JP2014210649A - Vibration type part supply apparatus - Google Patents

Vibration type part supply apparatus Download PDF

Info

Publication number
JP2014210649A
JP2014210649A JP2013088081A JP2013088081A JP2014210649A JP 2014210649 A JP2014210649 A JP 2014210649A JP 2013088081 A JP2013088081 A JP 2013088081A JP 2013088081 A JP2013088081 A JP 2013088081A JP 2014210649 A JP2014210649 A JP 2014210649A
Authority
JP
Japan
Prior art keywords
component
hole
parts
diameter hole
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013088081A
Other languages
Japanese (ja)
Inventor
将吾 岡本
Shogo Okamoto
将吾 岡本
武志 梶本
Takeshi Kajimoto
武志 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013088081A priority Critical patent/JP2014210649A/en
Publication of JP2014210649A publication Critical patent/JP2014210649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration type part supply apparatus which has a simple structure and aligns rubber-made cylindrical parts with a one-end part being small in diameter in such a posture that the one-end part is directed forward in the carrying direction in order to supply the parts, stably in an aligned posture, to a subsequent step.SOLUTION: In a vibration type part supply apparatus, a part storing hole 26 of a slide block 20 of a delivery mechanism 4 which receives parts P from a discharge end of a shute 12 (carrying path 8) is composed of a through hole which is formed with a large-diameter hole part 26a and a small-diameter hole part 27b, the through hole being formed continuously from the part receiving side, and the one-end parts of the parts P are aligned in a posture directed forward in the carrying direction in a middle part of the carrying path 8 by blowing air from the part receiving side of the slide block into the part storing hole 26. The parts P stored in the part storing hole 26 of the slide block 20 are passed through the small-diameter hole part 26b of the part storing hole 26 while deforming the central part and the-other end parts elastically to be transferred directly to a subsequent step.

Description

本発明は、方向性を有する形状の部品を搬送しながらその姿勢を揃えて次工程に供給する振動式部品供給装置に関する。   The present invention relates to a vibration-type component supply device that supplies a component having a directionality to the next process while aligning its posture.

一般に、自動車の電装ワイヤーハーネスの接続端子部には、電装ケーブルの防水対策として円筒形状の防水シールが挿入されており、その挿入加工は端子圧着装置で行われる。防水シールは、防水性と圧着性を確保するために軟質ゴム製とされ、挿入端側となる一端部が中央部や他端部よりも小径に形成されたものが多い(図9参照)。そして、このような方向性を有する形状の防水シールを所定の姿勢で端子圧着装置に供給するために、振動式の部品供給装置がよく使用される。   In general, a cylindrical waterproof seal is inserted into a connection terminal portion of an electrical wiring harness of an automobile as a waterproof measure for an electrical cable, and the insertion process is performed by a terminal crimping device. The waterproof seal is made of a soft rubber in order to ensure waterproofness and pressure-bonding properties, and one end portion on the insertion end side is often formed with a smaller diameter than the central portion and the other end portion (see FIG. 9). In order to supply a waterproof seal having a shape having such directionality to the terminal crimping apparatus in a predetermined posture, a vibration type component supply apparatus is often used.

しかし、最近の傾向としては、自動車の小型・軽量化やハイブリッド化に伴って小径サイズの防水シールの需要が増えてきたことと、電装ケーブルが電気機器の安全に関する規格の改正等により太くなったことにより、防水シールの薄肉化が進み、このために振動式部品供給装置における防水シールの整列供給が難しくなってきている。   However, as a recent trend, the demand for small-diameter waterproof seals has increased along with the miniaturization, weight reduction, and hybridization of automobiles, and electrical cables have become thicker due to revisions to safety standards for electrical equipment. As a result, the thickness of the waterproof seal has been reduced, which makes it difficult to align and supply the waterproof seal in the vibratory component supply device.

すなわち、従来の振動式部品供給装置は、搬送路の途中の整列機構に設けた姿穴で防水シールを一端部(小径側)が下向きの姿勢で落下させ、その姿勢のまま外周面の形状を利用して吊った立て吊り状態で下流側へ搬送していくものが多かったが、防水シールの小径化・薄肉化に伴う吊り代の減少や剛性の低下により、防水シールを吊り状態で搬送することが困難になってきている。   In other words, the conventional vibratory component supply device drops the waterproof seal with a posture hole provided in the alignment mechanism in the middle of the conveyance path so that one end (small diameter side) is in a downward posture, and the shape of the outer peripheral surface is maintained in that posture. There were many things that were transported to the downstream side in a suspended state that was suspended using it, but the waterproof seal is transported in a suspended state due to a decrease in suspension allowance and a decrease in rigidity due to the diameter reduction and thinning of the waterproof seal. It has become difficult.

このため、防水シールをその一端部が搬送方向の前方に向くように倒した姿勢に整列して、下流側へ搬送していくことが提案されている(例えば、特許文献1参照。)。   For this reason, it has been proposed to align the waterproof seal in a posture in which one end thereof is tilted forward in the transport direction and transport the waterproof seal downstream (see, for example, Patent Document 1).

ところで、上記特許文献1に記載された振動式部品供給装置は、図10(a)、(b)に示すように、搬送路51を搬送されてきた部品(防水シール)Pを次工程に送るために、搬送路51から部品Pを一つずつ受け取り(図10(a)の状態)、所定姿勢(一端部を前方に向けた姿勢)の部品Pを所定の送り位置(図10(b)の位置)へ移送する切出し機構52と、その送り位置へ移送された部品Pをエアで次工程へ圧送するエア圧送機構53とを備えている。   By the way, as shown in FIGS. 10A and 10B, the vibration type component supply apparatus described in Patent Document 1 sends a component (waterproof seal) P that has been transported along the transport path 51 to the next process. For this purpose, the parts P are received one by one from the conveyance path 51 (the state shown in FIG. 10A), and the parts P in a predetermined posture (position with one end facing forward) are transferred to a predetermined feed position (FIG. 10B). A cutting mechanism 52 for transferring the component P to the feed position, and an air pressure feeding mechanism 53 for pressure-feeding the component P transferred to the feed position to the next process with air.

そして、切出し機構52では、受け取った部品Pに所定外の姿勢(他端部を前方に向けた姿勢)のものが混在している可能性があるので、部品Pの姿勢を識別して、所定外の姿勢の部品Pは搬送路51の上流側へ戻すために戻し位置へ移送するようになっている。その部品姿勢の識別手段としては、搬送路51から受け取った部品Pの他端部までが入る大径穴部と、部品Pの一端部は入るが他端部は入らない小径穴部とが連続するように形成された部品収納穴54を設け、その大径穴部と小径穴部をそれぞれ横切る2対の光電センサ55a、55bの光が遮断されたか否かで部品Pの姿勢を識別するものを採用している。   In the cutting mechanism 52, there is a possibility that the received component P has a posture other than a predetermined posture (a posture in which the other end portion is directed forward). The component P in the outer posture is transferred to the return position in order to return it to the upstream side of the transport path 51. As the component posture identification means, a large-diameter hole portion into which the other end portion of the component P received from the conveyance path 51 enters and a small-diameter hole portion into which one end portion of the component P enters but the other end portion does not enter are continuous. A component storage hole 54 is provided, and the posture of the component P is identified based on whether or not the light from the two pairs of photoelectric sensors 55a and 55b crossing the large-diameter hole portion and the small-diameter hole portion is blocked. Is adopted.

特開2012−126547号公報JP 2012-126547 A

上記特許文献1の振動式部品供給装置では、切出し機構52の送り位置と戻し位置のいずれでも、エア圧送機構53の圧送エア供給部56から部品収納穴54の小径穴部側へエアを吹き込むようになっている。これにより、所定姿勢の部品Pは送り位置で部品収納穴54の大径穴部側に接続される圧送路57へ送り込まれ(図10(b)参照)、所定外の姿勢の部品Pは戻し位置で部品収納穴54の大径穴部側に接続される戻し圧送路58へ送り込まれる。したがって、所定姿勢の部品Pは、その他端部(大径側)を前方に向けた姿勢で次工程に供給されることになる。   In the vibration type component supply device of Patent Document 1, air is blown from the pressure supply air supply portion 56 of the air pressure supply mechanism 53 to the small diameter hole portion side of the component storage hole 54 at either the feed position or the return position of the cutting mechanism 52. It has become. As a result, the component P in a predetermined posture is fed into the pressure feed path 57 connected to the large-diameter hole portion side of the component storage hole 54 at the feed position (see FIG. 10B), and the component P in a posture other than the predetermined posture is returned. It is sent to the return pressure feed path 58 connected to the large diameter hole side of the component storage hole 54 at the position. Accordingly, the component P in a predetermined posture is supplied to the next process in a posture in which the other end (large diameter side) is directed forward.

これに対し、次工程側の装置には、部品を一端部(小径側)が前方に向く姿勢で供給することを要求する仕様のものもある。そのような装置が次工程にある場合には、圧送路へ送り込まれた部品を一旦受ける方向変換部を設け、この方向変換部で部品の到着を確認した後、部品を圧送路と直交する方向に移送するとともに方向変換部を第2の圧送路に接続し、方向変換部に部品の大径側からエアを吹き込んで第2の圧送路へ部品を送り込むようにすることにより、次工程側の部品姿勢の要求に対応できる。   On the other hand, some apparatuses on the next process side require specifications to supply parts in a posture in which one end (small diameter side) faces forward. When such a device is in the next process, a direction changing unit that temporarily receives the component sent to the pressure feeding path is provided, and after the arrival of the component is confirmed by this direction changing unit, the direction of the component is orthogonal to the pressure feeding path. And the direction changing part is connected to the second pressure feeding path, and air is blown into the direction changing part from the large diameter side of the part to send the part to the second pressure feeding path. It can respond to the requirements of component posture.

しかしながら、上記のような対応をとった場合は、部品収納穴から圧送された部品が方向変換部の所定位置に到着しないおそれがある。すなわち、搬送路から排出される部品は後続の部品に押されて確実に部品収納穴に押し込まれるが、部品収納穴から圧送された部品は、その材質がゴムであることもあって、方向変換部の所定位置に留まらずに圧送路内へ跳ね返されてくることが考えられる。圧送路内で部品が滞留すると、部品の次工程への供給が不安定になる。そのほか、方向変換部や第2の圧送路等を設けることにより、部品供給装置全体の設置スペースが大きくなり、コストが高くなるという問題もある。   However, when the above-described measures are taken, there is a possibility that the parts pumped from the parts storage hole do not arrive at the predetermined position of the direction changing portion. In other words, the parts discharged from the transport path are pushed by the subsequent parts and are surely pushed into the parts storage hole. However, the parts sent from the parts storage hole by pressure may change direction because the material may be rubber. It is conceivable that they are bounced back into the pressure feed path without staying at the predetermined position of the part. If a part stays in the pumping path, the supply of the part to the next process becomes unstable. In addition, there is a problem in that the installation space for the entire component supply device is increased and the cost is increased by providing the direction changing unit, the second pumping path, and the like.

そこで、本発明の課題は、一端部が小径のゴム製筒状部品を、その一端部が搬送方向の前方に向く姿勢で整列させる振動式部品供給装置において、簡単な構造で部品を整列姿勢のまま安定して次工程に供給できるようにすることである。   Accordingly, an object of the present invention is to provide a vibration-type component supply device that aligns rubber cylindrical parts having a small diameter at one end so that the one end faces forward in the transport direction. It is to be able to stably supply the next process.

上記の課題を解決するため、本願の発明者は、整列供給の対象とする部品がゴム製であり、最近の傾向としてその部品の薄肉化が進んでいることに着目し、整列した部品を次工程へ送る部分の構造を、部品の弾性変形を利用して簡略化するという着想を得た。   In order to solve the above problems, the inventor of the present application pays attention to the fact that the parts to be aligned and supplied are made of rubber, and the thinning of the parts is progressing as a recent trend. The idea was to simplify the structure of the part to be sent to the process by using elastic deformation of the parts.

この着想に基づいて、本発明は、軸方向の一端部が中央部と他端部のいずれよりも小径に形成された円筒形状のゴム製部品を整列供給の対象とし、この部品を搬送する搬送路と、前記搬送路の途中で部品の一端部を搬送方向の前方に向ける整列機構と、前記搬送路の排出端から部品を一つずつ受け取り、受け取った部品の姿勢を識別して、一端部を前方に向けた部品を所定の送り位置へ移送する切出し機構と、前記送り位置へ移送された部品をエアで次工程へ送るエア圧送機構とを備えた振動式部品供給装置において、前記切出し機構は、前記搬送路から受け取った部品を部品収納穴に収納して移送する移送部材を備えており、前記部品収納穴は、移送部材の部品受取側に開口し、部品の他端部を挿入可能な大径穴部と、この大径穴部に連続し、部品の一端部は挿入可能で他端部は挿入できない小径穴部とが形成された貫通孔であり、前記エア圧送機構が前記送り位置で移送部材の部品受取側から部品収納穴へエアを吹き込むことにより、前記移送部材の部品収納穴に収納された部品が、その他端部を弾性変形させながら部品収納穴の小径穴部を通過して次工程へ送られるようにした構成を採用した。   Based on this idea, the present invention targets cylindrical rubber parts whose one end in the axial direction is smaller in diameter than either the central part or the other end, and transports this part. A path, an alignment mechanism that directs one end of the component forward in the conveying direction in the middle of the conveying path, and one part at a time from the discharge end of the conveying path, In the vibration-type component supply apparatus, comprising: a cutting mechanism that transfers a part facing forward to a predetermined feeding position; and an air pressure feeding mechanism that sends the part transferred to the feeding position to the next process by air. Is equipped with a transfer member that stores and transfers the components received from the transport path into the component storage hole. The component storage hole opens on the component receiving side of the transfer member, and the other end of the component can be inserted. Large diameter hole and continuous to this large diameter hole The component is a through hole formed with a small-diameter hole that can be inserted at one end and cannot be inserted at the other end, and the air pressure feeding mechanism sends air from the component receiving side of the transfer member to the component receiving hole at the feeding position. By blowing, a configuration was adopted in which the component stored in the component storage hole of the transfer member was sent to the next process through the small diameter hole portion of the component storage hole while elastically deforming the other end portion.

この構成によれば、一端部が前方に向く姿勢に整列された部品を移送部材の部品収納穴から直接次工程へ送り出すことができるので、前述のように部品収納穴から部品を逆向きに送り出し、その送り出し方向を方向変換部で反転させる構造を採る場合に比べて、部品を安定して次工程に供給できるし、構造も簡略化することができる。   According to this configuration, the parts aligned in a posture in which one end portion faces forward can be sent directly from the parts storage hole of the transfer member to the next process, so that the parts are sent backward from the parts storage hole as described above. Compared to the case where the direction changing unit reverses the feeding direction, the parts can be stably supplied to the next process, and the structure can be simplified.

前記移送部材の部品収納穴の大径穴部および小径穴部は、それぞれ丸穴とすることが望ましい。角穴等とすると、複数の部材の組み合わせによって部品収納穴を形成することになり、コストが高くなるとともに、その部材間の隙間からエアが漏れて圧送が不安定になるおそれがあるからである。   The large-diameter hole portion and the small-diameter hole portion of the component storage hole of the transfer member are preferably round holes. If a square hole or the like is used, a component housing hole is formed by a combination of a plurality of members, which increases costs and may cause air to leak from the gaps between the members, resulting in unstable pumping. .

ここで、前記移送部材の部品収納穴の小径穴部を挟んで大径穴部と反対の側に、部品の中央部および他端部よりも径方向寸法の大きい丸穴の出口部を設ければ、部品が弾性変形している時間および距離を抑えることができ、より安定した部品供給ができるようになる。   Here, on the side opposite to the large-diameter hole portion across the small-diameter hole portion of the component housing hole of the transfer member, a round hole outlet portion having a larger radial dimension than the central portion and the other end portion of the component is provided. As a result, the time and distance during which the parts are elastically deformed can be suppressed, and the parts can be supplied more stably.

また、前記移送部材の部品収納穴の大径穴部と小径穴部との間の段差面をテーパ状に形成すれば、部品収納穴の小径穴部を弾性変形した部品が通過しやすくなり、これによっても部品供給の安定性を向上させることができる。   Further, if the step surface between the large diameter hole portion and the small diameter hole portion of the component storage hole of the transfer member is formed in a taper shape, it becomes easy for the component elastically deformed through the small diameter hole portion of the component storage hole to pass through, This also improves the stability of component supply.

本発明の振動式部品供給装置は、上述したように、搬送路の排出端から部品を受け取る切出し機構の移送部材の部品収納穴が、部品受取側から大径穴部と小径穴部とが連続して形成された貫通孔であり、その移送部材の部品受取側から部品収納穴へエアを吹き込むことにより、移送部材の部品収納穴に一端部を前方に向けた姿勢で収納された部品が、その他端部を弾性変形させながら部品収納穴の小径穴部を通過して直接次工程へ送られるようにしたものであるから、移送部材と次工程との間に前述のような方向変換部を設ける場合に比べて、部品を安定して次工程に供給できるし、構造も簡略化することができる。   As described above, the vibration type component supply device of the present invention has a component storage hole of a transfer member of a cutting mechanism that receives a component from a discharge end of a conveyance path, and a large-diameter hole portion and a small-diameter hole portion are continuous from the component receiving side. A component that is stored in a posture in which one end portion is directed forward in the component storage hole of the transfer member by blowing air from the component receiving side of the transfer member to the component storage hole. Since the other end portion is elastically deformed and passes through the small diameter hole portion of the component storage hole and is directly sent to the next process, the direction changing portion as described above is provided between the transfer member and the next process. Compared with the case where it is provided, the parts can be stably supplied to the next process, and the structure can be simplified.

また、次工程側から部品を逆向きの姿勢で供給することを要求される場合でも、移送部材に対するエア圧送機構の各部の取り付けを、移送部材の部品受取側と反対の側からエアを吹き込んで部品受取側から部品を次工程に送り出すように変更するだけで、容易に対応することができる。   Even when it is required to supply parts in the opposite orientation from the next process side, air is blown from the side opposite to the parts receiving side of the transfer member to attach each part of the air pressure feeding mechanism to the transfer member. It is possible to easily cope with this by simply changing the part receiving side to send the part to the next process.

実施形態の部品供給装置の平面図The top view of the component supply apparatus of embodiment 図1の正面図Front view of FIG. 図1の整列機構の要部の平面図FIG. 1 is a plan view of the main part of the alignment mechanism of FIG. 図1の整列機構付近の正面図Front view near the alignment mechanism of FIG. a、bは、それぞれ図4のVa−Va線、Vb−Vb線に沿った断面図a and b are sectional views taken along lines Va-Va and Vb-Vb in FIG. 4, respectively. aは図1の切出し機構の横断平面図、bはaの部品収納穴の拡大横断平面図a is a cross-sectional plan view of the cutting mechanism of FIG. 1, b is an enlarged cross-sectional plan view of the component storage hole of a a、bは、それぞれ所定姿勢の部品および所定外の姿勢の部品に対する図1の切出し機構の動作を説明する横断平面図1A and 1B are cross-sectional plan views for explaining the operation of the cutting mechanism shown in FIG. 部品収納穴の変形例を示す拡大横断平面図An enlarged cross-sectional plan view showing a modification of the component storage hole aは整列供給される部品の正面図、bはaの右側面図a is a front view of parts to be aligned and supplied, b is a right side view of a a、bは、それぞれ従来の部品供給装置の切出し機構の構成および所定姿勢の部品に対する動作を説明する横断平面図a and b are cross-sectional plan views illustrating the configuration of the cutting mechanism of the conventional component supply device and the operation with respect to the component in a predetermined posture, respectively.

以下、図面に基づき、本発明の実施形態を説明する。この振動式部品供給装置は、図1および図2に示すように、1台の振動式直進フィーダ1に、整列供給用トラフ2とリターン用トラフ3とが部品を互いに反対方向に搬送するように並べて配置されている。整列供給用トラフ2の排出端には、部品をその姿勢よって異なる位置まで移送する切出し機構4が接続されている。そして、切出し機構4で移送された部品のうち、所定の姿勢の部品は次工程へ送り、所定外の姿勢の部品は直進フィーダ1へ戻すエア圧送機構5が設けられている。この装置が整列供給の対象とする部品Pは、図9(a)、(b)に示すように、軸方向の一端部が中央部および他端部よりも小径のテーパ状に形成され、中央部と他端部がほぼ同径に形成された円筒形状の軟質ゴム製防水シールである。そして、図示は省略するが、次工程にはこの部品Pを端子とともに電装ケーブルに圧着する端子圧着装置が設けられており、この端子圧着装置が一端部(小径側)を前方に向けた姿勢の部品Pを受け取る仕様となっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1 and FIG. 2, the vibration type component supply apparatus is arranged so that the alignment supply trough 2 and the return trough 3 convey components in opposite directions to one vibration linear advance feeder 1. They are arranged side by side. The discharge end of the alignment supply trough 2 is connected to a cutting mechanism 4 that transfers the parts to different positions depending on their postures. Of the parts transferred by the cutting mechanism 4, there is provided an air pressure feeding mechanism 5 that sends parts in a predetermined posture to the next process and returns parts in a non-predetermined posture to the linear feeder 1. As shown in FIGS. 9 (a) and 9 (b), the part P to be aligned and supplied by this apparatus is formed such that one end in the axial direction is tapered with a smaller diameter than the center and the other end. This is a cylindrical soft rubber waterproof seal in which the other end and the other end are formed to have substantially the same diameter. And although illustration is omitted, in the next process, a terminal crimping device for crimping the component P together with the terminal to the electrical cable is provided, and this terminal crimping device has a posture in which one end portion (small diameter side) is directed forward. The specification is to receive the part P.

前記直進フィーダ1は、床Fに固定された防振ゴム6に振動体(加振機構)7を取り付け、この振動体7を整列供給用トラフ2に連結して、整列供給用トラフ2を往復振動させることにより、部品Pを搬送路8に沿って図面左方向に搬送しながら整列させ、整列した部品Pを切出し機構4へ送り込むものである。また、そのリターン用トラフ3は、前後一対の板ばね9で振動体7の連結部材7aに連結されており、振動体7の振動を受けて往復振動することにより、整列供給用トラフ2から受け取った部品Pを戻し搬送路10に沿って図面右方向に搬送し、再び整列供給用トラフ2に供給するようになっている。   The linear feeder 1 has a vibration body (vibration mechanism) 7 attached to an anti-vibration rubber 6 fixed to the floor F, and this vibration body 7 is connected to the alignment supply trough 2 to reciprocate the alignment supply trough 2. By vibrating, the parts P are aligned while being conveyed in the left direction of the drawing along the conveying path 8, and the aligned parts P are fed into the cutting mechanism 4. The return trough 3 is connected to the connecting member 7 a of the vibrating body 7 by a pair of front and rear leaf springs 9. The return trough 3 receives the vibration from the vibrating body 7 and reciprocates to receive it from the alignment supply trough 2. The parts P are transported along the return transport path 10 in the right direction of the drawing and supplied again to the alignment supply trough 2.

前記整列供給用トラフ2は、搬送路8の上流側部分が緩やかな上り勾配となっており、搬送方向中央部には部品Pを整列させる整列機構11が設けられ、下流部分には整列機構11で整列させた部品Pを切出し機構4まで搬送するシュート12が設けられている。そして、搬送路8の側方には部品Pを一時貯蔵する貯蔵部13が設けられ、この貯蔵部13に投入された部品Pやエア圧送機構5から戻された部品Pがリターン用トラフ3に送られるようになっている。一方、リターン用トラフ3は、整列供給用トラフ2の貯蔵部13から送られてくる部品Pを戻し搬送して整列供給用トラフ2の上流端に戻すために、戻し搬送路10が上り勾配の傾斜面となっている。   The alignment supply trough 2 has a gentle upward slope in the upstream portion of the conveyance path 8, and an alignment mechanism 11 that aligns the parts P is provided in the central portion in the conveyance direction, and the alignment mechanism 11 in the downstream portion. A chute 12 is provided for conveying the parts P aligned in the above to the cutting mechanism 4. A storage unit 13 for temporarily storing the component P is provided on the side of the conveyance path 8, and the component P put into the storage unit 13 and the component P returned from the air pressure feeding mechanism 5 are supplied to the return trough 3. It is supposed to be sent. On the other hand, the return trough 3 returns and conveys the parts P sent from the storage unit 13 of the alignment supply trough 2 and returns them to the upstream end of the alignment supply trough 2, so that the return conveyance path 10 has an upward slope. It is an inclined surface.

前記整列機構11は、図3に示すように、搬送路8の上流側部分に連続する部分の側壁に部品Pが入り込む広さの凹部14を設けるとともに、この凹部14の床面に部品Pの軸を含む断面形状に対応した形状の姿穴15を設け、搬送されてくる部品Pを図示省略したノズルから噴き出すエアで凹部14へ送り込んで、部品Pが姿穴15を通過するときに一端部を下向きにした姿勢となって落下するようにしている。   As shown in FIG. 3, the alignment mechanism 11 is provided with a recess 14 having a width that allows the component P to enter the side wall of a portion continuous with the upstream portion of the transport path 8, and the floor of the recess 14 has the component P. The shape hole 15 having a shape corresponding to the cross-sectional shape including the shaft is provided, and the conveyed component P is sent to the concave portion 14 by air ejected from a nozzle (not shown), and one end when the component P passes through the shape hole 15. It is designed to fall with the posture facing down.

そして、図4に示すように、姿穴15の下方には、姿穴15から落下してくる部品Pを受け入れる通路16を形成するガイド部材17、18を設け、その通路16の下端側を湾曲させてシュート12の搬送路8に接続している。これにより、姿穴15から一端部を下向きにして落下してきた部品Pが、姿穴15の下方の通路16で向きを90°変え、一端部を搬送方向の前方に向けた姿勢でシュート12に送り込まれて、そのままの姿勢で排出端まで搬送されていく。   As shown in FIG. 4, guide members 17 and 18 that form a passage 16 for receiving the component P falling from the figure hole 15 are provided below the figure hole 15, and the lower end side of the passage 16 is curved. The chute 12 is connected to the conveyance path 8. As a result, the part P that has dropped from the figure hole 15 with one end facing downward changes its direction by 90 ° in the passage 16 below the figure hole 15 and is directed to the chute 12 with one end directed forward in the conveying direction. It is sent to the discharge end as it is.

ここで、図5(a)に示すように、通路16の湾曲中心側のガイド部材17は、その湾曲面(通路16の湾曲中心側の内面)17aが断面V字形に形成されている。また、図5(a)、(b)に示すように、シュート12は、2つのシュート部品12a、12bを搬送路8の幅方向で接合したもので、搬送路8を形成する下側のガイド面12cが断面V字形に形成されている。これにより、姿穴15から落下してきた部品Pが安定して姿勢変換され、スムーズにシュート12排出端まで搬送される。なお、シュートのガイド面の形状は断面U字形としてもよく、断面V字形またはU字形のガイド面を搬送路の上側に設けてもよい。   Here, as shown in FIG. 5A, the guide member 17 on the curved center side of the passage 16 has a curved surface (inner surface on the curved center side of the passage 16) 17a formed in a V-shaped cross section. Further, as shown in FIGS. 5A and 5B, the chute 12 is obtained by joining two chute parts 12a and 12b in the width direction of the conveyance path 8, and a lower guide that forms the conveyance path 8. The surface 12c is formed in a V-shaped cross section. As a result, the posture of the component P falling from the figure hole 15 is stably changed, and is smoothly conveyed to the discharge end of the chute 12. Note that the guide surface of the chute may have a U-shaped cross section, and a guide surface having a V-shaped or U-shaped cross section may be provided on the upper side of the conveyance path.

また、シュート12には部品Pの搬送状態を検知する部品センサ19が取り付けられ(図4参照)、この部品センサ19でシュート12に部品Pが充満したことを検知すると、整列機構11に向かう部品Pを自動的にエアで排除するようになっている。   Further, a component sensor 19 for detecting the conveyance state of the component P is attached to the chute 12 (see FIG. 4). When the component sensor 19 detects that the component P is full on the chute 12, the component heading toward the alignment mechanism 11 is detected. P is automatically eliminated by air.

前記切出し機構4は、図6(a)に示すように、シュート12排出端に近接対向する位置に配され、シュート12の搬送方向と直交する方向にスライドする移送部材としてのスライドブロック20と、シュート12の排出端部に隣接する位置に固定され、スライドブロック20を案内する固定ブロック21と、固定ブロック21とともにスライドブロック20を案内するガイドブロック22とを備えている。ガイドブロック22は固定ブロック21に固定されており、固定ブロック21はベース23を介して床F上に設けられた支持部材24に支持されている(図2参照)。また、シュート12の搬送方向と直交する方向でスライドブロック20を挟んで対向する位置に二対の光電センサ25a、25bが配置され(各対は発光側と受光側を同符号で示す)、これらの光電センサ25a、25bにより、後述するようにスライドブロック20がシュート12から受け取った部品Pの姿勢を識別するようになっている。   As shown in FIG. 6 (a), the cutting mechanism 4 is arranged at a position close to and opposed to the discharge end of the chute 12, and a slide block 20 as a transfer member that slides in a direction perpendicular to the conveyance direction of the chute 12, A fixed block 21 that is fixed at a position adjacent to the discharge end of the chute 12 and guides the slide block 20 and a guide block 22 that guides the slide block 20 together with the fixed block 21 are provided. The guide block 22 is fixed to a fixed block 21, and the fixed block 21 is supported by a support member 24 provided on the floor F via a base 23 (see FIG. 2). In addition, two pairs of photoelectric sensors 25a and 25b are arranged at positions facing each other across the slide block 20 in a direction orthogonal to the conveyance direction of the chute 12 (each pair indicates the light emitting side and the light receiving side with the same symbol). The photoelectric sensors 25a and 25b identify the posture of the component P received from the chute 12 by the slide block 20 as will be described later.

また、スライドブロック20は、固定ブロック21に案内される面からガイドブロック22に案内される面に貫通し、シュート12から受け取った部品Pを1個だけ収納する部品収納穴26を有している。この部品収納穴26は、図6(b)に示すように、固定ブロック21側(スライドブロック20の部品受取側)に開口する大径穴部26aとガイドブロック22側に開口する小径穴部26bとがテーパ状の段差面26cを介して連続的に形成された2段形状の丸穴であり、その大径穴部26aの開口側端部も外側に向かって拡がるテーパ状に形成されている。そして、その大径穴部26aの内径は部品Pの中央部および他端部を挿入可能な寸法に形成され、小径穴部26bの内径は部品Pの一端部は挿入可能で中央部および他端部は挿入できない寸法に形成されている。   The slide block 20 has a component storage hole 26 that passes from the surface guided by the fixed block 21 to the surface guided by the guide block 22 and stores only one component P received from the chute 12. . As shown in FIG. 6B, the component storage hole 26 has a large-diameter hole portion 26a that opens to the fixed block 21 side (component-receiving side of the slide block 20) and a small-diameter hole portion 26b that opens to the guide block 22 side. Is a two-stage round hole formed continuously through a tapered step surface 26c, and the opening-side end of the large-diameter hole 26a is also formed in a tapered shape that expands outward. . The inner diameter of the large-diameter hole portion 26a is formed such that the central portion and the other end portion of the component P can be inserted, and the inner diameter of the small-diameter hole portion 26b is such that one end portion of the component P can be inserted and the central portion and the other end portion are inserted. The part is formed in a dimension that cannot be inserted.

したがって、このスライドブロック20がシュート12から一端部を搬送方向の前方に向けて搬送されてきた(所定姿勢の)部品Pを受け取ったときには、図6(a)、(b)に示すように、部品Pの一端部が部品収納穴26の小径穴部26bまで入り込み、2つの光電センサ25a、25bの光がいずれも遮断されるが、逆向きの(所定外の姿勢の)部品Pを受け取ったときには、部品Pの中央部および他端部が部品収納穴26の大径穴部26aまでしか入らず、一方の光電センサ25aの光だけが遮断される。すなわち、二対の光電センサ25a、25bのオン/オフ信号から、部品P受け取りの有無、および受け取った部品Pの一端部の前後方向位置(部品Pが所定姿勢のものか否か)を識別することができる。   Therefore, when the slide block 20 receives a part P (in a predetermined posture) that has been transported from the chute 12 with one end directed forward in the transport direction, as shown in FIGS. 6 (a) and 6 (b), One end of the component P enters the small-diameter hole portion 26b of the component storage hole 26, and the light from the two photoelectric sensors 25a and 25b is blocked, but the component P in the opposite direction (outside the predetermined position) is received. Sometimes, the central portion and the other end portion of the component P enter only the large-diameter hole portion 26a of the component storage hole 26, and only the light of one photoelectric sensor 25a is blocked. That is, from the on / off signals of the two pairs of photoelectric sensors 25a and 25b, the presence / absence of reception of the component P and the position in the front-rear direction of one end of the received component P (whether or not the component P is in a predetermined posture) are identified. be able to.

そして、上記の識別の結果、スライドブロック20が受け取った部品Pが所定姿勢であれば、図7(a)に示すように、スライドブロック20を図面上側(固定ブロック21に近づく方向)へスライドさせて、部品Pを所定の送り位置へ移送する。一方、受け取った部品Pが所定外の姿勢の場合は、図7(b)に示すように、スライドブロック20を図面下側(固定ブロック21から離れる方向)へスライドさせて、部品Pを所定の戻し位置へ移送する。   As a result of the above identification, if the component P received by the slide block 20 is in a predetermined posture, as shown in FIG. 7A, the slide block 20 is slid upward in the drawing (in the direction approaching the fixed block 21). Then, the part P is transferred to a predetermined feeding position. On the other hand, when the received part P is in a posture other than the predetermined position, as shown in FIG. 7B, the slide block 20 is slid downward (in the direction away from the fixed block 21), and the part P is moved to a predetermined position. Transfer to the return position.

前記エア圧送機構5は、図6(a)および図7(a)、(b)に示すように、固定ブロック21およびガイドブロック22にそれぞれ圧送エア供給部27、28を設けるとともに、ガイドブロック22に次工程への圧送路の入口部となる貫通孔29を設け、この貫通孔29に圧送路を形成する圧送ホース30の一端部を挿入固定し、シュート12に対して固定ブロック21と反対の側に、部品Pを整列供給用トラフ2の貯蔵部13に戻す戻しパイプ31を配置したものである。その戻しパイプ31は、床F上に立設された支柱32に支持されている(図2参照)。   As shown in FIG. 6A, FIG. 7A, and FIG. 7B, the air pressure feeding mechanism 5 is provided with pressure feeding air supply portions 27 and 28 on the fixed block 21 and the guide block 22, respectively. A through hole 29 serving as an inlet portion of the pressure feeding path to the next process is provided, and one end portion of the pressure feeding hose 30 forming the pressure feeding path is inserted and fixed in the through hole 29, and is opposite to the fixed block 21 with respect to the chute 12. On the side, a return pipe 31 for returning the component P to the storage part 13 of the alignment supply trough 2 is arranged. The return pipe 31 is supported by a column 32 erected on the floor F (see FIG. 2).

そして、固定ブロック21の圧送エア供給部27およびガイドブロック22の貫通孔29は、スライドブロック20が部品Pを送り位置へ移送したときに、それぞれスライドブロック20の部品収納穴26の両側の開口と対向する位置に開口し、ガイドブロック22の圧送エア供給部28および戻しパイプ31は、スライドブロック20が部品Pを戻し位置へ移送したときに、それぞれスライドブロック20の部品収納穴26の両側の開口と対向する位置に開口している。   The pressure supply air supply unit 27 of the fixed block 21 and the through hole 29 of the guide block 22 are respectively open to the openings on both sides of the component storage hole 26 of the slide block 20 when the slide block 20 transfers the component P to the feed position. The pressure-feed air supply unit 28 and the return pipe 31 of the guide block 22 are opened at opposite positions, and the openings on both sides of the component storage hole 26 of the slide block 20 when the slide block 20 transfers the component P to the return position. It is opened at a position opposite to.

すなわち、図7(a)に示すように、スライドブロック20で送り位置へ移送された部品Pは、固定ブロック21の圧送エア供給部27から噴き出すエアにより、ガイドブロック22の貫通孔29に差し込まれた圧送ホース30を介して次工程へ圧送され、図7(b)に示すように、スライドブロック20で戻し位置へ移送された部品Pは、ガイドブロック22の圧送エア供給部28から噴き出すエアにより、戻しパイプ31を介して整列供給用トラフ2の貯蔵部13へ圧送されるようになっている。   That is, as shown in FIG. 7A, the component P transferred to the feed position by the slide block 20 is inserted into the through hole 29 of the guide block 22 by the air blown from the pressure feed air supply unit 27 of the fixed block 21. As shown in FIG. 7B, the component P that has been pumped to the next process through the pumping hose 30 and transferred to the return position by the slide block 20 is blown by the air blown from the pumping air supply unit 28 of the guide block 22. The pressure is fed to the storage section 13 of the alignment supply trough 2 via the return pipe 31.

したがって、所定外の姿勢の部品Pが他端部(大径側)を前方に向けた姿勢で整列供給用トラフ2へ戻されるのに対し、所定姿勢の部品Pは、前述した次工程の端子圧着装置の仕様に対応して、一端部(小径側)を前方に向けた姿勢で次工程へ送られることになる。ここで、部品収納穴26の小径穴部26bは部品Pの中央部および他端部が挿入できない寸法に形成されているが、軟質のゴムで形成された部品Pは、その中央部および他端部を弾性変形させながら小径穴部26bを通過することができる。   Therefore, the component P in a non-predetermined posture is returned to the alignment supply trough 2 with the other end (large diameter side) facing forward, whereas the component P in the predetermined posture is a terminal for the next process described above. Corresponding to the specifications of the crimping device, the one end (small diameter side) is sent to the next process with the posture facing forward. Here, the small-diameter hole portion 26b of the component housing hole 26 is formed to have a size that the central portion and the other end portion of the component P cannot be inserted, but the component P formed of soft rubber has the central portion and the other end portion. It is possible to pass through the small diameter hole portion 26b while elastically deforming the portion.

この振動式部品供給装置は、上述したように、シュート12(搬送路8)の排出端から部品Pを受け取る切出し機構4のスライドブロック20の部品収納穴26を、部品受取側から大径穴部26aと小径穴部27bとが連続して形成された貫通孔とし、そのスライドブロック20の部品受取側から部品収納穴26へエアを吹き込むことにより、部品収納穴26に一端部(小径側)を前方に向けた姿勢で収納された部品Pが、その中央部および他端部を弾性変形させながら部品収納穴26の小径穴部26bを通過して直接次工程へ送られるようにしている。したがって、スライドブロック20と次工程との間に部品Pの方向を変える方向変換部を必要とせず、簡単な構造で部品Pを安定して次工程に供給することができる。   As described above, this vibration type component supply device has a large diameter hole portion from the component receiving side through the component receiving hole 26 of the slide block 20 of the cutting mechanism 4 that receives the component P from the discharge end of the chute 12 (conveyance path 8). 26a and a small-diameter hole portion 27b are continuously formed, and air is blown into the component storage hole 26 from the component receiving side of the slide block 20 so that one end (small diameter side) is formed in the component storage hole 26. The component P stored in a forward orientation is directly sent to the next process through the small-diameter hole portion 26b of the component storage hole 26 while elastically deforming the central portion and the other end portion thereof. Therefore, the direction changing part for changing the direction of the component P is not required between the slide block 20 and the next process, and the component P can be stably supplied to the next process with a simple structure.

ここで、部品収納穴26は、部品Pがシュート12から送り込まれてきたときにその中央部および他端部が小径穴部26bに入り込まない範囲で、小径穴部26bの内径をできるだけ大きくすることにより、部品Pの中央部および他端部が小径穴部26bを通過する際の部品Pの変形量を最小限に抑え、部品Pのキズ等を生じにくくすることができる。また、大径穴部26aと小径穴部26bとの間の段差面26cは必ずしもテーパ状に形成しなくてもよいが、テーパ状とした方が小径穴部26bを弾性変形した部品Pが通過しやすくなり、部品供給の安定性が向上するので、好ましい。   Here, the component housing hole 26 has an inner diameter of the small-diameter hole portion 26b as large as possible so long as the central portion and the other end portion of the component P do not enter the small-diameter hole portion 26b when the component P is fed from the chute 12. Accordingly, it is possible to minimize the deformation amount of the component P when the central portion and the other end portion of the component P pass through the small-diameter hole portion 26b, and to prevent the component P from being scratched. Further, the stepped surface 26c between the large-diameter hole portion 26a and the small-diameter hole portion 26b may not necessarily be formed in a tapered shape. This is preferable because the stability of component supply is improved.

図8はスライドブロック20の部品収納穴26の変形例を示す。この変形例では、部品収納穴26の小径穴部26bを短くして、小径穴部26bを挟んで大径穴部26aと反対の側に、部品Pの中央部および他端部よりも径方向寸法の大きい丸穴の出口部26dを設け、この出口部26dと小径穴部26bとの間の段差面26eをテーパ状に形成している。部品収納穴26をこのような3段形状とすることにより、部品Pが弾性変形している時間および距離を抑えることができ、より安定した部品供給が可能となる。   FIG. 8 shows a modification of the component storage hole 26 of the slide block 20. In this modification, the small-diameter hole portion 26b of the component housing hole 26 is shortened, and on the side opposite to the large-diameter hole portion 26a across the small-diameter hole portion 26b, more radially than the central portion and the other end portion of the component P. A round hole outlet portion 26d having a large size is provided, and a step surface 26e between the outlet portion 26d and the small diameter hole portion 26b is formed in a tapered shape. By forming the component housing hole 26 in such a three-stage shape, the time and distance during which the component P is elastically deformed can be suppressed, and more stable component supply is possible.

なお、上述した実施形態では、整列供給の対象とする部品が、中央部と他端部がほぼ同径のものである場合について説明したが、本発明は、中央部と他端部の外径が異なり、その中央部と他端部のいずれよりも一端部が小径の部品を対象とする振動式部品供給装置にも、もちろん適用することができる。   In the above-described embodiment, the case where the parts to be aligned and supplied have the central portion and the other end portion having substantially the same diameter has been described. Of course, the present invention can also be applied to a vibration-type component supply device that targets a component whose one end is smaller in diameter than both the central portion and the other end.

1 直進フィーダ
2 整列供給用トラフ
3 リターン用トラフ
4 切出し機構
5 エア圧送機構
8 搬送路
10 戻し搬送路
11 整列機構
12 シュート
13 貯蔵部
20 スライドブロック
21 固定ブロック
22 ガイドブロック
25a、25b 光電センサ
26 部品収納穴
26a 大径穴部
26b 小径穴部
26c 段差面
26d 出口部
27、28 圧送エア供給部
30 圧送ホース
31 戻しパイプ
P 部品
DESCRIPTION OF SYMBOLS 1 Straight feeder 2 Alignment supply trough 3 Return trough 4 Cutting mechanism 5 Air pressure feed mechanism 8 Conveyance path 10 Return conveyance path 11 Alignment mechanism 12 Chute 13 Storage part 20 Slide block 21 Fixed block 22 Guide block 25a, 25b Photoelectric sensor 26 Parts Storage hole 26a Large-diameter hole 26b Small-diameter hole 26c Stepped surface 26d Outlet part 27, 28 Pressure-feed air supply part 30 Pressure-feed hose 31 Return pipe P Parts

Claims (4)

軸方向の一端部が中央部と他端部のいずれよりも小径に形成された円筒形状のゴム製部品を整列供給の対象とし、この部品を搬送する搬送路と、前記搬送路の途中で部品の一端部を搬送方向の前方に向ける整列機構と、前記搬送路の排出端から部品を一つずつ受け取り、受け取った部品の姿勢を識別して、一端部を前方に向けた部品を所定の送り位置へ移送する切出し機構と、前記送り位置へ移送された部品をエアで次工程へ送るエア圧送機構とを備えた振動式部品供給装置において、
前記切出し機構は、前記搬送路から受け取った部品を部品収納穴に収納して移送する移送部材を備えており、前記部品収納穴は、移送部材の部品受取側に開口し、部品の他端部を挿入可能な大径穴部と、この大径穴部に連続し、部品の一端部は挿入可能で他端部は挿入できない小径穴部とが形成された貫通孔であり、
前記エア圧送機構が前記送り位置で移送部材の部品受取側から部品収納穴へエアを吹き込むことにより、前記移送部材の部品収納穴に収納された部品が、その他端部を弾性変形させながら部品収納穴の小径穴部を通過して次工程へ送られるようにしたことを特徴とする振動式部品供給装置。
Cylindrical rubber parts whose one end in the axial direction is smaller in diameter than either the central part or the other end are targeted for alignment supply, and the parts are in the middle of the conveying path for conveying these parts. An alignment mechanism that directs one end of each part forward in the transport direction, and receives parts one by one from the discharge end of the transport path, identifies the posture of the received parts, and sends a part with one end facing forward In a vibratory component supply device comprising a cutting mechanism for transferring to a position and an air pressure feeding mechanism for sending the component transferred to the feeding position to the next process by air,
The cutting mechanism includes a transfer member that stores and transfers a component received from the conveyance path in a component storage hole, and the component storage hole opens on a component receiving side of the transfer member, and the other end of the component. Is a through-hole formed with a large-diameter hole portion that can be inserted, and a small-diameter hole portion that is continuous with the large-diameter hole portion, one end of the component can be inserted, and the other end cannot be inserted,
When the air pressure feeding mechanism blows air from the component receiving side of the transfer member to the component storage hole at the feed position, the component stored in the component storage hole of the transfer member is stored in the component while elastically deforming the other end. A vibration-type component supply device characterized in that it passes through the small-diameter hole portion of the hole and is sent to the next process.
前記移送部材の部品収納穴の大径穴部および小径穴部を、それぞれ丸穴としたことを特徴とする請求項1に記載の振動式部品供給装置。   The vibration type component supply device according to claim 1, wherein each of the large-diameter hole portion and the small-diameter hole portion of the component storage hole of the transfer member is a round hole. 前記移送部材の部品収納穴の小径穴部を挟んで大径穴部と反対の側に、部品の中央部および他端部よりも径方向寸法の大きい丸穴の出口部を設けたことを特徴とする請求項2に記載の振動式部品供給装置。   A round hole outlet portion having a larger radial dimension than the central portion and the other end portion of the component is provided on the opposite side of the large diameter hole portion across the small diameter hole portion of the component storage hole of the transfer member. The vibration type component supply apparatus according to claim 2. 前記移送部材の部品収納穴の大径穴部と小径穴部との間の段差面をテーパ状に形成したことを特徴とする請求項2または3に記載の振動式部品供給装置。   The vibration type component supply device according to claim 2 or 3, wherein a stepped surface between the large-diameter hole portion and the small-diameter hole portion of the component storage hole of the transfer member is formed in a tapered shape.
JP2013088081A 2013-04-19 2013-04-19 Vibration type part supply apparatus Pending JP2014210649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088081A JP2014210649A (en) 2013-04-19 2013-04-19 Vibration type part supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088081A JP2014210649A (en) 2013-04-19 2013-04-19 Vibration type part supply apparatus

Publications (1)

Publication Number Publication Date
JP2014210649A true JP2014210649A (en) 2014-11-13

Family

ID=51930719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088081A Pending JP2014210649A (en) 2013-04-19 2013-04-19 Vibration type part supply apparatus

Country Status (1)

Country Link
JP (1) JP2014210649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111731791A (en) * 2020-08-25 2020-10-02 苏州鼎纳自动化技术有限公司 Screw multichannel simultaneous feeding mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111731791A (en) * 2020-08-25 2020-10-02 苏州鼎纳自动化技术有限公司 Screw multichannel simultaneous feeding mechanism
CN111731791B (en) * 2020-08-25 2020-11-24 苏州鼎纳自动化技术有限公司 Screw multichannel simultaneous feeding mechanism

Similar Documents

Publication Publication Date Title
JP2014210649A (en) Vibration type part supply apparatus
CN106865167B (en) Parts feeder
WO2016002703A1 (en) Vibratory component transport device
CN106796740B (en) Convey payment items
JP5159389B2 (en) Synthetic resin bottle conveyor
CN111954633A (en) Part arraying and conveying device
JP2007161360A (en) Vibration-type component supply device
JP5741396B2 (en) Parts feeder and parts supply method
JP5758621B2 (en) Vibrating parts feeder
CN111747065B (en) Parts feeder and air ejection device for parts feeder
JP2009286598A (en) Vibratory part supply device
JP2008156025A (en) Part supply device
JP4999510B2 (en) Vibrating parts feeder
JP2007039200A (en) Part supply device
JP2014240318A (en) Vibratory part supply device
TWI664129B (en) Parts supply system and method
JP2008285242A (en) Vibration type part feeding device
JP2013100149A (en) Vibration feeder
JP2009249148A (en) Vibrating type component feeder
JP5206299B2 (en) Component supply device and component re-sorting method for component supply device
KR101567578B1 (en) Part feeder for elements having legs
JP2003104538A (en) Article aligning and conveying device
KR102580929B1 (en) Component feeder for different type component mounter
JP2008273711A (en) Oscillating parts feeder
JP2008260593A (en) Oscillating type part feeding device