JP2014215202A - Surface plasmon sensor - Google Patents
Surface plasmon sensor Download PDFInfo
- Publication number
- JP2014215202A JP2014215202A JP2013093571A JP2013093571A JP2014215202A JP 2014215202 A JP2014215202 A JP 2014215202A JP 2013093571 A JP2013093571 A JP 2013093571A JP 2013093571 A JP2013093571 A JP 2013093571A JP 2014215202 A JP2014215202 A JP 2014215202A
- Authority
- JP
- Japan
- Prior art keywords
- film
- surface plasmon
- protective film
- barrier film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、表面プラズモンを利用した化学センサーに関する。特にプリズムに貼り付けられた金属薄膜の表面プラズモンとプリズムに全反射条件で入射した光との結合による、伝播型表面プラズモンの励起を利用して、薄膜に接する物質の屈折率やその変化を表面プラズモンの共鳴角から検出する化学センサーに関する。 The present invention relates to a chemical sensor using surface plasmons. In particular, the surface refractive index of the material in contact with the thin film and the change of the surface plasmon of the metal thin film attached to the prism are utilized by utilizing the excitation of the propagating surface plasmon by the combination of the surface plasmon of the metal thin film attached to the prism and the light incident on the prism under total reflection conditions. The present invention relates to a chemical sensor that detects from the plasmon resonance angle.
金属表面の自由電子の集団的な振動は表面プラズモンと呼ばれ、近年表面プラズモンを励起し、センサー類、ナノスケールの構造を持つデバイス類、顕微鏡等への応用が研究されている。表面プラズモンを励起する方法は主に3つあり、金属薄膜を貼り付けたプリズムに全反射条件で光を入射する方法、金属表面に回折構造を作り、入射光の回折光を利用する方法、金属を微粒子化して局在化した表面プラズモンを励起する方法がある。 Collective vibrations of free electrons on a metal surface are called surface plasmons, and in recent years, application to sensors, devices with nanoscale structures, microscopes, etc. has been studied by exciting surface plasmons. There are three main methods for exciting surface plasmons: a method in which light is incident on a prism attached with a metal thin film under total reflection conditions, a method in which a diffractive structure is created on the metal surface and the diffracted light of the incident light is used, a metal There is a method of exciting surface plasmons that are localized by making particles fine.
特に金属薄膜を貼り付けたプリズムに全反射条件で光を入射する方法は、金属薄膜表面に微細構造を形成する必要がないという利点があり、薄膜に接する液体、気体等の物質の屈折率やその変化を、表面プラズモンが励起されるときの入射光の入射角から検出することができるため、化学センサーへの応用が検討されている。(非特許文献1参照)。 In particular, the method in which light is incident on a prism attached with a metal thin film under the condition of total reflection has the advantage that it is not necessary to form a fine structure on the surface of the metal thin film. Since the change can be detected from the incident angle of incident light when the surface plasmon is excited, application to a chemical sensor is being studied. (Refer nonpatent literature 1).
表面プラズモンを励起するための金属薄膜材料としては、複素誘電率の実数部が負であり、実数部を虚数部で除した値(実数部/虚数部)が大きい金属ほど有利であり、具体的にはAu、Ag、Cuなどが有利な材料である。 As a metal thin film material for exciting surface plasmons, a metal having a negative real part of the complex permittivity and a large value obtained by dividing the real part by the imaginary part (real part / imaginary part) is more advantageous. For such materials, Au, Ag, Cu and the like are advantageous materials.
図10のように、プリズムの上面に金属薄膜が成膜されている場合、表面プラズモン励起の有無は、横軸を入射角として入射光5に対する反射光6の反射率を計算することで確認することができる。例えば、プリズム基板材料をアルミナ(Al2O3)、金属膜材料を厚さ40nmの金(Au)、入射光は波長633nm(He−Neレーザ)のTM偏光、被測定材料を水あるいはSiO2とし、横軸を入射角(θ)として反射率を計算すると図11のようになる。なお、計算方法はすべてRCWA(Rigorous coupling Wave Analysis)法による。RCWAについては、例えば、非特許文献1を参照のこと。
As shown in FIG. 10, when a metal thin film is formed on the upper surface of the prism, the presence or absence of surface plasmon excitation is confirmed by calculating the reflectance of the
図11を見ると、被測定材料がSiO2の場合は入射角=61°付近、水の場合は53°付近が全反射の始まる臨界角であり、臨界角を越えた領域で反射率の落ち込みが起き、SiO2の場合は入射角=77°付近、水の場合は62°付近で反射率がボトムとなることが分かる。このことは金属薄膜の表面プラズモンの波数と、全反射しているプリズム表面の電磁波の界面方向への波数が一致して共鳴し、反射光のエネルギーが表面プラズモンの励起に使われていることを意味している(以後、適宜反射率がボトムとなる入射角を共鳴角、表面プラズモンを励起するための入射光を励起光と呼ぶ)。 Referring to FIG. 11, when the material to be measured is SiO 2 , the incident angle is around 61 °, and in the case of water, the critical angle at which total reflection starts is around 53 °, and the reflectivity drops in the region beyond the critical angle. In the case of SiO 2 , it can be seen that the reflectance becomes the bottom at an incident angle of around 77 °, and in the case of water at around 62 °. This means that the wave number of the surface plasmon of the metal thin film and the wave number in the interface direction of the electromagnetic wave of the totally reflecting prism surface coincide and resonate, and the reflected light energy is used to excite the surface plasmon. (Hereinafter, the incident angle at which the reflectance is bottom is appropriately referred to as the resonance angle, and the incident light for exciting the surface plasmon is referred to as excitation light).
共鳴角の角度は、被測定材料の屈折率によって変わるので、共鳴角の角度の位置から逆に被測定材料の屈折率やその変化を知ることが出来、屈折率の情報を基にした化学センサーとすることができる。 Since the angle of the resonance angle changes depending on the refractive index of the material to be measured, it is possible to know the refractive index of the material to be measured and its change from the position of the angle of the resonance angle, and the chemical sensor based on the information on the refractive index It can be.
表面プラズモンを励起するための金属薄膜材料としては特性上、Au、Ag、Cuなどが有利な材料とされてきたが、Au、Agは高価であり、一方Cuは一般に拡散性、酸化性、密着性、結晶性等に問題があり、安定性の観点から使いづらい材料とされてきた。
本発明は、使いづらいCuをプラズモン励起に使う層構成の提供を目的とした。
Au, Ag, Cu, etc. have been considered as advantageous materials for metal thin film materials for exciting surface plasmons. However, Au and Ag are expensive, while Cu is generally diffusive, oxidative, and adhesive. In view of stability, crystallinity, and the like, it has been made difficult to use from the viewpoint of stability.
An object of the present invention is to provide a layer structure using Cu, which is difficult to use, for plasmon excitation.
上述の課題を解決するために、請求項1に記載の本発明は、プリズム基板と表面プラズモンを発生するためのCuからなる金属薄膜を有する表面プラズモンセンサーであって、プリズム基板とCu薄膜の間にCuの拡散を防ぐためのバリア膜、およびCu薄膜の被測定物と接する表面にはCu薄膜の変質を防ぐための保護膜を有していることを特徴とする表面プラズモンセンサーである。
In order to solve the above-mentioned problem, the present invention according to
請求項2に記載の本発明は、バリア膜および保護膜材料の少なくとも一方はTaと窒素を成分とする薄膜であることを特徴とする請求項1に記載の表面プラズモンセンサーである。
The surface plasmon sensor according to
請求項3に記載の本発明は、Taと窒素を成分とするバリア膜および保護膜の少なくとも一方の薄膜の膜厚は10nmから25nmの範囲にあることを特徴とする請求項2に記載の表面プラズモンセンサーである。 According to a third aspect of the present invention, in the surface of the second aspect, the film thickness of at least one of the barrier film and the protective film containing Ta and nitrogen as components is in the range of 10 nm to 25 nm. It is a plasmon sensor.
請求項4に記載の本発明は、バリア膜および保護膜材料の少なくとも一方はTaと窒素と酸素を成分とする薄膜であることを特徴とする請求項1に記載の表面プラズモンセンである。
The present invention described in
請求項4に記載の本発明は、Taと窒素と酸素を成分とするバリア膜および保護膜の少なくとも一方の薄膜の膜厚は10nmから40nmの範囲にあることを特徴とする請求項4に記載の表面プラズモンセンサーである。
The present invention described in
本発明は、表面プラズモンを発生する金属薄膜材料として、Au、Agよりも安価で入手しやすいCuを使用するので、製造コストを低減することができる。さらに、Cu膜の上下に接してTaの窒化物、若しくは窒酸化物からなる薄膜を有するので、従来問題であったCuの、プリズム基板や被測定材料への拡散、Cu膜自身の酸化による特性劣化を抑えるとともに、プリズム基板との密着性を向上することができる。 In the present invention, Cu, which is cheaper and easier to obtain than Au and Ag, is used as the metal thin film material for generating surface plasmons, so that the manufacturing cost can be reduced. Furthermore, because it has a thin film made of Ta nitride or nitride oxide in contact with the upper and lower sides of the Cu film, diffusion of Cu, which has been a problem in the past, into the prism substrate and the material to be measured, and oxidation of the Cu film itself Deterioration can be suppressed, and adhesion to the prism substrate can be improved.
図1に示すように、本発明の実施の形態に関わる表面プラズモンセンサーは、プリズム基板1と表面プラズモンを発生するための銅(Cu)からなる金属薄膜2を有し、さらにプリズム基板1と金属薄膜2の間にCuの拡散を防ぐためのバリア膜3、および金属薄膜2の被測定物と接する表面には金属薄膜2の変質を防ぐための保護膜4を有している。
As shown in FIG. 1, the surface plasmon sensor according to the embodiment of the present invention has a
好ましくは、バリア膜および保護膜材料の少なくとも一方はTaと窒素を主成分とする薄膜(以下TaNと記す)であるか、若しくはTaと窒素と酸素を主成分とする薄膜(以下TaNOと記す)である。 Preferably, at least one of the barrier film and the protective film material is a thin film containing Ta and nitrogen as main components (hereinafter referred to as TaN), or a thin film containing Ta, nitrogen and oxygen as main components (hereinafter referred to as TaNO). It is.
さらに好ましくは、TaNからなるバリア膜および保護膜の少なくとも一方の薄膜の膜厚は10nmから25nmの範囲にあるか、若しくはTaNOからなるバリア膜および保護膜の少なくとも一方の薄膜の膜厚は10nmから40nmの範囲にある薄膜である。 More preferably, the film thickness of at least one of the barrier film made of TaN and the protective film is in the range of 10 nm to 25 nm, or the film thickness of at least one thin film of the barrier film made of TaNO and the protective film is from 10 nm. It is a thin film in the range of 40 nm.
ところで、半導体素子の配線材料としてはアルミニウム(Al)がもっとも一般的であるが、より比抵抗の小さな材料としてCu配線も検討されている。しかしながらCu配線の実用化には、拡散防止、酸化防止、加工性等の課題が指摘されており、拡散を防ぐバリアメタルとして、TiN、WN、TiW、TaN等が提案されている。 By the way, aluminum (Al) is the most common wiring material for semiconductor elements, but Cu wiring has also been studied as a material having a smaller specific resistance. However, problems such as diffusion prevention, oxidation prevention, and workability have been pointed out for practical use of Cu wiring, and TiN, WN, TiW, TaN, etc. have been proposed as barrier metals for preventing diffusion.
本発明の表面プラズモンセンサーは、表面プラズモンを発生するための金属薄膜として、AuやAgよりも価格の安いCuを使用し、そのバリア膜や保護膜材料として、比較的に透明性があり、表面プラズモンの発生への影響が小さく、表面プラズモンセンサーとしての性能を維持できるTaNやTaNOを用いるものである。 The surface plasmon sensor of the present invention uses Cu, which is less expensive than Au or Ag, as a metal thin film for generating surface plasmons, and is relatively transparent as a barrier film or protective film material. TaN or TaNO, which has a small influence on the generation of plasmons and can maintain the performance as a surface plasmon sensor, is used.
以下、本発明に基づき、図1のように、プリズム基板の上にCu薄膜が存在し、さらにプリズム基板とCu薄膜の間にTaN若しくはTa2O5からなるバリア膜、およびCu薄膜の被測定物と接する表面にはTaN若しくはTa2O5からなる保護膜が存在する場合について、横軸を入射角として入射光5に対する反射光6の反射率の変化を計算し、表
面プラズモン励起によりセンサーとして適用可能なバリア膜、保護膜の膜厚の範囲を検討した結果を示す。ここで、TaNOではなく、Ta2O5とする理由は、TaNOの場合組成比によって屈折率が異なるが、Ta2O5は屈折率が知られており、TaNOの結果はTaNの結果とTa2O5の結果の中間的な結果になるからである。尚、入射光は波長633nm(He−Neレーザ)のTM偏光、被測定材料は水あるいはSiO2を例とする。計算に使用した各材料の、波長633nmにおける光学定数(屈折率および消衰係数)をまとめた表を図9に示す(非特許文献2参照)。
In the following, based on the present invention, as shown in FIG. 1, a Cu thin film exists on a prism substrate, and a barrier film made of TaN or Ta 2 O 5 is further interposed between the prism substrate and the Cu thin film, and the Cu thin film is measured. In the case where a protective film made of TaN or Ta 2 O 5 is present on the surface in contact with the object, the change in the reflectance of the reflected light 6 with respect to the
(実施例1)
実施例1では、プリズム基板材料としてガリウムりん(GaP)を用いた場合を示す。図2はバリア膜、保護膜ともに膜厚が10nmの場合である。ここで10nmを選んだ理由は、一般に薄すぎる膜はピンホール状の欠陥が多く、安定性を得るためには少なくとも10nmの膜厚は必要と考えられるからである。図2から分かるように、TaN膜、Ta2O5膜いずれをバリア膜、保護膜とした場合においても、全反射の臨界角よりもやや大きな入射角領域で反射率が急落する共鳴角が現れており、プラズモン励起が起きていることが分かる。
Example 1
Example 1 shows a case where gallium phosphide (GaP) is used as the prism substrate material. FIG. 2 shows a case where the thickness of both the barrier film and the protective film is 10 nm. The reason why 10 nm is selected here is that a film that is too thin generally has many pinhole-like defects, and it is considered that a film thickness of at least 10 nm is necessary to obtain stability. As can be seen from FIG. 2, even when either the TaN film or the Ta 2 O 5 film is used as a barrier film or a protective film, a resonance angle at which the reflectance drops sharply in an incident angle region slightly larger than the critical angle of total reflection appears. It can be seen that plasmon excitation occurs.
次に保護膜の膜厚を最小限の10nmに固定し、バリア膜厚を変化させて図2と同様の計算を行い、表面プラズモン励起が起き、センサーとして適用可能なバリア膜の膜厚の範囲を調べた。図3にバリア膜の膜厚がセンサーとして適用可能な上限付近と考えられるときの計算結果を示す。Ta2O5膜をバリア膜とするときは、TaN膜をバリア膜とするときよりもかなり厚い膜まで使えることが分かる。また、Ta2O5保護膜の方がTaN保護膜よりも、バリア膜の適用可能な膜厚範囲が広くなることが分かる。 Next, the thickness of the protective film is fixed to a minimum of 10 nm, the barrier film thickness is changed, the same calculation as in FIG. 2 is performed, surface plasmon excitation occurs, and the range of the barrier film thickness applicable as a sensor I investigated. FIG. 3 shows a calculation result when the film thickness of the barrier film is considered to be near the upper limit applicable as a sensor. It can be seen that when the Ta 2 O 5 film is used as a barrier film, a considerably thicker film can be used than when the TaN film is used as a barrier film. It can also be seen that the Ta 2 O 5 protective film has a wider applicable film thickness range than the TaN protective film.
次にバリア膜の膜厚を最小限の10nmに固定し、保護膜厚を変化させて図2と同様の計算を行い、表面プラズモン励起が起き、センサーとして適用可能な保護膜の膜厚の範囲を調べた。図4に保護膜の膜厚がセンサーとして適用可能な上限付近と考えられるときの計算結果を示す。バリア膜をTaNとするか、Ta2O5とするかに依らず、Ta2O5膜を保護膜とするときは、TaN膜を保護膜とするときよりも厚い膜まで使えることが分かる。 Next, the barrier film thickness is fixed to a minimum of 10 nm, the protective film thickness is changed, and the same calculation as in FIG. 2 is performed. Surface plasmon excitation occurs, and the range of the protective film thickness applicable as a sensor I investigated. FIG. 4 shows a calculation result when the thickness of the protective film is considered to be near the upper limit applicable as a sensor. Regardless of whether the barrier film is TaN or Ta 2 O 5 , it can be seen that when the Ta 2 O 5 film is used as a protective film, a thicker film can be used than when the TaN film is used as a protective film.
(実施例2)
実施例2では、プリズム基板材料としてアルミナ(Al2O3)を用いた場合を示す。図5はバリア膜、保護膜ともに膜厚が10nmの場合である。ここで10nmを選んだ理由は、一般に薄すぎる膜はピンホール状の欠陥が多く、安定性を得るためには少なくとも10nmの膜厚は必要と考えられるからである。図5から分かるように、TaN膜、Ta2O5膜いずれをバリア膜、保護膜とした場合においても、全反射の臨界角よりもやや大きな入射角領域で反射率が急落する共鳴角が現れており、プラズモン励起が起きていることが分かる。また、臨界角、共鳴角ともにプリズム基板材料としてGaPを用いる場合よりも大きい。
(Example 2)
In Example 2, the case where alumina (Al 2 O 3 ) is used as the prism substrate material is shown. FIG. 5 shows a case where the thickness of both the barrier film and the protective film is 10 nm. The reason why 10 nm is selected here is that a film that is too thin generally has many pinhole-like defects, and it is considered that a film thickness of at least 10 nm is necessary to obtain stability. As can be seen from FIG. 5, even when either the TaN film or the Ta 2 O 5 film is used as a barrier film or a protective film, a resonance angle at which the reflectance drops sharply in an incident angle region slightly larger than the critical angle of total reflection appears. It can be seen that plasmon excitation occurs. Further, both the critical angle and the resonance angle are larger than when GaP is used as the prism substrate material.
次に保護膜の膜厚を最小限の10nmに固定し、バリア膜厚を変化させて図5と同様の計算を行い、表面プラズモン励起が起き、センサーとして適用可能なバリア膜の膜厚の範囲を調べた。図6にバリア膜の膜厚がセンサーとして適用可能な上限付近と考えられるときの計算結果を示す。Ta2O5膜をバリア膜とするときは、TaN膜をバリア膜とするときよりも厚い膜まで使えることが分かる。また、Ta2O5保護膜の方がTaN保護膜よりも、バリア膜の適用可能な膜厚範囲が広くなることが分かる。 Next, the thickness of the protective film is fixed to a minimum of 10 nm, the barrier film thickness is changed, the same calculation as in FIG. 5 is performed, surface plasmon excitation occurs, and the range of the barrier film thickness applicable as a sensor I investigated. FIG. 6 shows the calculation results when the barrier film thickness is considered to be near the upper limit applicable as a sensor. It can be seen that when the Ta 2 O 5 film is used as a barrier film, a thicker film can be used than when the TaN film is used as a barrier film. It can also be seen that the Ta 2 O 5 protective film has a wider applicable film thickness range than the TaN protective film.
次にバリア膜の膜厚を最小限の10nmに固定し、保護膜厚を変化させて図5と同様の計算を行い、表面プラズモン励起が起き、センサーとして適用可能な保護膜の膜厚の範囲
を調べた。図7に保護膜の膜厚がセンサーとして適用可能な上限付近と考えられるときの計算結果を示す。バリア膜をTaNとするか、Ta2O5とするかに依らず、Ta2O5膜を保護膜とするときは、TaN膜を保護膜とするときよりも厚い膜まで使えることが分かる。
Next, the barrier film thickness is fixed to a minimum of 10 nm, the protective film thickness is changed, the same calculation as in FIG. 5 is performed, surface plasmon excitation occurs, and the protective film thickness range applicable as a sensor I investigated. FIG. 7 shows the calculation result when the thickness of the protective film is considered to be near the upper limit applicable as a sensor. Regardless of whether the barrier film is TaN or Ta 2 O 5 , it can be seen that when the Ta 2 O 5 film is used as a protective film, a thicker film can be used than when the TaN film is used as a protective film.
図2から図7までの結果をまとめた表を図8に示す。図8のカッコ内はバリア膜、保護膜の一方の膜厚を10nmで固定したとき、表面プラズモン励起が起き、センサーとして適用可能なもう一方の膜の上限(最大厚さ)を示している。バリア膜のバリア性や、保護膜のCuに対する保護機能をより大きいものにするには、これらの膜はなるべく厚くする方が好ましい。しかし厚くなりすぎると、前述のように表面プラズモン励起をセンサーとして利用することが難しくなる。 A table summarizing the results from FIG. 2 to FIG. 7 is shown in FIG. The parentheses in FIG. 8 indicate the upper limit (maximum thickness) of the other film applicable as a sensor because surface plasmon excitation occurs when the thickness of one of the barrier film and the protective film is fixed at 10 nm. In order to increase the barrier properties of the barrier film and the protective function of the protective film against Cu, it is preferable to make these films as thick as possible. However, if it is too thick, it becomes difficult to use surface plasmon excitation as a sensor as described above.
さらに、前述のように、Ta2O5はバリア膜としても使うときも保護膜としても使うときも、TaNよりも厚い範囲まで使うことができる。これはTa2O5の透明性がTaNよりも高いからである。しかしTa2O5は酸化物であるために、Cuを酸化していく懸念がある。従って、Cuのバリア膜、保護膜としては、TaNのみを用いるか、またはTaNに酸素(O)を適度に添加したTaNOの膜として、表面プラズモン励起を利用するセンサー機能とのバランスを取って使用することが望ましい。 Furthermore, as described above, Ta 2 O 5 can be used up to a range thicker than TaN when it is used as both a barrier film and a protective film. This is because the transparency of Ta 2 O 5 is higher than that of TaN. However, since Ta 2 O 5 is an oxide, there is a concern that Cu may be oxidized. Therefore, only TaN is used as a barrier film or protective film of Cu, or a TaNO film in which oxygen (O) is appropriately added to TaN is used in balance with a sensor function using surface plasmon excitation. It is desirable to do.
図8により、バリア膜、保護膜をそれぞれTaN、またはTa2O5としたときの膜厚の適正な範囲を知ることができる。TaNについてはその範囲は10nmからおよそ25nmの範囲と考えられる。TaNにOを適度に添加したTaNOを用いるときの膜厚の適正な範囲は図8の結果と、前述の考察から推定することができ、10nmからおよそ40nmの範囲と考えられる。 From FIG. 8, it is possible to know an appropriate range of film thickness when the barrier film and the protective film are TaN or Ta 2 O 5 , respectively. For TaN, the range is considered to be in the range of 10 nm to approximately 25 nm. An appropriate range of the film thickness when TaNO in which O is appropriately added to TaN can be estimated from the results of FIG. 8 and the above-mentioned consideration, and is considered to be a range of 10 nm to about 40 nm.
また、図8により、屈折率の大きい基板材料を使うほど保護膜、バリア膜の適用可能な膜厚範囲は広くなることが分かる。実施例1、実施例2ではそれぞれプリズム基板材料として、GaPの場合、Al2O3の場合を示したが、これ以外に透明基板としては、窒化シリコン(Si3N4)、酸化ジルコニウム(ZrO2)、ジルコン(ZrSiO4)などが考えられるが、これらの材料の屈折率はGaPとAl2O3の間にある。従って、入射角に対する反射率の計算結果はGaPの場合(図2〜図4)とAl2O3の場合(図5〜図7)の中間的な結果となる。従って、これらの材料を基板としたときのTaN膜、TaNO膜の膜厚の適正な範囲は、TaNは10〜25nm、TaNOは10〜40nmの範囲に含まれる。 Further, FIG. 8 shows that the applicable film thickness range of the protective film and the barrier film becomes wider as the substrate material having a higher refractive index is used. In Examples 1 and 2, the prism substrate material is GaP or Al 2 O 3 as the material for the prism substrate. However, other transparent substrates include silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO). 2 ), zircon (ZrSiO 4 ), etc. are conceivable, but the refractive index of these materials is between GaP and Al 2 O 3 . Therefore, the calculation result of the reflectance with respect to the incident angle is an intermediate result between GaP (FIGS. 2 to 4) and Al 2 O 3 (FIGS. 5 to 7). Therefore, the proper ranges of the thickness of the TaN film and the TaNO film when these materials are used as the substrate are within the range of 10 to 25 nm for TaN and 10 to 40 nm for TaNO.
本発明は、液体、気体等の物質の屈折率やその変化を、プリズム基板を利用した表面プラズモンを励起するときの入射光の入射角(共鳴角)の情報から検出することができるため、屈折率を基にした化学センサーとしての利用が期待される。 Since the present invention can detect the refractive index of a substance such as liquid or gas and its change from information on the incident angle (resonance angle) of incident light when exciting surface plasmons using a prism substrate, Expected to be used as a chemical sensor based on rate.
1・・・透明性基板
2・・・Cu膜
22・・・金属薄膜
3・・・バリア膜
4・・・保護膜
5・・・入射光
6・・・反射光
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013093571A JP2014215202A (en) | 2013-04-26 | 2013-04-26 | Surface plasmon sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013093571A JP2014215202A (en) | 2013-04-26 | 2013-04-26 | Surface plasmon sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014215202A true JP2014215202A (en) | 2014-11-17 |
Family
ID=51941069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013093571A Pending JP2014215202A (en) | 2013-04-26 | 2013-04-26 | Surface plasmon sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014215202A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU218503U1 (en) * | 2022-11-25 | 2023-05-29 | Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" | Plasmon polariton sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0518890A (en) * | 1991-07-10 | 1993-01-26 | Olympus Optical Co Ltd | Ion sensor, and method and device for measuring ion concentration using the sensor |
JP2004304167A (en) * | 2003-03-20 | 2004-10-28 | Advanced Lcd Technologies Development Center Co Ltd | Wiring, display device and method for forming the same |
WO2007105771A1 (en) * | 2006-03-15 | 2007-09-20 | Omron Corporation | Chip for surface plasmon resonance sensor and surface plasmon resonance sensor |
JP2012516569A (en) * | 2009-01-30 | 2012-07-19 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Plasmonic light emitting diode |
-
2013
- 2013-04-26 JP JP2013093571A patent/JP2014215202A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0518890A (en) * | 1991-07-10 | 1993-01-26 | Olympus Optical Co Ltd | Ion sensor, and method and device for measuring ion concentration using the sensor |
JP2004304167A (en) * | 2003-03-20 | 2004-10-28 | Advanced Lcd Technologies Development Center Co Ltd | Wiring, display device and method for forming the same |
WO2007105771A1 (en) * | 2006-03-15 | 2007-09-20 | Omron Corporation | Chip for surface plasmon resonance sensor and surface plasmon resonance sensor |
JP2012516569A (en) * | 2009-01-30 | 2012-07-19 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Plasmonic light emitting diode |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU218503U1 (en) * | 2022-11-25 | 2023-05-29 | Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" | Plasmon polariton sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shkondin et al. | High aspect ratio titanium nitride trench structures as plasmonic biosensor | |
Canalejas-Tejero et al. | Passivated aluminum nanohole arrays for label-free biosensing applications | |
Abbas et al. | Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors | |
JP2013101007A5 (en) | ||
Xi et al. | Omnidirectional reflector using nanoporous SiO 2 as a low-refractive-index material | |
JP2005257458A (en) | Surface plasmon resonance device | |
CN103808691A (en) | Asymmetric Au particle array and FPcavity coupled refractive index sensor | |
JP4673714B2 (en) | Optical waveguide type biochemical sensor chip and manufacturing method thereof | |
JPWO2019167123A1 (en) | Dielectric multilayer mirror | |
JP2012525693A5 (en) | ||
Aristov et al. | Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications | |
Spettel et al. | Aluminium, gold-tin and titanium-tungsten alloys for mid-infrared plasmonic gratings | |
Toudert et al. | Plasmonic optical interferences for phase-monitored nanoscale sensing in low-loss three-dimensional metamaterials | |
Schmitt et al. | Optical, structural, and functional properties of highly reflective and stable iridium mirror coatings for infrared applications | |
JP2010508527A (en) | Improved optical detection mechanism for plasmon resonance sensors | |
Sadri-Moshkenani et al. | Effect of magnesium oxide adhesion layer on resonance behavior of plasmonic nanostructures | |
JP2014215202A (en) | Surface plasmon sensor | |
TW583394B (en) | Multilayered spectroscopic device for fluorescent X-ray analysis of boron | |
Baraldi et al. | Self‐Assembled Nanostructured Photonic‐Plasmonic Metasurfaces for High‐Resolution Optical Thermometry | |
Lertvachirapaiboon et al. | Microfluidic transmission surface plasmon resonance enhancement for biosensor applications | |
JP4823330B2 (en) | Optical waveguide type biochemical sensor chip and measuring method for measuring object | |
EP1813933A1 (en) | Surface plasmon resonance biosensor using coupled surface plasmons to decrease width of reflectivity dip | |
Tolmachev et al. | Study of the optical properties of silver nanoparticle layers and Si‐based nanostructure layers | |
JP2011242306A (en) | Chip for measuring surface plasmon resonance | |
CN106872405B (en) | A kind of biologic sensor chip based on bilayer graphene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170530 |