から算出した流量として前記流入口から前記流出口を通過する流体の流量の総和を求めるように構成されている。   The flow rate measuring device according to the present invention corresponds to each of the plurality of measurement channels provided in parallel between the inlet into which the fluid flows and the outlet from which the fluid flows out, and the plurality of measurement channels. An individual flow rate measurement unit that measures the individual flow rate of the fluid that is provided, an individual measurement abnormality detection unit that detects a measurement abnormality in the individual flow rate measurement unit, and an output that receives the flow rate from the individual flow rate measurement unit A flow rate information unit for obtaining a sum of the flow rates of the fluid passing through the outlet, and the flow rate information unit is configured in advance so that the flow rate of the fluid passing through the plurality of measurement flow paths when the individual flow rate measurement unit is normal in advance. A flow rate storage unit that stores a flow rate ratio, and when an abnormality is detected by the individual measurement abnormality detection unit, the flow rate of the measurement channel in which the abnormality is detected is set to normal flow rate information of the measurement channel and the flow rate Flow calculated from flow rate ratio It is configured to determine the flow rate sum of the fluid passing through the outlet from the inlet as.

本発明は、以上に説明した構成を有し、流体の流量を正しく計測できない計測流路がある場合であっても計測流路を通過する流体の総流量を求めることができるという効果を奏する。   The present invention has the configuration described above, and has an effect that the total flow rate of the fluid passing through the measurement channel can be obtained even when there is a measurement channel in which the fluid flow rate cannot be measured correctly.

本発明の実施の形態1におけるガス計測装置の構成を概略的に示す平面図The top view which shows schematically the structure of the gas measuring device in Embodiment 1 of this invention. 本発明の実施の形態1におけるガス計測装置の要部構成を模式的に示す図The figure which shows typically the principal part structure of the gas measuring device in Embodiment 1 of this invention. 本発明の実施の形態1におけるガス計測装置の流量情報部および個別流量計測部を示すブロック図The block diagram which shows the flow volume information part and individual flow volume measurement part of the gas measuring device in Embodiment 1 of this invention. 本発明の実施の形態1におけるガス計測装置の主制御部が備える流量比率記憶部に記憶された流量比率データと計測流路を通過したガス流量の関係の一例を示すグラフThe graph which shows an example of the relationship between the flow rate ratio data memorize | stored in the flow rate ratio memory | storage part with which the main control part of the gas measuring device in Embodiment 1 of this invention is equipped, and the gas flow rate which passed the measurement flow path. 本発明の実施の形態1におけるガス計測装置に係る処理フローの一例を示すフローチャートThe flowchart which shows an example of the processing flow which concerns on the gas measuring device in Embodiment 1 of this invention. 従来例のガス計測装置の構成を示すブロック図Block diagram showing the configuration of a conventional gas measuring device

第1の発明は、流体が流れ込む流入口と該流体が流出する流出口との間において並列に設けられた複数の計測流路と、前記複数の計測流路のそれぞれに対応して設けられ通過する流体の個別流量を計測する個別流量計測部と、前記個別流量計測部における計測異常を検出する個別計測異常検出部と、前記個別流量計測部からの流量の出力を受け前記流入口から前記流出口を通過する流体の流量の総和を求める流量情報部とを備え、前記流量情報部は、予め前記個別流量計測部が正常であるときの前記複数の計測流路を通過する流体の流量比率を記憶する流量比率記憶部を有し、前記個別計測異常検出部にて異常が検出された際、異常が検出された計測流路の流量を正常な前記計測流路の流量情報と前記流量比率から算出した流量として前記流入口から前記流出口を通過する流体の流量の総和を求めるように構成したことにより、複数の計測流路の内、1つの計測流路に異常が生じて、この計測流路を通過する流体の流量を求めることができないような場合であっても、他方の計測流路に設けられた個別流量検出部によって求められた流体の流量と流量比率とから異常が生じた計測流路に通過する流体の流量を推測し、前記流入口から前記流出口を通過する流体の流量の総和を求めることができる。   The first invention is a plurality of measurement channels provided in parallel between an inlet into which a fluid flows and an outlet from which the fluid flows out, and a passage provided corresponding to each of the plurality of measurement channels. An individual flow rate measurement unit for measuring the individual flow rate of the fluid to be measured, an individual measurement abnormality detection unit for detecting a measurement abnormality in the individual flow rate measurement unit, and an output of the flow rate from the individual flow rate measurement unit, and the flow rate from the inlet. A flow rate information unit for obtaining a sum of the flow rates of the fluid passing through the outlet, and the flow rate information unit is configured to obtain a flow rate ratio of the fluid passing through the plurality of measurement channels when the individual flow rate measurement unit is normal in advance. A flow rate storage unit for storing, and when an abnormality is detected by the individual measurement abnormality detection unit, the flow rate of the measurement channel in which the abnormality is detected is determined from the flow rate information of the normal measurement channel and the flow rate ratio. As the calculated flow rate, the flow Since the sum of the flow rates of the fluid passing through the outlet from the mouth is obtained, an abnormality occurs in one measurement channel among the plurality of measurement channels, and the fluid passing through the measurement channel Even when the flow rate cannot be obtained, the fluid that passes through the measurement flow channel in which an abnormality has occurred from the flow rate and flow rate ratio of the fluid obtained by the individual flow rate detection unit provided in the other measurement flow channel And the sum of the flow rates of the fluid passing from the inlet to the outlet can be obtained.

第2の発明は、第1の発明の流量計測装置において、前記流量情報部は、前記個別計測異常検出部にて異常が検出された際、他の正常な複数の計測流路に対する流量情報と、それぞれの前記流量比率から異常が発生した計測流路を通過する流体の流量を推測して前記流入口から前記流出口を通過する流量の総和を求めるように構成したもので、ある計測流路において異常が発生した際でも、他の正常な複数の計測流路の流量から異常が発生した計測流路の流量を推測し、異常な計測流路における流量の真の値により近似した流量の値を得ることができる。   According to a second aspect of the present invention, in the flow measurement device according to the first aspect, when the abnormality is detected by the individual measurement abnormality detection unit, the flow information unit includes flow information on other normal measurement channels. The flow rate of the fluid passing through the measurement flow path in which an abnormality has occurred is estimated from the respective flow rate ratios, and the sum of the flow rates passing through the flow outlet from the flow inlet is determined. Even if an abnormality occurs in, the flow rate of the measurement channel where the abnormality occurred is estimated from the flow rate of other normal measurement channels, and the flow rate value approximated by the true value of the flow rate in the abnormal measurement channel Can be obtained.

第3の発明は、第1の発明の流量計測装置において、前記流量情報部は、前記個別計測異常検出部にて異常が検出された際、他の正常な複数の計測流路のうちの1つの正常な計測流路に対する流量情報と、前記流量比率から異常が発生した計測流路を通過する流体の流量を推測して前記流入口から前記流出口を通過する流量の総和を求めるように構成したもので、ある計測流路において異常が発生した際でも、1つでも正常な計測流路があればその正常な計測流路における流量から異常な計測流路の流量を推測し流体の総流量を求めることができる。   According to a third aspect of the present invention, in the flow measurement device according to the first aspect, the flow rate information unit is one of a plurality of other normal measurement channels when an abnormality is detected by the individual measurement abnormality detection unit. The flow rate information for one normal measurement channel and the flow rate of the fluid passing through the measurement channel in which an abnormality has occurred are estimated from the flow rate ratio, and the sum of the flow rates passing through the outlet from the inlet is determined. Even if an abnormality occurs in a certain measurement channel, if there is at least one normal measurement channel, the flow rate of the abnormal measurement channel is estimated from the flow rate in the normal measurement channel, and the total flow rate of the fluid Can be requested.

以下、本発明の好ましい実施の形態を、図面を参照して説明する。なお、以下では全ての図を通じて同一又は対応する構成部材には同一の参照符号を付して、その説明については省略する。
(実施の形態1)
(ガス計測装置の構成)
まず、図1および図2を参照して実施の形態1に係るガス計測装置(流量計測装置)1の構成について説明する。図1は、本実施の形態のガス計測装置1における流量計測処理に係る構成を示す平面図である。図2は、本実施の形態に係るガス計測装置1における主制御部9および補助制御部6を示すブロック図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding components are denoted by the same reference numerals throughout all the drawings, and the description thereof is omitted.
(Embodiment 1)
(Configuration of gas measuring device)
First, the configuration of a gas measuring device (flow rate measuring device) 1 according to Embodiment 1 will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view showing a configuration related to a flow rate measurement process in the gas measurement device 1 of the present embodiment. FIG. 2 is a block diagram showing the main control unit 9 and the auxiliary control unit 6 in the gas measuring device 1 according to the present embodiment.

本実施の形態に係るガス計測装置1は、ガス配管の途中に設置されて、消費されるガス流量(ガス使用量)を求める超音波式ガスメータである。なお、ガス計測装置1は、このような超音波式ガスメータに限定されるものではない。例えば、電子的な検出原理を利用したフローセンサ、あるいはフルイディクセンサ等の瞬時流量計によってガス流量を求めるように構成されていてもよい。   The gas measuring device 1 according to the present embodiment is an ultrasonic gas meter that is installed in the middle of a gas pipe and obtains a consumed gas flow rate (gas consumption). The gas measuring device 1 is not limited to such an ultrasonic gas meter. For example, the gas flow rate may be obtained by an instantaneous flow meter such as a flow sensor using an electronic detection principle or a fluidic sensor.

ガス計測装置1は、図1に示すように、流路ユニット(流路)2、上流側超音波センサ4a〜4d、下流側超音波センサ5a〜5d、補助制御部6a〜6d、流入口7、流出口8、主制御部9、電池10、表示部11、保安用センサ12および電子回路基板30を備えてなる構成である。なお、ここでガスは、流入口7から流出口8に向かって流路ユニット2内を一方向に流れるものとする。   As shown in FIG. 1, the gas measuring device 1 includes a flow path unit (flow path) 2, upstream ultrasonic sensors 4 a to 4 d, downstream ultrasonic sensors 5 a to 5 d, auxiliary control units 6 a to 6 d, and an inlet 7. , Outlet 8, main control unit 9, battery 10, display unit 11, security sensor 12, and electronic circuit board 30. Here, it is assumed that the gas flows in one direction in the flow path unit 2 from the inlet 7 toward the outlet 8.

流入口7は、ガス供給側のガス配管からガスがガス計測装置1に流れ込む入り口である。本実施の形態に係るガス計測装置1では、その上面に流入口7が設けられ、ガス供給側のガス配管と流路ユニット2とをつなぐように構成されている。   The inlet 7 is an inlet through which gas flows into the gas measuring device 1 from the gas pipe on the gas supply side. In the gas measuring device 1 according to the present embodiment, an inflow port 7 is provided on the upper surface, and the gas pipe on the gas supply side and the flow path unit 2 are connected.

流出口8は、ガス計測装置1からガス消費側のガス配管にガスが流れ出る出口である。本実施の形態に係るガス計測装置1では、その上面に流出口8が設けられ、ガス消費側のガス配管と流路ユニット2とをつなぐように構成されている。   The outflow port 8 is an outlet through which gas flows from the gas measuring device 1 to the gas pipe on the gas consumption side. In the gas measuring device 1 according to the present embodiment, an outlet 8 is provided on the upper surface, and the gas pipe on the gas consumption side and the flow path unit 2 are connected.

流路ユニット2は、需要者に供給するガスが流れる断面が矩形を成す筒状の管である。流路ユニット2は、図1に示すように、複数の計測流路22a〜22dと、この計測流路22a〜22dのそれぞれに上流側超音波センサ4a〜4d、下流側超音波センサ5a〜5dを備えて構成されている。   The flow path unit 2 is a cylindrical tube having a rectangular cross section through which a gas supplied to a consumer flows. As shown in FIG. 1, the flow path unit 2 includes a plurality of measurement flow paths 22a to 22d, upstream ultrasonic sensors 4a to 4d, and downstream ultrasonic sensors 5a to 5d in the measurement flow paths 22a to 22d. It is configured with.

ここで、計測流路22a〜22dは、消費されるガスの流量(ガス計測装置1を通過するガスの流量)を計測するための流路である。計測流路22a〜22dそれぞれの流路断面積は同じであってもよいし、それぞれ異なるものであってもよい。なお、計測流路22a〜22dをそれぞれ区別して説明する必要が無い場合は、単に計測流路22と称するものとする。   Here, the measurement flow paths 22a to 22d are flow paths for measuring the flow rate of the consumed gas (the flow rate of the gas passing through the gas measurement device 1). The flow channel cross-sectional areas of the measurement flow channels 22a to 22d may be the same or different. In addition, when it is not necessary to distinguish and explain the measurement flow paths 22a to 22d, they are simply referred to as measurement flow paths 22.

また、流路ユニット2よりも上流側には入口バッファ21、下流側には出口バッファ23を備えている。入口バッファ21、流路ユニット2、および出口バッファ23は連通しており、入口バッファ21と出口バッファ23との間を通過するガスの流量を流路ユニット2で計測するように構成されている。   Further, an inlet buffer 21 is provided on the upstream side of the flow path unit 2, and an outlet buffer 23 is provided on the downstream side. The inlet buffer 21, the flow path unit 2, and the outlet buffer 23 communicate with each other, and the flow rate of the gas passing between the inlet buffer 21 and the outlet buffer 23 is measured by the flow path unit 2.

また、ガス計測装置1は、流路ユニット2の上流(入口バッファ21よりも上流側)に遮断弁3を備えている。遮断弁3は、例えば、ガス計測装置1からガス機器までの間でガス漏れなどの異常が検出された場合、あるいは、外部からの流路ユニット2の遮断要求等に応じて、流路ユニット2の流路を塞ぎ、ガスの流れを遮断するものである。遮断弁3は、主制御部9からの制御指示に基づき、流入口7と入口バッファ21との間の流路を塞いだり、開放したりすることができる。この遮断弁3は、流路ユニット2の流路を塞ぐための弁体(不図示)と、該弁体の動力源であるステッピングモータ(不図示)とを備えた構成であり、より具体的には、以下のようにして流路ユニット2の流路を塞いだり、開放したりする。   Further, the gas measuring device 1 includes a shutoff valve 3 upstream of the flow path unit 2 (upstream of the inlet buffer 21). For example, the shutoff valve 3 is configured so that the flow path unit 2 is detected when an abnormality such as gas leakage is detected between the gas measuring device 1 and the gas device, or in response to a shutoff request for the flow path unit 2 from the outside. The gas flow is blocked and the gas flow is blocked. The shutoff valve 3 can block or open the flow path between the inlet 7 and the inlet buffer 21 based on a control instruction from the main controller 9. The shut-off valve 3 includes a valve body (not shown) for closing the flow path of the flow path unit 2 and a stepping motor (not shown) that is a power source of the valve body. First, the flow path of the flow path unit 2 is closed or opened as follows.

すなわち、遮断弁3では、主制御部9からの制御指示に応じて、ステッピングモータが有するステータのコイル(不図示)に位相差を持ったパルス状電流が印加される。そして、この電流の印加によりステッピングモータのロータ(不図示)が正回転する。このロータの正回転により弁体が弁座(不図示)側に前進し、流路を塞ぐ。これにより、ガス計測装置1においてガスの流れを遮断することができる。逆に、流路を開放させる場合は、遮断弁3においてステッピングモータを逆回転させ、これにより弁座から弁体が離れるように構成されている。   That is, in the shut-off valve 3, a pulsed current having a phase difference is applied to a stator coil (not shown) of the stepping motor in accordance with a control instruction from the main control unit 9. Then, by applying this current, the rotor (not shown) of the stepping motor rotates forward. Due to the forward rotation of the rotor, the valve element advances toward the valve seat (not shown) and closes the flow path. Thereby, the gas flow can be shut off in the gas measuring device 1. On the contrary, when the flow path is opened, the stepping motor is reversely rotated in the shutoff valve 3 so that the valve body is separated from the valve seat.

上流側超音波センサ4a〜4dおよび下流側超音波センサ5a〜5dは、相互に超音波を送受信するものである。上流側超音波センサ4a〜4dならびに下流側超音波センサ5a〜5dは計測流路22a〜22dそれぞれに設けられている。なお、上流側超音波センサ4a〜4dそれぞれを特に区別して説明する必要がない場合は、単に上流側超音波センサ4と称する。同様に、下流側超音波センサ5a〜5dを特に区別して説明する必要がない場合は、単に下流側超音波センサ5と称するものとする。   The upstream ultrasonic sensors 4a to 4d and the downstream ultrasonic sensors 5a to 5d transmit and receive ultrasonic waves to each other. The upstream ultrasonic sensors 4a to 4d and the downstream ultrasonic sensors 5a to 5d are provided in the measurement channels 22a to 22d, respectively. Note that the upstream ultrasonic sensors 4a to 4d are simply referred to as the upstream ultrasonic sensor 4 when there is no need to distinguish between them. Similarly, the downstream ultrasonic sensors 5a to 5d are simply referred to as the downstream ultrasonic sensor 5 when it is not necessary to distinguish between them.

また、これら上流側超音波センサ4と下流側超音波センサ5との組は、それぞれ各計測流路22に対応づけて設けられている補助制御部6a〜6dからの制御指示に応じて駆動するように構成されている。補助制御部6a〜6dについても、特に区別して説明する必要がない場合は、単に補助制御部6と称するものとする。   The upstream ultrasonic sensor 4 and the downstream ultrasonic sensor 5 are driven in accordance with control instructions from auxiliary control units 6 a to 6 d provided in association with the respective measurement flow paths 22. It is configured as follows. The auxiliary control units 6a to 6d are also simply referred to as the auxiliary control unit 6 when it is not necessary to distinguish between them.

すなわち、上流側超音波センサ4は、計測流路22における上流側の側壁に、下流側超音波センサ5は計測流路22における下流側の側壁に、両者が対向するように設けられている。そして、主制御部9から補助制御部6を介して、上流側超音波センサ4に駆動信号(制御信号)が入力されると、上流側超音波センサ4は超音波を下流側超音波センサ5に向かって出力する。   That is, the upstream ultrasonic sensor 4 is provided on the upstream side wall in the measurement flow path 22, and the downstream ultrasonic sensor 5 is provided on the downstream side wall in the measurement flow path 22 so as to face each other. When a drive signal (control signal) is input from the main control unit 9 to the upstream ultrasonic sensor 4 via the auxiliary control unit 6, the upstream ultrasonic sensor 4 transmits ultrasonic waves to the downstream ultrasonic sensor 5. Output toward.

上流側超音波センサ4から出力した超音波は、計測流路22内を下流側に向かって斜め下方向に進み、下流側超音波センサ5に向かって伝搬する。逆に、主制御部9から補助制御部6を介して、下流側超音波センサ5に駆動信号が入力されると、この下流側超音波センサ5は超音波を上流側超音波センサ4に向かって出力する。下流側超音波センサ5から出力した超音波は、計測流路22内を上流側に向かって斜め上方向に進み、上流側超音波センサ4に向かって伝搬する。   The ultrasonic wave output from the upstream ultrasonic sensor 4 travels obliquely downward in the measurement flow path 22 toward the downstream side and propagates toward the downstream ultrasonic sensor 5. Conversely, when a drive signal is input from the main control unit 9 to the downstream ultrasonic sensor 5 via the auxiliary control unit 6, the downstream ultrasonic sensor 5 directs the ultrasonic wave toward the upstream ultrasonic sensor 4. Output. The ultrasonic wave output from the downstream ultrasonic sensor 5 travels obliquely upward in the measurement channel 22 toward the upstream side and propagates toward the upstream ultrasonic sensor 4.

そして、それぞれの超音波の到達時間を、補助制御部6における個別流量計測部31が計測し、到達時間の差から流路ユニット2を流れるガスの流速を求める。そして、個別流量計測部31は求めた流速に流路ユニット2の断面積等をかけあわせて流量を求める。個別流量計測部31は、ガス流量を求めると、この求めた結果を主制御部9における流量情報部33に出力し、流量情報部33にてガス計測装置1全体を流れるガス総流量を求める。   Then, the individual flow rate measurement unit 31 in the auxiliary control unit 6 measures the arrival time of each ultrasonic wave, and obtains the flow velocity of the gas flowing through the flow path unit 2 from the difference in arrival time. Then, the individual flow rate measurement unit 31 obtains the flow rate by multiplying the obtained flow velocity by the cross-sectional area of the flow path unit 2 or the like. When the individual flow rate measurement unit 31 obtains the gas flow rate, the individual flow rate measurement unit 31 outputs the obtained result to the flow rate information unit 33 in the main control unit 9, and the flow rate information unit 33 obtains the total gas flow rate flowing through the entire gas measurement device 1.

主制御部9は、ガス計測装置1の各部における各種動作の制御を行うものであり、流量情報部33で算出されたガス総流量に基づいて最大流量オーバーの異常判断や、異常を検知する保安用センサ12のセンシング結果から異常の発生の有無を判定したり、外部からガス計測装置1内に形成されている流路の遮断指示を受信したか否か判定したりする。そして、異常が発生していると判定した場合、あるいは遮断指示を受信したと判定した場合、主制御部9は遮断弁3に電流を印加して上述したように流路ユニット2の流路を塞ぐように制御する。   The main control unit 9 controls various operations in each unit of the gas measuring device 1. The main control unit 9 determines abnormality of the maximum flow rate over based on the total gas flow rate calculated by the flow rate information unit 33, and detects the abnormality. The presence or absence of an abnormality is determined from the sensing result of the sensor 12 for a sensor, or it is determined whether or not an instruction to shut off a flow path formed in the gas measuring device 1 is received from the outside. When it is determined that an abnormality has occurred, or when it is determined that a shut-off instruction has been received, the main control unit 9 applies a current to the shut-off valve 3 so that the flow path of the flow path unit 2 is set as described above. Control to close.

また、主制御部9は、流量情報部33で算出されたガス総流量に基づく流量の積算値をLCD等で構成された表示部11で表示するなど様々な情報を表示するように制御する。また、主制御部9は、「異常発生時流量計測処理」として、流量情報部33と流量比率記憶部34も備えており、計測流路に異常が発生した場合その流路における流量を推測することができる。本実施の形態に係るガス計測装置1における「異常発生時流量計測処理」についての詳細は後述する。   Further, the main control unit 9 controls to display various information such as displaying the integrated value of the flow rate based on the total gas flow rate calculated by the flow rate information unit 33 on the display unit 11 constituted by an LCD or the like. Further, the main control unit 9 also includes a flow rate information unit 33 and a flow rate ratio storage unit 34 as “flow rate measurement processing at the time of occurrence of abnormality”, and estimates the flow rate in the flow channel when an abnormality occurs in the measurement flow channel. be able to. Details of the “flow rate measurement process at occurrence of abnormality” in the gas measurement device 1 according to the present embodiment will be described later.

また、補助制御部6a〜6dは、それぞれ個別計測異常検出部32a〜32dを備えており、計測流路における異常を検知することもできる。   In addition, the auxiliary control units 6a to 6d include individual measurement abnormality detection units 32a to 32d, respectively, and can also detect an abnormality in the measurement channel.

なお、上記した補助制御部6は、例えば、超音波計測用のLSI(Large Scale Integration)によって実現できる。この超音波計測用LSIは、超音波測定を可能とするアナログ回路と、超音波の伝搬時間を計測する動作をシーケンシャルで行うデジタル回路とから構成される。一方、主制御部9は、例えば、CPUによって実現できる。   The auxiliary control unit 6 described above can be realized by, for example, an ultrasonic measurement LSI (Large Scale Integration). This ultrasonic measurement LSI includes an analog circuit that enables ultrasonic measurement and a digital circuit that sequentially performs an operation of measuring the propagation time of ultrasonic waves. On the other hand, the main control unit 9 can be realized by a CPU, for example.

(異常発生時流量計測処理に係る構成)
ここで、本実施の形態に係るガス計測装置1における「ガス流量計測処理」に係る構成について図1、図2に加え、図3を参照してより具体的に説明する。図3は、流量計測装置における流量情報部および個別流量計測部を示す図である。
(Configuration related to flow measurement processing when an abnormality occurs)
Here, in addition to FIG. 1, FIG. 2, the structure which concerns on the "gas flow rate measurement process" in the gas measuring device 1 which concerns on this Embodiment is demonstrated more concretely. FIG. 3 is a diagram illustrating a flow rate information unit and an individual flow rate measurement unit in the flow rate measurement device.

図2に示すように主制御部9は、「異常発生時流量計測処理」に係る構成として、流量比率記憶部34を備える。そして、流量比率記憶部34には、各計測流路における流量から他の計測流路との流量比率が流量比率データとして記憶されている。   As shown in FIG. 2, the main control unit 9 includes a flow rate ratio storage unit 34 as a configuration related to the “flow rate measurement process when an abnormality occurs”. In the flow rate ratio storage unit 34, the flow rate ratio between the flow rate in each measurement flow channel and the other measurement flow channel is stored as flow rate ratio data.

なお、補助制御部6a〜6dは、個別流量計測部31a〜31d、個別計測異常検出部32a〜32dを備えており、それぞれを特に区別して説明する必要が無い場合は、単に個別流量計測部31、個別計測異常検出部32と称するものとする。   The auxiliary control units 6a to 6d are provided with individual flow rate measurement units 31a to 31d and individual measurement abnormality detection units 32a to 32d. When there is no need to distinguish between them, the individual flow rate measurement unit 31 is simply used. The individual measurement abnormality detection unit 32 will be referred to.

個別流量計測部31は、上流側超音波センサ4および下流側超音波センサ5により得られた上述の超音波の到達時間の差から計測流路22を流れる単位時間あたりのガスの流速を求め、この求めた流速と計測流路22の断面積等に基づき計測流路22を流れたガスの流量を求める。そして、主制御部9における流量情報部33へ出力する。上流側超音波センサ4と下流側超音波センサ5とこの個別流量計測部31とによって、本発明の流量測定手段を実現する。   The individual flow rate measuring unit 31 obtains the flow velocity of the gas per unit time flowing through the measurement flow path 22 from the difference in the arrival time of the ultrasonic waves obtained by the upstream ultrasonic sensor 4 and the downstream ultrasonic sensor 5, Based on the obtained flow velocity and the cross-sectional area of the measurement flow path 22, the flow rate of the gas flowing through the measurement flow path 22 is obtained. And it outputs to the flow volume information part 33 in the main control part 9. The upstream ultrasonic sensor 4, the downstream ultrasonic sensor 5, and the individual flow rate measuring unit 31 realize the flow rate measuring means of the present invention.

本実施形態では2秒ごとに上流側超音波センサ4および下流側超音波センサ5において相互に超音波を複数回送受信するように構成されている。このため、本実施の形態に係るガス計測装置1では、2秒ごとにガスの流量変化を確認する構成となる。   In the present embodiment, the upstream ultrasonic sensor 4 and the downstream ultrasonic sensor 5 are configured to transmit and receive ultrasonic waves a plurality of times every 2 seconds. For this reason, in the gas measuring device 1 which concerns on this Embodiment, it becomes the structure which confirms the flow volume change of gas every 2 second.

個別計測異常検出部32は、ガスの流量変化を確認するごとに計測流路の異常を監視するように構成されている。このため、本実施の形態に係るガス計測装置1では、2秒ごとに計測流路の異常を監視する構成となる。   The individual measurement abnormality detection unit 32 is configured to monitor an abnormality in the measurement flow path every time a change in gas flow rate is confirmed. For this reason, in the gas measuring device 1 which concerns on this Embodiment, it becomes the structure which monitors the abnormality of a measurement flow path every 2 seconds.

流量情報部33は、個別流量計測部31から計測流路の流量情報や異常検出情報を受け取り、流量の総和を求める。また、異常検出情報を受け取った際は、流量比率記憶部34に記憶されている流量比率データを参照して、他の正常な計測流路において測定された流量から当該計測流路における流量を推測し流量の総和を求める。   The flow rate information unit 33 receives the flow rate information and abnormality detection information of the measurement flow path from the individual flow rate measurement unit 31 and obtains the sum of the flow rates. Further, when the abnormality detection information is received, the flow rate ratio data stored in the flow rate ratio storage unit 34 is referred to and the flow rate in the measurement channel is estimated from the flow rate measured in another normal measurement channel. Calculate the total flow rate.

流量比率記憶部34は、流量情報部33が実施する流量の総和を求める際に利用する流量比率データ等の情報を記憶している読み書き可能な記憶装置である。例えば、流量比率記憶部34は読み書き可能なRAMまたはROMなどの半導体記憶装置によって実現できる。   The flow rate ratio storage unit 34 is a readable / writable storage device that stores information such as flow rate ratio data used when the flow rate information unit 33 calculates the sum of the flow rates. For example, the flow rate ratio storage unit 34 can be realized by a semiconductor storage device such as a readable / writable RAM or ROM.

流量比率記憶部34は、単位時間あたりに各計測流路22を流れたガスの流量から、他の計測流路22に対する計測流路22の流量比率を記憶している。   The flow rate ratio storage unit 34 stores the flow rate ratio of the measurement flow path 22 with respect to the other measurement flow paths 22 from the flow rate of the gas flowing through each measurement flow path 22 per unit time.

具体的には、流量比率記憶部34は、図4に示すように、計測流路22a〜22dを流れるガス流量に応じて定められる流量比率を記憶している。すなわち、予め各計測流路22a〜22dを流れるガス流量が分かっている状態で、1つの計測流路の流量と他の1つまたは複数の計測流路の流量との比率が流量比率データとして流量比率記憶部34に記憶されている。これら流量比率記憶部34として記録されている流量比率データは、各計測流路22a〜22dを流れるガス流量(Qa〜Qd)の変動に応じて変化する値となっている。   Specifically, as shown in FIG. 4, the flow rate ratio storage unit 34 stores a flow rate ratio that is determined according to the gas flow rate flowing through the measurement flow paths 22 a to 22 d. That is, the ratio of the flow rate of one measurement flow channel to the flow rate of one or more other measurement flow channels is determined as the flow rate ratio data in a state where the gas flow rate flowing through each measurement flow channel 22a to 22d is known in advance. It is stored in the ratio storage unit 34. The flow rate ratio data recorded as these flow rate ratio storage units 34 are values that change in accordance with fluctuations in the gas flow rates (Qa to Qd) flowing through the measurement flow paths 22a to 22d.

しかしながら、流量比率データはこれに限定されるものではない。例えば、流量比率データは、計測流路22a〜22dを流れるガス流量の大小に関わらず一定となる固定値になる場合もあり得る。   However, the flow rate data is not limited to this. For example, the flow rate ratio data may be a fixed value that is constant regardless of the magnitude of the gas flow rate flowing through the measurement flow paths 22a to 22d.

そして、流量情報部33は、正常な計測流路において測定された流量と、流量比率データとして記録されている流量比率記憶部34を参照して、異常な計測流路の流量を推測し、計測流路22を流れたガスの総流量を演算する。   The flow rate information unit 33 estimates the flow rate of the abnormal measurement channel by referring to the flow rate measured in the normal measurement channel and the flow rate storage unit 34 recorded as the flow rate data. The total flow rate of the gas flowing through the flow path 22 is calculated.

次に、上述した構成を有するガス計測装置1における、ガス計測装置1を流れるガスの総流量を求める「ガス流量計測処理」の処理フローについて図5を参照して説明する。図5は、本実施の形態に係るガス計測装置1に係る処理フローの一例を示すフローチャートである。   Next, a process flow of “gas flow measurement process” for obtaining the total flow rate of the gas flowing through the gas measurement apparatus 1 in the gas measurement apparatus 1 having the above-described configuration will be described with reference to FIG. FIG. 5 is a flowchart showing an example of a processing flow related to the gas measuring device 1 according to the present embodiment.

(異常発生時流量計測処理方法)
まず、事前処理として流量比率データを流量比率記憶部34にそれぞれ記憶させる(ステップS11)。
(Flow rate measurement processing method when an abnormality occurs)
First, the flow rate ratio data is stored in the flow rate ratio storage unit 34 as pre-processing (step S11).

より具体的には、事前に計測流路22が正常であるときに予めガス流量が分かっているガスを流入口7から流し、この時の計測流路22a〜22dそれぞれで計測された流量(Qa〜Qd)を記録する。そして、計測された各流量を比較し、各流路に流れる流量の比率を算出する。この操作を通過させる流量を変更させて複数回行い、各流路に流れる流量の比率を流量比率記憶部34にそれぞれ記憶させておく。   More specifically, when the measurement channel 22 is normal in advance, a gas whose gas flow rate is known in advance is caused to flow from the inlet 7, and the flow rate (Qa) measured in each of the measurement channels 22a to 22d at this time. To record Qd). Then, the measured flow rates are compared, and the ratio of the flow rates flowing through the flow paths is calculated. The flow rate through which this operation is passed is changed a plurality of times, and the ratio of the flow rate flowing through each flow path is stored in the flow rate ratio storage unit 34.

なお、上記実施の形態では、計測流路22a〜22dの流量比率データが図4に示すような流量域で、個々に異なる特性を持つものとして説明したが、計測流路22a〜22dの流量比率データが同じ傾きを有する直線で表させる場合は、流量を変更させて複数回行う必要はなく、1回で行うことが可能であることは言うまでもない。   In the above embodiment, the flow rate ratio data of the measurement flow paths 22a to 22d is described as having individual characteristics in the flow rate range as shown in FIG. 4, but the flow rate ratios of the measurement flow paths 22a to 22d are described. Needless to say, when the data is represented by a straight line having the same slope, it is not necessary to change the flow rate a plurality of times, and it is possible to do it once.

上述した事前処理を実施した後、実際に使用するためにガス計測装置1が設置される。そして、ガス計測装置1と繋がっているガス機器等によってガスの利用が開始される。なお、このとき遮断弁3は流路ユニット2の流路を開状態としているものとする。   After performing the above-described pretreatment, the gas measuring device 1 is installed for actual use. And use of gas is started by the gas equipment etc. which are connected with the gas measuring device 1. At this time, the shutoff valve 3 is assumed to open the flow path of the flow path unit 2.

ガスの利用が開始されると、流入口7から入ってきたガスは、入口バッファ21を通じて計測流路22a〜22dそれぞれに分かれて出口バッファ23に向かって流れる。各個別流量計測部31a〜31dでは、上流側超音波センサ4a〜4dと下流側超音波センサ5a〜5dとによって測定した超音波の到達時間の差から、計測流路22a〜22dを流れるガスの流速を求める。そして求めた各流速から、各計測流路22a〜22dにおける各ガスの流量を算出する(ステップS12)。   When the use of the gas is started, the gas that has entered from the inlet 7 is divided into the measurement flow paths 22 a to 22 d through the inlet buffer 21 and flows toward the outlet buffer 23. In each individual flow measurement part 31a-31d, from the difference in the arrival time of the ultrasonic wave measured by the upstream ultrasonic sensors 4a-4d and the downstream ultrasonic sensors 5a-5d, the gas flowing through the measurement flow paths 22a-22d Determine the flow rate. And from each calculated | required flow velocity, the flow volume of each gas in each measurement flow path 22a-22d is calculated (step S12).

さらに、各個別流量計測部31では、各個別計測異常検出部32より各計測流路において異常はないか否かの異常検出情報を取得する(ステップS13)。   Further, each individual flow rate measurement unit 31 acquires abnormality detection information indicating whether or not there is an abnormality in each measurement channel from each individual measurement abnormality detection unit 32 (step S13).

その後、各個別流量計測部31は計測流路における流量情報と異常検出情報を流量情報部33へ出力する(ステップS14)。   Thereafter, each individual flow rate measurement unit 31 outputs flow rate information and abnormality detection information in the measurement channel to the flow rate information unit 33 (step S14).

次に、流量情報部33において、異常検出された計測流路があるか判定する(ステップS15)。異常有と判定された場合は、流量比率記憶部34から流量比率データを読み出し、流量比率データと他の計測流路における流量を用いて異常計測流路の流量を推測する(ステップS16)。例えば、計測流路22aが異常であった場合、流量比率記憶部34から計測流路22aの流量(Qa)と他の1つの計測流路22b〜22dの流量(Qb〜Qd)との比率を表す流量比率データを読み出し、他の計測流路における流量(Qb〜Qd)を用いて異常計測流路の流量(Qa)を推測する。他の計測流路を用いて3種類の流量が推測でき、これらの平均値を算出し、異常計測流路の流量(Qa)であると推測する。ステップS15にて異常無と判定された場合は、ステップS16の処理は省く。   Next, in the flow rate information unit 33, it is determined whether there is a measurement channel in which an abnormality is detected (step S15). If it is determined that there is an abnormality, the flow rate ratio data is read from the flow rate ratio storage unit 34, and the flow rate of the abnormal measurement flow path is estimated using the flow rate ratio data and the flow rates in the other measurement flow paths (step S16). For example, when the measurement flow path 22a is abnormal, the ratio between the flow rate (Qa) of the measurement flow path 22a and the flow rates (Qb to Qd) of the other measurement flow paths 22b to 22d is calculated from the flow rate ratio storage unit 34. The flow rate ratio data to be expressed is read, and the flow rate (Qa) of the abnormal measurement channel is estimated using the flow rates (Qb to Qd) in the other measurement channels. Three types of flow rates can be estimated using other measurement channels, and the average value of these is calculated, and the flow rate (Qa) of the abnormal measurement channel is estimated. If it is determined in step S15 that there is no abnormality, the process in step S16 is omitted.

なお、ステップS16にて流量を推測する際には、上記のように他の計測流路を用いて平均値から推測する方法の他に、1つの正常な計測流量の流量情報を用いて異常計測流路の流量を推測する方法も考えられる。   When estimating the flow rate in step S16, in addition to the method of estimating from the average value using other measurement channels as described above, abnormal measurement is performed using flow rate information of one normal measurement flow rate. A method for estimating the flow rate of the flow path is also conceivable.

そして、上記によって求められた各計測流路の流量の総和を演算し、その結果を、ガス計測装置1を流れたガスの実際の総流量であると決定する(ステップS17)。   And the sum total of the flow volume of each measurement flow path calculated | required by the above is calculated, and the result is determined to be the actual total flow volume of the gas which flowed through the gas measuring device 1 (step S17).

(効果)
以上のようにして、各計測流路22a〜22dについて求められたガス流量からガス計測装置1を流れる全体のガス総流量を求めることができる。
(effect)
As described above, the total gas total flow rate flowing through the gas measuring device 1 can be obtained from the gas flow rate obtained for each of the measurement flow paths 22a to 22d.

ところで、ガス計測装置1の使用において、計測流路22a〜22dに備えられた上流側超音波センサ4a〜4d、下流側超音波センサ5a〜5d、および補助制御部6a〜6dのいずれかにおいて異常が生じ、計測流路22a〜22dを流れるガスの流量を正しく計測できない場合がある。   By the way, in use of the gas measuring device 1, an abnormality occurs in any of the upstream ultrasonic sensors 4a to 4d, the downstream ultrasonic sensors 5a to 5d, and the auxiliary control units 6a to 6d provided in the measurement flow paths 22a to 22d. May occur, and the flow rate of the gas flowing through the measurement flow paths 22a to 22d may not be measured correctly.

異常が生じた際の対処方法として、従来例で説明したように、個別流量計測部31a〜31dが正常な計測流路において計測された流量と等倍流量を異常な計測流路における流量とし推測する構成が考えられるが、これは各計測流路に流れる流量が同じであることを前提としたものである。しかしながら、実際には、計測流路22a〜22dの断面積を同じにしても、流入口7から各計測流路に至る流れの状態を同等にすることは困難であり、各計測流路を流れる流量を同じにすることはできず、ガス計測装置1を流れる全体のガス総流量を得ることができない。   As a countermeasure method when an abnormality occurs, as described in the conventional example, the individual flow rate measurement units 31a to 31d estimate the flow rate measured in the normal measurement flow path and the same flow rate as the flow rate in the abnormal measurement flow path. Although the structure which performs is considered, this assumes that the flow volume which flows into each measurement flow path is the same. However, in practice, even if the cross-sectional areas of the measurement flow paths 22a to 22d are the same, it is difficult to equalize the flow state from the inlet 7 to each measurement flow path. The flow rate cannot be made the same, and the total gas total flow rate flowing through the gas measuring device 1 cannot be obtained.

これに対して、本実施の形態に係るガス計測装置1では、上記したように各計測流路22a〜22dにおいてそれぞれの流量を補助制御部6a〜6dがそれぞれ求め、異常が検出された際も主制御部9において異常な計測流路22の流量を推測できるため、ガス流量を正しく計測できなかった計測流路22を除く他の計測流路22において求められた流量を用いて、正しく計測できなかった計測流路22の流量を推測することができ、ガス計測装置1を流れる全体のガス総流量を得ることができる。   On the other hand, in the gas measuring device 1 according to the present embodiment, as described above, the auxiliary control units 6a to 6d obtain the respective flow rates in the measurement flow paths 22a to 22d, respectively, and an abnormality is detected. Since the main control unit 9 can estimate the abnormal flow rate of the measurement flow path 22, it can correctly measure the flow rate obtained in the other measurement flow paths 22 except the measurement flow path 22 where the gas flow rate cannot be measured correctly. The flow rate of the measurement flow path 22 that has not been present can be estimated, and the total gas total flow rate that flows through the gas measurement device 1 can be obtained.

即ち、各計測流路22a〜22dに流れる流量が同一でなくても、予め正常時に求めいておいた計測流路間の流量比率データを用いて、正常な計測流路の流量を元に、異常が発生した計測流路の流量を求めることができる。   That is, even if the flow rates flowing through the measurement flow paths 22a to 22d are not the same, the flow rate ratio data between the measurement flow paths obtained in advance at the normal time is used to obtain an abnormality based on the flow rate of the normal measurement flow paths. It is possible to determine the flow rate of the measurement flow path in which the occurrence of spilling occurs.

また、本実施の形態に係るガス計測装置1では、事前に予め総流量が分かっているガスをガス計測装置1の流入口7から流し、この時の計測流路22a〜22dそれぞれで計測された流量(Qa〜Qd)から、各計測流路22との流量比率を示す流量比率データを算出する構成である。つまり、一度、総流量が分かっているガスを流入させれば、主制御部9に備えられている流量情報部33で利用する流量比率データをまとめて求めることができる。   Further, in the gas measurement device 1 according to the present embodiment, a gas whose total flow rate is known in advance is caused to flow from the inlet 7 of the gas measurement device 1 and measured at each of the measurement flow paths 22a to 22d at this time. In this configuration, the flow rate ratio data indicating the flow rate ratio with each measurement channel 22 is calculated from the flow rates (Qa to Qd). That is, once a gas whose total flow rate is known is caused to flow, flow rate ratio data used in the flow rate information unit 33 provided in the main control unit 9 can be obtained collectively.

(変形例)
なお、本実施の形態に係るガス計測装置1では、計測流路22を4つ備える構成であったがこれに限定されるものではなく、例えば2つや3つ備える構成であってもよいし、5つ以上備える構成であってもよく、使用されるガス流量の大きさ等を考慮し、適宜、計測流路22の数が決定されることが好ましい。
(Modification)
In addition, in the gas measurement device 1 according to the present embodiment, the configuration includes four measurement flow paths 22, but is not limited thereto, and may be configured to include two or three, for example. It may be a configuration provided with five or more, and it is preferable that the number of the measurement flow paths 22 is appropriately determined in consideration of the size of the gas flow rate used.

また、本実施の形態に係るガス計測装置1では、異常が発生した計測流路22において、流量比率記憶部34からの流量比率データを用いて、他の正常な計測流路22の流量から平均値を取り、異常が発生した計測流路の流量を推測する構成であったが、この構成に限定されるものではない。   Further, in the gas measurement device 1 according to the present embodiment, in the measurement flow path 22 in which an abnormality has occurred, the flow rate ratio data from the flow rate storage unit 34 is used to calculate the average from the flow rates of other normal measurement flow paths 22. Although it is the structure which takes a value and estimates the flow volume of the measurement flow path where abnormality occurred, it is not limited to this structure.

例えば、異常が発生した計測流路22は、複数の正常な計測流路22のうち1つの正常な計測流路22の流量比率データから、異常が発生した計測流路のガス流量を推測する構成であってもよい。   For example, the measurement flow path 22 in which the abnormality has occurred is configured to estimate the gas flow rate in the measurement flow path in which the abnormality has occurred from the flow rate ratio data of one normal measurement flow path 22 among the plurality of normal measurement flow paths 22. It may be.

更に、複数の正常な計測流路22のそれぞれで計測された流量と流量比率データから異常が発生した計測流路のガス流量をそれぞれで推測し、この複数の推測流量の最大値と最小値とを除いた値の平均値を異常が発生した計測流路におけるガスの流量と決定する構成としてもよい。もしくは、他の推定流量と比較して所定値以上値が大きくなる、もしくは小さくなる推定流量を除いて平均値を求め、実際の流量と決定する構成としてもよい。あるいは、異常が発生した計測流路22は、正常な計測流路22との流量比率データから、それぞれで求められた異常計測流路のガスの推定流量の中央値または最頻値を実際の流量と決定する構成であってもよい。実際に得られる推定流量の分布から最も真の値に近似する近似値を得られる方法を採用して、流量情報部33は実際のガスの流量を決定することが好ましい。   Further, the gas flow rate of the measurement flow path in which an abnormality has occurred is estimated from the flow rate and flow rate ratio data measured in each of the plurality of normal measurement flow paths 22, and the maximum value and the minimum value of the multiple estimated flow rates are respectively determined. It is good also as a structure which determines the flow rate of the gas in the measurement flow path in which abnormality generate | occur | produces the average value of the value except for. Or it is good also as a structure which calculates | requires an average value except the estimated flow volume from which a value becomes larger than a predetermined value compared with another estimated flow volume, or becomes small, and determines with an actual flow volume. Alternatively, the measurement flow path 22 in which the abnormality has occurred is obtained by calculating the median or mode value of the estimated flow rate of the gas in the abnormal measurement flow path obtained from the flow rate ratio data with the normal measurement flow path 22. The structure which determines with may be sufficient. It is preferable that the flow rate information unit 33 determine the actual gas flow rate by adopting a method capable of obtaining an approximate value that approximates the true value from the actually obtained estimated flow rate distribution.

なお、上記した実施形態ではガス使用量を計測するガス計測装置1を例に挙げて説明したが、計測対象はガスに限定されるものではなく、流体であればよい。   In the above-described embodiment, the gas measuring device 1 that measures the amount of gas used has been described as an example. However, the measurement target is not limited to gas, and may be a fluid.

上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。   From the foregoing description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.

本発明の流量計測装置は、大容量のガスの流量を測定するために複数の流路を備え、この複数の流路それぞれを通過する流体の流量から流体の総流量を測定する流量計測装置に特に有用である。   The flow rate measuring device of the present invention is provided with a plurality of flow paths for measuring the flow rate of a large-capacity gas, and the flow rate measuring apparatus for measuring the total flow rate of the fluid from the flow rate of the fluid passing through each of the multiple flow paths. It is particularly useful.

1 ガス計測装置(流量計測装置)
7 流入口
8 流出口
22、22a〜22d 計測流路
31、31a〜31d 個別流量計測部
32、32a〜32d 個別計測異常検出部
33 流量情報部
34 流量比率記憶部
1 Gas measuring device (flow rate measuring device)
7 Inlet 8 Outlet 22, 22a-22d Measurement flow path 31, 31a-31d Individual flow rate measurement unit 32, 32a-32d Individual measurement abnormality detection unit 33 Flow rate information unit 34 Flow rate ratio storage unit

Claims (3)

流体が流れ込む流入口と該流体が流出する流出口との間において並列に設けられた複数の計測流路と、
前記複数の計測流路のそれぞれに対応して設けられ通過する流体の個別流量を計測する個別流量計測部と、
前記個別流量計測部における計測異常を検出する個別計測異常検出部と、
前記個別流量計測部からの流量の出力を受け前記流入口から前記流出口を通過する流体の流量の総和を求める流量情報部とを備え、
前記流量情報部は、予め前記個別流量計測部が正常であるときの前記複数の計測流路を通過する流体の流量比率を記憶する流量比率記憶部を有し、前記個別計測異常検出部にて異常が検出された際、異常が検出された計測流路の流量を正常な前記計測流路の流量情報と前記流量比率から算出した流量として前記流入口から前記流出口を通過する流体の流量の総和を求めることを特徴とした流量計測装置。
A plurality of measurement channels provided in parallel between an inlet through which the fluid flows and an outlet through which the fluid flows;
An individual flow rate measuring unit that measures the individual flow rate of the fluid that is provided corresponding to each of the plurality of measurement flow paths;
An individual measurement abnormality detection unit for detecting a measurement abnormality in the individual flow rate measurement unit;
A flow rate information unit that receives the output of the flow rate from the individual flow rate measurement unit and obtains the sum of the flow rates of the fluid that passes through the outlet port from the inlet port,
The flow rate information unit has a flow rate ratio storage unit that stores a flow rate ratio of the fluid that passes through the plurality of measurement channels when the individual flow rate measurement unit is normal in advance, and the individual measurement abnormality detection unit When an abnormality is detected, the flow rate of the fluid passing through the outlet from the inlet is set as the flow rate calculated from the flow rate information of the normal measurement channel and the flow rate ratio. A flow rate measuring device characterized by obtaining the sum.
前記流量情報部は、前記個別計測異常検出部にて異常が検出された際、他の正常な複数の計測流路に対する流量情報と、それぞれの前記流量比率から異常が発生した計測流路を通過する流体の流量を推測して前記流入口から前記流出口を通過する流量の総和を求めることを特徴とした請求項1に記載の流量計測装置。 When an abnormality is detected by the individual measurement abnormality detection unit, the flow rate information unit passes through the measurement channel in which an abnormality has occurred from the flow rate information for the other plurality of normal measurement channels and the respective flow rate ratios. The flow rate measuring device according to claim 1, wherein the flow rate of the fluid to be estimated is estimated and a sum of the flow rates passing through the outlet port from the inlet port is obtained. 前記流量情報部は、前記個別計測異常検出部にて異常が検出された際、他の正常な複数の計測流路のうちの1つの正常な計測流路に対する流量情報と、前記流量比率から異常が発生した計測流路を通過する流体の流量を推測して前記流入口から前記流出口を通過する流量の総和を求めることを特徴とした請求項1に記載の流量計測装置。 When an abnormality is detected by the individual measurement abnormality detection unit, the flow rate information unit is abnormal from the flow rate information for one normal measurement channel among a plurality of other normal measurement channels and the flow rate ratio. The flow rate measuring device according to claim 1, wherein the flow rate of the fluid passing through the measurement flow path in which the occurrence of the flow is estimated and the sum total of the flow rates passing through the outlet port is obtained from the inlet port.
JP2013093797A 2013-04-26 2013-04-26 Flow measuring device Active JP6185746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093797A JP6185746B2 (en) 2013-04-26 2013-04-26 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093797A JP6185746B2 (en) 2013-04-26 2013-04-26 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2014215211A true JP2014215211A (en) 2014-11-17
JP6185746B2 JP6185746B2 (en) 2017-08-23

Family

ID=51941074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093797A Active JP6185746B2 (en) 2013-04-26 2013-04-26 Flow measuring device

Country Status (1)

Country Link
JP (1) JP6185746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260826A1 (en) * 2016-06-23 2017-12-27 Krohne Messtechnik GmbH Method for operating a flow meter and flow meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352812B2 (en) * 1984-05-09 1991-08-13 Tokyo Shibaura Electric Co
JP2000241218A (en) * 1999-02-19 2000-09-08 Aichi Tokei Denki Co Ltd Flow meter
JP2004020395A (en) * 2002-06-17 2004-01-22 Osaka Gas Co Ltd Flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352812B2 (en) * 1984-05-09 1991-08-13 Tokyo Shibaura Electric Co
JP2000241218A (en) * 1999-02-19 2000-09-08 Aichi Tokei Denki Co Ltd Flow meter
JP2004020395A (en) * 2002-06-17 2004-01-22 Osaka Gas Co Ltd Flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260826A1 (en) * 2016-06-23 2017-12-27 Krohne Messtechnik GmbH Method for operating a flow meter and flow meter
CN107543595A (en) * 2016-06-23 2018-01-05 克洛纳测量技术有限公司 Method and flowmeter for operating flux measuring instrument
US10503224B2 (en) 2016-06-23 2019-12-10 Krohne Messtechnik Gmbh Method for operating a flowmeter and flowmeter

Also Published As

Publication number Publication date
JP6185746B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP5914870B2 (en) Fluid measuring device
JP5945782B2 (en) Fluid measuring device
JP4591249B2 (en) Flowmeter
JP2013088946A (en) Flow control device, and diagnosis device and diagnosis program used for flow control device
CA2888939C (en) Ultrasonic flow metering system with an upstream pressure transducer
US20140109645A1 (en) Determination of reference values for ultrasonic flow metering systems
JP5294388B2 (en) Flow measuring device
JP6185746B2 (en) Flow measuring device
WO2009110214A1 (en) Flow measuring device
JP2002168400A (en) Self-diagnostic method of regulated pressure and gas leakage detecting apparatus
JP5154282B2 (en) Flowmeter
JP2011180055A (en) Ultrasonic-wave gas meter
JP3857959B2 (en) Flowmeter
TW202033904A (en) Fluid control apparatus, fluid control system, diagnostic method, and program record medium
JP5231842B2 (en) Flowmeter
JP6634536B1 (en) Meter device
JP5693393B2 (en) Flow-through cell type measuring apparatus and method for determining failure of electromagnetic switching valve of the apparatus
JP2010286250A (en) Flow measurement control apparatus
JP2997576B2 (en) Output method of unit flow rate signal for leakage inspection in fluidic gas meter
JP2014224683A (en) Fluid measuring system
JP2008292287A (en) Flowmeter
JP2012251880A (en) Gas shut-off device
JPS5932909Y2 (en) calorimeter
JPH08240453A (en) Gas leakage detecting device
JPH11230793A (en) Flowrate monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6185746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250