JP2014211256A - Air conditioning system using waste heat of supplied hot water - Google Patents

Air conditioning system using waste heat of supplied hot water Download PDF

Info

Publication number
JP2014211256A
JP2014211256A JP2013087064A JP2013087064A JP2014211256A JP 2014211256 A JP2014211256 A JP 2014211256A JP 2013087064 A JP2013087064 A JP 2013087064A JP 2013087064 A JP2013087064 A JP 2013087064A JP 2014211256 A JP2014211256 A JP 2014211256A
Authority
JP
Japan
Prior art keywords
heat
hot water
pipe
air conditioning
transfer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013087064A
Other languages
Japanese (ja)
Other versions
JP6087711B2 (en
Inventor
相良 峰雄
Mineo Sagara
峰雄 相良
大介 朝桐
Daisuke Asagiri
大介 朝桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013087064A priority Critical patent/JP6087711B2/en
Publication of JP2014211256A publication Critical patent/JP2014211256A/en
Application granted granted Critical
Publication of JP6087711B2 publication Critical patent/JP6087711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system using waste heat from hot water supply, capable of being provided at a smaller number of components, effectively collecting heat of hot water drained from a hot water utilization part in a building to a waste water tank together with underground heat, and using the collected heat for heating.SOLUTION: A drainage water pipe 31 connected to a hot water utilization part (a bathtub 30) in a building 3 is buried in the ground to be proximate to an underground heat exchange means (heat transport fluid storage pipe 16), so that a heat transport fluid of the underground heat exchange means (heat transport fluid storage pipe 16) can be heated with waste heat of hot water drained through the drainage water pipe 31.

Description

この発明は、建物内で利用された湯の熱を空調に利用する給湯排熱利用空調システムに関するものである。   The present invention relates to a hot water supply exhaust heat utilization air conditioning system that utilizes the heat of hot water used in a building for air conditioning.

建物等では、一般に給湯装置から浴槽やシンクの給湯パイプに給湯された湯は利用された後、排水パイプから建物の外部に排水されるようになっている。この排水される湯の熱を建物内の空調に利用する空調システムが知られている(例えば、特許文献1参照)。   In buildings and the like, generally hot water supplied from a hot water supply device to a hot water pipe of a bathtub or sink is used and then drained from the drain pipe to the outside of the building. There is known an air conditioning system that uses the heat of the drained hot water for air conditioning in a building (see, for example, Patent Document 1).

この空調システムでは、建物の床下空間内に温水蓄熱槽を配設して、浴槽からの残り湯を排水する際に、この残り湯の熱を温水蓄熱槽に蓄熱させるようにしている。また、この空調システムでは、換気扇を作動させて空気を床下空間内に供給して、この空気を温水蓄熱槽に蓄熱させた熱で温めた後、この温められた空気を建物内に供給して、建物内を暖房するのに用いるようにしている。   In this air conditioning system, a hot water heat storage tank is provided in the under-floor space of a building, and when the remaining hot water from the bathtub is drained, the heat of the remaining hot water is stored in the hot water heat storage tank. In this air conditioning system, the ventilation fan is operated to supply air into the underfloor space, the air is warmed with heat stored in the hot water heat storage tank, and then the warmed air is supplied into the building. It is used to heat the building.

更に、この空調システムでは、地中熱回収パイプを地中に垂直に埋設して、この地中熱により地中熱回収パイプを介して温められた空気を床下空間に供給して、この地中熱回収熱も建物内の暖房に利用するようにしている。   Furthermore, in this air conditioning system, the underground heat recovery pipe is buried vertically in the ground, and the air heated by the underground heat through the underground heat recovery pipe is supplied to the underfloor space. Heat recovery heat is also used for heating in the building.

特開2012−172966JP2012-172966

しかしながら、この空調システムでは、浴槽(湯利用部)の残り湯の排熱を蓄熱させる温水蓄熱槽を地中熱回収パイプとは別に設けているため、部品点数が多くなると共にコスト高になるという問題がある。   However, in this air conditioning system, a hot water heat storage tank for storing the exhaust heat of the remaining hot water in the bathtub (hot water utilization section) is provided separately from the underground heat recovery pipe, which increases the number of parts and increases the cost. There's a problem.

また、この空調システムでは、浴槽からの残り湯を温水蓄熱槽に供給せずに直接排水溝に排水する排水パイプを設けているため、残り湯の排水系統が2系統になり、排水のための部品点数が多くなるという問題もある。   In addition, this air conditioning system has a drainage pipe that drains the remaining hot water from the bathtub directly into the drainage channel without supplying it to the hot water heat storage tank. There is also a problem that the number of parts increases.

そこで、この発明は、少ない部品点数で、建物内の湯利用部から汚水枡に排水される湯の熱を地中熱と共に有効に回収して、回収した熱を暖房に用いることができる給湯排熱利用空調システムを提供することを目的とするものである。   In view of this, the present invention has a small number of parts, and can effectively recover the heat of hot water drained from the hot water use section in the building to the sewage tank together with the underground heat, and use the recovered heat for heating. The object is to provide a heat-utilizing air conditioning system.

この目的を達成するため、この発明は、建物内の湯利用部から建物外に排水される湯の排熱を利用した給湯排熱利用空調システムにおいて、前記空調装置は、地中に埋設された地中熱交換手段と、第1の熱交換部で熱交換される冷媒の熱を第2の熱交換部で前記建物内の空調に用いるヒートポンプと、前記第1の熱交換部と前記地中熱交換手段との間で熱搬送用流体を循環可能に前記第1の熱交換部と前記地中熱交換手段に接続された循環パイプと、前記熱搬送用流体を前記循環パイプを介して前記第1の熱交換部と前記地中熱交換手段との間で循環させる循環ポンプと、を備え、前記湯利用部に接続された排水パイプが前記地中熱交換手段に近接させて前記地中に埋設されて、前記排水パイプ内を排水される湯の排熱で前記地中熱交換手段の熱搬送流体を加熱可能に設けられていることを特徴とする。   In order to achieve this object, the present invention provides a hot water supply / exhaust heat use air conditioning system that uses exhaust heat of hot water drained from a hot water use section in a building to the outside of the building, wherein the air conditioner is embedded in the ground. Ground heat exchange means, a heat pump that uses the heat of the refrigerant heat-exchanged in the first heat exchange unit for air conditioning in the building in the second heat exchange unit, the first heat exchange unit, and the underground A circulation pipe connected to the first heat exchanging unit and the underground heat exchange means so that a heat transfer fluid can be circulated between the heat exchange means and the heat transfer fluid via the circulation pipe; A circulation pump that circulates between the first heat exchanging unit and the underground heat exchanging means, and a drain pipe connected to the hot water utilization unit is brought close to the underground heat exchanging means and the underground The underground heat exchanging means by the exhaust heat of hot water buried in the drain pipe and drained in the drain pipe And it is provided with heat-carrying fluid to be heated.

この構成によれば、少ない部品点数で、建物内の湯利用部から建物外に排水される湯の熱を地中熱と共に有効に回収して、回収した熱を暖房に用いることができる。   According to this configuration, with a small number of parts, the heat of hot water drained from the hot water utilization part in the building to the outside of the building can be effectively recovered together with the underground heat, and the recovered heat can be used for heating.

この発明に係る給湯排熱利用空調システムの実施例1の概略説明図である。It is a schematic explanatory drawing of Example 1 of the hot water supply waste heat utilization air-conditioning system which concerns on this invention. 図1に示した給湯排熱利用空調システムの配管系統図である。It is a piping system diagram of the hot water supply exhaust heat utilization air conditioning system shown in FIG. 図1に示した排水パイプと熱搬送流体貯留パイプとの関係を示す実施例2の概略説明図である。It is a schematic explanatory drawing of Example 2 which shows the relationship between the drainage pipe shown in FIG. 1, and a heat conveyance fluid storage pipe. 図1に示した排水パイプと熱搬送流体貯留パイプとの関係を示す実施例3の概略説明図である。It is a schematic explanatory drawing of Example 3 which shows the relationship between the drainage pipe shown in FIG. 1, and a heat conveyance fluid storage pipe. 図1に示した排水パイプと熱搬送流体貯留パイプとの関係を示す実施例4の概略説明図である。It is a schematic explanatory drawing of Example 4 which shows the relationship between the drainage pipe shown in FIG. 1, and a heat conveyance fluid storage pipe.

以下、この発明の実施の形態を図面に基づいて説明する。
(実施例1)
[構成]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Example 1
[Constitution]

図1は、この発明に係る給湯排熱利用空調システムの実施例1の概略説明図である。この図1において、地盤1上には平板状のべた基礎2が設けられている。ここで、地盤1とは地表面1aおよび地表面1aの下方の地中(地中部)1b含めたものを言う。   FIG. 1 is a schematic explanatory diagram of Embodiment 1 of a hot water supply exhaust heat utilization air conditioning system according to the present invention. In FIG. 1, a flat solid base 2 is provided on the ground 1. Here, the ground 1 includes the ground surface 1a and the ground (underground part) 1b below the ground surface 1a.

また、べた基礎2は、底板2aと、底板2aの周囲に一体に形成された起立する立ち上がり部2bを有する。この立ち上がり部2b上に建物3の床部3aの周縁部を設置することにより、立ち上がり部2b上には住宅等の建物3が構築されている。   The solid foundation 2 includes a bottom plate 2a and a rising portion 2b that is integrally formed around the bottom plate 2a. A building 3 such as a house is constructed on the rising portion 2b by installing the peripheral edge of the floor 3a of the building 3 on the rising portion 2b.

そして、建物3の床部3aとべた基礎2の底板2aとの間には床下空間4が形成されている。この床下空間4内には、べた基礎2の周縁部に沿わせた基礎断熱部材5が配設されている。この基礎断熱部材5は、立ち上がり部2bの内側面に固定した側面部5aと、側面部5aの下端部に連設され且つ底板2a上に設けた底面部5bを有する。この基礎断熱部材5には、グラスウール,発泡ウレタン,発泡スチロール等が使用される。   An underfloor space 4 is formed between the floor 3 a of the building 3 and the bottom plate 2 a of the solid foundation 2. In the underfloor space 4, a foundation heat insulating member 5 is disposed along the peripheral edge of the solid foundation 2. The basic heat insulating member 5 has a side surface portion 5a fixed to the inner surface of the rising portion 2b, and a bottom surface portion 5b provided on the bottom plate 2a and connected to the lower end portion of the side surface portion 5a. For this basic heat insulating member 5, glass wool, urethane foam, polystyrene foam or the like is used.

また、建物3内には、床部3a上に設置した浴槽30が湯利用部として配設されている。この浴槽30には、図示を省略した給湯装置からの湯が供給されるようになっている。また、浴槽30の残り湯は、排水パイプ31及び開閉弁32を介して汚水枡33に排水されるようになっている。   Moreover, in the building 3, the bathtub 30 installed on the floor part 3a is arrange | positioned as a hot water utilization part. Hot water from a hot water supply device (not shown) is supplied to the bathtub 30. In addition, the remaining hot water in the bathtub 30 is drained to the sewage tank 33 through the drain pipe 31 and the on-off valve 32.

この排水パイプ31は、浴槽30の底部に接続された湯排出パイプ部31aと、湯排出パイプ部31aに連設された放熱パイプ部31bを有する。この放熱パイプ部31bは、べた基礎2に近接してべた基礎2の真下の地中に埋設されていると共に、湯排出パイプ部31aから汚水枡33に向かうに従って下方に緩い角度で傾斜させられている。そして、放熱パイプ部31bの下端と汚水枡33との間に開閉弁32が介装されている。この開閉弁32には、電磁弁等が用いられている。   The drain pipe 31 includes a hot water discharge pipe portion 31a connected to the bottom of the bathtub 30 and a heat radiating pipe portion 31b connected to the hot water discharge pipe portion 31a. The heat radiating pipe portion 31b is embedded in the ground immediately below the solid foundation 2 in close proximity to the solid foundation 2, and is inclined downward at a gentle angle from the hot water discharge pipe portion 31a toward the sewage basin 33. Yes. An opening / closing valve 32 is interposed between the lower end of the heat radiating pipe portion 31 b and the sewage basin 33. As this on-off valve 32, an electromagnetic valve or the like is used.

これにより、浴槽30の残り湯は、排水パイプ31及び開閉弁32を介して汚水枡33に排水されるようになっている。尚、汚水枡33は、建物3の浴槽30を配置した側とは反対側に近接して地中に埋設されている。   Thereby, the remaining hot water of the bathtub 30 is drained to the sewage tank 33 through the drain pipe 31 and the on-off valve 32. The sewage basin 33 is embedded in the ground in the vicinity of the side opposite to the side where the bathtub 30 of the building 3 is disposed.

また、建物3内には開閉弁32を開閉制御させるコントローラ34が設けられている。このコントローラ34は、開閉弁32を開閉制御させる制御部34aと、制御部34aに接続されたスイッチ34bを有する。そして、制御部34aは、スイッチ34bに開閉弁32を開閉制御するようになっている。   In the building 3, a controller 34 that controls the opening / closing of the opening / closing valve 32 is provided. The controller 34 includes a control unit 34a that controls opening / closing of the on-off valve 32, and a switch 34b connected to the control unit 34a. And the control part 34a controls opening / closing of the on-off valve 32 to the switch 34b.

更に、排水パイプ31の放熱パイプ部31bの温度は温度センサ35により検出され、浴槽30の残り湯の排出は放熱パイプ部31bの下端に設けた排水センサ36で検出されるようになっている。この温度センサ35からの温度検出信号および排水センサ36からの排水検出信号は制御部34aに入力されるようになっている。   Further, the temperature of the heat radiating pipe portion 31b of the drain pipe 31 is detected by the temperature sensor 35, and the discharge of the remaining hot water from the bathtub 30 is detected by the drain sensor 36 provided at the lower end of the heat radiating pipe portion 31b. The temperature detection signal from the temperature sensor 35 and the drainage detection signal from the drainage sensor 36 are input to the control unit 34a.

そして、制御部34aは、排水センサ36からの排水検出信号や、温度センサ35からの温度検出信号に基づいて開閉弁32を開閉制御させるようになっている。   The control unit 34 a controls the opening / closing of the on-off valve 32 based on the drainage detection signal from the drainage sensor 36 and the temperature detection signal from the temperature sensor 35.

更に、建物3には、地中熱および浴槽30の残り湯の排熱を利用するヒートポンプシステム6が空調装置として設けられている。このヒートポンプシステム(ヒートポンプ)6は、図1に示したように、建物3に近接させて外側に設置したヒートポンプユニット7と、べた基礎2の底板2a上に設置した床下放熱器8と、このヒートポンプユニット7と床下放熱器8を接続する第1,第2接続パイプ9,10を備えている。   Furthermore, the building 3 is provided with a heat pump system 6 as an air conditioner that uses the underground heat and the exhaust heat of the remaining hot water in the bathtub 30. As shown in FIG. 1, the heat pump system (heat pump) 6 includes a heat pump unit 7 installed outside in the vicinity of the building 3, an underfloor radiator 8 installed on the bottom plate 2 a of the solid foundation 2, and the heat pump First and second connection pipes 9 and 10 for connecting the unit 7 and the underfloor radiator 8 are provided.

この床下放熱器8は、図2に示したように、凝縮器(放熱部)8aと、この凝縮器8aに空気を送風する送風ファン8bを有する。尚、この第1,第2接続パイプ9,10内にはヒートポンプユニット7からの冷媒を床下放熱器8に循環させる冷媒流路が形成されている。   As shown in FIG. 2, the underfloor radiator 8 includes a condenser (heat radiating portion) 8a and a blower fan 8b that blows air to the condenser 8a. In the first and second connection pipes 9 and 10, a refrigerant flow path for circulating the refrigerant from the heat pump unit 7 to the underfloor radiator 8 is formed.

ヒートポンプユニット7は、図2に示したように、第1の熱交換部(一次側熱交換部)11を有する。この第1の熱交換部11は、蒸発器11aと、この蒸発器11aを収容する熱交換容器11bを有する。   As shown in FIG. 2, the heat pump unit 7 includes a first heat exchange unit (primary side heat exchange unit) 11. The first heat exchange unit 11 includes an evaporator 11a and a heat exchange container 11b that accommodates the evaporator 11a.

また、ヒートポンプユニット7は、蒸発器11aの両端に接続された第1,第2冷媒流路12,13と、第1冷媒流路12の途中に介装されたコンプレッサ14と、第2冷媒流路13の途中に介装された膨張弁15を有する。尚、第1,第2冷媒流路12,13は、複数のパイプから形成されている。   Further, the heat pump unit 7 includes first and second refrigerant flow paths 12 and 13 connected to both ends of the evaporator 11a, a compressor 14 interposed in the middle of the first refrigerant flow path 12, and a second refrigerant flow. An expansion valve 15 interposed in the middle of the passage 13 is provided. In addition, the 1st, 2nd refrigerant flow paths 12 and 13 are formed from the some pipe.

そして、第1,第2冷媒流路12,13には、上述した第1,第2接続パイプ9,10を介して床下放熱器8の凝縮器8aが接続されている。これにより、第1,第2接続パイプ9,10,蒸発器11a,第1,第2冷媒流路12,13,コンプレッサ14,膨張弁15,凝縮器8a等は一連の冷媒環流路を形成している。   The condenser 8 a of the underfloor radiator 8 is connected to the first and second refrigerant flow paths 12 and 13 via the first and second connection pipes 9 and 10 described above. Thus, the first and second connection pipes 9 and 10, the evaporator 11a, the first and second refrigerant flow paths 12 and 13, the compressor 14, the expansion valve 15, the condenser 8a and the like form a series of refrigerant ring flow paths. ing.

コンプレッサ14は蒸発器11aからの気体状の冷媒を圧縮して凝縮器8aに供給させ、膨張弁15は凝縮器8aで放熱させられて液化した冷媒を膨張させて蒸発器11aに供給させるように配設されている。   The compressor 14 compresses the gaseous refrigerant from the evaporator 11a and supplies it to the condenser 8a, and the expansion valve 15 expands the refrigerant that has been radiated and liquefied by the condenser 8a and supplies it to the evaporator 11a. It is arranged.

図1において、空調装置であるヒートポンプシステム6は熱搬送流体貯留パイプ16を有する。この熱搬送流体貯留パイプ16は、べた基礎2の底板2aの真下に位置させて地中1b内に水平に埋設されている。この熱搬送流体貯留パイプ16は底板2aに近接した位置に配置されていると共に、この熱搬送流体貯留パイプ16と底板2aとの間に上述した排水パイプ31の放熱パイプ部31bが配設されている。尚、放熱パイプ部31bは熱搬送流体貯留パイプ16に近接させて配置されている。   In FIG. 1, a heat pump system 6 that is an air conditioner has a heat transfer fluid storage pipe 16. This heat transfer fluid storage pipe 16 is positioned directly under the bottom plate 2a of the solid foundation 2 and is buried horizontally in the underground 1b. The heat transfer fluid storage pipe 16 is disposed at a position close to the bottom plate 2a, and the heat radiating pipe portion 31b of the drain pipe 31 described above is disposed between the heat transfer fluid storage pipe 16 and the bottom plate 2a. Yes. In addition, the heat radiating pipe portion 31b is disposed close to the heat transfer fluid storage pipe 16.

この熱搬送流体貯留パイプ16には、例えば安価な塩化ビニール製の樹脂パイプが用いられるが、必ずしも塩化ビニール製の樹脂パイプを用いる必要はない。   For example, an inexpensive vinyl chloride resin pipe is used as the heat transfer fluid storage pipe 16, but it is not always necessary to use a vinyl chloride resin pipe.

この熱搬送流体貯留パイプ16の地中1bへの埋設には例えばバックホウが用いられる。このバックホウは、油圧ショベルと総称される建設機械のうち、ショベル(バケット)をオペレータ側向きに取り付けた形態のもので、オペレータ側向きのショベルでオペレータは自分に引き寄せる(抱え込む)方向に操作するようになっている。このバックホウでは、地表面1aより低い場所の掘削に適している。   For example, a backhoe is used to embed the heat transfer fluid storage pipe 16 in the underground 1b. This backhoe is a construction machine in which a shovel (bucket) is attached to the operator side among the construction machines collectively referred to as a hydraulic excavator. It has become. This backhoe is suitable for excavation at a place lower than the ground surface 1a.

また、バックホウはべた基礎2のための基礎工事の際に地盤1を掘り下げるのに用いられ、この基礎工事の際に掘り下げた地盤1の凹所にバックホウ(ユンボ)で掘れる幅・深さに熱搬送流体貯留パイプ16を埋設する。   Also, the backhoe is used to dig the ground 1 during foundation work for the solid foundation 2, and the width and depth that can be dug by the backhoe (yumbo) in the recess of the ground 1 dug during the foundation work. The carrier fluid storage pipe 16 is embedded.

ここで熱搬送流体貯留パイプ16を埋設するパイプ埋設用溝とすると、熱搬送流体貯留パイプ16の埋設の上限や下限の施工条件としては、例えば次のように設定する。
<パイプ埋設用溝の深さの上限>
(a).熱搬送流体貯留パイプ16を地中に埋設したとき、べた基礎2の基礎砕石(図示せず)の下端から10cmの深さの位置が熱搬送流体貯留パイプ16の上端になるように、熱搬送流体貯留パイプ16を埋設するパイプ埋設用溝の深さを設定する必要がある。即ち、熱搬送流体貯留パイプ16の上部に10cm程度の被り厚の覆土が必要である。
(b).また、熱搬送流体貯留パイプ16の下には10cm程度の管基礎を設ける。
Here, assuming that the groove for embedding the heat transfer fluid storage pipe 16 is a pipe burying groove, the upper and lower construction conditions for the embedment of the heat transfer fluid storage pipe 16 are set as follows, for example.
<Upper limit of depth of pipe burial groove>
(A). When the heat transfer fluid storage pipe 16 is buried in the ground, the heat transfer is performed so that the position at a depth of 10 cm from the lower end of the foundation crushed stone (not shown) of the solid foundation 2 becomes the upper end of the heat transfer fluid storage pipe 16. It is necessary to set the depth of the groove for burying the fluid storage pipe 16. That is, a covering soil having a covering thickness of about 10 cm is required on the upper part of the heat transfer fluid storage pipe 16.
(B). Further, a pipe foundation of about 10 cm is provided under the heat transfer fluid storage pipe 16.

従って、例えば、熱搬送流体貯留パイプ16の直径を15cmとしたとき、バックホウ(ユンボ)で掘るパイプ埋設用溝の掘削深さの上限は35cm(直径15cm+管基礎10cm+被り厚(覆土厚)10cm=35cm)とする。   Therefore, for example, when the diameter of the heat transfer fluid storage pipe 16 is 15 cm, the upper limit of the excavation depth of the pipe burying groove dug by the backhoe is 35 cm (diameter 15 cm + tube foundation 10 cm + covering thickness (covering thickness) 10 cm = 35 cm).

このようなバックホウ(ユンボ)で掘るパイプ埋設用溝の深さの上限は一例であって、必ずしも上述した数値に限定されるものではない。例えば、熱搬送流体貯留パイプ16の直径に応じて管基礎+被り厚の施工条件が変わる場合、パイプ埋設用溝の深さの上限は直径,管基礎,被り厚に応じて変える。   The upper limit of the depth of the pipe burying groove dug by such a backhoe is an example, and is not necessarily limited to the above-described numerical values. For example, when the construction condition of the pipe foundation + cover thickness changes according to the diameter of the heat transfer fluid storage pipe 16, the upper limit of the depth of the pipe burying groove changes according to the diameter, the pipe foundation, and the cover thickness.

<パイプ埋設用溝の深さの下限>
また、例えば、建物3の土留めを設ける必要がある場合、バックホウ(ユンボ)で掘る掘削深さの下限は例えば1.5mとする。
<Lower limit of depth of pipe burial groove>
In addition, for example, when it is necessary to provide earth retaining for the building 3, the lower limit of the excavation depth dug by the backhoe is 1.5 m, for example.

このようなバックホウ(ユンボ)で掘るパイプ埋設用溝の深さは一例であって、必ずしもこの数値に限定されるものではない。   The depth of the pipe burying groove dug by such a backhoe is an example, and is not necessarily limited to this value.

このように基礎工事で用いるバックホウを考えると、バックホウ(ユンボ)で掘れる幅・深さに熱搬送流体貯留パイプ16を埋設する仕様とすれば、安価に施工できる。一般的なバックホウはバケット幅が550mmであるので、埋め戻し作業に必要な幅は熱搬送流体貯留パイプ16の左右に形成される部分である。この埋め戻し作業に必要な幅は、例えば150〜200mm程度、若しくは200mm〜300mm程度となるように熱搬送流体貯留パイプ16の直径を設定すると良い。   Considering the backhoe used in the foundation construction in this way, if the heat carrier fluid storage pipe 16 is embedded in a width and depth that can be dug by the backhoe, it can be constructed at low cost. Since a general backhoe has a bucket width of 550 mm, the width necessary for the backfilling operation is a portion formed on the left and right sides of the heat transfer fluid storage pipe 16. The diameter of the heat transfer fluid storage pipe 16 may be set so that the width necessary for this backfilling operation is, for example, about 150 to 200 mm, or about 200 mm to 300 mm.

従って、建物3の床部3aの床面積が例えば8m×8m程度の場合、熱搬送流体貯留パイプ16には例えば次のような仕様のものを用いると良い。即ち、熱搬送流体貯留パイプ16には、例えば直径が150φ〜250φで且つ長さLが20〜40m程度のものを用いると良い。尚、この数値は一例を示したもので、これに限定されるものではない。   Therefore, when the floor area of the floor 3a of the building 3 is about 8 m × 8 m, for example, the heat transfer fluid storage pipe 16 having the following specifications may be used. That is, as the heat transfer fluid storage pipe 16, for example, a pipe having a diameter of 150 to 250 and a length L of about 20 to 40 m may be used. In addition, this numerical value shows an example and is not limited to this.

また、図2に示したように熱搬送流体貯留パイプ16は、大径のパイプ本体17と、パイプ本体17の両端部をそれぞれ閉成するキャップ状の蓋体18,19を有する。この蓋体18,19の中央部には、小径の接続パイプ部18a,19aが外方に向けて突出するように一体に形成されている。   Further, as shown in FIG. 2, the heat transfer fluid storage pipe 16 includes a large-diameter pipe body 17 and cap-shaped lid bodies 18 and 19 that respectively close both ends of the pipe body 17. Small-diameter connecting pipe portions 18a and 19a are integrally formed at the central portions of the lids 18 and 19 so as to protrude outward.

そして、接続パイプ部18a,19aには、図2、図3に示したように、循環パイプ20,21の一端部がそれぞれ気密に接続されている。この循環パイプ20,21の他端部は図2に示したように第1の熱交換部11の熱交換容器11bにそれぞれ接続されている。また、循環パイプ20の途中には循環ポンプ22が介装されている。この熱交換容器11b,熱搬送流体貯留パイプ16,循環パイプ20,21内には不凍液が熱搬送用流体として充填されている。   Then, as shown in FIGS. 2 and 3, one end portions of the circulation pipes 20 and 21 are airtightly connected to the connection pipe portions 18a and 19a, respectively. The other end portions of the circulation pipes 20 and 21 are connected to the heat exchange vessel 11b of the first heat exchange unit 11 as shown in FIG. A circulation pump 22 is interposed in the middle of the circulation pipe 20. The heat exchange container 11b, the heat transfer fluid storage pipe 16, and the circulation pipes 20 and 21 are filled with antifreeze as a heat transfer fluid.

この循環パイプ20,21には、床暖房付ヒートポンプの温水系を採熱用途に置換えるとすると、直径が例えば20mmのものが一般的ある。従って、上述した熱搬送流体貯留パイプ16の直径は、循環パイプ20,21の直径の15〜25倍となっている。ここで、床暖房付ヒートポンプとは、床部3aにパイプ(図示せず)を敷設して、このパイプの中をヒートポンプユニット7で加熱された温水を循環させるようにした構成を言う。この床部3aの暖房を行うことで、床部3a上の室内の空気の暖房を行うことができる。   The circulation pipes 20 and 21 generally have a diameter of, for example, 20 mm if the hot water system of the heat pump with floor heating is replaced with a heat collection application. Therefore, the diameter of the heat transfer fluid storage pipe 16 described above is 15 to 25 times the diameter of the circulation pipes 20 and 21. Here, the heat pump with floor heating refers to a configuration in which a pipe (not shown) is laid on the floor portion 3a and the hot water heated by the heat pump unit 7 is circulated through the pipe. By heating the floor portion 3a, the indoor air on the floor portion 3a can be heated.

また、図2に示したように、床下放熱器8の送風ファン8b,コンプレッサ14,循環ポンプ22は、制御手段(制御部)としての制御回路23により動作制御させられるようになっている。この制御回路23は、コントローラ34により動作制御させられるようになっている。   Further, as shown in FIG. 2, the blower fan 8b, the compressor 14, and the circulation pump 22 of the underfloor radiator 8 are controlled by a control circuit 23 as a control means (control unit). The operation of the control circuit 23 is controlled by a controller 34.

[作用]
次に、このような構成の地中熱及びヒートポンプ利用の建物用空調システムの作用を説明する。
[Action]
Next, the operation of the building air conditioning system using the geothermal heat and heat pump having such a configuration will be described.

コントローラ34の制御部34aには、温度センサ35からの温度検出信号が常時入力されている。この制御部34aは、スイッチ34bをオンさせると、開閉弁32を開弁させ、OFFさせると開閉弁32をON(閉弁)させる。この開閉弁32を開いた状態で、浴槽30内の残り湯を排水させると、この残り湯は排水パイプ31及び開閉弁32を介して汚水枡33内に排水される。   A temperature detection signal from the temperature sensor 35 is always input to the controller 34 a of the controller 34. The controller 34a opens the on-off valve 32 when the switch 34b is turned on, and turns on (closes) the on-off valve 32 when the switch 34b is turned off. When the remaining hot water in the bathtub 30 is drained with the on-off valve 32 opened, the remaining hot water is drained into the sewage tank 33 through the drain pipe 31 and the on-off valve 32.

これに伴い、排水センサ36は、残り湯の排水状態を検出して排水検出信号を出力し、この排水検出信号を制御部34aに入力する。この排水検出信号は、残り湯が汚水枡33に全て排水されると、排水センサ36が残り湯の排水流れを検出しなくなる。そして、制御部34aは、排水検出信号がなくなると、開閉弁32をOFF(閉弁)させる。
尚、このような開閉弁32のON・OFF時間をタイマー(図示せず)により設定しておくと、制御部34aは設定された時間に開閉弁32をON・OFFさせるようにできる。
Along with this, the drainage sensor 36 detects the drainage state of the remaining hot water, outputs a drainage detection signal, and inputs this drainage detection signal to the control unit 34a. In the drainage detection signal, when all remaining hot water is drained into the sewage basin 33, the drainage sensor 36 does not detect the drainage flow of the remaining hot water. When the drainage detection signal disappears, the control unit 34a turns off (closes) the on-off valve 32.
If the ON / OFF time of the on-off valve 32 is set by a timer (not shown), the control unit 34a can turn on / off the on-off valve 32 at the set time.

このような残り湯の排水に伴い、残り湯が排水パイプ31の放熱パイプ部31bを流れる際、残り湯の熱が放熱パイプ部31bから地中に放熱されて、地中に蓄熱されることになる。   As the remaining hot water flows through the heat radiating pipe portion 31b of the drain pipe 31, the heat of the remaining hot water is radiated from the heat radiating pipe portion 31b to the ground and stored in the ground. Become.

また、冬期等において、制御部34aは、排水センサ36からの排水検出信号や、温度センサ35からの温度検出信号に基づいて開閉弁32を開閉制御させることができる。   In winter and the like, the control unit 34 a can control the opening / closing valve 32 to open and close based on the wastewater detection signal from the drainage sensor 36 and the temperature detection signal from the temperature sensor 35.

例えば、排水センサ36からの排水検出信号が検出された状態で、温度センサ35からの温度検出信号から検出される放熱パイプ部31bの温度が所定温度以上の状態(例えば、地中の温度よりも高い状態)のとき、開閉弁32を一時的にOFF(閉弁)させて、放熱パイプ部31b内の残り湯の熱を地中に放熱させる。   For example, in a state where the drainage detection signal from the drainage sensor 36 is detected, the temperature of the heat radiating pipe portion 31b detected from the temperature detection signal from the temperature sensor 35 is equal to or higher than a predetermined temperature (for example, lower than the underground temperature). In the high state), the on-off valve 32 is temporarily turned off (closed), and the heat of the remaining hot water in the heat radiating pipe portion 31b is radiated to the ground.

この放熱に伴い、温度センサ35からの温度検出信号から検出される放熱パイプ部31bの温度が低下していくと、単位時間あたりの温度降下率が所定値より低くなり、温度降下率が緩くなる。
この場合は、放熱量が少なくなるので、制御部34aは、開閉弁32をON(開弁)させる。これにより、浴槽30からの残り湯が更に排水させられて、最初に放熱パイプ部31b内に滞留させて温度が降下した残り湯が浴槽30からの高い温度の残り湯で汚水枡33内に押し出される。
Along with this heat radiation, when the temperature of the heat radiating pipe portion 31b detected from the temperature detection signal from the temperature sensor 35 decreases, the temperature drop rate per unit time becomes lower than a predetermined value, and the temperature drop rate becomes loose. .
In this case, since the heat radiation amount decreases, the control unit 34a turns on (opens) the on-off valve 32. As a result, the remaining hot water from the bathtub 30 is further drained, and the remaining hot water that has initially been accumulated in the heat radiating pipe portion 31b and has dropped in temperature is pushed out into the sewage tank 33 by the high-temperature remaining hot water from the bathtub 30 It is.

これに伴い、温度センサ35からの温度検出信号から検出される放熱パイプ部31bの温度が最初の残り湯の温度に近い温度になると、制御部34aは開閉弁32をOFF(閉弁)させて、残り湯の熱の地中への放熱を行わせる。このような開閉弁32のON・OFF制御は、浴槽30の残り湯が無くなるまで制御部34aにより繰り返し実行させる。   Along with this, when the temperature of the heat radiating pipe portion 31b detected from the temperature detection signal from the temperature sensor 35 becomes close to the temperature of the first remaining hot water, the control portion 34a turns off the on-off valve 32 (closes). The heat of the remaining hot water is released into the ground. Such ON / OFF control of the on-off valve 32 is repeatedly executed by the control unit 34a until there is no remaining hot water in the bathtub 30.

このような残り湯の熱が地中に放熱されて地中の温度が上昇すると、この熱が熱搬送流体貯留パイプ16内の不凍液の温度を上昇させる。   When the heat of such remaining hot water is dissipated into the ground and the temperature in the ground rises, this heat raises the temperature of the antifreeze liquid in the heat transfer fluid storage pipe 16.

一方、冬期において床部3aおよび建物3の暖房を行う場合、制御回路23は、送風ファン8b,コンプレッサ14,循環ポンプ22を駆動制御させる。これに伴い、循環ポンプ22は、不凍液を循環パイプ20,21を介して熱搬送流体貯留パイプ16と第1の熱交換部11の熱交換容器11b内との間で循環させる。   On the other hand, when the floor 3a and the building 3 are heated in winter, the control circuit 23 drives and controls the blower fan 8b, the compressor 14, and the circulation pump 22. Along with this, the circulation pump 22 circulates the antifreeze liquid between the heat transfer fluid storage pipe 16 and the heat exchange container 11 b of the first heat exchange unit 11 via the circulation pipes 20 and 21.

また、コンプレッサ14は、蒸発器11aからの冷媒を圧縮して凝縮器8a,膨張弁15,蒸発器11aの順に循環させる。   The compressor 14 compresses the refrigerant from the evaporator 11a and circulates the condenser 8a, the expansion valve 15, and the evaporator 11a in this order.

この冷媒の循環に伴い熱交換容器11b内では、循環ポンプ22で循環させられる熱搬送流体貯留パイプ16内の不凍液からの地中熱と蒸発器11a内の冷媒との間で熱交換が行われ、蒸発器11a内の冷媒が加熱されて温度が上昇する。   As the refrigerant circulates, heat is exchanged between the underground heat from the antifreeze liquid in the heat transfer fluid storage pipe 16 circulated by the circulation pump 22 and the refrigerant in the evaporator 11a in the heat exchange vessel 11b. The refrigerant in the evaporator 11a is heated and the temperature rises.

この際、地中の温度が浴槽30からの残り湯の排水で加熱されて温度が上昇している場合、熱搬送流体貯留パイプ16内の不凍液もこの残り湯の熱で加熱されて温度が上昇している。この結果、熱搬送流体貯留パイプ16内の不凍液の温度は、浴槽30の残り湯の熱を利用して熱搬送流体貯留パイプ16内の不凍液を加熱した場合、熱搬送流体貯留パイプ16内の不凍液を地中熱のみにより加熱する場合よりも上昇させることができる。   At this time, when the underground temperature is heated by the remaining hot water drainage from the bathtub 30 and the temperature is rising, the antifreeze liquid in the heat transfer fluid storage pipe 16 is also heated by the heat of the remaining hot water and the temperature is increased. doing. As a result, when the antifreeze liquid in the heat transfer fluid storage pipe 16 is heated by using the heat of the remaining hot water in the bathtub 30, the antifreeze liquid in the heat transfer fluid storage pipe 16 is heated. Can be raised as compared with the case of heating only by underground heat.

この温度が上昇した冷媒は、コンプレッサ14で圧縮されることにより更に加熱されて、高温・高圧の冷媒となる。この圧縮加熱された冷媒は、第2の熱交換部である凝縮器8aに供給される。   The refrigerant whose temperature has risen is further heated by being compressed by the compressor 14, and becomes a high-temperature and high-pressure refrigerant. The compression-heated refrigerant is supplied to the condenser 8a that is the second heat exchange unit.

この際、床下放熱器8の送風ファン8bは駆動されている。従って、この送風ファン8bにより送風される空気は、凝縮器8aの周囲を流れて加熱されて床下空間4内に送風され、床下空間4を暖房する。これにより、床部3aが暖房される。尚、床部3aに空調の為のガラリ(図示せず)が設けられている場合には、床下空間4内の空調された空気をガラリを介して建物3内に供給して、建物3内を暖房することができる。   At this time, the blower fan 8b of the underfloor radiator 8 is driven. Accordingly, the air blown by the blower fan 8b flows around the condenser 8a and is heated and blown into the underfloor space 4 to heat the underfloor space 4. Thereby, the floor 3a is heated. In addition, when the louver (not shown) for air conditioning is provided in the floor part 3a, the air | conditioned air in the underfloor space 4 is supplied in the building 3 via a louver, and the inside of the building 3 Can be heated.

上述したように、ヒートポンプシステムすなわち給湯排熱利用空調システムは、床下空調システムであって、ヒートポンプユニット7の熱源を地中に埋設された地中埋設管(熱搬送流体貯留パイプ16)内の循環液としての不凍液を用いて、この不凍液が地中埋設管(熱搬送流体貯留パイプ16)とヒートポンプユニット7の第1の熱交換部11との間で循環する構成としている。しかも、地中埋設管(熱搬送流体貯留パイプ16)は、基礎断熱された住宅の基礎(べた基礎2)の下に埋設されている。   As described above, the heat pump system, that is, the hot water supply exhaust heat utilization air conditioning system is an underfloor air conditioning system, in which a heat source of the heat pump unit 7 is circulated in an underground pipe (heat transfer fluid storage pipe 16) embedded in the ground. This antifreeze is circulated between the underground pipe (heat transfer fluid storage pipe 16) and the first heat exchange part 11 of the heat pump unit 7 using the antifreeze as the liquid. Moreover, the underground pipe (heat transfer fluid storage pipe 16) is buried under the foundation (solid foundation 2) of the house that has been thermally insulated.

また、地中埋設管(熱搬送流体貯留パイプ16)には、一般的な部材として安価な塩ビ管を用いている。この地中埋設管(熱搬送流体貯留パイプ16)は、循環液(不凍液)を漏らさずに保持できれば、素材・形状にはこだわらない。しかし、地中埋設管(熱搬送流体貯留パイプ16)の素材・形状としては、塩化ビニール製の管であれば、ヒートポンプユニット7の能力にあわせて埋設長さを調整する事で、建物(住宅)3の暖冷房負荷に対応できる。   In addition, an inexpensive PVC pipe is used as a general member for the underground pipe (heat transfer fluid storage pipe 16). This underground pipe (heat carrier fluid storage pipe 16) does not stick to the material and shape as long as the circulating liquid (antifreeze) can be held without leaking. However, if the material and shape of the underground pipe (heat transfer fluid storage pipe 16) is a pipe made of vinyl chloride, the length of the buried pipe can be adjusted according to the capacity of the heat pump unit 7 to construct a building (house ) Can cope with 3 heating / cooling loads.

このように、建物(住宅)3の基礎(べた基礎2)に近接させて基礎(べた基礎2)の真下に地中埋設管(熱搬送流体貯留パイプ16)を水平に埋設して、この地中埋設管(熱搬送流体貯留パイプ16)を一次側熱源としたヒートポンプシステムとすることで、地中熱を利用できるのに加え、住宅基礎(べた基礎2)の下へ逃げる熱も利用できる。これにより、ヒートポンプユニット7の能力や効率を左右する外気条件に関わらず、安定的に高効率で運転することができる。また、一般の地中熱ヒートポンプシステムの地中杭よりも安価な一次側熱源となる。   In this way, a buried underground pipe (heat transfer fluid storage pipe 16) is horizontally buried directly below the foundation (solid foundation 2) in the vicinity of the foundation (solid foundation 2) of the building (house) 3. By using a heat pump system in which the buried pipe (heat transfer fluid storage pipe 16) is the primary heat source, in addition to being able to use the underground heat, it is also possible to use the heat that escapes under the housing foundation (solid foundation 2). Thereby, it is possible to stably operate with high efficiency irrespective of the outside air condition that affects the capacity and efficiency of the heat pump unit 7. Moreover, it becomes a primary side heat source cheaper than the underground pile of a general underground heat pump system.

(実施例2)
実施例1では、浴槽30の残り湯を自重で排水させるために、排水パイプ31の放熱パイプ部31bを傾斜させる一方、熱搬送流体貯留パイプ16を水平に配設した構成としているが、これに限定されるものではない。
(Example 2)
In Example 1, in order to drain the remaining hot water of the bathtub 30 by its own weight, the heat radiating pipe portion 31b of the drain pipe 31 is inclined, while the heat transfer fluid storage pipe 16 is horizontally disposed. It is not limited.

例えば、図3に示した実施例2ように、熱搬送流体貯留パイプ16を放熱パイプ部31bに沿うように傾斜させて、この傾斜させた熱搬送流体貯留パイプ16と放熱パイプ部31bを接触させた構成としても良い。この構成では、放熱パイプ部31bに残り湯の熱が熱搬送流体貯留パイプ16に直接伝達できるので、放熱パイプ部31bと熱搬送流体貯留パイプ16との熱交換効率が向上する。   For example, as in the second embodiment shown in FIG. 3, the heat carrying fluid storage pipe 16 is inclined along the heat radiating pipe portion 31b, and the inclined heat carrying fluid storage pipe 16 and the heat radiating pipe portion 31b are brought into contact with each other. It is good also as a composition. In this configuration, since the heat of the remaining hot water can be directly transmitted to the heat transfer fluid storage pipe 16 to the heat radiating pipe portion 31b, the heat exchange efficiency between the heat dissipation pipe portion 31b and the heat transfer fluid storage pipe 16 is improved.

(実施例3)
また、実施例3は、図4に示したように、熱搬送流体貯留パイプ16内の不凍液を放熱パイプ部部31bからの熱で直接加熱できるようにした例を示したものである。このため、図4において放熱パイプ部31bは、熱搬送流体貯留パイプ16の両端の端壁である蓋体18,19を貫通させられて、熱搬送流体貯留パイプ16内に傾斜して配設されている。これにより実施例4では、放熱パイプ部31bの残り湯の熱が放熱パイプ部31bの外周面全体から熱搬送流体貯留パイプ16内に放熱させられて、熱搬送流体貯留パイプ16内の不凍液が加熱される。この実施例3によれば、放熱パイプ部31bと熱搬送流体貯留パイプ16との熱交換効率が実施例2よりも向上する。
Example 3
Further, in the third embodiment, as shown in FIG. 4, the antifreeze liquid in the heat transfer fluid storage pipe 16 can be directly heated by the heat from the heat radiating pipe portion 31b. For this reason, in FIG. 4, the heat radiating pipe portion 31 b is inclined through the lids 18 and 19, which are end walls at both ends of the heat transfer fluid storage pipe 16, and is inclined in the heat transfer fluid storage pipe 16. ing. Thereby, in Example 4, the heat | fever of the remaining hot water of the heat radiating pipe part 31b is radiated from the whole outer peripheral surface of the heat radiating pipe part 31b in the heat transport fluid storage pipe 16, and the antifreeze liquid in the heat transport fluid storage pipe 16 is heated. Is done. According to the third embodiment, the heat exchange efficiency between the heat radiating pipe portion 31b and the heat transfer fluid storage pipe 16 is improved as compared with the second embodiment.

(実施例4)
この実施例4において熱搬送流体貯留パイプ16は、図5に示したように、水平に設けられた流入パイプ部16aと、この流入パイプ部16aと水平方向に間隔をおいて平行に設けられた戻りパイプ部16bと、この流入パイプ部16aと戻りパイプ部16bを連設する連設部からU字状(またはコ字状)に折曲形成されている。
Example 4
In the fourth embodiment, as shown in FIG. 5, the heat transfer fluid storage pipe 16 is provided in parallel with the inflow pipe portion 16a provided in the horizontal direction and in parallel with the inflow pipe portion 16a in the horizontal direction. The return pipe portion 16b and a connecting portion connecting the inflow pipe portion 16a and the return pipe portion 16b are bent into a U shape (or a U shape).

また、排水パイプ31の放熱パイプ部31bは、流入パイプ部16aと戻りパイプ部16bとの間を通すように傾斜した状態で配設されている。しかも、放熱パイプ部31bは、傾斜が小さく、流入パイプ部16aと戻りパイプ部16bに略沿うように設けられている。   Further, the heat radiating pipe portion 31b of the drain pipe 31 is disposed in an inclined state so as to pass between the inflow pipe portion 16a and the return pipe portion 16b. Moreover, the heat radiating pipe portion 31b has a small inclination and is provided so as to substantially follow the inflow pipe portion 16a and the return pipe portion 16b.

この実施例4では、放熱パイプ部31bから放射状に放熱される残り湯の熱が熱搬送流体貯留パイプ16内の不凍液を流入パイプ部16aと戻りパイプ部16bの2カ所で加熱することになる。これにより、放熱パイプ部31bから放射状に放熱される残り湯の熱が熱搬送流体貯留パイプ16内の不凍液を一カ所で加熱する実施例1よりも熱交換効率を向上させることができる。   In the fourth embodiment, the heat of the remaining hot water radiated radially from the heat radiating pipe portion 31b heats the antifreeze liquid in the heat transfer fluid storage pipe 16 at two locations of the inflow pipe portion 16a and the return pipe portion 16b. Thereby, the heat exchange efficiency can be improved as compared with the first embodiment in which the heat of the remaining hot water radiated radially from the heat radiating pipe portion 31b heats the antifreeze liquid in the heat transfer fluid storage pipe 16 at one place.

尚、湯利用部としては、浴槽30に限らず給湯装置(図示せず)から給湯される湯を利用するキッチンのシンクや洗面所のボウル等であっても良い。   The hot water use section is not limited to the bathtub 30 but may be a sink of a kitchen that uses hot water supplied from a hot water supply device (not shown), a bowl in a washroom, or the like.

(その他)
尚、図4では、流入パイプ部16aと戻りパイプ部16bの間隔を広くとっているが、流入パイプ部16aと戻りパイプ部16bの間隔を狭くして、放熱パイプ部31bとの熱を流入パイプ部16aと戻りパイプ部16bを近づけることにより、放熱パイプ部31bから熱搬送流体貯留パイプ16への熱伝達量を多くできるようにしても良い。
(Other)
In FIG. 4, the interval between the inflow pipe portion 16a and the return pipe portion 16b is wide, but the interval between the inflow pipe portion 16a and the return pipe portion 16b is narrowed so that heat from the heat radiating pipe portion 31b is transferred to the inflow pipe. By bringing the portion 16a and the return pipe portion 16b closer, the amount of heat transfer from the heat radiating pipe portion 31b to the heat transfer fluid storage pipe 16 may be increased.

また、図4では、排水パイプ31の放熱パイプ部31bを、流入パイプ部16aおよび戻りパイプ部16bに略沿うように傾斜配設しているが、流入パイプ部16aおよび戻りパイプ部16bと平行に配設しても良い。この場合、流入パイプ部16aおよび戻りパイプ部16bは放熱パイプ部31bと同じ傾斜に設定すると良い。   Further, in FIG. 4, the heat radiating pipe portion 31b of the drain pipe 31 is inclined so as to substantially follow the inflow pipe portion 16a and the return pipe portion 16b, but in parallel with the inflow pipe portion 16a and the return pipe portion 16b. It may be arranged. In this case, the inflow pipe portion 16a and the return pipe portion 16b may be set to the same inclination as the heat radiating pipe portion 31b.

<実施の形態の作用・効果>
(1).この発明の実施の形態の給湯排熱利用空調システムは、建物内の湯利用部から建物外に排水される湯の排熱を利用している。そして、前記空調装置ヒートポンプシステム6は、地中に埋設された地中熱交換手段(熱搬送流体貯留パイプ16)と、第1の熱交換部11で熱交換される冷媒の熱を第2の熱交換部(凝縮器8a)で前記建物内の空調に用いるヒートポンプを有する。また、前記空調装置ヒートポンプシステム6は、前記第1の熱交換部11と前記地中熱交換手段(熱搬送流体貯留パイプ16)との間で熱搬送用流体を循環可能に前記第1の熱交換部11と前記地中熱交換手段(熱搬送流体貯留パイプ16)に接続された循環パイプ(20,21)と、前記熱搬送用流体を前記循環パイプ(20,21)を介して前記第1の熱交換部11と前記地中熱交換手段(熱搬送流体貯留パイプ16)との間で循環させる循環ポンプ22とを備えている。しかも、前記湯利用部(浴槽30)に接続された排水パイプ31が前記地中熱交換手段(熱搬送流体貯留パイプ16)に近接させて前記地中に埋設されて、前記排水パイプ31内を排水される湯の排熱で前記地中熱交換手段(熱搬送流体貯留パイプ16)の熱搬送流体が加熱可能に設けられている。
この構成によれば、少ない部品点数で、建物内の湯利用部(浴槽30)から建物外に排水される湯の熱を地中熱と共に有効に回収して、回収した熱を暖房に用いることができる。
<Operations and effects of the embodiment>
(1). The hot water supply exhaust heat utilization air conditioning system according to the embodiment of the present invention uses the exhaust heat of hot water drained outside the building from the hot water utilization section in the building. The air conditioner heat pump system 6 uses the underground heat exchanging means (heat transfer fluid storage pipe 16) buried in the ground and the heat of the refrigerant heat exchanged by the first heat exchanging part 11 to the second A heat exchange unit (condenser 8a) has a heat pump used for air conditioning in the building. In addition, the air conditioner heat pump system 6 is configured so that the heat transfer fluid can be circulated between the first heat exchange unit 11 and the underground heat exchange means (heat transfer fluid storage pipe 16). Circulation pipes (20, 21) connected to the exchange unit 11 and the underground heat exchange means (heat transfer fluid storage pipe 16), and the heat transfer fluid through the circulation pipe (20, 21) to the first 1 is provided with a circulation pump 22 that circulates between the heat exchange section 11 and the underground heat exchange means (heat transfer fluid storage pipe 16). Moreover, a drain pipe 31 connected to the hot water utilization section (tub 30) is buried in the ground in the vicinity of the underground heat exchange means (heat transfer fluid storage pipe 16), and the drain pipe 31 is filled with the drain pipe 31. The heat transfer fluid of the underground heat exchange means (heat transfer fluid storage pipe 16) is provided so as to be heatable by the exhaust heat of the drained hot water.
According to this configuration, with a small number of parts, the heat of hot water drained outside the building from the hot water use section (tub 30) in the building is effectively recovered together with the underground heat, and the recovered heat is used for heating. Can do.

尚、この湯利用部から排水される湯は、実施例では建物外の汚水枡33を介して下水道に排水されるようになっている。しかし、湯利用部から排水される湯は、建物外の下水道以外の場所、例えば浄化槽に排水される構成であっても良いし、場所によっては建物外の排水溝等に直接排水することもできる。   In addition, the hot water drained from this hot water utilization part is drained to the sewer through the sewage basin 33 outside the building in the embodiment. However, the hot water drained from the hot water utilization section may be drained to a place other than the sewerage outside the building, for example, to the septic tank, or depending on the place, it can be drained directly to a drainage channel outside the building. .

(2).また、この発明の実施の形態の給湯排熱利用空調システムにおいて、前記排水パイプ31は前記湯利用部(浴槽30)側から建物外に向かうに従って下方に傾斜させられた放熱パイプ部31bを有し、前記放熱パイプ部31bの下端に開閉弁32が介装されている。 (2). Moreover, in the hot water supply exhaust heat utilization air conditioning system of the embodiment of the present invention, the drain pipe 31 has a heat radiating pipe portion 31b inclined downward from the hot water utilization portion (tub 30) side toward the outside of the building. The on-off valve 32 is interposed at the lower end of the heat radiating pipe portion 31b.

この構成によれば、残り湯が排水パイプ31を介して汚水枡33に排水される際に開閉弁32を開閉制御するにより、排水パイプ31の放熱パイプ部31bから地中への放熱および地中熱交換手段(熱搬送流体貯留パイプ16)へ伝達される熱量を多くできるので、残り湯の熱を熱搬送流体貯留パイプ16により多く伝達できる。   According to this configuration, when the remaining hot water is drained to the sewage basin 33 through the drain pipe 31, the on-off valve 32 is controlled to open and close, thereby radiating heat from the heat radiating pipe portion 31 b of the drain pipe 31 to the ground and underground. Since the amount of heat transferred to the heat exchanging means (heat transfer fluid storage pipe 16) can be increased, more heat of the remaining hot water can be transferred to the heat transfer fluid storage pipe 16.

(3).また、この発明の実施の形態の給湯排熱利用空調システムにおいて、前記建物のべた基礎2の真下に位置させて地表面1aから浅い位置に前記べた基礎2に沿う方向に向けて埋設され、前記排水パイプ31の放熱パイプ部31bに沿って接触するように配設された熱搬送流体貯留パイプ16である。 (3). Further, in the hot water supply exhaust heat utilization air conditioning system according to the embodiment of the present invention, it is located directly below the solid foundation 2 of the building and is buried in a shallow position from the ground surface 1a toward the direction along the solid foundation 2, The heat transfer fluid storage pipe 16 is disposed so as to be in contact with the heat radiating pipe portion 31 b of the drain pipe 31.

この構成によれば、放熱パイプ部31bに残り湯の熱が熱搬送流体貯留パイプ16に直接伝達できるので、放熱パイプ部31bと熱搬送流体貯留パイプ16との熱交換効率が向上する。   According to this configuration, since the heat of the remaining hot water can be directly transmitted to the heat transfer fluid storage pipe 16 to the heat radiating pipe portion 31b, the heat exchange efficiency between the heat dissipation pipe portion 31b and the heat transfer fluid storage pipe 16 is improved.

(4).また、この発明の実施の形態の給湯排熱利用空調システムにおいて、前記地中熱交換手段(熱搬送流体貯留パイプ16)は、前記建物のべた基礎2の真下に位置させて地表面1aから浅い位置に前記べた基礎2に沿う方向に向けて埋設され熱搬送流体貯留パイプ16であり、前記排水パイプ31の放熱パイプ部31bが前記熱搬送流体貯留パイプ16内に配設されている。 (4). Further, in the hot water supply exhaust heat utilization air conditioning system according to the embodiment of the present invention, the underground heat exchange means (heat transfer fluid storage pipe 16) is located directly below the solid foundation 2 of the building and is shallow from the ground surface 1a. The heat transfer fluid storage pipe 16 is buried in a direction along the solid foundation 2 at a position, and a heat radiating pipe portion 31 b of the drain pipe 31 is disposed in the heat transfer fluid storage pipe 16.

この構成によれば、放熱パイプ部31bと熱搬送流体貯留パイプ16との熱交換効率が向上する。   According to this configuration, the heat exchange efficiency between the heat radiating pipe portion 31b and the heat transfer fluid storage pipe 16 is improved.

(5).また、この発明の実施の形態の給湯排熱利用空調システムにおいて、前記地中熱交換手段(熱搬送流体貯留パイプ16)は、前記建物のべた基礎2の真下に位置させて地表面1aから浅い位置に前記べた基礎2に沿う方向に向けて埋設された流入パイプ部16aと、この流入パイプ部16aに間隔をおいて平行に設けられた戻りパイプ部16bを備える形状に折曲された熱搬送流体貯留パイプ16であると共に、前記排水パイプ31の放熱パイプ部31bは前記流入パイプ部16aと前記戻りパイプ部16bとの間に配設されている。 (5). Further, in the hot water supply exhaust heat utilization air conditioning system according to the embodiment of the present invention, the underground heat exchange means (heat transfer fluid storage pipe 16) is located directly below the solid foundation 2 of the building and is shallow from the ground surface 1a. Heat transfer bent into a shape including an inflow pipe portion 16a embedded in a direction along the solid foundation 2 at a position and a return pipe portion 16b provided in parallel to the inflow pipe portion 16a with a space therebetween In addition to the fluid storage pipe 16, the heat radiating pipe portion 31b of the drain pipe 31 is disposed between the inflow pipe portion 16a and the return pipe portion 16b.

この構成によれば、放熱パイプ部31bから放射状に放熱される残り湯の熱が熱搬送流体貯留パイプ16内の不凍液を流入パイプ部16aと戻りパイプ部16bの2カ所で加熱することになるので、放熱パイプ部31bから放射状に放熱される残り湯の熱が熱搬送流体貯留パイプ16内の不凍液を一カ所で加熱する場合よりも熱交換効率を向上させることができる。   According to this configuration, the heat of the remaining hot water radiated radially from the heat radiating pipe portion 31b heats the antifreeze liquid in the heat transfer fluid storage pipe 16 at two locations of the inflow pipe portion 16a and the return pipe portion 16b. The heat exchange efficiency can be improved as compared with the case where the heat of the remaining hot water radiated radially from the heat radiating pipe portion 31b heats the antifreeze liquid in the heat transfer fluid storage pipe 16 at one place.

1地盤
1a 地表面
1b 地中
2 べた基礎(基礎)
3 建物
6 ヒートポンプシステム(空調装置)
7 ヒートポンプユニット
8 床下放熱器
8a・・・凝縮器(第2の熱交換部)
11 第1の熱交換部
16 熱搬送流体貯留パイプ
16a 流入パイプ部
16b 戻りパイプ部
20 循環パイプ
21 循環パイプ
22 循環ポンプ
30 浴槽(湯利用部)
31 排水パイプ
31b 放熱パイプ部
32 開閉弁
33 汚水枡
1 ground 1a ground surface 1b underground 2 solid foundation (foundation)
3 Building 6 Heat pump system (air conditioner)
7 Heat pump unit 8 Underfloor radiator 8a ... Condenser (second heat exchange part)
DESCRIPTION OF SYMBOLS 11 1st heat exchange part 16 Heat transfer fluid storage pipe 16a Inflow pipe part 16b Return pipe part 20 Circulation pipe 21 Circulation pipe 22 Circulation pump 30 Bathtub (hot water utilization part)
31 Drainage pipe 31b Heat radiation pipe part 32 On-off valve 33 Sewage tank

Claims (5)

建物内の湯利用部から建物外に排水される湯の排熱を利用した給湯排熱利用空調システムにおいて、
前記空調装置は、
地中に埋設された地中熱交換手段と、
第1の熱交換部で熱交換される冷媒の熱を第2の熱交換部で前記建物内の空調に用いるヒートポンプと、
前記第1の熱交換部と前記地中熱交換手段との間で熱搬送用流体を循環可能に前記第1の熱交換部と前記地中熱交換手段に接続された循環パイプと、
前記熱搬送用流体を前記循環パイプを介して前記第1の熱交換部と前記地中熱交換手段との間で循環させる循環ポンプと、を備え、
前記湯利用部に接続された排水パイプが前記地中熱交換手段に近接させて前記地中に埋設されて、前記排水パイプ内を排水される湯の排熱で前記地中熱交換手段の熱搬送流体を加熱可能に設けられていることを特徴とする給湯排熱利用空調システム。
In the hot water supply exhaust heat utilization air conditioning system using the exhaust heat of the hot water drained outside the building from the hot water utilization section in the building,
The air conditioner
Underground heat exchange means buried in the ground,
A heat pump that uses the heat of the refrigerant that is heat-exchanged in the first heat exchange unit for air conditioning in the building in the second heat exchange unit;
A circulation pipe connected to the first heat exchanging unit and the underground heat exchanging means so that a heat transfer fluid can be circulated between the first heat exchanging unit and the underground heat exchanging unit;
A circulation pump for circulating the heat transfer fluid between the first heat exchange unit and the underground heat exchange means via the circulation pipe;
The drainage pipe connected to the hot water utilization part is embedded in the ground in the vicinity of the underground heat exchange means, and the heat of the underground heat exchange means by the exhaust heat of the hot water drained in the drainage pipe. An air-conditioning system using hot water and exhaust heat, which is provided so as to heat the carrier fluid.
請求項1に記載の給湯排熱利用空調システムにおいて、前記排水パイプは前記湯利用部側から建物外に向かうに従って下方に傾斜させられた放熱パイプ部を有し、前記放熱パイプ部の下端に開閉弁が介装されていることを特徴とする給湯排熱利用空調システム。   2. The hot water supply exhaust heat utilization air conditioning system according to claim 1, wherein the drain pipe has a heat radiating pipe portion inclined downward from the hot water utilization portion side toward the outside of the building, and is opened and closed at a lower end of the heat radiating pipe portion. A hot water supply exhaust heat utilization air conditioning system, characterized in that a valve is interposed. 請求項1又は2に記載の給湯排熱利用空調システムにおいて、前記地中熱交換手段は、前記建物のべた基礎の真下に位置させて地表面から浅い位置に前記べた基礎に沿う方向に向けて埋設され、前記排水パイプの放熱パイプ部に沿って接触するように配設された熱搬送流体貯留パイプであることを特徴とする給湯排熱利用空調システム。   The hot water supply exhaust heat utilization air conditioning system according to claim 1 or 2, wherein the underground heat exchanging means is located directly below the solid foundation of the building and is directed from the ground surface to a shallow position in a direction along the solid foundation. A hot water supply exhaust heat utilization air conditioning system, characterized in that it is a heat transfer fluid storage pipe that is buried and is disposed so as to be in contact with a heat radiating pipe portion of the drain pipe. 請求項1又は2に記載の給湯排熱利用空調システムにおいて、前記地中熱交換手段は、前記建物のべた基礎の真下に位置させて地表面から浅い位置に前記べた基礎に沿う方向に向けて埋設され熱搬送流体貯留パイプであり、前記排水パイプの放熱パイプ部が前記熱搬送流体貯留パイプ内に配設されていることを特徴とする給湯排熱利用空調システム。   The hot water supply exhaust heat utilization air conditioning system according to claim 1 or 2, wherein the underground heat exchanging means is located directly below the solid foundation of the building and is directed from the ground surface to a shallow position in a direction along the solid foundation. A hot water supply exhaust heat utilization air conditioning system, characterized in that the heat transfer fluid storage pipe is buried, and a heat radiating pipe portion of the drain pipe is disposed in the heat transfer fluid storage pipe. 請求項1又は2に記載の給湯排熱利用空調システムにおいて、前記地中熱交換手段は、前記建物のべた基礎の真下に位置させて地表面から浅い位置に前記べた基礎に沿う方向に向けて埋設された流入パイプ部と、この流入パイプ部に間隔をおいて平行に設けられた戻りパイプ部を備える形状に折曲された熱搬送流体貯留パイプであると共に、
前記排水パイプの放熱パイプ部は前記流入パイプ部と前記戻りパイプ部との間に配設されていることを特徴とする給湯排熱利用空調システム。
The hot water supply exhaust heat utilization air conditioning system according to claim 1 or 2, wherein the underground heat exchanging means is located directly below the solid foundation of the building and is directed from the ground surface to a shallow position in a direction along the solid foundation. A heat transfer fluid storage pipe bent into a shape including a buried inflow pipe portion and a return pipe portion provided in parallel to the inflow pipe portion at an interval;
The hot water supply exhaust heat utilization air conditioning system, wherein the heat radiating pipe portion of the drain pipe is disposed between the inflow pipe portion and the return pipe portion.
JP2013087064A 2013-04-18 2013-04-18 Hot water supply exhaust heat utilization air conditioning system Expired - Fee Related JP6087711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087064A JP6087711B2 (en) 2013-04-18 2013-04-18 Hot water supply exhaust heat utilization air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087064A JP6087711B2 (en) 2013-04-18 2013-04-18 Hot water supply exhaust heat utilization air conditioning system

Publications (2)

Publication Number Publication Date
JP2014211256A true JP2014211256A (en) 2014-11-13
JP6087711B2 JP6087711B2 (en) 2017-03-01

Family

ID=51931139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087064A Expired - Fee Related JP6087711B2 (en) 2013-04-18 2013-04-18 Hot water supply exhaust heat utilization air conditioning system

Country Status (1)

Country Link
JP (1) JP6087711B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105953A (en) * 2012-11-29 2014-06-09 Takasago Thermal Eng Co Ltd Heat exchange device of blow waste water
JP2016217576A (en) * 2015-05-18 2016-12-22 株式会社 ノ−スウィング Freezing prevention system utilizing underfloor heat storage
JP6170228B1 (en) * 2016-12-05 2017-07-26 山野辺 久生 Horizontally inclined convection type underground heat exchanger with large horizontal pipe, horizontal inclined type convective underground heat exchanger for horizontal pipe, and installation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133351U (en) * 1984-02-15 1985-09-05 ナショナル住宅産業株式会社 waste water tank
JPS60181525A (en) * 1984-02-28 1985-09-17 Kazuyoshi Oshita Waste heat recovery device
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2012251677A (en) * 2011-05-31 2012-12-20 Shiraiwa Komusho:Kk Heat storage air-conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133351U (en) * 1984-02-15 1985-09-05 ナショナル住宅産業株式会社 waste water tank
JPS60181525A (en) * 1984-02-28 1985-09-17 Kazuyoshi Oshita Waste heat recovery device
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2012251677A (en) * 2011-05-31 2012-12-20 Shiraiwa Komusho:Kk Heat storage air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105953A (en) * 2012-11-29 2014-06-09 Takasago Thermal Eng Co Ltd Heat exchange device of blow waste water
JP2016217576A (en) * 2015-05-18 2016-12-22 株式会社 ノ−スウィング Freezing prevention system utilizing underfloor heat storage
JP6170228B1 (en) * 2016-12-05 2017-07-26 山野辺 久生 Horizontally inclined convection type underground heat exchanger with large horizontal pipe, horizontal inclined type convective underground heat exchanger for horizontal pipe, and installation method thereof
JP2018091559A (en) * 2016-12-05 2018-06-14 山野辺 久生 Thick tube lateral installation inclination convection current type underground heat exchanger, thick tube lateral installation inclination convection current type underground heat exchanging device and their installation method
WO2018105629A1 (en) * 2016-12-05 2018-06-14 久生 山野辺 Large-tube horizontally-inclined convection-type ground heat exchanger, large-tube horizontally-inclined convection-type ground heat exchanging device, and installation method therefor

Also Published As

Publication number Publication date
JP6087711B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP4859560B2 (en) Heat pump device using wells
JP5505836B2 (en) Improved earth / solar system (Ground heat recovery pipe method)
KR101535384B1 (en) Heating system of heat pump using solar energy and underground heat storage
JP6087711B2 (en) Hot water supply exhaust heat utilization air conditioning system
JP2012172966A (en) Earth solar zero-energy house
JP6120317B2 (en) Building air conditioning system using geothermal and heat pumps
JP2012163239A (en) Geothermal heat utilization apparatus
US20080314552A1 (en) Heating and Cooling System
JP4318516B2 (en) Geothermal exchange device
CA2810152A1 (en) System for storing thermal energy, heating assembly comprising said system and method of manufacturing said system
JP2010255982A (en) Heat utilization system and heat utilizing method
JP5351210B2 (en) Thermal storage air conditioning system
KR101030737B1 (en) Energy saving cooling system
KR101234014B1 (en) Polyethylene header for ground heat system
JP2010032163A (en) Temperature adjusting system and construction method of the temperature adjusting system
JP4733549B2 (en) housing complex
JP2014040989A (en) Underground heat utilization system
EP2163828A2 (en) Appartus and method for transferrign energy
WO2009149711A2 (en) Cooling system and a panel module for a cooling systεm
JP2009209637A (en) Method of constructing buried structure
JP2007139236A (en) Underfloor air-conditioning device and method
JP5463872B2 (en) Underground heat exchange system
KR102449631B1 (en) Cooling system for buildings using cooling water
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
KR102269496B1 (en) Geothermal heat pump system with mixed form of vertically closed type and horizontal type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R151 Written notification of patent or utility model registration

Ref document number: 6087711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees