JP2014215208A - Method and system for predicting intensity of principal motion of earthquake - Google Patents

Method and system for predicting intensity of principal motion of earthquake Download PDF

Info

Publication number
JP2014215208A
JP2014215208A JP2013093709A JP2013093709A JP2014215208A JP 2014215208 A JP2014215208 A JP 2014215208A JP 2013093709 A JP2013093709 A JP 2013093709A JP 2013093709 A JP2013093709 A JP 2013093709A JP 2014215208 A JP2014215208 A JP 2014215208A
Authority
JP
Japan
Prior art keywords
wave
waveform
earthquake
time
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093709A
Other languages
Japanese (ja)
Other versions
JP6101950B2 (en
Inventor
恒二 廣石
Tsuneji Hiroishi
恒二 廣石
高木 政美
Masami Takagi
政美 高木
泰生 内山
Yasuo Uchiyama
泰生 内山
山本 優
Masaru Yamamoto
山本  優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2013093709A priority Critical patent/JP6101950B2/en
Publication of JP2014215208A publication Critical patent/JP2014215208A/en
Application granted granted Critical
Publication of JP6101950B2 publication Critical patent/JP6101950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and system for predicting intensity of principal motion of an earthquake, capable of predicting the intensity of S-waves at high accuracy even in a case of an earthquake having various P-wave arrival forms by changing prediction expressions according to time course of the P-waves.SOLUTION: The prediction method of the intensity of principal seismic motion includes: preliminarily, calculating a relational expression of a maximum value of observation waveforms of P-waves and a maximum value of observation waveforms of S-waves till an elapsed time on a lapse ratio (an elapsed time from a P-wave arrival detection time to a prediction time/a duration time of P-waves) of a plurality of P-waves at respective earthquake measurement sites in a plurality of pieces of earthquake data occurring in the past; after an on-site seismometer detects an arrival of P-waves, predicting duration of the P-waves and then continuously measuring the P-waves; and predicting the intensity of S-waves to be arrived from the maximum value of the observation waveforms of the observed P-waves sequentially observed till reaching the lapse ratio in the plurality of lapse ratios of the P-waves and the relational expression.

Description

本発明は、地震発生時に、現地地震計によって観測された初期微動の情報から主要動の強さを推定するための予測方法および予測システムに関するものである。   The present invention relates to a prediction method and a prediction system for estimating the strength of main motion from information on initial microtremors observed by a local seismometer when an earthquake occurs.

周知のように、地震動は、図9に示すように、大別して初期微動(以下、P波と略す。)と主要動(以下、S波と略す。)に分類することができる。そして、地震による被害は、その殆どがS波による地震動によって引き起こされるものである。   As is well known, as shown in FIG. 9, seismic motion can be roughly classified into initial fine motion (hereinafter abbreviated as P wave) and main motion (hereinafter abbreviated as S wave). And most of the damage caused by earthquakes is caused by earthquake motion caused by S waves.

一方、S波は、P波よりも伝搬速度が遅いことから、地震発生時には、先ずP波の到達が観測され、一定時間が経過した後にS波が到達する。したがって、地震発生後、早期に生産能力を回復することが求められる工場などの生産設備においては、地震が発生した際に、P波の情報から、後に到達するS波の強さの大小を判別し、当該S波が到達した時点で既に機器の緊急停止の要否判定を終えていることが望ましい。   On the other hand, since the propagation speed of the S wave is slower than that of the P wave, the arrival of the P wave is first observed when an earthquake occurs, and the S wave arrives after a certain period of time has elapsed. Therefore, in a production facility such as a factory that is required to recover its production capacity early after an earthquake occurs, the magnitude of the intensity of the S wave that arrives later is determined from the P wave information when the earthquake occurs. However, it is desirable that the necessity determination of the emergency stop of the device has already been completed when the S wave arrives.

そこで、例えば下記特許文献1においては、P波の加速度最大値を用いて、S波の速度最大値を予測する方法が提案されており、下記特許文献2においては、P波の情報を用いて、S波の強さを推定する警報システムが提案されている。   Thus, for example, in Patent Document 1 below, a method for predicting the maximum speed value of S waves using the maximum acceleration value of P waves is proposed, and in Patent Document 2 below, information on P waves is used. An alarm system for estimating the intensity of the S wave has been proposed.

特開2010−164325号公報JP 2010-164325 A 特開2009−32141号公報JP 2009-32141 A 松村正三、岡田義光、堀貞喜:地震前兆解析システムにおける地震データ(高速採取データ)の処理、国立防災科学技術センター研究報告、第41号、pp.44−64、1988Shozo Matsumura, Yoshimitsu Okada, Sadayoshi Hori: Processing of earthquake data (high-speed sampling data) in the earthquake precursor analysis system, National Disaster Prevention Science and Technology Center Research Report, No. 41, pp. 44-64, 1988

しかしながら、これらの従来技術は、地震発生後、予め設定された数秒間におけるP波の波形情報に基づいて予測を行うものであるために、特に震源が遠方の地震のように、P波の地震波形が数十秒かけて成長するような地震に対しては、当該P波の強さが充分に大きくなりきらない時点で予測を行うことになり、この結果やがて到達するS波の強さを過小評価する傾向があった。   However, since these conventional technologies perform prediction based on waveform information of a P wave for a predetermined number of seconds after the occurrence of an earthquake, an earthquake of a P wave, particularly an earthquake with an epicenter far away. For earthquakes in which the waveform grows over several tens of seconds, prediction will be made when the intensity of the P wave does not become sufficiently large, and as a result, the intensity of the S wave that will eventually arrive is determined. There was a tendency to underestimate.

本発明は、上記事情に鑑みてなされたものであり、P波の時間経過に応じて予測式を変化させることにより、様々なP波の到達形態の地震に対しても高い精度でS波の強さ(最大加速度や最大速度)を予測することが可能になる地震の主要動強さ(最大加速度や最大速度)の予測方法および予測システムを提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and by changing the prediction formula according to the passage of time of the P wave, the S wave of the S wave can be obtained with high accuracy even for earthquakes of various P wave arrival forms. It is an object of the present invention to provide a prediction method and a prediction system for the main dynamic strength (maximum acceleration and maximum velocity) of an earthquake that can predict the strength (maximum acceleration and maximum velocity).

上記課題を解決するため、請求項1に記載の発明は、予測の対象となる現地で計測された地震のP波の観測波形から、上記現地に到達するS波の強さを予測するための地震の主要動強さの予測方法であって、予め、過去に発生した複数の地震のデータから、各々の上記地震の計測地点における複数のP波の経過率(P波到達検知時から各々の予測時までの経過時間/P波の継続時間)について、当該経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係式を求めておき、上記現地の地震計がP波の到達を検知した後、上記P波の継続時間を予測し、次いで連続的に上記P波を計測するとともに、当該P波の複数の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値と上記関係式とから到達する上記S波の強さを予測することを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is for predicting the intensity of the S wave reaching the site from the observed waveform of the P wave of the earthquake measured at the site to be predicted. A method for predicting the main dynamic strength of an earthquake, which is based on the data of a plurality of earthquakes that have occurred in the past, and the elapsed rate of a plurality of P waves at each of the earthquake measurement points ( (Elapsed time to prediction time / P wave duration) A relational expression between the maximum value of the observed waveform of the P wave and the maximum value of the observed waveform of the S wave up to the elapsed time of the elapsed rate is obtained, and After the local seismometer detects the arrival of the P wave, it predicts the duration of the P wave, then continuously measures the P wave, and sequentially increases the rate of progress of the P wave. The maximum value of the observed waveform of the P wave observed up to It is characterized in that to predict the strength of the S wave et reach.

また、請求項2に記載の発明に係る地震の主要動の強さの予測システムは、予測の対象となる現地に設置された地震動の波形情報検出手段と、この波形情報検出手段によって計測されたP波の観測波形から到達するS波の強さを予測する予測手段とを備えてなり、上記予測手段は、過去に発生した複数の地震のデータから、各々の上記地震の計測地点における複数のP波の経過率(P波到達検知時から各々の予測時までの経過時間/P波の継続時間)について算出した当該経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係式を格納したデータベースと、上記波形情報検出手段から送られる上記観測波形に基づいてP波の到達を検知してP波の継続時間を予測し、かつ上記波形情報検出手段から連続的に送られる上記P波の観測波形から当該P波の複数の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値とデータベースに格納した上記関係式とから到達する上記S波の強さを予測する波形処理部とを備えていることを特徴とするものである。   According to a second aspect of the present invention, there is provided a system for predicting the intensity of main motion of an earthquake, which is measured by means of waveform information detecting means for seismic motion installed in the field to be predicted and the waveform information detecting means. Prediction means for predicting the intensity of the S wave that arrives from the observed waveform of the P wave, the prediction means from a plurality of earthquake data that occurred in the past, a plurality of at the measurement point of each of the earthquakes The maximum value of the observed waveform of the P wave up to the elapsed time of the elapsed rate calculated for the elapsed rate of the P wave (elapsed time from the time when the P wave arrival was detected until each prediction time / the duration of the P wave) and the S wave Based on the database storing relational expressions with the maximum value of the observed waveform and the observed waveform sent from the waveform information detecting means, the arrival of the P wave is detected to predict the duration of the P wave, and the waveform information Sent continuously from the detection means From the observed waveform of the P wave, at a plurality of elapsed rates of the P wave, the maximum value of the observed waveform of the P wave that is sequentially observed up to the elapsed rate and the relational expression stored in the database are reached. And a waveform processing unit for predicting the strength of the S wave.

さらに、請求項3に記載の発明は、請求項2に記載の発明において、上記波形処理部が、予め上記S波の強さに対する閾値が設定され、上記複数の経過率において予測されたS波の強さが上記閾値を超えた際に、その旨の信号を出力する送信ラインを備えていることを特徴とするものである。   Further, the invention according to claim 3 is the invention according to claim 2, wherein the waveform processing unit sets a threshold value for the intensity of the S wave in advance and is predicted at the plurality of elapsed rates. When the intensity of the signal exceeds the threshold value, a transmission line for outputting a signal to that effect is provided.

なお、本発明においては、初期微動をP波と略称して用い、主要動をS波と略称して用いているため、上記P波継続時間とは、P波到達検知時刻からS波到達時刻までの時間をいう。   In the present invention, the initial fine movement is abbreviated as a P wave and the main movement is abbreviated as an S wave. Therefore, the P wave duration is the S wave arrival time from the P wave arrival detection time. Time until.

請求項1に記載の地震の主要動強さの予測方法および請求項2または3に記載の地震の主要動強さの予測システムにおいては、事前に過去に発生した複数の地震のデータから、各々の上記地震の計測地点における複数のP波の経過率、例えば0.2、0.4、…、1.0について、各経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係式を求めておく。そして、地震発生時に、先ず予測の対象となる現地の波形情報検出手段がP波の到達を検知した後に、上記P波の継続時間を予測し、次いで連続的に上記P波を計測するとともに、当該P波の複数の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値と上記関係式とから到達する上記S波の強さを予測する。   In the method for predicting the main dynamic strength of the earthquake according to claim 1 and the prediction system for the main dynamic strength of the earthquake according to claim 2 or 3, each of the data from a plurality of earthquakes that occurred in the past in advance For the elapsed rates of a plurality of P waves at the earthquake measurement point, for example, 0.2, 0.4,... The relational expression with the maximum value of the observed waveform is obtained in advance. And at the time of earthquake occurrence, after the local waveform information detection means to be predicted first detects the arrival of the P wave, the duration of the P wave is predicted, and then the P wave is continuously measured, In the plurality of elapsed rates of the P wave, the intensity of the S wave that arrives from the maximum value of the observed waveform of the P wave that has been observed up to the elapsed rate and the relational expression are predicted.

このように、P波の時間経過に応じて予測式を変化させることにより、様々なP波の到達形態の地震、例えば震源が遠方の地震のように、P波の地震波形が数十秒かけて成長するような地震に対しても、高い精度でS波の強さを予測することができる。   In this way, by changing the prediction formula according to the passage of time of the P wave, the earthquake waveform of the P wave takes several tens of seconds, such as earthquakes with various P wave arrival forms, for example, earthquakes with far epicenters. Therefore, it is possible to predict the strength of S waves with high accuracy even for earthquakes that grow.

本発明に係るS波の強さの予測システムの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the prediction system of the strength of S wave which concerns on this invention. 図1の波形処理部における処理を示すフローチャートである。It is a flowchart which shows the process in the waveform process part of FIG. (a)は地震計で観測された加速度波形を示すグラフであり、(b)は上記加速度波形から算出されたSTA/LTAの値を示すグラフである。(A) is a graph which shows the acceleration waveform observed with the seismometer, (b) is a graph which shows the value of STA / LTA calculated from the said acceleration waveform. 図1の波形処理部におけるS波到達時刻の予測方法を説明するための図で、(a)は地震計で観測された加速度波形を示すグラフ、(b)は上記加速度波形から算出されたSTA/LTAの値の最大値からS波の到達時刻を予測するグラフ、(c)は新たに検出したSTA/LTAの値の最大値からS波の到達時刻予測を更新した状態を示すグラフである。FIG. 2 is a diagram for explaining a method for predicting the arrival time of an S wave in the waveform processing unit of FIG. 1, wherein (a) is a graph showing an acceleration waveform observed by a seismometer, and (b) is a STA calculated from the acceleration waveform. The graph which estimates the arrival time of S wave from the maximum value of / LTA value, (c) is a graph which shows the state which updated the arrival time prediction of S wave from the maximum value of the newly detected STA / LTA value. . 図1の波形処理部におけるS波の強さの予測方法を説明するために図で、(a)は予測されたS波到達時刻を示すグラフ、(b)はP波の経過率について当該経過率の経過時間までのP波の観測波形の最大値を求める状態を示すグラフ、(c)は上記最大値からS波の最大値を予測する状態を示すグラフである。1A and 1B are diagrams for explaining a method of predicting the intensity of S waves in the waveform processing unit of FIG. 1, in which FIG. 1A is a graph showing predicted S wave arrival times, and FIG. The graph which shows the state which calculates | requires the maximum value of the observation waveform of P wave until the elapsed time of a rate, (c) is a graph which shows the state which estimates the maximum value of S wave from the said maximum value. 図1のデータベースに格納したデータの元となる過去の地震を示す図表である。It is a chart which shows the past earthquake used as the origin of the data stored in the database of FIG. 図6の過去の地震データから得られたP波の継続時間の予測に用いる関係式を示すグラフである。It is a graph which shows the relational expression used for prediction of the duration of the P wave obtained from the past earthquake data of FIG. 図6の過去の地震データから得られた複数のP波の経過率における各経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値およびこれら最大値から算出された関係式を示すグラフである。Calculated from the maximum value of the observed waveform of the P wave and the maximum value of the observed waveform of the S wave up to the elapsed time of each elapsed rate in the elapsed rates of the plurality of P waves obtained from the past earthquake data in FIG. It is a graph which shows the relational expression made. 現地に到達する一般的な地震動の変化を示すグラフである。It is a graph which shows the change of the general ground motion which reaches the field.

以下、図1〜図8に基づいて、本発明に係る地震の主要動強さ(最大加速度や最大速度)の予測方法および予測システムの一実施形態について説明する。
図1は、上記予測システムの概略構成を示すもので、この予測システムは、予測の対象となる現地に設置された地震動の波形情報検出部(波形情報検出手段)1と、この波形情報検出部1によって計測されたP波の観測波形から、後に到達するS波の強さ(最大加速度や最大速度)を予測するパーソナルコンピュータ(予測手段、以下PCと略す。)2と、このPCからS波の最大値が閾値を超えた際に制御信号を関係機器類等に送信する送信ライン3とから概略構成されたものである。
Hereinafter, based on FIGS. 1-8, one Embodiment of the prediction method and prediction system of the main dynamic strength (maximum acceleration and maximum speed) of the earthquake which concern on this invention is described.
FIG. 1 shows a schematic configuration of the above prediction system. This prediction system includes a seismic motion waveform information detection unit (waveform information detection means) 1 installed on a site to be predicted, and the waveform information detection unit. 1. A personal computer (prediction means, hereinafter abbreviated as PC) 2 for predicting the intensity (maximum acceleration or maximum speed) of the S wave that arrives later from the observed waveform of the P wave measured by 1, and the S wave from this PC And a transmission line 3 that transmits a control signal to related devices and the like when the maximum value of exceeds a threshold value.

ここで、本実施形態においては、波形情報検出部1として1または複数の地震計が用いられており、当該地震計によって観測された時刻歴波形がPC2の波形処理部4に送信されるようになっている。
このPC2は、全体を統括制御するCPU(主制御部)に、入出力制御部を介して実行プログラムを記録したハードディスク等の記憶装置、キーボードやマウス等の入力装置が接続されることによって上記波形処理部4が構成されるとともに、当該波形処理部4に入出力データを表示するモニタおよび予測結果などを記録する記憶装置(出力部)5、データベース6を格納した記憶装置および送信ライン3が接続されたものである。
Here, in the present embodiment, one or a plurality of seismometers are used as the waveform information detection unit 1, and the time history waveform observed by the seismometer is transmitted to the waveform processing unit 4 of the PC 2. It has become.
The PC 2 has the above-described waveform when a storage device such as a hard disk and an input device such as a keyboard and a mouse, which record an execution program, are connected to a CPU (main control unit) that performs overall control. The processing unit 4 is configured, and the waveform processing unit 4 is connected with a monitor for displaying input / output data and a storage device (output unit) 5 for recording prediction results, a storage device for storing the database 6, and a transmission line 3. It has been done.

そして、データベース6内には、図6に示す過去の大地震のデータから得られたS波の到達時刻を予測するための第1の関係式と、各々の上記大地震の計測地点でP波到達検知後における複数のP波の経過率(P波到達検知時から各々の予測時までの経過時間/P波の継続時間)について当該経過率の経過時間までのP波の観測波形の最大値とS波到達後のS波の観測波形の最大値との第2の関係式が格納されている。なお、P波到達検知時とは、本実施形態においては、各々の地震の計測地点におけるP波の観測波形からSTA/LTAを算出し、初めて閾値を超えた時刻とした。   In the database 6, the first relational expression for predicting the arrival time of the S wave obtained from the data of the past large earthquake shown in FIG. The maximum value of the observed waveform of the P wave up to the elapsed time of the elapsed rate with respect to the elapsed rate of the plurality of P waves after the arrival detection (the elapsed time from the time when the P wave was detected until each prediction time / the duration of the P wave) And a second relational expression between the maximum value of the observed waveform of the S wave after the arrival of the S wave. In this embodiment, the P wave arrival detection time is calculated as STA / LTA from the observed waveform of the P wave at each earthquake measurement point, and the time when the threshold value is exceeded for the first time.

ちなみに、図6に示す過去の大地震は、予め過去に発生した複数の地震のデータのうちから、予測の対象となる現地(例えば、振動を嫌う多数の精密機械が設置された工場)において、回避すべき災害をもたらす虞のあるものとして抽出されたものである。具体的には、観測点での加速度最大値、計測震度が一定値以上となるものを用いた。   Incidentally, the past major earthquakes shown in FIG. 6 are predicted in the past (for example, a factory where a large number of precision machines that dislike vibrations are installed) from among a plurality of previously generated earthquake data. It was extracted as something that could cause a disaster to be avoided. Specifically, the maximum acceleration value and the measured seismic intensity at the observation point were over a certain value.

そして、第1の関係式は、図6に示す複数の大地震のデータから、各々の地震の計測地点におけるP波の観測波形からSTA/LTAを算出し、その最大値と当該計測地点における上記P波の継続時間との関係を求めたものである。   The first relational expression calculates the STA / LTA from the observed waveform of the P wave at each earthquake measurement point from the data of a plurality of large earthquakes shown in FIG. The relationship with the duration of the P wave is obtained.

これを具体的に説明すると、先ず前提となるSTA/LTAとは、波形振幅(加速度、速度、変位等)の絶対値の短時間移動平均STAと、長時間移動平均LTAの比である。すなわち、図3(a)に示す地震に対する波形振幅の絶対値のグラフにおいて、STAとLTAとの比を算出して、同様に時間軸で示せば、図3(b)のように表される。図3は、加速度振幅に対して、STAの移動平均間隔を0.1秒、LTAの移動平均間隔を5.0秒とした例である。なお、STA/LTAを用いた技術に関しては、例えば上記非特許文献1において開示されている。本発明は、上記STA/LTAの最大値を、S波到達時刻の予測に使用するものである。   Specifically, the premise STA / LTA is the ratio of the short-time moving average STA of the absolute value of the waveform amplitude (acceleration, velocity, displacement, etc.) and the long-time moving average LTA. That is, in the graph of the absolute value of the waveform amplitude with respect to the earthquake shown in FIG. 3A, if the ratio of STA to LTA is calculated and similarly shown on the time axis, it is expressed as shown in FIG. . FIG. 3 shows an example in which the STA moving average interval is 0.1 seconds and the LTA moving average interval is 5.0 seconds with respect to the acceleration amplitude. The technology using STA / LTA is disclosed in Non-Patent Document 1, for example. In the present invention, the maximum value of the STA / LTA is used for prediction of the arrival time of the S wave.

すなわち、図7は、図6に示した大地震の発生時に観測されたP波の加速度波形についてSTA/LTAを算出し、その最大値と当該計測地点における上記P波の継続時間とをグラフにプロットしたものである。
そして、STA/LTAの最大値PRSLと、P波到達検知時刻からS波到達時刻までの時間であるP波の継続時間dTP(秒)との間には、概略下式で表される関係がある。
dTP=α1log10(PRSL)+β1
ここで、α1、β1は、予測に用いる係数である。
That is, FIG. 7 is a graph showing the STA / LTA for the acceleration waveform of the P wave observed at the occurrence of the large earthquake shown in FIG. 6, and the maximum value and the duration of the P wave at the measurement point. It is a plot.
The maximum value PR SL of STA / LTA and the P wave duration dT P (seconds), which is the time from the P wave arrival detection time to the S wave arrival time, are roughly expressed by the following equation. There is a relationship.
dT P = α 1 log 10 (PR SL ) + β 1
Here, α 1 and β 1 are coefficients used for prediction.

そこで、図7に示す過去の地震観測記録の分析結果から、最小二乗法を用いて係数α1、β1を決定する。図7中実線で示す曲線は、このようにして求めた上記第1の関係式を示すものである。 Therefore, the coefficients α 1 and β 1 are determined from the analysis result of the past earthquake observation record shown in FIG. 7 using the least square method. A curve indicated by a solid line in FIG. 7 indicates the first relational expression thus obtained.

また、第2の関係式は、図6に示す各々の大地震の計測地点における複数のP波の経過率(本実施形態においては、図8に示すように、0.2、0.4、0.6、0.8、1.0、1.2、1.4および1.6)について算出した当該経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係を示すものである(図5参照。)。   Further, the second relational expression is an elapsed rate of a plurality of P waves at each large earthquake measurement point shown in FIG. 6 (in this embodiment, as shown in FIG. 8, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6), the maximum value of the observed waveform of the P wave and the observed waveform of the S wave up to the elapsed time of the elapsed rate The relationship with the maximum value is shown (see FIG. 5).

より具体的には、予測対象であるS波の強さPAeは、P波の到達検知時刻(TP)からP波継続時間に対する上記経過率(P波経過率LP)に至る時刻(T)までの観測波形の最大値PAと、上記経過率LPを以下の式に代入することで推定される。
PAe=10^(α2(LP)*log10(PA)+β2(LP))
P=(T−TP)/(TSe−TP
ここで、α2、β2は予測式で用いる係数であり、P波経過率LPごとに定まる値である。また、TSeは、上記第1の関係式を用いて予測されたS波到達時刻である。
More specifically, the strength of the S wave PA e to be predicted is the time (from the arrival detection time (T P ) of the P wave to the elapsed rate (P wave elapsed rate L P ) with respect to the P wave duration ( It is estimated by substituting the maximum value PA of the observed waveform up to T) and the elapsed rate L P into the following equation.
PA e = 10 ^ (α 2 (L P ) * log 10 (PA) + β 2 (L P ))
L P = (T−T P ) / (T Se −T P )
Here, α 2 and β 2 are coefficients used in the prediction formula, and are values determined for each P wave elapsed rate L P. T Se is the S wave arrival time predicted using the first relational expression.

そして、図8は、図6に示す過去の地震観測記録の分析結果から、各々の経過率について横軸をPA(加速度3成分最大値)とし、縦軸をPAe(主要動の加速度水平成分最大値)とした場合の各P波経過率に対応する時刻までの関係図を示すものであり、この結果から経過率毎に最小二乗法を用いて上記係数α2、β2を決定する。図8中実線で示す曲線は、このようにして求めた上記第2の関係式を示すものである。 FIG. 8 shows the analysis results of the past earthquake observation records shown in FIG. 6, with the horizontal axis PA (maximum acceleration 3 component) and the vertical axis PA e (acceleration horizontal component of main motion) for each elapsed rate. FIG. 6 shows a relationship diagram up to the time corresponding to each P-wave elapsed rate in the case of the maximum value), and the coefficients α 2 and β 2 are determined for each elapsed rate using the least square method. A curve indicated by a solid line in FIG. 8 represents the second relational expression obtained in this way.

次に、図2に基づいて、PC2の波形処理部4における機能とともに、本発明に係る地震のS波強さの予測方法の一実施形態について説明する。
先ず、地震発生後、波形情報検出部1から送られてくる振動の波形情報からP波の到達を検知した時点で、S波の強さの予測を開始する。ここで、P波の到達を検知するには、本実施形態においては、上記波形情報からSTA/LTAを算出し、初めて閾値を超えた場合にP波が到達したものと判断する。
Next, an embodiment of a method for predicting the S wave intensity of an earthquake according to the present invention will be described with reference to FIG. 2 together with the function of the waveform processing unit 4 of the PC 2.
First, after the occurrence of an earthquake, when the arrival of the P wave is detected from the waveform information of the vibration sent from the waveform information detection unit 1, the prediction of the strength of the S wave is started. Here, in order to detect the arrival of the P wave, in this embodiment, STA / LTA is calculated from the waveform information, and it is determined that the P wave has arrived when the threshold value is exceeded for the first time.

その第1段階として、上記P波の波形情報からS波の到達時刻を予測する。先ず、連続的に当該P波の観測波形のSTA/LTAを算出する。
そして、図4(b)に示すように、P波到達検知時刻のSTA/LTAの値と、上記第1の関係式とから、P波の継続時間dTPを算出して、S波の到達時刻TSe(秒)を次式を用いて予測する。
Se=TP+dTP
ここで、TPは、P波到達検知時刻(秒)である。
次いで、図4(c)に示すように、順次得られるSTA/LTAの値から最大値が得られた場合に、さらに当該最大値と上記関係式とからP波の継続時間dTPを更新して、新たなS波の到達時刻TSeを予測する。
As the first stage, the arrival time of the S wave is predicted from the waveform information of the P wave. First, the STA / LTA of the observed waveform of the P wave is calculated continuously.
Then, as shown in FIG. 4 (b), the value of STA / LTA of P-wave arrival detection time, and a said first relationship, to calculate the duration dT P of P-wave arrival S-wave Time T Se (seconds) is predicted using the following equation.
T Se = T P + dT P
Here, T P is the P wave arrival detection time (seconds).
Then, as shown in FIG. 4 (c), when the maximum value is obtained from the values of successively obtained STA / LTA, further updates the duration dT P P wave from the said maximum value and the relationship Thus, a new S wave arrival time T Se is predicted.

ちなみに、仮に図4(c)に示す最大値を検知した後に、より大きな最大値が算出された場合には、再び当該最大値と上記関係式とからP波の継続時間dTPを更新して、新たなS波の到達時刻を予測する工程を繰り返す。
これと併行して、第2段階として、予測されたS波到達時刻TSeおよびP波の到達検知時刻から、現在時刻TまでのP波経過率LP(=(T−TP)/(TSe−TP))を算出する。
Incidentally, if after detecting a maximum value shown in FIG. 4 (c), if it is greater maximum value is calculated, updates the duration dT P P wave from again the maximum value and the relationship The process of predicting the arrival time of a new S wave is repeated.
In parallel with this, as the second stage, the P wave elapsed rate L P (= (T−T P ) / () from the predicted S wave arrival time T Se and the arrival detection time of the P wave to the current time T T Se −T P )) is calculated.

次いで、上記時刻Tまでの観測波形の最大値PAを用いて、当該経過率LPにおける上記第2の関係式から、これから到達するS波の強さPAeを予測する。また、予測されたS波強さPAe等の情報を、モニタ5での表示および記録装置5への出力を行うとともに、上記S波強さPAeが、予め設定されている閾値を超えた時点で、送信ライン3から生産機器等へ制御信号送信先に、例えば当該生産機器類を緊急に停止させる等の制御命令を送信する。 Next, by using the maximum value PA of the observed waveform up to the time T, the intensity S e of the S wave to be reached is predicted from the second relational expression at the elapsed rate L P. Further, information such as the predicted S wave intensity PA e is displayed on the monitor 5 and output to the recording device 5, and the S wave intensity PA e exceeds a preset threshold value. At the time, a control command for urgently stopping the production equipment is transmitted from the transmission line 3 to the production equipment or the like to the control signal transmission destination.

なお、上記実施形態においては、S波の到達時刻およびS波の強さの予測を行うに際して、いずれも入出力として地震動に対する応答加速度を用いた場合についてのみ示したが、本発明はこれに限定されるものではなく、地震動に対する応答速度や計測震度などを用いても、同様の精度で予測が行えるものと考えられる。また、S波の到達時刻の予測についても、上記実施形態において示したものに限らず、例えば緊急地震情報等を利用して予測することもできる。   In the above-described embodiment, when the arrival time of the S wave and the strength of the S wave are predicted, only the case where the response acceleration to the earthquake motion is used as an input / output is shown, but the present invention is not limited to this. It is considered that the prediction can be made with the same accuracy even if the response speed to the ground motion or the measured seismic intensity is used. The prediction of the arrival time of the S wave is not limited to that shown in the above embodiment, and can be predicted using, for example, emergency earthquake information.

以上説明したように、上記構成からなる地震の主要動強さの予測方法および予測システムにおいては、地震発生時に、先ず現地の地震計1がP波の到達を検知した後に、第1の関係式によってS波の到達時刻を予測し、次いで連続的に上記P波を計測するとともに、予測したS波の到達時刻から算出した現在時刻までのP波の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値と上記第2の関係式とから到達するS波の強さを予測している。   As described above, in the method and system for predicting the major dynamic strength of an earthquake having the above-described configuration, the first relational expression is detected after the local seismometer 1 first detects the arrival of the P wave when an earthquake occurs. Is used to predict the arrival time of the S wave, and then continuously measure the P wave, and in the elapsed rate of the P wave from the predicted arrival time of the S wave to the current time, until the elapsed rate is reached. The intensity of the S wave to be reached is predicted from the maximum value of the observed waveform of the P wave observed in the above and the second relational expression.

このため、P波の時間経過に応じてデータベース6に格納されている各経過率における第2の関係式を用いることにより、様々なP波の到達形態の地震、例えば震源が遠方の地震のように、P波の地震波形が数十秒かけて成長するような地震に対しても、高い精度でS波の強さを予測することができる。   For this reason, by using the second relational expression at each elapsed rate stored in the database 6 according to the passage of time of the P wave, various P wave arrival forms such as earthquakes in which the epicenter is far away In addition, it is possible to predict the strength of the S wave with high accuracy even for an earthquake in which the earthquake waveform of the P wave grows over several tens of seconds.

加えて、上記S波の到達時刻を予測するに際して、予め図6および図7に示したように、過去の複数の大地震のデータから、各地震の計測地点におけるP波の観測波形から算出したSTA/LTAの最大値と当該計測地点における上記P波の継続時間との関係式を求めておき、図4(a)〜(c)に示すように、地震発生時に得られたP波の観測波形から連続的にSTA/LTAを算出して、その最大値と上記関係式からS波の到達時刻を予測しているので、簡易な演算処理によって地震発生初期段階にS波の到達時刻を予測することができる。   In addition, when predicting the arrival time of the S wave, as shown in FIG. 6 and FIG. 7 in advance, it was calculated from the observed waveforms of the P wave at each earthquake measurement point from the data of a plurality of past large earthquakes. The relational expression between the maximum value of STA / LTA and the duration of the P wave at the measurement point is obtained, and as shown in FIGS. 4A to 4C, the P wave obtained at the time of the earthquake is observed. Since the STA / LTA is continuously calculated from the waveform and the arrival time of the S wave is predicted from the maximum value and the above relational expression, the arrival time of the S wave is predicted at the initial stage of the earthquake occurrence by simple calculation processing. can do.

しかも、P波を連続的に計測するとともにSTA/LTAを算出して、順次得られるSTA/LTAの最大値と上記関係式とから、P波の継続時間を更新してS波の到達時刻を予測しているために、震源が近距離の地震のみならず、STA/LTAの値の最大値が判別し難い遠距離の地震に対しても、高い精度でS波の到達時刻を予測することができ、この結果最終的に図5に示すS波の強さの予測精度も高めることができる。   Moreover, the P wave is continuously measured and the STA / LTA is calculated, and the S wave arrival time is updated by updating the duration of the P wave from the maximum value of the STA / LTA obtained in succession and the above relational expression. Predicting the arrival time of S waves with high accuracy not only for short-distance earthquakes but also for long-distance earthquakes where the maximum STA / LTA value is difficult to distinguish. As a result, the prediction accuracy of the intensity of the S wave shown in FIG. 5 can be finally improved.

1 波形情報検出部(波形情報検出手段)
2 PC(予測手段)
3 送信ライン
4 波形処理部
6 データベース
1 Waveform information detection unit (waveform information detection means)
2 PC (prediction means)
3 Transmission line 4 Waveform processing unit 6 Database

Claims (3)

予測の対象となる現地で計測された地震のP波の観測波形から、上記現地に到達するS波の強さを予測するための地震の主要動強さの予測方法であって、
予め、過去に発生した複数の地震のデータから、各々の上記地震の計測地点における複数のP波の経過率(P波到達検知時から各々の予測時までの経過時間/P波の継続時間)について、当該経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係式を求めておき、
上記現地の地震計がP波の到達を検知した後、上記P波の継続時間を予測し、次いで連続的に上記P波を計測するとともに、当該P波の複数の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値と上記関係式とから到達する上記S波の強さを予測することを特徴とする地震の主要動強さの予測方法。
A method for predicting the main dynamic strength of an earthquake for predicting the intensity of an S wave reaching the site from the observed waveform of the P wave of the earthquake measured at the site to be predicted,
From the data of multiple earthquakes that occurred in the past in advance, the elapsed rate of multiple P waves at each of the earthquake measurement points (elapsed time from the time when the P wave was detected until each predicted time / P wave duration) , A relational expression between the maximum value of the observed waveform of the P wave and the maximum value of the observed waveform of the S wave until the elapsed time of the elapsed rate is obtained,
After the local seismometer detects the arrival of the P wave, the duration of the P wave is predicted, then the P wave is continuously measured, and the progress is sequentially performed at a plurality of elapsed rates of the P wave. A method for predicting the main dynamic strength of an earthquake, which predicts the intensity of the S wave that arrives from the maximum value of the observed waveform of the P wave observed up to the rate and the relational expression.
予測の対象となる現地に設置された地震動の波形情報検出手段と、この波形情報検出手段によって計測されたP波の観測波形から到達するS波の強さを予測する予測手段とを備えてなり、
上記予測手段は、過去に発生した複数の地震のデータから、各々の上記地震の計測地点における複数のP波の経過率(P波到達検知時から各々の予測時までの経過時間/P波の継続時間)について算出した当該経過率の経過時間までのP波の観測波形の最大値とS波の観測波形の最大値との関係式を格納したデータベースと、上記波形情報検出手段から送られる上記観測波形に基づいてP波の到達を検知してP波の継続時間を予測し、かつ上記波形情報検出手段から連続的に送られる上記P波の観測波形から当該P波の複数の経過率において、順次当該経過率に至るまでに観測されたP波の観測波形の最大値とデータベースに格納した上記関係式とから到達する上記S波の強さを予測する波形処理部とを備えていることを特徴とする地震の主要動の強さの予測システム。
Waveform information detection means for seismic motion installed in the site to be predicted and prediction means for predicting the intensity of the S wave that arrives from the observed waveform of the P wave measured by the waveform information detection means ,
The prediction means is based on the data of a plurality of earthquakes that have occurred in the past, and the elapsed rate of a plurality of P waves at each of the earthquake measurement points (the elapsed time from the time of detection of the arrival of the P wave to the time of each prediction / P wave A database storing a relational expression between the maximum value of the observed waveform of the P wave and the maximum value of the observed waveform of the S wave up to the elapsed time of the elapsed rate calculated for the duration), and the above-mentioned data sent from the waveform information detecting means Based on the observed waveform, the arrival time of the P wave is detected to predict the duration of the P wave, and from the observed waveform of the P wave continuously sent from the waveform information detecting means, at a plurality of elapsed rates of the P wave. And a waveform processing unit for predicting the intensity of the S wave that arrives from the maximum value of the observed waveform of the P wave observed up to the elapsed rate and the relational expression stored in the database. The main of the earthquake characterized by Movement of the strength of the prediction system.
上記波形処理部は、予め上記S波の強さに対する閾値が設定され、上記複数の経過率において予測されたS波の強さが上記閾値を超えた際に、その旨の信号を出力する送信ラインを備えていることを特徴とする請求項2に記載の地震の主要動の強さの予測システム。   The waveform processing unit sets a threshold for the intensity of the S wave in advance, and outputs a signal to that effect when the intensity of the S wave predicted at the plurality of elapsed rates exceeds the threshold. The system according to claim 2, further comprising a line.
JP2013093709A 2013-04-26 2013-04-26 Method and system for predicting major dynamic strength of earthquakes Expired - Fee Related JP6101950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093709A JP6101950B2 (en) 2013-04-26 2013-04-26 Method and system for predicting major dynamic strength of earthquakes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093709A JP6101950B2 (en) 2013-04-26 2013-04-26 Method and system for predicting major dynamic strength of earthquakes

Publications (2)

Publication Number Publication Date
JP2014215208A true JP2014215208A (en) 2014-11-17
JP6101950B2 JP6101950B2 (en) 2017-03-29

Family

ID=51941072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093709A Expired - Fee Related JP6101950B2 (en) 2013-04-26 2013-04-26 Method and system for predicting major dynamic strength of earthquakes

Country Status (1)

Country Link
JP (1) JP6101950B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818309A (en) * 2017-11-02 2018-03-20 中国地震局地壳应力研究所 A kind of on-line automatic extracting method of earthquake motion P ripples based on Analysis signal-to-noise ratio (SNR)
JP2018044784A (en) * 2016-09-12 2018-03-22 株式会社高見沢サイバネティックス Seismometer
KR102003382B1 (en) * 2018-03-23 2019-07-24 동일테크주식회사 seismic motion recording apparatu capable of real time discrimination and early warning and the method for discriminating seismic motion ohereof
WO2021033547A1 (en) * 2019-08-20 2021-02-25 日本電気株式会社 Seismic observation device, seismic observation method, and recording medium
JP7109120B1 (en) 2021-12-06 2022-07-29 株式会社ミエルカ防災 A detection device for detecting seismic motion and a prediction device for predicting the intensity of seismic motion based on the detection results
JP7463187B2 (en) 2020-05-27 2024-04-08 株式会社高見沢サイバネティックス Seismic intensity estimation system and seismic intensity estimation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032141A (en) * 2007-07-30 2009-02-12 Kajima Corp Earthquake early warning system
JP2009175130A (en) * 2007-12-28 2009-08-06 Cygnet Corp Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same
JP2010084843A (en) * 2008-09-30 2010-04-15 Taiyo Nippon Sanso Corp Earthquake signal processing device and earthquake signal processing method
JP2010164325A (en) * 2009-01-13 2010-07-29 Taisei Corp System for predicting seismic vibration
JP2010276536A (en) * 2009-05-29 2010-12-09 A2 Corp Earthquake determination system and method of analyzing earthquake

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032141A (en) * 2007-07-30 2009-02-12 Kajima Corp Earthquake early warning system
JP2009175130A (en) * 2007-12-28 2009-08-06 Cygnet Corp Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same
JP2010084843A (en) * 2008-09-30 2010-04-15 Taiyo Nippon Sanso Corp Earthquake signal processing device and earthquake signal processing method
JP2010164325A (en) * 2009-01-13 2010-07-29 Taisei Corp System for predicting seismic vibration
JP2010276536A (en) * 2009-05-29 2010-12-09 A2 Corp Earthquake determination system and method of analyzing earthquake

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044784A (en) * 2016-09-12 2018-03-22 株式会社高見沢サイバネティックス Seismometer
CN107818309A (en) * 2017-11-02 2018-03-20 中国地震局地壳应力研究所 A kind of on-line automatic extracting method of earthquake motion P ripples based on Analysis signal-to-noise ratio (SNR)
CN107818309B (en) * 2017-11-02 2019-11-12 中国地震局地壳应力研究所 A kind of on-line automatic extracting method of earthquake motion P wave based on Analysis signal-to-noise ratio (SNR)
KR102003382B1 (en) * 2018-03-23 2019-07-24 동일테크주식회사 seismic motion recording apparatu capable of real time discrimination and early warning and the method for discriminating seismic motion ohereof
WO2021033547A1 (en) * 2019-08-20 2021-02-25 日本電気株式会社 Seismic observation device, seismic observation method, and recording medium
JPWO2021033547A1 (en) * 2019-08-20 2021-02-25
JP7259969B2 (en) 2019-08-20 2023-04-18 日本電気株式会社 Seismic observation device, seismic observation method, program, and configuration program
TWI801749B (en) * 2019-08-20 2023-05-11 日商日本電氣股份有限公司 Earthquake observation device, earthquake observation method, and recording medium
US11867858B2 (en) 2019-08-20 2024-01-09 Nec Corporation Seismic observation device, seismic observation method, and recording medium
JP7463187B2 (en) 2020-05-27 2024-04-08 株式会社高見沢サイバネティックス Seismic intensity estimation system and seismic intensity estimation method
JP7109120B1 (en) 2021-12-06 2022-07-29 株式会社ミエルカ防災 A detection device for detecting seismic motion and a prediction device for predicting the intensity of seismic motion based on the detection results
JP2023083806A (en) * 2021-12-06 2023-06-16 株式会社ミエルカ防災 Detector for detecting seismic motion and prediction device for predicting intensity of seismic motion based on detection result

Also Published As

Publication number Publication date
JP6101950B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6101950B2 (en) Method and system for predicting major dynamic strength of earthquakes
JP2014169960A (en) Method of predicting arrival time of principal shock of earthquake
JP6291648B2 (en) Method and system for determining the arrival of major earthquake motions
Chen et al. The Earthworm based earthquake alarm reporting system in Taiwan
KR102044041B1 (en) Apparatus for measuring earthquake intensity and method for the same
CN106501848B (en) Recessive fault advanced geophysical prospecting method in tunneling process
Mărmureanu et al. Advanced real-time acquisition of the Vrancea earthquake early warning system
JP2007198813A (en) Seismograph
JP6429042B2 (en) Local earthquake early warning system and related method for automatic calibration of ground characteristics
JP5015970B2 (en) Earthquake motion prediction system
Cuéllar et al. A fast earthquake early warning algorithm based on the first 3 s of the P‐wave coda
JP5126143B2 (en) Earthquake motion prediction system
JP4506625B2 (en) Earthquake motion prediction system using real-time earthquake information
US20200005036A1 (en) Time-space de-noising for distributed sensors
Chen et al. Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan.
Bell et al. Volcanic eruptions, real-time forecasting of
Carpinteri et al. The Sacred Mountain of Varallo in Italy: Seismic risk assessment by Acoustic Emission and structural numerical models
KR102196534B1 (en) System and Method for Monitoring Realtime Ground Motion and Producing Shake Map using MEMS Network
Viegas et al. Mapping cave front growth utilising the collective behaviour of seismicity and velocity fields
KR101386255B1 (en) Apparatus for measuring earthquake magnitude and distance and method for measuring the same
JP5615672B2 (en) Elevator earthquake outage prediction system
JP5791543B2 (en) Earthquake motion prediction system
US10042062B2 (en) Earthquake prediction device
Gentile et al. Structural health monitoring of a historic masonry tower
JP5345993B2 (en) Earthquake motion prediction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170201

R150 Certificate of patent or registration of utility model

Ref document number: 6101950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees