JP2014212311A - Anisotropic conductive film and anisotropic conductive connector - Google Patents

Anisotropic conductive film and anisotropic conductive connector Download PDF

Info

Publication number
JP2014212311A
JP2014212311A JP2014071356A JP2014071356A JP2014212311A JP 2014212311 A JP2014212311 A JP 2014212311A JP 2014071356 A JP2014071356 A JP 2014071356A JP 2014071356 A JP2014071356 A JP 2014071356A JP 2014212311 A JP2014212311 A JP 2014212311A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
resin
conductive film
epoxy resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071356A
Other languages
Japanese (ja)
Other versions
JP6664147B2 (en
Inventor
克昭 菅沼
Katsuaki Suganuma
克昭 菅沼
内田 博
Hiroshi Uchida
博 内田
篠崎 研二
Kenji Shinozaki
研二 篠崎
石橋圭孝
Yoshitaka Ishibashi
圭孝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Osaka University NUC filed Critical Showa Denko KK
Priority to JP2014071356A priority Critical patent/JP6664147B2/en
Publication of JP2014212311A publication Critical patent/JP2014212311A/en
Application granted granted Critical
Publication of JP6664147B2 publication Critical patent/JP6664147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive film and an anisotropic conductive connector in which deterioration due to halogen is less likely to occur at an adhesive part.SOLUTION: In an anisotropic conductive film containing conductive particles and a binder resin, the epoxy resin contained in the binder resin has a total concentration of all chlorine atoms and all bromine atoms of 300 mass ppm or less, preferably 50 mass ppm or less, and 0.1-20 mass% of conductive particles are dispersed into the binder resin. Preferably, the epoxy resin can be obtained by performing epoxidation of the carbon-carbon double bond of a material compound (substrate) having the carbon-carbon double bond, by using peroxide as an oxidizer.

Description

本発明は、異方性導電フィルム及び異方性導電接続体に関する。   The present invention relates to an anisotropic conductive film and an anisotropic conductive connector.

従来より、回路基板同士またはICチップ等の電子部品と回路基板の接続とを電気的に接続する際には、樹脂中に導電粒子を分散させた異方性導電フィルムが用いられている。異方性導電フィルムを互いに対向する電極間に配置し、加熱、加圧して電極同士を接着することにより加圧方向に導電性を持たせ、電気的に接続することができる。   Conventionally, when electrically connecting circuit boards or electronic components such as IC chips and circuit boards, anisotropic conductive films in which conductive particles are dispersed in a resin have been used. An anisotropic conductive film is disposed between the electrodes facing each other, and is heated and pressed to adhere the electrodes to each other so as to have conductivity in the pressing direction and can be electrically connected.

このような異方性導電フィルムの例として、例えば、下記特許文献1には、重合された光重合性樹脂、熱硬化性樹脂、熱硬化性樹脂用硬化剤、及び導電粒子を含有する第1接着フィルム層と、熱硬化性樹脂及び熱硬化性樹脂用硬化剤を含有する第2接着フィルム層とが積層されてなる異方性導電フィルムが開示されている。また、下記特許文献2には、導電性粒子がシランカップリング剤を含有する絶縁性接着剤に分散した異方性導電フィルムが開示されている。   As an example of such an anisotropic conductive film, for example, Patent Document 1 listed below includes a first containing a polymerized photopolymerizable resin, a thermosetting resin, a curing agent for a thermosetting resin, and conductive particles. An anisotropic conductive film is disclosed in which an adhesive film layer and a second adhesive film layer containing a thermosetting resin and a thermosetting resin curing agent are laminated. Patent Document 2 below discloses an anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive containing a silane coupling agent.

特開2013−12498号公報JP2013-12498A 特開2012−186448号公報JP 2012-186448 A

しかし、上記従来の技術においては、上記導電粒子を分散させる樹脂として使用されるエポキシ樹脂等に原料であるエピクロルヒドリン由来の塩素等のハロゲンが含有されている場合があり、マイグレーション等が著しく生じ、異方性導電フィルムの信頼性が確保できないという問題があった。   However, in the above prior art, the epoxy resin used as a resin for dispersing the conductive particles may contain a halogen such as chlorine derived from epichlorohydrin as a raw material, and migration or the like occurs remarkably. There was a problem that the reliability of the anisotropic conductive film could not be secured.

本発明の目的は、ハロゲンによる接着部分の劣化が生じにくい異方性導電フィルム及び異方性導電接続体を提供することにある。   An object of the present invention is to provide an anisotropic conductive film and an anisotropic conductive connector which are less likely to cause deterioration of an adhesive portion due to halogen.

上記目的を達成するために、本発明の一実施形態は、異方性導電フィルムであって、全塩素原子濃度及び全臭素原子濃度の合計が300質量ppm以下、好ましくは50質量ppm以下であるエポキシ樹脂を含むバインダー樹脂中に導電粒子が0.1〜20質量%分散されていることを特徴とする。前記エポキシ樹脂はアリルエーテル基を二個以上有する化合物を酸化して得られたグリシジルエーテル化合物であることが好ましい。   In order to achieve the above object, one embodiment of the present invention is an anisotropic conductive film, wherein the total of the total chlorine atom concentration and the total bromine atom concentration is 300 mass ppm or less, preferably 50 mass ppm or less. Conductive particles are dispersed in an amount of 0.1 to 20% by mass in a binder resin containing an epoxy resin. The epoxy resin is preferably a glycidyl ether compound obtained by oxidizing a compound having two or more allyl ether groups.

また、上記導電粒子は、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属または前記複数の金属の合金よりなる粒子、前記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子、あるいはこれらの粒子表面へ絶縁樹脂薄膜コートしたものであるのが好適である。   Further, the conductive particles are particles made of at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, and palladium, or an alloy of the plurality of metals, and gold, palladium, silver on the metal surface. Metal particles plated with either, resin core balls plated with nickel, gold, palladium, or silver on resin balls, carbon or graphite particles, or the surface of these particles coated with an insulating resin thin film Is preferred.

また、本発明の他の実施形態は、異方性導電接続体であって、上記各異方性導電フィルムを用いて電子部品同士が異方性導電接続されていることを特徴とする。   Another embodiment of the present invention is an anisotropic conductive connector, wherein electronic components are anisotropically conductively connected using the respective anisotropic conductive films.

本発明によれば、半導体素子および各種電気電子部品の組立あるいは基板への接着の際に、ハロゲンに由来する接着部分の劣化を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration of the adhesion part originating in a halogen can be suppressed in the case of the assembly of a semiconductor element and various electric and electronic components, or adhesion | attachment to a board | substrate.

以下、本発明を実施するための形態(以下、実施形態という)を説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.

本実施形態に係る異方性導電フィルムは、全塩素原子濃度及び全臭素原子濃度の合計が300質量ppm以下であるエポキシ樹脂を含むバインダー樹脂中に導電粒子が0.1〜20質量%、好ましくは0.2〜10質量%分散されている。   In the anisotropic conductive film according to this embodiment, the conductive particles are contained in an amount of 0.1 to 20% by mass in a binder resin including an epoxy resin in which the total concentration of all chlorine atoms and all bromine atoms is 300 ppm by mass or less, preferably Is dispersed in an amount of 0.2 to 10% by mass.

また、上記全塩素原子濃度及び全臭素原子濃度の合計は、好ましくは50質量ppm以下であり、さらに好ましくは10質量ppm以下である。   The total of the total chlorine atom concentration and the total bromine atom concentration is preferably 50 ppm by mass or less, and more preferably 10 ppm by mass or less.

ここで、上記エポキシ樹脂は、例えば過酸化物を酸化剤として炭素−炭素二重結合を有する原料化合物(基質)の炭素−炭素二重結合をエポキシ化することにより得ることができる。この方法によると従来のエピハロヒドリンを用いるエポキシ樹脂の製造方法と異なり原料に炭素−塩素結合を有する化合物を使用しないため、本実施形態の異方性導電フィルムを構成するバインダー樹脂としてのエポキシ樹脂は、分子内に炭素−塩素結合および炭素−臭素結合を含む化合物を実質的に含まない。そのため従来のエポキシ樹脂中に含有するエピハロヒドリン由来のハロゲンの過度の精製工程が不要である。本明細書において「実質的に含まない」とは、エポキシ樹脂を合成するために用いる原料に炭素−塩素結合および炭素−臭素結合を含む化合物を使用しない、すなわち、エポキシ樹脂中のそのような化合物およびその反応生成物の含有量がゼロであることを意味する。酸化剤としては過酸化水素、過酢酸等が挙げられるが、安価で取り扱いが容易な過酸化水素がより好ましい。特に過酸化水素の10〜60質量%水溶液を用いることが反応性および取り扱い性の点で好ましい。この方法では原料に塩素および臭素を含まないので塩素および臭素の含有量が少ないエポキシ樹脂が得られる。本明細書において「エポキシ樹脂」とは異方性導電フィルムのバインダー成分、すなわち硬化物を構成するオキシラン環を有する化合物を指し、モノマー、オリゴマー、ポリマーのいずれをも含む。   Here, the epoxy resin can be obtained, for example, by epoxidizing a carbon-carbon double bond of a raw material compound (substrate) having a carbon-carbon double bond using peroxide as an oxidizing agent. According to this method, unlike the conventional epoxy resin production method using epihalohydrin, since a compound having a carbon-chlorine bond is not used as a raw material, the epoxy resin as the binder resin constituting the anisotropic conductive film of the present embodiment is A compound containing a carbon-chlorine bond and a carbon-bromine bond in the molecule is substantially free. Therefore, the excessive purification process of the halogen derived from the epihalohydrin contained in the conventional epoxy resin is unnecessary. In this specification, “substantially free” means that a compound containing a carbon-chlorine bond and a carbon-bromine bond is not used as a raw material used for synthesizing an epoxy resin, that is, such a compound in the epoxy resin. And its reaction product content is zero. Examples of the oxidizing agent include hydrogen peroxide and peracetic acid, but hydrogen peroxide that is inexpensive and easy to handle is more preferable. In particular, it is preferable to use a 10 to 60% by mass aqueous solution of hydrogen peroxide in terms of reactivity and handleability. In this method, since the raw material does not contain chlorine and bromine, an epoxy resin having a low chlorine and bromine content can be obtained. In this specification, “epoxy resin” refers to a binder component of an anisotropic conductive film, that is, a compound having an oxirane ring constituting a cured product, and includes any of a monomer, an oligomer, and a polymer.

炭素−炭素二重結合を有する原料化合物(基質)としては、炭素数4から12のシクロアルケン、共役していない炭素数6から12のシクロアルカジエン、シクロアルカトリエン、またはシクロアルカテトラエン、あるいは、アリルエーテル基を有する化合物が挙げられる。アリルエーテル基とは、CH=CH−CH−O−で表される官能基をいう。 Examples of the raw material compound (substrate) having a carbon-carbon double bond include a cycloalkene having 4 to 12 carbons, an unconjugated cycloalkadiene, cycloalkatriene, or cycloalkatetraene having 6 to 12 carbons, or And compounds having an allyl ether group. The allyl ether groups, refers to a functional group represented by CH 2 = CH-CH 2 -O- .

このような原料化合物(基質)としては、フェニルアリルエーテル類、クレゾールモノアリルエーテル類、シクロヘキセン類、シクロオクテン類等であり、例えばビスフェノール−Aジアリルエーテル、ノボラック型フェノール系樹脂のアリルエーテル化合物、シクロヘキサンジメタノールジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステル、3、4−シクロヘキセニルメチル−3’、4’−シクロヘキセンカルボキシレート等を例示できる。   Examples of such raw material compounds (substrates) include phenylallyl ethers, cresol monoallyl ethers, cyclohexenes, cyclooctenes, and the like, for example, bisphenol-A diallyl ether, allyl ether compounds of novolac phenolic resins, cyclohexane Dimethanol diallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether, 3,4-epoxycyclohexane-1-carboxylic acid allyl ester, 3,4-cyclohexenylmethyl-3 ′, 4′-cyclohexene carboxylate, etc. Can be illustrated.

これらの中でも、アリルエーテル基を二個以上有する化合物を使用することが好ましい。アリルエーテルを二個以上有する化合物を原料に用いてエポキシ樹脂を製造する利点として、塩素の混入が著しく低くなるという以外にも、通常のエピクロルヒドリンを用いてエポキシ樹脂を製造する場合に比べて低粘度化が可能である。エピクロルヒドリンを用いてエポキシ樹脂を製造する場合には、以下のように水酸基がエピクロルヒドリンに付加する際に、末端側から付加するもの(正常付加)に対して、逆側から付加するもの(異常付加)が必ず副生する。

Figure 2014212311
Among these, it is preferable to use a compound having two or more allyl ether groups. As an advantage of producing an epoxy resin by using a compound having two or more allyl ethers as raw materials, in addition to the extremely low mixing of chlorine, the viscosity is lower than that in the case of producing an epoxy resin using ordinary epichlorohydrin. Is possible. When producing an epoxy resin using epichlorohydrin, when a hydroxyl group is added to epichlorohydrin as shown below, it is added from the opposite side (normal addition) to the one added from the terminal side (normal addition). Always be a by-product.
Figure 2014212311

この副反応は、特に粘度を低くできる脂肪族エポキシ樹脂において顕著である上に、脂肪族エポキシの場合には、塩素が残存するのみならず生成した副生物の1級アルコールと原料の水酸基(通常は一級アルコール)の反応性がほぼ同等であるために、以下の反応式のように、そこにもエピクロルヒドリンが反応し、分子量が増大し粘度が高くなるという問題もあった。

Figure 2014212311
This side reaction is particularly noticeable in aliphatic epoxy resins capable of lowering viscosity. In the case of aliphatic epoxy, not only does chlorine remain, but also by-product primary alcohol and raw material hydroxyl group (usually Since the reactivity of (primary alcohol) is almost the same, epichlorohydrin also reacts there, as shown in the following reaction formula, resulting in a problem that the molecular weight increases and the viscosity increases.
Figure 2014212311

芳香族化合物を原料に用いる場合には、原料のフェノール性水酸基と副生物のアルコール性水酸基の差により、このような問題はそれほど多くは起きないが、逆に生成物のエポキシ基と原料のフェノール性水酸基が反応しやすく、以下に示すような副反応がある割合で起こり、やはり粘度が増大するという問題があった。

Figure 2014212311
When an aromatic compound is used as a raw material, such a problem does not occur so much due to the difference between the phenolic hydroxyl group of the raw material and the alcoholic hydroxyl group of the by-product, but conversely, the epoxy group of the product and the phenol of the raw material There is a problem that the reactive hydroxyl group easily reacts and the side reaction as shown below occurs at a certain ratio, and the viscosity also increases.
Figure 2014212311

これに対して、多価のアリルエーテルを原料に用いて、過酸化水素によりエポキシ化を行った場合には、水酸基はアリルエーテルで保護されているともいえるので、前記のような問題は起こらず、副生物は以下のようにアリルエーテルが残存したものである。この場合にはむしろ粘度はジグリシジルエーテル自体よりも低下するので、塩素の問題だけでなく、Agなどの導電粒子を混合するのにより相応しいといえる。

Figure 2014212311
On the other hand, when polyvalent allyl ether is used as a raw material and epoxidized with hydrogen peroxide, the hydroxyl group is protected with allyl ether, so the above-mentioned problem does not occur. By-products are allyl ether remaining as follows. In this case, since the viscosity is lower than that of diglycidyl ether itself, it can be said that it is more suitable not only for the problem of chlorine but also for mixing conductive particles such as Ag.
Figure 2014212311

アリルエーテル基を二個以上有する化合物としては、例えば、以下の一般式(1)で表される化合物が挙げられる。   Examples of the compound having two or more allyl ether groups include compounds represented by the following general formula (1).

Figure 2014212311
{式中、R及びRは、各々独立して水素原子、炭素数1〜6のアルキル基又は炭素数4〜6のシクロアルキル基、炭素数6〜14のアリール基、あるいは、RとRは一緒になって炭素数3〜12のシクロアルカンを形成し、R、R、R及びRは、各々独立して水素原子、炭素数1から10のアルキル基、炭素数4〜6のシクロアルキル基又は炭素数6〜14のアリール基であり、nは0又は1の整数を表す。}
Figure 2014212311
{In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, or R 1. And R 2 together form a cycloalkane having 3 to 12 carbon atoms, and R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, carbon A cycloalkyl group having 4 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms, and n represents an integer of 0 or 1. }

このような化合物としては、具体的には、ビスフェノール−Aジアリルエーテル、ビスフェノール−Fジアリルエーテル、2,6,2’,6’−テトラメチルビスフェノール−Aジアリルエーテル、2,2’−ジアリルビスフェノール−Aジアリルエーテル、2,2’−ジ−t−ブチルビスフェノール−Aジアリルエーテル、3,3’,5,5’−テトラメチルビフェニル−4,4’−ジアリルエーテル、2,2’−ジイソプロピルビフェノールジアリルエーテル、4,4’−エチリデンビスフェノールジアリルエーテル、4,4’−シクロヘキシリデンビスフェノールジアリルエーテル、4,4’−(1−α−メチルベンジリデン)ビスフェノールジアリルエーテル、4,4’−(3,3,5−トリメチルシクロヘキシリデン)ビスフェノールジアリルエーテル、4,4’−(1−メチル−ベンジリデン)ビスフェノールジアリルエーテルなどが挙げられる。   Specific examples of such compounds include bisphenol-A diallyl ether, bisphenol-F diallyl ether, 2,6,2 ', 6'-tetramethylbisphenol-A diallyl ether, 2,2'-diallyl bisphenol- A diallyl ether, 2,2′-di-t-butylbisphenol-A diallyl ether, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diallyl ether, 2,2′-diisopropylbiphenol diallyl Ether, 4,4′-ethylidene bisphenol diallyl ether, 4,4′-cyclohexylidene bisphenol diallyl ether, 4,4 ′-(1-α-methylbenzylidene) bisphenol diallyl ether, 4,4 ′-(3,3 , 5-Trimethylcyclohexylidene) bispheno Luzia Lil ether, 4,4 '- (1-methyl - benzylidene) bisphenol diallyl ether.

芳香環を有し、かつアリルエーテル基を二個有するビフェニル型ジアリルエーテルとしては、具体的には、2,2’−ビフェニルジアリルエーテル、テトラメチルビフェニルジアリルエーテルなどが挙げられる。   Specific examples of the biphenyl diallyl ether having an aromatic ring and two allyl ether groups include 2,2'-biphenyl diallyl ether and tetramethylbiphenyl diallyl ether.

また、クレゾールノボラック樹脂やフェノールノボラック樹脂のようなポリフェノールをアリルエーテル化した化合物も用いることができる。   Moreover, the compound which polyallyzed polyphenol like cresol novolak resin and phenol novolak resin can also be used.

また、アリルエーテル基を二個またはそれ以上有する脂肪族ポリアリルエーテルも用いることができ、具体的には、1,5−ペンタンジオールジアリルエーテル、1,6−ヘキサンジオールジアリルエーテル、1,9−ノナンジオールジアリルエーテル、1,10−デカンジオールジアリルエーテル、ネオペンチルグリコールジアリルエーテル、グリセリントリアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテルなどが挙げられる。   In addition, aliphatic polyallyl ether having two or more allyl ether groups can also be used. Specifically, 1,5-pentanediol diallyl ether, 1,6-hexanediol diallyl ether, 1,9- Nonanediol diallyl ether, 1,10-decanediol diallyl ether, neopentyl glycol diallyl ether, glycerol triallyl ether, trimethylolpropane triallyl ether, pentaerythritol tetraallyl ether and the like can be mentioned.

アリルエーテル基を二個有する脂環式ジオレフィンとしては、具体的には、1,4−シクロヘキサンジメタノールジアリルエーテル、トリシクロ[5.2.1.02,6]デカンジメタノールジアリルエーテルなどが挙げられる。 Specific examples of the alicyclic diolefin having two allyl ether groups include 1,4-cyclohexanedimethanol diallyl ether and tricyclo [5.2.1.0 2,6 ] decandimethanol diallyl ether. Can be mentioned.

上記炭素−炭素二重結合を有する原料化合物(基質)を酸化剤として過酸化水素を用いて酸化することによりエポキシ樹脂を製造することができる。過酸化水素の使用量は特に制限はないが、過酸化水素をエポキシ化しようとするアリルエーテルの炭素−炭素二重結合の量に対して、0.5〜10当量、好ましくは0.8〜2当量の範囲から選ばれる。   An epoxy resin can be produced by oxidizing the raw material compound (substrate) having a carbon-carbon double bond with hydrogen peroxide as an oxidizing agent. The amount of hydrogen peroxide to be used is not particularly limited, but is 0.5 to 10 equivalents, preferably 0.8 to the amount of carbon-carbon double bonds of allyl ether to be epoxidized with hydrogen peroxide. It is selected from the range of 2 equivalents.

上記炭素−炭素二重結合を有する原料化合物(基質)を過酸化水素を用いて酸化することによりエポキシ樹脂を製造する方法に特に制限はないが、以下に説明するアセトニトリルの存在下で反応させる方法を用いると効率よく触媒残渣を含まないエポキシ樹脂が得られ好適である。   The method for producing an epoxy resin by oxidizing the raw material compound (substrate) having a carbon-carbon double bond with hydrogen peroxide is not particularly limited, but is a method of reacting in the presence of acetonitrile described below. Is preferable because an epoxy resin containing no catalyst residue can be obtained efficiently.

本発明に係るエポキシ化合物の製造方法に用いるアセトニトリルの反応系内の濃度は、0.6〜5mol/Lの範囲内となるように、反応の進行中、制御される。反応の進行に伴い反応系内のアセトニトリルの濃度は低下する。反応系内の濃度が0.6mol/L未満となると収率が低下し、一方、5mol/Lを超えると過酸化水素のエポキシ化選択率が低下する傾向があり、またコスト高となるため好ましくない。そのため、反応を開始する際の初期濃度を上記濃度範囲に設定し、反応の進行中濃度をモニタリングし、濃度が上記下限値を下回る前に上限値を超えない範囲で追添することにより濃度を制御する。好ましくは、該濃度は0.7〜2mol/Lの範囲内である。また、前記反応に用いるアセトニトリルの総使用量は前記過酸化水素の総使用量に対して0.6〜2倍(モル比)とすることが好ましく、0.65〜1.85倍とすることがより好ましい。   The concentration of acetonitrile in the reaction system used in the method for producing an epoxy compound according to the present invention is controlled during the reaction so as to be in the range of 0.6 to 5 mol / L. As the reaction proceeds, the concentration of acetonitrile in the reaction system decreases. When the concentration in the reaction system is less than 0.6 mol / L, the yield decreases. On the other hand, when the concentration exceeds 5 mol / L, the epoxidation selectivity of hydrogen peroxide tends to decrease and the cost increases. Absent. Therefore, the initial concentration at the start of the reaction is set in the above concentration range, the concentration during the reaction is monitored, and the concentration is added by adding within the range not exceeding the upper limit before the concentration falls below the lower limit. Control. Preferably, the concentration is in the range of 0.7-2 mol / L. The total amount of acetonitrile used for the reaction is preferably 0.6 to 2 times (molar ratio), and 0.65 to 1.85 times the total amount of hydrogen peroxide used. Is more preferable.

アセトニトリルの反応開始時の仕込み量は、炭素−炭素二重結合を有する有機化合物の二重結合数を基準として、1.2〜5モル当量の範囲とすることが好ましく、2〜4モル当量がより好ましい。1.2モル当量より少ないと収率が低下し、一方、5モル当量より多くしても、過酸化水素のエポキシ化選択率が低下する傾向があり、またコスト高となるため好ましくない。なお、アセトニトリルの反応開始時の仕込み量は、上記反応進行中の反応系内の濃度範囲である0.6〜2mol/Lを満たすものでなければならない。なお、本発明で使用するアセトニトリルの由来は特に制限はなく、市販品のほか、例えばアクリロニトリルのソハイオ法による製造時に副生するアセトニトリル等を使用してもよい。   The amount of acetonitrile charged at the start of the reaction is preferably 1.2 to 5 molar equivalents based on the number of double bonds of the organic compound having a carbon-carbon double bond, and 2 to 4 molar equivalents. More preferred. When the amount is less than 1.2 molar equivalents, the yield decreases. On the other hand, when the amount exceeds 5 molar equivalents, the epoxidation selectivity of hydrogen peroxide tends to decrease and the cost increases. In addition, the preparation amount at the time of the reaction start of acetonitrile must satisfy | fill the 0.6-2 mol / L which is the concentration range in the reaction system in progress of the said reaction. The origin of acetonitrile used in the present invention is not particularly limited, and other than commercially available products, for example, acetonitrile produced as a by-product during production of acrylonitrile by the Sohio method may be used.

本発明に係るエポキシ化合物の製造方法において、反応液のpHを9〜11とすることが好ましく、より好ましくは9.5〜11、さらに好ましくは10〜11の範囲である。pHが9より低いと反応速度が低下するため、生産性が悪くなり、一方、11より高い場合、反応が急激に進行し危険であり収率も低下するため好ましくない。炭素−炭素二重結合を有する有機化合物として炭素−炭素二重結合を二つ有する化合物を使用する場合、反応系のpHによりジエポキシドの収率と選択性が影響されるが、pHが10〜11の範囲内であるとジエポキシドの収率と選択性がともに高くなるため好ましい。   In the method for producing an epoxy compound according to the present invention, the pH of the reaction solution is preferably 9 to 11, more preferably 9.5 to 11, and still more preferably 10 to 11. When the pH is lower than 9, the reaction rate is lowered, and thus the productivity is deteriorated. On the other hand, when the pH is higher than 11, the reaction proceeds rapidly, which is dangerous and the yield is also lowered. When a compound having two carbon-carbon double bonds is used as the organic compound having a carbon-carbon double bond, the yield and selectivity of diepoxide are affected by the pH of the reaction system. Within the range, the yield and selectivity of diepoxide are both high, which is preferable.

反応系内のpH調整に用いられる塩基性化合物としては、例えば、炭酸カリウム、炭酸水素カリウム、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等の無機塩基性化合物やカリウムメトキシド、カリウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、水酸化テトラメチルアンモニウム等の有機塩基性化合物が挙げられるが、水酸化カリウムや水酸化ナトリウムは水やアルコールへの溶解性が高く、反応性も良いため好ましい。これらの中でも炭酸カリウム、炭酸水素カリウム、水酸化カリウム、水酸化ナトリウム、カリウムメトキシド、カリウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシドは、pH調整が容易である点で、より好ましい。   Examples of basic compounds used for pH adjustment in the reaction system include, for example, inorganic basic compounds such as potassium carbonate, potassium hydrogen carbonate, potassium hydroxide, sodium hydroxide, cesium hydroxide, potassium methoxide, potassium ethoxide, Organic basic compounds such as sodium methoxide, sodium ethoxide, and tetramethylammonium hydroxide can be mentioned. Potassium hydroxide and sodium hydroxide are preferable because of their high solubility in water and alcohol and good reactivity. Among these, potassium carbonate, potassium hydrogen carbonate, potassium hydroxide, sodium hydroxide, potassium methoxide, potassium ethoxide, sodium methoxide, and sodium ethoxide are more preferable in terms of easy pH adjustment.

前記した塩基性塩化合物は、水溶液又はアルコール溶液として用いることができる。アルコール溶液の溶媒として用いられるアルコールには、メタノール、エタノール、プロパノール、ブタノール等が挙げられ、後述の反応溶媒と同一のものを使用することが好ましい。塩基性塩化合物の溶液は、反応液のpHが過酸化水素水溶液の添加に伴い9を下回らないように追加することが好ましく、このとき反応液の温度が20〜100℃ の範囲で、より好ましくは25〜60℃の範囲を保持するように追加することが好ましい。   The aforementioned basic salt compound can be used as an aqueous solution or an alcohol solution. Examples of the alcohol used as the solvent of the alcohol solution include methanol, ethanol, propanol, butanol and the like, and it is preferable to use the same reaction solvent as described later. The solution of the basic salt compound is preferably added so that the pH of the reaction solution does not fall below 9 with the addition of the aqueous hydrogen peroxide solution. At this time, the temperature of the reaction solution is more preferably in the range of 20 to 100 ° C. Is preferably added so as to maintain the range of 25 to 60 ° C.

上記エポキシ化合物の製造方法において、反応温度は、通常、20〜100℃の範囲、好ましくは25〜60℃の範囲で行われる。また、反応時間は、反応温度により左右され、一概に定めることはできないが、通常は4〜48時間の範囲、好ましくは4.5〜28時間の範囲で行われる。   In the method for producing the epoxy compound, the reaction temperature is usually in the range of 20 to 100 ° C, preferably in the range of 25 to 60 ° C. The reaction time depends on the reaction temperature and cannot be determined generally, but is usually in the range of 4 to 48 hours, preferably 4.5 to 28 hours.

反応終了後、反応液を純水で希釈し、又は反応液に必要に応じて硫酸等の酸を加えて中和後に純水で希釈した後に、溶媒を留去し、残分を酢酸エチル等の有機溶媒で抽出する。このようにして水層と分離した有機層を濃縮した後、蒸留、クロマト分離、再結晶や昇華等の通常の方法によって、得られたエポキシ化合物を取り出すことができる。   After completion of the reaction, the reaction solution is diluted with pure water, or neutralized by adding an acid such as sulfuric acid to the reaction solution as necessary. After dilution with pure water, the solvent is distilled off, and the residue is diluted with ethyl acetate or the like. Extract with an organic solvent. Thus, after concentrating the organic layer isolate | separated from the water layer, the obtained epoxy compound can be taken out by normal methods, such as distillation, chromatographic separation, recrystallization, and sublimation.

また、バインダーとして機能する樹脂には、上記エポキシ樹脂に加えて、他の熱可塑性樹脂及び熱硬化性樹脂を含んでもよい。これらの樹脂として、例えば反応性エラストマーとして機能する樹脂を含有させることにより、フィルム成形性が向上する。反応性とは、異方性導電フィルム中の他の樹脂成分(エポキシ樹脂を含む)と反応する官能基を有することを示す。また、硬化後の樹脂の弾性率を下げ接着力を向上させ、接続時の残留応力を小さくすることができる。このため、接続信頼性を向上することができる。   In addition to the epoxy resin, the resin functioning as a binder may include other thermoplastic resins and thermosetting resins. As these resins, for example, by containing a resin that functions as a reactive elastomer, film moldability is improved. Reactivity means having a functional group that reacts with other resin components (including epoxy resins) in the anisotropic conductive film. In addition, the elastic modulus of the cured resin can be lowered to improve the adhesive force, and the residual stress at the time of connection can be reduced. For this reason, connection reliability can be improved.

反応性エラストマーの材料は、特に限定するものではないが、フィルム形成性があるもの、たとえば、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリブタジエン、ポリプロピレン、スチレン−ブタジエン−スチレン共重合体、ポリアセタール樹脂、ポリビニルブチラール樹脂、アクリルゴム、ブチルゴム、クロロプレンゴム、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−メタクリル酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル樹脂、ナイロン、スチレン−イソプレン共重合体、スチレン−ブチレン−スチレンブロック共重合体などを用いることができ、単独でまたは2種以上を混合して用いることができる。   The material of the reactive elastomer is not particularly limited, but has a film-forming property such as phenoxy resin, polyester resin, polyurethane resin, polyimide resin, polybutadiene, polypropylene, styrene-butadiene-styrene copolymer, polyacetal. Resin, polyvinyl butyral resin, acrylic rubber, butyl rubber, chloroprene rubber, polyamide resin, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-methacrylic acid copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl acetate resin, nylon, A styrene-isoprene copolymer, a styrene-butylene-styrene block copolymer, or the like can be used, and these can be used alone or in admixture of two or more.

反応性エラストマーの配合量は特に限定されないが、エポキシ樹脂、硬化剤との合計100質量部に対して10質量部以上300質量部以下であることが好ましい。配合量が上限値以下であると、異方導電性フィルムの流動性が向上し、接続信頼性が向上する。また、各種被着体との濡れ性が向上し、密着性が向上する。また配合量が下限値以上であると、異方導電性フィルムとした時の製膜性が向上する。また、硬化物の弾性率が高くなるため、各種被着体に対する密着性が向上したり、熱衝撃試験後の接続信頼性が向上したりするメリットがある。   Although the compounding quantity of a reactive elastomer is not specifically limited, It is preferable that it is 10 to 300 mass parts with respect to 100 mass parts in total with an epoxy resin and a hardening | curing agent. When the blending amount is not more than the upper limit value, the fluidity of the anisotropic conductive film is improved, and the connection reliability is improved. Moreover, wettability with various adherends is improved, and adhesion is improved. Moreover, the film forming property when it is set as an anisotropic conductive film as a compounding quantity is more than a lower limit will improve. Moreover, since the elasticity modulus of hardened | cured material becomes high, there exists a merit that the adhesiveness with respect to various to-be-adhered bodies improves, or the connection reliability after a thermal shock test improves.

上記反応性エラストマーの好適な例としてアクリルゴムが挙げられる。アクリルゴムとしては、アクリル酸、アクリル酸エステル、メタクリル酸エステルまたはアクリロニトリルのうち少なくともひとつをモノマー成分とした重合体または共重合体があげられ、中でもグリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムが好適に用いられる。   A preferable example of the reactive elastomer is acrylic rubber. Examples of the acrylic rubber include a polymer or copolymer having at least one of acrylic acid, acrylic acid ester, methacrylic acid ester or acrylonitrile as a monomer component, including glycidyl acrylate or glycidyl methacrylate containing a glycidyl ether group. A copolymer acrylic rubber is preferably used.

アクリルゴムは、具体的には、たとえば、下記一般式(2)で示される化合物とすることができる。

Figure 2014212311
上記一般式(2)において、R1は、水素、メチル基、エチル基、プロピル基、ブチル基のいずれかを示し、R2は、水素、メチル基、エチル基、プロピル基、ブチル基のいずれかを示す。また、R1とR2とが同じ基であっても異なる基であってもよい。また、上記一般式(2)において、Xは40mol%以上98.5mol%以下、Yは1mol%以上50mol%以下、Zは0.5mol%以上10mol%以下である。また、上記一般式(2)に示したアクリルゴムの分子量は、たとえば、10000以上1500000以下である。上記一般式(2)に示したアクリルゴムを用いることにより、密着性および接続信頼性をさらに向上させることができる。 Specifically, the acrylic rubber can be, for example, a compound represented by the following general formula (2).
Figure 2014212311
In the general formula (2), R 1 represents any one of hydrogen, methyl group, ethyl group, propyl group, and butyl group, and R 2 represents any one of hydrogen, methyl group, ethyl group, propyl group, and butyl group. Indicate. R 1 and R 2 may be the same group or different groups. Moreover, in the said General formula (2), X is 40 mol% or more and 98.5 mol% or less, Y is 1 mol% or more and 50 mol% or less, Z is 0.5 mol% or more and 10 mol% or less. The molecular weight of the acrylic rubber represented by the general formula (2) is, for example, 10,000 or more and 1500,000 or less. By using the acrylic rubber represented by the general formula (2), the adhesion and connection reliability can be further improved.

これらの他の熱可塑性樹脂及び熱硬化性樹脂も含有する、バインダーとして機能する樹脂は、塩素濃度および臭素濃度が低いものが好ましく、バインダーとして機能する樹脂全量に対する全塩素原子濃度及び全臭素原子濃度の合計が300質量ppm以下であることが好ましい。より好ましくは50質量ppm以下であり、さらに好ましくは10質量ppm以下である。   The resin functioning as a binder containing these other thermoplastic resins and thermosetting resins preferably has a low chlorine concentration and bromine concentration. The total chlorine atom concentration and the total bromine atom concentration with respect to the total amount of the resin functioning as the binder. Is preferably 300 ppm by mass or less. More preferably, it is 50 mass ppm or less, More preferably, it is 10 mass ppm or less.

エポキシ樹脂としては、樹脂の配合量を導電性を損ねない量に抑えても、優れた接着性が得られるとともに、優れた耐熱性も得られることから、ビスフェノールA型およびビスフェノールF型エポキシ樹脂が好ましい。また、同様の観点から、レゾール型フェノール樹脂を混合してもよい。   As epoxy resins, bisphenol A type and bisphenol F type epoxy resins are used because excellent adhesiveness and excellent heat resistance can be obtained even if the blending amount of the resin is suppressed to an amount that does not impair the conductivity. preferable. Further, from the same viewpoint, a resol type phenol resin may be mixed.

フィルム形成性の点から常温で固体のエポキシ樹脂を用いることが好ましいが、配合してもフィルム形成に支障がない範囲で液状エポキシ樹脂を併用することもできる。   From the viewpoint of film formability, it is preferable to use an epoxy resin that is solid at room temperature, but a liquid epoxy resin may be used in combination as long as it does not hinder film formation even if blended.

液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p−グリシドキシフェニルジメチルトリルビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;1,5−ペンタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、1,9−ノナンジオールジグリシジルエーテル、1,10−デカンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルなどの脂肪族ポリグリシジルエーテル;ビニル(3,4−シクロヘキセン)ジオキシド、3,4−エポキシシクロヘキシルカルボン酸(3,4−エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)、2−(3,4−エポキシシクロヘキシル)5,1−スピロ(3,4−エポキシシクロヘキシル)−m−ジオキサンの少なくとも一種を構成成分としてなる脂環式エポキシ樹脂が例示される。   Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less; branched polyfunctional bisphenol A type epoxy resins such as p-glycidoxyphenyldimethyltolyl bisphenol A diglycidyl ether; bisphenol F type Epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,9-nonanediol diglycidyl ether, 1, 10-decanediol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether Any aliphatic polyglycidyl ether; vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl) methyl, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate ), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane, an alicyclic epoxy resin having as a constituent component is exemplified.

常温で固体のエポキシ樹脂としては、高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニル、ノボラックエポキシ樹脂のようなエポキシ樹脂;ノボラックフェノール樹脂、3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステルなどの二重結合とエポキシ基を持った化合物の二重結合を重合させた重合体および他のラジカル性二重結合をもつ化合物との共重合体などが例示される。   Examples of the epoxy resin that is solid at room temperature include epoxy resins such as high molecular weight bisphenol A type epoxy resin, diglycidyl biphenyl, and novolac epoxy resin; novolac phenol resin, 3,4-epoxycyclohexane-1-carboxylic acid allyl ester, etc. Examples thereof include a polymer obtained by polymerizing a double bond of a compound having a double bond and an epoxy group, and a copolymer with a compound having another radical double bond.

共重合を行えるラジカル性二重結合を持つ化合物としては、安息香酸アリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチルなどが挙げられる。ここで、「(メタ)アクリル酸」とはアクリル酸および/またはメタクリル酸を意味する。   Examples of the compound having a radical double bond capable of copolymerization include allyl benzoate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate, and the like. . Here, “(meth) acrylic acid” means acrylic acid and / or methacrylic acid.

エポキシ樹脂の硬化機構としては、自己硬化型樹脂を用いても、硬化剤や硬化促進剤を用いてもよい。   As a curing mechanism of the epoxy resin, a self-curing resin may be used, or a curing agent or a curing accelerator may be used.

上記エポキシ樹脂に対して通常使用される硬化剤としては、酸無水物、ポリアミン、ポリフェノール化合物等がある。   Curing agents usually used for the epoxy resin include acid anhydrides, polyamines, polyphenol compounds and the like.

このような硬化剤としては、具体的に酸無水物の場合には、ヘキサヒドロ無水フタル酸、1,2,3,6−テトラヒドロ無水フタル酸、3,4,5,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、5−ノルボルネン−2,3−ジカルボン酸無水物、ノルボルナン−2,3−ジカルボン酸無水物、メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、メチル−3,6−エンドメチレンヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸のほか、α−テルピネンやアロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物等の脂環式カルボン酸無水物系硬化剤や、芳香族酸無水物としては無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物等であり、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物等がある。   As such a curing agent, specifically in the case of an acid anhydride, hexahydrophthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Acid, 5-norbornene-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, methyl- In addition to 3,6-endomethylenehexahydrophthalic anhydride and dodecenyl succinic anhydride, alicyclic compounds having conjugated double bonds such as α-terpinene and alloocimene and anhydrous Alicyclic carboxylic acid anhydride-based curing agents such as Diels-Alder reaction products with hydric acid and hydrogenated products, and aromatic anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Benzophenone tetracarboxylic acid anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, and the like.

ポリアミンとしては、脂肪族アミンとしてジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、イソホロンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、水添ジアミノジフェニルメタンなどがあり、芳香族アミンとしてはm−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォンなどがある。   As polyamines, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, m-xylylenediamine, p-xylylenediamine, hydrogenated as aliphatic amines Examples of the aromatic amine include m-phenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.

ポリフェノール化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂のようないわゆるフェノール樹脂やポリビニルフェノール等が用いられる。   As the polyphenol compound, a so-called phenol resin such as a phenol novolak resin or a cresol novolak resin, polyvinyl phenol, or the like is used.

また、エポキシ樹脂と硬化剤の反応を促進するために、イミダゾールやジシアンジアミドのような硬化促進剤を併用することもできる。なお、これらの硬化剤、硬化促進剤にも塩素、臭素の含有量は低いほうが好ましいことはいうまでもない。   Moreover, in order to accelerate | stimulate reaction of an epoxy resin and a hardening | curing agent, hardening accelerators, such as imidazole and dicyandiamide, can also be used together. Needless to say, it is preferable that the content of chlorine and bromine is low in these curing agents and curing accelerators.

また、本実施形態の異方性導電フィルムに使用される導電粒子は、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属、または前記複数の金属の合金よりなる粒子、上記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子、あるいはこれらの粒子表面へ絶縁樹脂薄膜コートしたものであることが好適であるが、これらに限定されるものではなく、導電性を発現でき、かつ接着性を大きく(接着剤として使用できない程度に)損なうものでなければ使用することができる。導電粒子の形状は特に限定されず、球状、平板(扁平)状、棒状等種々の形状のものを使用できるが、球状のものが好ましい。好ましい粒子径は、接続する電子部品の隣接する端子(バンプ)や配線の間隔にもよるが、隣接する端子(バンプ)や配線の間隔の1/2以下、好ましくは1/5以下、より好ましくは1/10以下であり、5nm〜20μmの範囲のものを使用できる。ここでいう粒子径とは500nm以上の粒子径の場合には、レーザー回折・散乱法で、500nm未満の場合には動的光散乱法で各々測定した、個数基準のD50(メジアン径)の粒子径を意味する。   Further, the conductive particles used in the anisotropic conductive film of the present embodiment are at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, palladium, or an alloy of the plurality of metals. Particles, metal particles plated with gold, palladium or silver on the metal surface, resin core balls plated with nickel, gold, palladium or silver on resin balls, carbon or graphite particles, or It is preferable that the surface of these particles is coated with an insulating resin thin film, but is not limited thereto, and can exhibit electrical conductivity and have large adhesion (to the extent that it cannot be used as an adhesive). If not, you can use it. The shape of the conductive particles is not particularly limited, and various shapes such as a spherical shape, a flat plate (flat) shape, and a rod shape can be used, but a spherical shape is preferable. The preferred particle size depends on the distance between adjacent terminals (bumps) and wirings of the electronic component to be connected, but it is 1/2 or less, preferably 1/5 or less, the distance between adjacent terminals (bumps) or wirings. Is 1/10 or less, and those in the range of 5 nm to 20 μm can be used. The particle diameter here is a number-based D50 (median diameter) particle measured by a laser diffraction / scattering method when the particle diameter is 500 nm or more, and by a dynamic light scattering method when it is less than 500 nm. Means diameter.

異方性導電フィルムを構成するバインダー樹脂中に分散される導電粒子の配合量は、0.1〜20質量%、好ましくは0.2〜10質量%の範囲とする。0.1質量%を下回ると異方性導電フィルムとしての導通信頼性が低下し、20質量%を超えると異方導電性が低下する。   The compounding quantity of the electroconductive particle disperse | distributed in the binder resin which comprises an anisotropic conductive film shall be 0.1-20 mass%, Preferably it shall be the range of 0.2-10 mass%. If it is less than 0.1% by mass, the conduction reliability as an anisotropic conductive film is lowered, and if it exceeds 20% by mass, the anisotropic conductivity is lowered.

本実施形態の異方性導電フィルムは、導電粒子および上記エポキシ樹脂を含むバインダー樹脂の種類と量を選択し、また必要に応じて希釈剤を用いることにより、素子、基板などの接着に適切な粘度に調製することができる。   The anisotropic conductive film of this embodiment is suitable for adhesion of elements, substrates, etc. by selecting the type and amount of conductive resin and binder resin including the epoxy resin, and using a diluent as necessary. Viscosity can be adjusted.

本実施形態の異方性導電フィルムには、上記のほか、必要に応じて、分散助剤として、ジイソプロポキシ(エチルアセトアセタート)アルミニウムのようなアルミニウムキレート化合物;イソプロピルトリイソステアロイルチタナートのようなチタン酸エステル;脂肪族多価カルボン酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノオレエートのような界面活性剤;またはポリエステルアミン塩、ポリアミドのような高分子化合物などを用いてもよい。また、無機および有機顔料、シランカップリング剤、レベリング剤、チキソトロピック剤、消泡剤などを配合してもよい。   In the anisotropic conductive film of this embodiment, in addition to the above, an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum as a dispersion aid, if necessary, isopropyl triisostearoyl titanate An aliphatic polyvalent carboxylic acid ester; an unsaturated fatty acid amine salt; a surfactant such as sorbitan monooleate; or a polymer compound such as a polyesteramine salt or polyamide may be used. Moreover, you may mix | blend an inorganic and organic pigment, a silane coupling agent, a leveling agent, a thixotropic agent, an antifoamer, etc.

異方性導電フィルムは、上述のバインダー樹脂に導電粒子を分散させ、得られた分散物を離型フィルム上に製膜することにより製造することができる。バインダー樹脂に導電粒子を分散させるには、ライカイ機、プロペラ撹拌機、ニーダー、ロール、ポットミルなどのような混合手段により、均一に混合して調製する。調製温度は、特に限定されず、たとえば常温で調製することができる。   The anisotropic conductive film can be produced by dispersing conductive particles in the above-described binder resin and forming the obtained dispersion on a release film. In order to disperse the conductive particles in the binder resin, the conductive particles are uniformly mixed and prepared by a mixing means such as a laika machine, a propeller stirrer, a kneader, a roll, and a pot mill. Preparation temperature is not specifically limited, For example, it can prepare at normal temperature.

本発明の異方性導電フィルムは、従来の異方性導電フィルムと同様に、フレキシブル基板、リジッド基板、電子部品等の接続すべき電極間に配置し、電極間を加圧しつつ、加熱、UV照射等を行い、電極間を電気的、機械的に接続する異方性導電接続に使用することができ、これにより高い接続信頼性を有する異方性導電接続体の製造が可能となる。ここで、異方性導電接続とは、相対する電極間(縦方向)では導電性で、隣接する電極間(横方向)には絶縁性が保たれる接続をいう。   The anisotropic conductive film of the present invention is disposed between electrodes to be connected, such as a flexible substrate, a rigid substrate, and an electronic component, in the same manner as a conventional anisotropic conductive film. Irradiation or the like can be performed, and the electrode can be used for an anisotropic conductive connection in which electrodes are electrically and mechanically connected. This makes it possible to manufacture an anisotropic conductive connection body having high connection reliability. Here, the anisotropic conductive connection refers to a connection that is conductive between opposing electrodes (vertical direction) and insulative between adjacent electrodes (horizontal direction).

以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。   Examples of the present invention will be specifically described below. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.

実施例で使用した導電粒子は以下の銀粒子である。
EHD :三井金属鉱業株式会社製銀粒子(球状) D50=620nm
ここで、上記D50は、レーザー回折・散乱法で測定した個数基準のメジアン径である。
The conductive particles used in the examples are the following silver particles.
EHD: Silver particles (spherical) manufactured by Mitsui Mining & Smelting Co., Ltd. D50 = 620 nm
Here, D50 is a number-based median diameter measured by a laser diffraction / scattering method.

合成例1
・3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステルの合成とその重合体の作製
NaWO・2HO(500mg,1.5mmol)、40質量%過酸化水素水溶液(7.65g,90mmol)、硫酸水素メチルトリオクチルアンモニウム(260mg,0.56mmol)及び3−シクロヘキセン−1−カルボン酸アリル(12.5g,75mmol)を混合し、25℃にて15分間反応させた後、70℃まで昇温し、3.5時間撹拌した。反応終了後、室温まで冷却させた。チオ硫酸ナトリウム飽和水溶液にて後処理を行った後、有機層を取り出した。得られた溶液をガスクロマトグラフィーにて測定したところ、原料である3−シクロヘキセン−1−カルボン酸アリルの転化率は79%であり、2官能性エポキシモノマーである3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステルが69%の収率で生成していることを確認した。ジエポキシドは全く生成しておらず、モノエポキシドの選択率が87.3%であるという結果が得られた。
Synthesis example 1
Synthesis of 3,4-epoxycyclohexane-1-carboxylic acid allyl ester and production of the polymer Na 2 WO 4 · 2H 2 O (500 mg, 1.5 mmol), 40% by mass hydrogen peroxide aqueous solution (7.65 g, 90 mmol), methyl trioctylammonium hydrogen sulfate (260 mg, 0.56 mmol) and allyl 3-cyclohexene-1-carboxylate (12.5 g, 75 mmol) were mixed and reacted at 25 ° C. for 15 minutes, then 70 ° C. The mixture was heated up to 3.5 hours and stirred for 3.5 hours. After completion of the reaction, it was cooled to room temperature. After post-treatment with a saturated aqueous solution of sodium thiosulfate, the organic layer was taken out. When the obtained solution was measured by gas chromatography, the conversion of allyl 3-cyclohexene-1-carboxylate as a raw material was 79% and 3,4-epoxycyclohexane-1 as a bifunctional epoxy monomer. -It was confirmed that carboxylic acid allyl ester was produced in a yield of 69%. The result was that no diepoxide was produced and the selectivity of monoepoxide was 87.3%.

なお、転化率及び選択率は、ガスクロマトグラフィーにより分析した結果を元に、以下の計算式により計算した。
転化率(%)=(1−残存した原料のモル数/使用した原料のモル数)×100
選択率(%)={(収率(%)/転化率(%)}×100
In addition, the conversion rate and the selectivity were calculated by the following calculation formula based on the result analyzed by gas chromatography.
Conversion rate (%) = (1-Mole number of remaining raw material / Mole number of used raw material) × 100
Selectivity (%) = {(yield (%) / conversion (%)} × 100

これとほぼ同様の方法でスケールアップを行って得られた3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステル100gを、ジエチレングリコールモノメチルエーテルアセテート80g、安息香酸アリルエステル89g、t−ブチルイソプロピルパーオキシカーボネート(日本油脂株式会社製パーブチルI(主成分75%含有))4.7gとともに攪拌機、温度計、還流冷却管、滴下ロート及び窒素導入管を備えた500mlセパラブルフラスコに仕込み、110℃に昇温後、1時間撹拌した。t−ブチルイソプロピルパーオキシカーボネートを、1時間毎、3回に分けて4.7gずつ添加し、添加終了後さらに110℃、窒素雰囲気下で2時間熟成することによって、エポキシ基含有重合体溶液を得た。反応は窒素気流下で行った。   100 g of 3,4-epoxycyclohexane-1-carboxylic acid allyl ester obtained by scaling up in substantially the same manner as above, 80 g of diethylene glycol monomethyl ether acetate, 89 g of benzoic acid allyl ester, t-butylisopropyl peroxycarbonate (Nippon Yushi Co., Ltd., Perbutyl I (containing 75% of the main component)) was charged into a 500 ml separable flask equipped with 4.7 g and a stirrer, thermometer, reflux condenser, dropping funnel, and nitrogen inlet tube, and heated to 110 ° C. Thereafter, the mixture was stirred for 1 hour. t-Butyl isopropyl peroxycarbonate was added in 4.7 g portions every 3 hours, and after completion of addition, the mixture was further aged in a nitrogen atmosphere at 110 ° C. for 2 hours to obtain an epoxy group-containing polymer solution. Obtained. The reaction was carried out under a nitrogen stream.

反応中、ガスクロマトグラフィーで、3,4−エポキシシクロヘキサン−1−カルボン酸アリルエステルと安息香酸アリルエステルの残量を測定し、転化率を算出することによって反応を追跡し、両エステルが1%以下になった点を反応終点とした。この時点でのゲルパーミエーションクロマトグラフ(以下GPCと省略する)の結果と合わせて、重合反応が進行したことを確認した。得られた樹脂の固形分のエポキシ当量は381g/eq.(理論エポキシ当量344g/eq.)、数平均分子量Mnは1,315であった。また、全塩素原子濃度は6質量ppm、全臭素原子濃度は1質量ppm未満であった。   During the reaction, the remaining amount of 3,4-epoxycyclohexane-1-carboxylic acid allyl ester and benzoic acid allyl ester was measured by gas chromatography, and the reaction was traced by calculating the conversion rate. The following points were defined as reaction end points. Together with the results of gel permeation chromatograph (hereinafter abbreviated as GPC) at this point, it was confirmed that the polymerization reaction had progressed. The epoxy equivalent of the solid content of the obtained resin was 381 g / eq. (Theoretical epoxy equivalent 344 g / eq.) And the number average molecular weight Mn was 1,315. The total chlorine atom concentration was 6 ppm by mass, and the total bromine atom concentration was less than 1 ppm by mass.

なお、エポキシ当量、数平均分子量、全塩素原子濃度および全臭素原子濃度は各々以下の方法により求めた。   The epoxy equivalent, number average molecular weight, total chlorine atom concentration and total bromine atom concentration were determined by the following methods, respectively.

<エポキシ当量>
エポキシ当量はJIS−K7236に準拠して求めた。試料を0.1〜0.2g秤量し、三角フラスコに入れた後、クロロホルム10mLを加えて溶解させる。次に、酢酸20mLを加え、続いて臭化テトラエチルアンモニウム酢酸溶液(臭化テトラエチルアンモニウム100gを酢酸400mLに溶解させたもの)10mLを加える。この溶液にクリスタルバイオレット指示薬を4〜6滴加え、0.1mol/L過塩素酸酢酸溶液で滴定し、滴定結果に基づいて、下記式に従いエポキシ当量を求めた。
エポキシ当量(g/eq)=(1000×m)/{(V1−V0)×c}
m :試料の重量(g)
V0:空試験における終点までの滴定に消費した過塩素酸酢酸溶液の量(mL)
V1:終点までの滴定に消費した過塩素酸酢酸溶液の量(mL)
c :過塩素酸酢酸溶液の濃度(0.1mol/L)
<Epoxy equivalent>
The epoxy equivalent was determined according to JIS-K7236. A sample is weighed 0.1 to 0.2 g and placed in an Erlenmeyer flask, and then 10 mL of chloroform is added and dissolved. Next, 20 mL of acetic acid is added, followed by 10 mL of tetraethylammonium bromide solution (100 g of tetraethylammonium bromide dissolved in 400 mL of acetic acid). 4 to 6 drops of crystal violet indicator were added to this solution, titrated with a 0.1 mol / L perchloric acid acetic acid solution, and an epoxy equivalent was determined according to the following formula based on the titration result.
Epoxy equivalent (g / eq) = (1000 × m) / {(V1−V0) × c}
m: weight of the sample (g)
V0: Amount of perchloric acid acetic acid solution consumed for titration to the end point in the blank test (mL)
V1: Amount of perchloric acid acetic acid solution consumed for titration to the end point (mL)
c: Concentration of perchloric acid acetic acid solution (0.1 mol / L)

<数平均分子量>
ゲルパーミエーションクロマトグラフィー(以下GPCと省略する。)を用い、ポリスチレン(標準試料 昭和電工(株)製STANDARD SM−105使用)に換算した値で求めた。なお、GPCの測定条件は以下のとおりである。
装置名:日本分光(株)製HPLCユニット HSS−2000
カラム:ShodexカラムLF−804
移動相:テトラヒドロフラン
流速 :1.0mL/分
検出器:日本分光(株)製 RI−2031Plus
温度 :40.0℃
試料量:サンプルループ 100μリットル
試料濃度:0.1質量%前後に調製。
<Number average molecular weight>
Using gel permeation chromatography (hereinafter abbreviated as GPC), the value was calculated as a value converted to polystyrene (standard sample, STANDARD SM-105 manufactured by Showa Denko KK). The measurement conditions for GPC are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL / min Detector: JA-20 Co., Ltd. RI-2031Plus
Temperature: 40.0 ° C
Sample amount: 100 μl of sample loop Sample concentration: prepared at around 0.1% by mass.

<全塩素原子濃度および全臭素原子濃度>
塩素原子濃度および臭素原子濃度の測定は、エポキシ化合物を800℃以上の高温で燃焼・分解させ、その分解ガスを超純水等に吸収させ、イオンクロマトグラフィーで塩素原子および臭素原子を定量することにより測定した(前処理燃焼装置 AGF−100(株式会社三菱化学アナリティック製)、ガス吸着装置 GA−100(株式会社三菱化学アナリティック製)、イオンクロマト ICS−100(ダイオネクス・コーポレーション製))。
<Total chlorine atom concentration and total bromine atom concentration>
Chlorine atom concentration and bromine atom concentration are measured by burning and decomposing epoxy compounds at a high temperature of 800 ° C or higher, absorbing the decomposition gas in ultrapure water, etc., and quantifying chlorine and bromine atoms by ion chromatography. (Pretreatment combustion device AGF-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), gas adsorption device GA-100 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.), ion chromatograph ICS-100 (manufactured by Dionex Corporation)).

合成例2
・ビスフェノール−A−グリシジルエーテルの合成
2000mlのナス型フラスコに、ビスフェノール−A(三井化学株式会社製)148.4g(0.650mol)、50%含水5%−Pd/C−STDタイプ(エヌ・イーケムキャット株式会社製)1.38g(0.650mmol)、トリフェニルホスフィン(北興化学株式会社製)1.639g(6.50mmol)、炭酸カリウム(日本曹達株式会社製)189g(1.37mol)、酢酸アリル(昭和電工株式会社製)143g(1.43mol)、及びイソプロパノール64.1gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、ビスフェノール−A−ジアリルエーテル対モノアリルエーテルの比率が98:2までになっていることを確認した。
Synthesis example 2
Synthesis of bisphenol-A-glycidyl ether In a 2000 ml eggplant-shaped flask, 148.4 g (0.650 mol) of bisphenol-A (manufactured by Mitsui Chemicals), 50% water content 5% -Pd / C-STD type (N. 1.38 g (0.650 mmol), manufactured by Echemcat Co., Ltd., 1.639 g (6.50 mmol) of triphenylphosphine (manufactured by Hokuko Chemical Co., Ltd.), 189 g (1.37 mol) of potassium carbonate (manufactured by Nippon Soda Co., Ltd.), 143 g (1.43 mol) of allyl acetate (manufactured by Showa Denko KK) and 64.1 g of isopropanol were added and reacted at 85 ° C. for 8 hours in a nitrogen atmosphere. After the reaction, a part was sampled, diluted with ethyl acetate, and analyzed by gas chromatography, and it was confirmed that the ratio of bisphenol-A-diallyl ether to monoallyl ether was up to 98: 2.

この後、反応液にトルエン200gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応、後処理操作を4回繰り返した後、分子蒸留装置(大科工業株式会社製)により、留出物493g(単離収率61.7%、ジアリルエーテル98.1%、残りはモノアリルエーテル)、非留出物245g(ジアリルエーテル96.5%)を得た。   Thereafter, 200 g of toluene was added to the reaction solution, Pd / C and the precipitated solid were removed by filtration, and isopropanol and toluene were distilled off by an evaporator. This reaction and post-treatment operation were repeated four times, and then 493 g of a distillate (isolation yield 61.7%, diallyl ether 98.1%, the rest was mono) by using a molecular distillation apparatus (manufactured by Otsuka Kogyo Co., Ltd.). Allyl ether), 245 g of non-distilled product (96.5% diallyl ether).

1L4径ナス型フラスコに上記操作により得られたビスフェノール−A−ジアリルエーテル(50.05g、162.3mmol)、アセトニトリル(26.63g、648.7mmol)、エタノール(265.1g、5754.2mmol)を量りとった(この段階での系内のアセトニトリル濃度1.55mol/L、pH=8.2)。pH=9を下回らないように飽和水酸化カリウム水溶液(KOH/HO=110mg/100mL)を加えながら45%過酸化水素水(53.92g、713.5mmol)を100mL滴下漏斗により2時間かけて滴下した(この段階での系内のアセトニトリル濃度1.18mol/L、pH=9.2)。反応温度が30℃を超えないよう飽和水酸化カリウム水溶液を滴下しpHを2時間かけて(過酸化水素水滴下終了時点から2時間)10.5に到達させ、pHを10.5に制御しながらさらに2時間攪拌した(この段階での系内のアセトニトリル濃度0.61mol/Lに低下)。続いて50mL滴下漏斗にアセトニトリル(13.31g、324.2mmol)を量りとり、2時間かけて滴下した(追添後アセトニトリル濃度0.91mol/L)。これと同時に、45%過酸化水素水(53.92g、713.5 mmol)を100mL滴下漏斗により4時間かけて滴下(この間の4時間は反応温度が30℃を超えないようにpHを10〜10.5に保持している。)し、さらにpHを10.5に制御しながら4時間攪拌して反応を終了させた(反応終了時のアセトニトリル濃度0.62mol/L)。反応液に、純水(100g)を加え希釈し、減圧下、溶媒留去した。残渣を酢酸エチル(100g)により抽出後、再び純水(100g)を加え、分液操作を行った。得られた溶液をガスクロマトグラフィーにて測定したところ、原料であるビスフェノールA型ジアリルエーテルの転化率は100%であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテルが87.7%、モノグリシジルエーテルが5.1%であることを確認した。 Bisphenol-A-diallyl ether (50.05 g, 162.3 mmol), acetonitrile (26.63 g, 648.7 mmol), ethanol (265.1 g, 5754.2 mmol) obtained by the above operation were placed in a 1 L 4-diameter eggplant type flask. The sample was weighed (the acetonitrile concentration in the system at this stage was 1.55 mol / L, pH = 8.2). Saturated aqueous potassium hydroxide solution (KOH / H 2 O = 110 mg / 100 mL) was added so that the pH was not lower than 9. 45% hydrogen peroxide (53.92 g, 713.5 mmol) was added to the 100 mL dropping funnel over 2 hours. (Acetonitrile concentration in the system at this stage: 1.18 mol / L, pH = 9.2). Saturated aqueous potassium hydroxide solution was added dropwise so that the reaction temperature did not exceed 30 ° C., and the pH was allowed to reach 10.5 over 2 hours (2 hours after the end of the hydrogen peroxide solution addition), and the pH was controlled to 10.5. The mixture was further stirred for 2 hours (reducing the acetonitrile concentration in the system to 0.61 mol / L at this stage). Subsequently, acetonitrile (13.31 g, 324.2 mmol) was weighed into a 50 mL dropping funnel and dropped over 2 hours (after addition, acetonitrile concentration 0.91 mol / L). At the same time, 45% hydrogen peroxide (53.92 g, 713.5 mmol) was added dropwise over 4 hours with a 100 mL dropping funnel (the pH was adjusted to 10 to 4 hours so that the reaction temperature did not exceed 30 ° C. The reaction was terminated by stirring for 4 hours while controlling the pH to 10.5 (acetonitrile concentration at the end of the reaction was 0.62 mol / L). The reaction solution was diluted with pure water (100 g), and the solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (100 g), pure water (100 g) was added again, and a liquid separation operation was performed. When the obtained solution was measured by gas chromatography, the conversion of the raw material bisphenol A type diallyl ether was 100%, the diepoxy monomer bisphenol A type diglycidyl ether was 87.7%, and monoglycidyl. It was confirmed that the ether was 5.1%.

エバポレーターにより酢酸エチルを留去し、目的とするエポキシ化生成物を得た。合成例1同様に測定したこのものの塩素原子濃度は6質量ppm、全臭素原子濃度は1質量ppm未満で、エポキシ当量は178g/eq.あった。   Ethyl acetate was distilled off with an evaporator to obtain the desired epoxidation product. The chlorine atom concentration measured in the same manner as in Synthesis Example 1 was 6 ppm by mass, the total bromine atom concentration was less than 1 ppm by mass, and the epoxy equivalent was 178 g / eq. there were.

合成例3
アクリルゴムの重合
ブチルアクリレート40.0g、エチルアクリレート30.0g、アクリロニトリル30.0g、及びグリシジルメタクリレート30.0g、酢酸エチル260gをメカニカルスターラー、ジムロート冷却器のついた1000mlナスフラスコに仕込み、窒素気流下でアゾビスイソブチロニトリル0.65gを酢酸エチル1.3gに溶解したものを65℃で滴下した。2時間後、4時間後にアゾビスイソブチロニトリル0.65gを酢酸エチル1.3gに溶解したものを再度滴下し、10時間かけて反応を行い、モノマーがほぼ消失したことをガスクロマトグラフィーにより確認した。得られた重合体の分子量は80,000であった。
Synthesis example 3
Polymerization of acrylic rubber 40.0 g of butyl acrylate, 30.0 g of ethyl acrylate, 30.0 g of acrylonitrile, 30.0 g of glycidyl methacrylate, and 260 g of ethyl acetate were charged into a 1000 ml eggplant flask equipped with a mechanical stirrer and a Dimroth condenser, under a nitrogen stream. Then, 0.65 g of azobisisobutyronitrile dissolved in 1.3 g of ethyl acetate was added dropwise at 65 ° C. After 2 hours and 4 hours, a solution of 0.65 g of azobisisobutyronitrile dissolved in 1.3 g of ethyl acetate was added again, and the reaction was carried out over 10 hours. confirmed. The molecular weight of the obtained polymer was 80,000.

実施例1
合成例1のエポキシ樹脂5g、合成例3のアクリルゴム54g、及び、合成例2のエポキシ樹脂15gに酢酸エチル10gを加えて溶解した。この溶液に、カチオン系硬化剤(スルホニウム塩、三新化学工業株式会社製:SI−60)2gを添加し、接着剤溶液を作製した。この接着剤溶液にシリカフィラー(日本アエロジル社製:Aerosil R805)の酢酸エチル分散液(10質量%)を30g添加し攪拌した。更に、EHD20gを接着剤溶液と混合して、超音波分散を行った。この分散液を、シリコーン処理したポリエチレンテレフタレートフイルムであるセパレータ(厚み40μm)にロールコータで塗布し、80℃で5分間乾燥して、厚み20μmの異方性導電フィルムを作製した。
Example 1
To 5 g of the epoxy resin of Synthesis Example 1, 54 g of the acrylic rubber of Synthesis Example 3 and 15 g of the epoxy resin of Synthesis Example 2, 10 g of ethyl acetate was added and dissolved. 2 g of a cationic curing agent (sulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd .: SI-60) was added to this solution to prepare an adhesive solution. 30 g of an ethyl acetate dispersion (10% by mass) of silica filler (Nippon Aerosil Co., Ltd .: Aerosil R805) was added to this adhesive solution and stirred. Furthermore, 20 g of EHD was mixed with the adhesive solution, and ultrasonic dispersion was performed. This dispersion was applied to a silicone-treated polyethylene terephthalate film separator (thickness 40 μm) with a roll coater and dried at 80 ° C. for 5 minutes to produce an anisotropic conductive film having a thickness of 20 μm.

比較例1
合成例2のエポキシ樹脂のかわりにjER828(三菱化学株式会社製、塩素原子濃度1710ppm、全臭素原子濃度は1質量ppm未満)を用いた以外は実施例1と同様にして異方性導電フィルムを作製した。
Comparative Example 1
An anisotropic conductive film was prepared in the same manner as in Example 1 except that jER828 (manufactured by Mitsubishi Chemical Corporation, chlorine atom concentration: 1710 ppm, total bromine atom concentration: less than 1 ppm by mass) was used instead of the epoxy resin of Synthesis Example 2. Produced.

実施例1と比較例1で作製したフィルムから塩化メチレンを溶剤に用いて接着剤部分を抽出し、溶媒留去、乾固後の固形物中の塩素原子濃度を測定したところ実施例は2ppmであるのに対し、比較例からは382ppmの塩素原子が検出された。   The adhesive part was extracted from the films produced in Example 1 and Comparative Example 1 using methylene chloride as a solvent, and the concentration of chlorine atoms in the solid after evaporation of the solvent and drying to dryness was 2 ppm. On the other hand, 382 ppm of chlorine atoms were detected from the comparative example.

次に、作製した異方性導電フィルムを用いて、金バンプ(面積:30×90μm、スペース10μm、高さ:15μm、バンブ数362)付きチップ(1.7×17mm、厚み:0.5μm)と配線ピッチ40μm(ライン/スペース=30μm/10μm、ライン厚み:10μm)のAl回路付きガラス基板(厚み:0.7mm)の接続構造体サンプルを、以下の方法で作製した。   Next, using the produced anisotropic conductive film, a chip (1.7 × 17 mm, thickness: 0.5 μm) with gold bumps (area: 30 × 90 μm, space: 10 μm, height: 15 μm, bump number: 362) A connection structure sample of a glass substrate with an Al circuit (thickness: 0.7 mm) having a wiring pitch of 40 μm (line / space = 30 μm / 10 μm, line thickness: 10 μm) was produced by the following method.

まず、異方性導電フィルム(2×19mm)をAl回路付きガラス基板に80℃、0.98MPa(10kgf/cm)で貼り付けた後、セパレータを剥離し、チップのバンプとAl回路付きガラス基板の位置合わせを行った。次いで、190℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。サンプル作製直後の接続抵抗を測定した結果、実施例、比較例ともに異方性導電接続できていることを確認できた。その後温度85℃、湿度85%、200時間処理(HH処理)し接続抵抗を再度測定した結果実施例1では良好な異方性導電接続を保持したが、比較例1では導電接続不良が発生した。 First, an anisotropic conductive film (2 × 19 mm) was attached to a glass substrate with an Al circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ), then the separator was peeled off, and the chip bump and the glass with the Al circuit. The substrate was aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 190 ° C., 40 g / bump, and 10 seconds. As a result of measuring the connection resistance immediately after the preparation of the sample, it was confirmed that anisotropic conductive connection was achieved in both the example and the comparative example. After that, the temperature was 85 ° C., the humidity was 85%, the treatment was performed for 200 hours (HH treatment), and the connection resistance was measured again. As a result, good anisotropic conductive connection was maintained in Example 1, but poor conductive connection occurred in Comparative Example 1. .

Claims (5)

全塩素原子濃度及び全臭素原子濃度の合計が300質量ppm以下であるエポキシ樹脂を含むバインダー樹脂中に導電粒子が0.1〜20質量%分散されている異方性導電フィルム。   An anisotropic conductive film in which conductive particles are dispersed in an amount of 0.1 to 20% by mass in a binder resin containing an epoxy resin whose total chlorine atom concentration and total bromine atom concentration are 300 ppm by mass or less. 前記エポキシ樹脂の全塩素原子濃度及び全臭素原子濃度の合計が50質量ppm以下である請求項1に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein a total of total chlorine atom concentration and total bromine atom concentration of the epoxy resin is 50 mass ppm or less. 前記エポキシ樹脂がアリルエーテル基を二個以上有する化合物を酸化して得られたグリシジルエーテル化合物である請求項1または2に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1 or 2, wherein the epoxy resin is a glycidyl ether compound obtained by oxidizing a compound having two or more allyl ether groups. 前記導電粒子が、金、銀、銅、ニッケル、アルミニウム、パラジウムからなる群から選択される少なくとも一種の金属または前記複数の金属の合金よりなる粒子、前記金属表面に金、パラジウム、銀のいずれかがめっきされた金属粒子、樹脂ボールにニッケル、金、パラジウム、銀のいずれかがめっきされた樹脂コアボール、カーボンまたはグラファイトの粒子、あるいはこれらの粒子表面へ絶縁樹脂薄膜コートしたものである請求項1から請求項3のいずれか一項に記載の異方性導電フィルム。   The conductive particles are particles made of at least one metal selected from the group consisting of gold, silver, copper, nickel, aluminum, and palladium or an alloy of the plurality of metals, and any one of gold, palladium, and silver on the metal surface A metal particle plated with resin, a resin core ball plated with nickel, gold, palladium, or silver on a resin ball, carbon or graphite particles, or a surface of these particles coated with an insulating resin thin film. The anisotropic conductive film as described in any one of Claim 1 to 3. 請求項1から請求項4のいずれか一項に記載の異方性導電フィルムを用いて電子部品同士が異方性導電接続されている異方性導電接続体。   An anisotropic conductive connector in which electronic parts are anisotropically conductively connected using the anisotropic conductive film according to claim 1.
JP2014071356A 2013-04-02 2014-03-31 Anisotropic conductive film and anisotropic conductive connector Active JP6664147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071356A JP6664147B2 (en) 2013-04-02 2014-03-31 Anisotropic conductive film and anisotropic conductive connector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013076840 2013-04-02
JP2013076840 2013-04-02
JP2014071356A JP6664147B2 (en) 2013-04-02 2014-03-31 Anisotropic conductive film and anisotropic conductive connector

Publications (2)

Publication Number Publication Date
JP2014212311A true JP2014212311A (en) 2014-11-13
JP6664147B2 JP6664147B2 (en) 2020-03-13

Family

ID=51931818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071356A Active JP6664147B2 (en) 2013-04-02 2014-03-31 Anisotropic conductive film and anisotropic conductive connector

Country Status (1)

Country Link
JP (1) JP6664147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017175511A1 (en) * 2016-04-06 2018-09-20 株式会社村田製作所 Film capacitor, capacitor film, and film capacitor manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281914A (en) * 1999-03-31 2000-10-10 Hitachi Chem Co Ltd Resin composition
JP2002343462A (en) * 2001-05-10 2002-11-29 Fujitsu Ltd Anisotropic conductive sheet, manufacturing method therefor, contact structure, electronic device and inspection device for performance test
JP2002367692A (en) * 2001-06-11 2002-12-20 Shin Etsu Polymer Co Ltd Anisotropy conductive adhesive and connection structure using the same
JP3904798B2 (en) * 1999-04-01 2007-04-11 三井化学株式会社 Anisotropic conductive paste
JP4079281B2 (en) * 1996-02-08 2008-04-23 旭化成エレクトロニクス株式会社 Anisotropic conductive composition
JP2008186760A (en) * 2007-01-31 2008-08-14 Tokai Rubber Ind Ltd Anisotropic conductive film and its manufacturing method
JP2010174096A (en) * 2009-01-28 2010-08-12 Fujikura Kasei Co Ltd Anisotropic conductive adhesive
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin
JP2012092247A (en) * 2010-10-28 2012-05-17 Showa Denko Kk Liquid-form curable composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079281B2 (en) * 1996-02-08 2008-04-23 旭化成エレクトロニクス株式会社 Anisotropic conductive composition
JP2000281914A (en) * 1999-03-31 2000-10-10 Hitachi Chem Co Ltd Resin composition
JP3904798B2 (en) * 1999-04-01 2007-04-11 三井化学株式会社 Anisotropic conductive paste
JP2002343462A (en) * 2001-05-10 2002-11-29 Fujitsu Ltd Anisotropic conductive sheet, manufacturing method therefor, contact structure, electronic device and inspection device for performance test
JP2002367692A (en) * 2001-06-11 2002-12-20 Shin Etsu Polymer Co Ltd Anisotropy conductive adhesive and connection structure using the same
JP2008186760A (en) * 2007-01-31 2008-08-14 Tokai Rubber Ind Ltd Anisotropic conductive film and its manufacturing method
JP2010174096A (en) * 2009-01-28 2010-08-12 Fujikura Kasei Co Ltd Anisotropic conductive adhesive
JP2010235649A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Method for producing purified epoxy resin
JP2012092247A (en) * 2010-10-28 2012-05-17 Showa Denko Kk Liquid-form curable composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017175511A1 (en) * 2016-04-06 2018-09-20 株式会社村田製作所 Film capacitor, capacitor film, and film capacitor manufacturing method

Also Published As

Publication number Publication date
JP6664147B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6322190B2 (en) Conductive adhesive, anisotropic conductive film, and electronic device using them
JPWO2014162990A6 (en) Conductive adhesive, anisotropic conductive film, and electronic device using them
JP5143449B2 (en) Thermal or active energy ray curable adhesive
JP2012092247A (en) Liquid-form curable composition
TWI593774B (en) Anisotropic conductive film and semiconductor device bonded by the same
TWI502016B (en) Epoxy resin compositions, epoxy resins and hardened products
JP6478465B2 (en) Conductive adhesive and electronic device using them
WO2007061037A1 (en) Liquid resin composition for electronic component and electronic component device
JP6080776B2 (en) Conductive adhesive and electronic device using the same
JP2017132919A (en) Anisotropic conductive adhesive composition, film-like adhesive, connection structure and semiconductor device
JP6429793B2 (en) Liquid epoxy resin composition
JP2012111858A (en) Curable composition for sealing semiconductor
JP6664147B2 (en) Anisotropic conductive film and anisotropic conductive connector
JP6303627B2 (en) Epoxy resin composition and cured product
JP2004231787A (en) Epoxy resin diluent, epoxy resin composition and epoxy resin cured product
JP2013014643A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5668659B2 (en) Underfill material, semiconductor device and manufacturing method thereof
JP5768529B2 (en) Interlayer filler composition for three-dimensional stacked semiconductor device and coating solution thereof
JP4835229B2 (en) Resin composition and semiconductor device produced using resin composition
JP2008247974A (en) One-pack epoxy resin composition
CN117980427A (en) Thermally conductive adhesive composition, method for the production and use thereof
JP2013014695A (en) Interlayer filler composition for three-dimensionally stacked semiconductor device and coating liquid thereof
JP2017115007A (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350