JP2000241218A - Flow meter - Google Patents

Flow meter

Info

Publication number
JP2000241218A
JP2000241218A JP11041285A JP4128599A JP2000241218A JP 2000241218 A JP2000241218 A JP 2000241218A JP 11041285 A JP11041285 A JP 11041285A JP 4128599 A JP4128599 A JP 4128599A JP 2000241218 A JP2000241218 A JP 2000241218A
Authority
JP
Japan
Prior art keywords
flow
ultrasonic
flow meter
flow rate
flow meters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041285A
Other languages
Japanese (ja)
Other versions
JP2000241218A5 (en
Inventor
Yutaka Tanaka
豊 田中
Katsuhiko Kondo
勝彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP11041285A priority Critical patent/JP2000241218A/en
Publication of JP2000241218A publication Critical patent/JP2000241218A/en
Publication of JP2000241218A5 publication Critical patent/JP2000241218A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the man-hour for developing a plurality of different-volume flow meters and expand the rangeability. SOLUTION: Low flow-rate ultrasonic flow meters 7, 8, 9 having the same flow cross section are disposed in mutually parallel passages 4, 5, 6. A fluid flowing from an entrance 2 flows in the passages 4, 5, 6 to an outlet 3. Signals from the flow meters 7, 8, 9 enter an electronic arithmetic indicator 10 to compute and indicate the total flow rate. If the test fluid is different from an actually used fluid, the characteristic difference between both fluids may be checked at a small volume of the ultrasonic flow meters, without needing checking at a large volume of a flow meter 1 because of the same characteristics of the ultrasonic flow meters 7, 8, 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流量計に関する。The present invention relates to a flow meter.

【0002】[0002]

【発明が解決しようとする課題】小流量(小容量)から
大流量(大容量)までの各容量毎の流量計をすべて開発
するには全体として多大な開発工数が必要である。
The development of a flow meter for each capacity from a small flow rate (small capacity) to a large flow rate (large capacity) requires a large number of development steps as a whole.

【0003】特に水以外の流体の流量計測に用いる流量
計の場合、試験流体と油、薬液、燃焼ガス等の実使用流
体が異なるので、試験流体と実使用流体での流量計の特
性差を検証することが必要で、それは大容量になるにつ
れてより困難となる。
Particularly, in the case of a flow meter used for measuring the flow rate of a fluid other than water, since the test fluid and the actual working fluid such as oil, chemical solution, combustion gas and the like are different, the characteristic difference between the test fluid and the actual working fluid may be different. Verification is required, which becomes more difficult as the capacity increases.

【0004】そこで、本発明は異なる容量の複数種類の
流量計を少ない工数で開発でき、かつ前記大容量におけ
る特性差の検証の困難を解消できる流量計を提供するこ
とを目的とする。
Accordingly, an object of the present invention is to provide a flow meter capable of developing a plurality of types of flow meters having different capacities with a small number of man-hours and eliminating the difficulty in verifying the characteristic difference in the large capacity.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、計測流体の流入部と流出部の間
に連通し互いに並列に接続された複数の流路と、これ等
複数の流路の各流路にそれぞれ設けた超音波流量計と、
該流量計の信号を受けて流量信号を表示する電子電算表
示部とを具備したことを特徴とする流量計である。
In order to achieve the above object, according to the present invention, a plurality of flow paths which are connected in parallel with each other and communicate between an inflow portion and an outflow portion of a measurement fluid are provided. An ultrasonic flow meter provided in each of the plurality of flow paths, and the like,
An electronic computer display unit for receiving a signal from the flow meter and displaying a flow signal.

【0006】そして、請求項2の発明は、請求項1の流
量計において、前記複数の流路のうち、1つを除く他の
流路にそれぞれ開閉弁を配設し、該開閉弁を電子演算表
示部の計測流量に応じて開閉することを特徴とするもの
である。
According to a second aspect of the present invention, in the flow meter of the first aspect, an on-off valve is provided in each of the plurality of flow paths except one of the plurality of flow paths, and the on-off valve is electrically operated. It opens and closes according to the measured flow rate of the calculation display unit.

【0007】[0007]

【発明の実施の形態】次に本発明の好ましい実施の形態
を図面の実施例に基いて説明する。 〔実施例1〕図1〜図3において、流量計1の流体流入
部2と流体流出部3の間に、互いに並列に接続された3
つの流路4,5,6が連通し、各流路4,5,6にそれ
ぞれ超音波流量計7,8,9が配設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described with reference to the drawings. [Embodiment 1] In FIG. 1 to FIG. 3, three parallel-connected three parts are connected between a fluid inlet part 2 and a fluid outlet part 3 of a flow meter 1.
The two flow paths 4, 5, 6 communicate with each other, and the ultrasonic flow meters 7, 8, 9 are disposed in the respective flow paths 4, 5, 6, respectively.

【0008】電子演算表示部10は各超音波流量計7,
8,9からの信号を受けて、三つの超音波流量計で計測
した全体の合計流量を演算してその流量信号を表示す
る。各超音波流量計が同じ口径で同じ容量であって、そ
れぞれ測定下限流速から決まる微少の下限流量Qaか
ら、測定上限流速から決まる上限の最大流速QA までが
測定可能であると、流量計1の下限流量は3Qa、上限
流量は3QA となる。
[0008] The electronic operation and display unit 10 displays the ultrasonic flow meters 7,
Receiving the signals from 8 and 9, the total flow rate measured by the three ultrasonic flow meters is calculated and the flow rate signal is displayed. A same capacity each ultrasonic flow meter in the same caliber, the small lower limit flow rate Qa determined from the respective detection limit flow rate, the maximum of the flow rate Q A of the upper limit determined by the measurement upper limit flow rate can be measured, the flow meter 1 the lower limit flow rate 3Qa, the upper limit flow rate becomes 3Q a.

【0009】従って、流量計1の1/3の容量の各超音
波流量計7,8,9を用いることで済むため、試験流体
と実使用流体での特性差の検証は流量計1の1/3の容
量の超音波流量計7,8,9について行えば良く、しか
も各超音波流量計7,8,9は同じ容量の小形の超音波
流量計であるため、検証のための装置が小形でよく、新
しく大容量の検査設備を設ける費用も要らない。
Therefore, since it is sufficient to use the ultrasonic flowmeters 7, 8, and 9 having a capacity of 1/3 of that of the flowmeter 1, the characteristic difference between the test fluid and the actual use fluid must be verified by using one of the flowmeters 1. The ultrasonic flow meters 7, 8, and 9 having a capacity of / 3 may be performed. Further, since each of the ultrasonic flow meters 7, 8, and 9 is a small ultrasonic flow meter having the same capacity, an apparatus for verification is required. It can be small and does not require the expense of installing new large-capacity inspection equipment.

【0010】また、この実施例1では、流量計1の最大
流量が3QA であるが、流量計として、例えば6個の超
音波流量計7を並列に配設するように流量計のケーシン
グを大形にして6個の超音波流量計を並設設置すれば、
実施例1の2倍の計測容量の流量計が得られる。
[0010] In Example 1, the maximum flow rate of the flow meter 1 is 3Q A, as a flow meter, the casing of the flow meter so disposed e.g. six ultrasonic flowmeter 7 in parallel If six ultrasonic flow meters are installed side by side in a large size,
A flow meter having twice the measurement capacity of the first embodiment can be obtained.

【0011】そしてこの場合、試験流体と実使用流体と
の特性差の検証は1つの小形超音波流量計7だけについ
て行えばよいので、大形の大容量の検査装置を要しな
い。従って、最大流量が3QA の実施例1のものも、6
A のものも、1つの超音波流量計の計測範囲Qa〜Q
A を利用して、3(Qa〜QA )とか6(Qa〜Q A
として活用できるため、容量の異なる何種類かの流量計
を少ない工数の短期間で開発できる。
In this case, the test fluid and the actual fluid are used.
Verification of the difference in characteristics of only one small ultrasonic flowmeter 7
Do not need a large, large-capacity inspection device.
No. Therefore, the maximum flow rate is 3QAExample 1 of Example 6
QAAlso the measurement range Qa-Q of one ultrasonic flow meter
AAnd use 3 (Qa ~ QA) Or 6 (Qa-Q A)
Several types of flow meters with different capacities
Can be developed in a short time with a small number of man-hours.

【0012】〔実施例2〕図4〜図7に示す実施例2
は、前記図1〜図3の実施例1と比較して、流量5と6
にそれぞれ超音波流量計8,9と直列に、かつ各超音波
流量計の上流側に開閉弁(双方向遮断弁)11,12を
挿入接続した点が異なる。この開閉弁11,12は電子
演算表示部10で演算した合計流量に応じて電子演算表
示部10により開閉制御される。
[Embodiment 2] Embodiment 2 shown in FIGS.
Are compared with the first embodiment shown in FIGS.
The difference is that on-off valves (bidirectional shutoff valves) 11 and 12 are inserted and connected in series with the ultrasonic flow meters 8 and 9, respectively, and upstream of each ultrasonic flow meter. The on / off valves 11 and 12 are controlled to be opened and closed by the electronic operation display unit 10 according to the total flow rate calculated by the electronic operation display unit 10.

【0013】即ち、流量がQA までは両開閉弁11,1
2が閉じて超音波流量計7だけで計測する。流量がQA
から2QA までは開閉弁11を開き、開閉弁12を閉じ
て超音波流量計7と8で計測する。そして、流量が2Q
A から3QA までは両開閉弁11,12を開いて3つの
超音波流量計7,8及び9で計測する。こうして下限流
量Qaから上限流量3QA までを流量計1で計測でき、
そのレンジャビリティはQa〜3QA となり、1つの超
音波流量計7,8又は9のレンジャビリティQa〜QA
よりも広い計測範囲が得られる。
[0013] In other words, the flow rate is up to Q A both opening and closing valve 11, 1
2 is closed and measurement is performed only by the ultrasonic flow meter 7. Flow rate is Q A
From to 2Q A opens the on-off valve 11, closes the on-off valve 12 measured by the ultrasonic flow meter 7 and 8. And the flow rate is 2Q
From A to 3Q A is measured by the three ultrasonic flowmeter 7, 8 and 9 by opening the two closing valves 11 and 12. Thus can be measured from the lower limit flow rate Qa to the upper limit flow rate 3Q A in flowmeter 1,
Its range catcher capability is Qa~3Q A, and the one ultrasonic flowmeter 7, 8 or 9 range catcher capability Qa~Q A of
A wider measurement range can be obtained.

【0014】〔その他の実施例〕上記実施例2では、超
音波流量計7,8,9は同一口径の小形のものを使用し
たが必ずしも同一口径と限ることはなく、例えば超音波
流量計7に小口径の小容量のものを用い、他の2つの超
音波流量計8と9にそれより口径の大きい容量のものを
用いてもよい。このとき、超音波流量計8と9の下限流
量をQb>Qaとし、上限流量をQB >QA とすると、
流量Qa〜QA では両開閉弁11,12を閉じ、流量Q
A 〜(QA +QB )では開閉弁11を開いて開閉弁12
を閉じ、また流量(QA +QB )〜(QA +2QB )で
は両開閉弁11と12を開いて計測する。そして、レン
ジャビリティはQa〜(QA +2QB )とより大きな値
になる。
[Other Embodiments] In the second embodiment, the ultrasonic flowmeters 7, 8, and 9 are of a small size having the same diameter, but are not necessarily limited to the same diameter. May be used, and the other two ultrasonic flowmeters 8 and 9 may have larger diameters. In this case, the lower limit flow rate of the ultrasonic flow meter 8 and 9 and Qb> Qa, when the upper limit flow rate to Q B> Q A,
In flow Qa~Q A close both opening and closing valves 11 and 12, the flow rate Q
A ~ (Q A + Q B ) the open close valve 11 opens and closes valve 12
Closed and the flow rate (Q A + Q B) is measured by opening the ~ (Q A + 2Q B) in both the opening and closing valves 11 and 12. The range catcher capability becomes larger value as Qa~ (Q A + 2Q B) .

【0015】そして、開閉弁によって制御するようにし
た計測範囲がQb〜QB の超音波流量計を2つだけでな
く更に多い数のn個まで増加すれば、レンジャビリティ
はQa〜(QA +nQB )まで拡大できる。これらの場
合、超音波流量計は計測範囲がQa〜QA の超音波流量
計7と計測範囲がQb〜QB の超音波流量計8,9…の
2種のみであるので、最大流量がQA +nQB という大
流量の流量計について、最大流量での前記検証を行う必
要はない。
[0015] Then, when increasing the measurement range so as to control the opening and closing valve further to a large number of n as well two ultrasonic flowmeter Qb~Q B, range catcher capability is Qa~ (Q A + NQ B ). In these cases, since the ultrasonic flow meter 7 and the measurement range of the ultrasonic flow meter measurement range Qa~Q A is only ultrasonic flowmeter 8,9 ... two of Qb~Q B, the maximum flow rate For a flow meter with a large flow rate of Q A + nQ B , it is not necessary to perform the verification at the maximum flow rate.

【0016】なお、上記実施例で、全体の流れを開閉す
る機構を付加すれば、セキュリティ付ガスメータとか、
前金メータとして水道メータ等に応用できる。
In the above embodiment, if a mechanism for opening and closing the entire flow is added, a gas meter with security,
It can be applied to water meters and the like as advance payment meters.

【0017】[0017]

【発明の効果】本発明の流量計は上述のように構成され
ているので、各種容量の流量計を比較的小形の超音波流
量計を複数個組み合わせて構成できるため、開発に工数
がかからず開発期間を短縮できる。
Since the flow meter of the present invention is constructed as described above, a flow meter of various capacities can be constructed by combining a plurality of relatively small ultrasonic flow meters, so that the man-hour for development is reduced. Development time can be shortened.

【0018】また、大容量の流量計の開発に当たり、そ
の流量計の容量に対応する大容量の試験装置を構築する
必要がなく、流量計を構成する小流量の超音波流量計の
流量(容量)に応じた小容量の試験装置で間に合わせる
ことができる。したがって、コスト低減につながる。
Further, in developing a large-capacity flow meter, there is no need to construct a large-capacity test device corresponding to the capacity of the flow meter. ) Can be made in time with a small-capacity test device. Therefore, it leads to cost reduction.

【0019】更にまた、請求項2の発明では、レンジャ
ビリティを拡大できる利点がある。また、超音波流量計
を組み合わせることで流量計が小形化でき、しかも上流
と下流の直管部が不要になる。
Further, according to the invention of claim 2, there is an advantage that rangeability can be expanded. Further, by combining the ultrasonic flowmeter, the flowmeter can be downsized, and the upstream and downstream straight pipes are not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で、(a)は流体回路の接続
図、(b)は流量計の縦断面図。
FIG. 1A is a connection diagram of a fluid circuit, and FIG. 1B is a longitudinal sectional view of a flow meter in an embodiment of the present invention.

【図2】図1の実施例の流量計の正面図である。FIG. 2 is a front view of the flow meter of the embodiment of FIG.

【図3】図1の実施例の流量計の横断面図である。FIG. 3 is a cross-sectional view of the flow meter of the embodiment of FIG.

【図4】本発明の他の実施例の流体回路図である。FIG. 4 is a fluid circuit diagram of another embodiment of the present invention.

【図5】図4の実施例の流量計の縦断面図である。5 is a longitudinal sectional view of the flow meter of the embodiment of FIG.

【図6】図4の実施例の流量計の正面図である。FIG. 6 is a front view of the flow meter of the embodiment of FIG.

【図7】図4の実施例の流量計の横断面図である。FIG. 7 is a cross-sectional view of the flow meter of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 流量計 2 流入部 3 流出部 4,5,6 流路 7,8,9 超音波流量計 10 電子演算表示部 11,12 開閉弁(双方向遮断弁) DESCRIPTION OF SYMBOLS 1 Flowmeter 2 Inflow part 3 Outflow part 4,5,6 Flow path 7,8,9 Ultrasonic flowmeter 10 Electronic calculation display part 11,12 On-off valve (bidirectional shutoff valve)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 計測流体の流入部と流出部の間に連通し
互いに並列に接続された複数の流路と、これ等複数の流
路の各流路にそれぞれ設けた超音波流量計と、該流量計
の信号を受けて流量信号を表示する電子電算表示部とを
具備したことを特徴とする流量計。
A plurality of flow paths which are connected in parallel with each other and communicate between an inflow portion and an outflow portion of a measurement fluid; and an ultrasonic flowmeter provided in each of the plurality of flow channels; An electronic computer display unit for receiving a signal from the flow meter and displaying a flow signal.
【請求項2】 前記複数の流路のうち、1つを除く他の
流路にそれぞれ開閉弁を配設し、該開閉弁を電子演算表
示部の計測流量に応じて開閉することを特徴とする請求
項1記載の流量計。
2. An on-off valve is provided in each of the plurality of flow paths except one of the plurality of flow paths, and the on-off valve is opened and closed according to a flow rate measured by an electronic calculation display unit. The flowmeter according to claim 1, wherein
JP11041285A 1999-02-19 1999-02-19 Flow meter Pending JP2000241218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041285A JP2000241218A (en) 1999-02-19 1999-02-19 Flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041285A JP2000241218A (en) 1999-02-19 1999-02-19 Flow meter

Publications (2)

Publication Number Publication Date
JP2000241218A true JP2000241218A (en) 2000-09-08
JP2000241218A5 JP2000241218A5 (en) 2006-07-27

Family

ID=12604187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041285A Pending JP2000241218A (en) 1999-02-19 1999-02-19 Flow meter

Country Status (1)

Country Link
JP (1) JP2000241218A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122449A (en) * 2000-10-17 2002-04-26 Aichi Tokei Denki Co Ltd Gas flowmeter
JP2012033188A (en) * 2011-10-03 2012-02-16 Tohoku Univ Variable flow rate range type flow control device
JP2014211375A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Flow rate measurement device
JP2014215211A (en) * 2013-04-26 2014-11-17 パナソニック株式会社 Flow rate measurement device
RU2579636C2 (en) * 2011-09-23 2016-04-10 ДЭНИЭЛ МЕЖЕМЕНТ энд КОНТРОЛ, ИНК. System and method to combine flow meters located next to each other
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods
CN111765932A (en) * 2020-05-19 2020-10-13 临沂市东方仪表有限公司 Ultrasonic water meter jam-proof device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122449A (en) * 2000-10-17 2002-04-26 Aichi Tokei Denki Co Ltd Gas flowmeter
JP4691236B2 (en) * 2000-10-17 2011-06-01 愛知時計電機株式会社 Gas flow meter
RU2579636C2 (en) * 2011-09-23 2016-04-10 ДЭНИЭЛ МЕЖЕМЕНТ энд КОНТРОЛ, ИНК. System and method to combine flow meters located next to each other
US9316517B2 (en) 2011-09-23 2016-04-19 Daniel Measurement And Control, Inc. System and method for combining co-located flowmeters
JP2012033188A (en) * 2011-10-03 2012-02-16 Tohoku Univ Variable flow rate range type flow control device
JP2014211375A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Flow rate measurement device
JP2014215211A (en) * 2013-04-26 2014-11-17 パナソニック株式会社 Flow rate measurement device
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods
CN111765932A (en) * 2020-05-19 2020-10-13 临沂市东方仪表有限公司 Ultrasonic water meter jam-proof device

Similar Documents

Publication Publication Date Title
US8136414B2 (en) Flow metering
EP2869038B1 (en) Fluid measurement device
JP4591249B2 (en) Flowmeter
US20030094052A1 (en) Dual function flow conditioner and check meter
RU2003137806A (en) DEVICE AND METHOD FOR CHECKING THE FLOW METER
US8448525B2 (en) Differential pressure based flow measurement
EP0208045A2 (en) Method for determining the accuracy of a gas measurement instrument
JPH0961284A (en) Pipe leakage monitor
JP2000241218A (en) Flow meter
JP2004003647A (en) Ball valve having flow gage incorporated directly in ball
KR101129659B1 (en) Flowmeter check apparatus having portable checking device for flowmeter and method to check flow measurement system using the same
JPS59184832A (en) Differential pressure measuring device
JP2008082799A (en) Flow measuring instrument, flow measuring system, and program for flow measuring instrument
JP3335688B2 (en) Flowmeter
US20110252893A1 (en) Device for measuring rates in individual phases of a multiphase flow
JP3421985B2 (en) Gas leak detection device
JPH10221150A (en) Flowmeter
GB2254699A (en) Apparatus for testing gaseous flow meters including an axpansion chamber arrang ed to remove standing waves
Zanker et al. Qualification of a flow conditioning device according to the new API 14.3 procedure
EP4166824A1 (en) An improved valve assembly
US20240068853A1 (en) Device for flow and volume measurement and consumption detection in hydrants, hose connections or any type of outlet
JP2000241219A (en) Gas meter
JP6185746B2 (en) Flow measuring device
JP4779198B2 (en) Gas security device
EP4348186A1 (en) Selecting a zero-verification criteria for a zero verification of a vibratory meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217