JP2014208736A - Method for producing extruded foam body of polystyrene-based resin - Google Patents

Method for producing extruded foam body of polystyrene-based resin Download PDF

Info

Publication number
JP2014208736A
JP2014208736A JP2013108168A JP2013108168A JP2014208736A JP 2014208736 A JP2014208736 A JP 2014208736A JP 2013108168 A JP2013108168 A JP 2013108168A JP 2013108168 A JP2013108168 A JP 2013108168A JP 2014208736 A JP2014208736 A JP 2014208736A
Authority
JP
Japan
Prior art keywords
polystyrene
flame retardant
resin
brominated
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013108168A
Other languages
Japanese (ja)
Other versions
JP6141099B2 (en
JP2014208736A5 (en
Inventor
達之 石川
Tatsuyuki Ishikawa
達之 石川
良 菊澤
Makoto Kikuzawa
良 菊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2013108168A priority Critical patent/JP6141099B2/en
Publication of JP2014208736A publication Critical patent/JP2014208736A/en
Publication of JP2014208736A5 publication Critical patent/JP2014208736A5/ja
Application granted granted Critical
Publication of JP6141099B2 publication Critical patent/JP6141099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an extruded foam body of a polystyrene-based resin which can obtain a foamed body having high flame retardancy and sufficient oxygen index and suppresses the reduction in the molecular weight and yellowing due to the decomposition of a polystyrene-based resin which is a base material resin.SOLUTION: There is provided a method for producing an extruded foam body by supplying a polystyrene-based resin, a flame retardant and a foaming agent to an extruder and extruding a foamable molten resin composition obtained by kneading the polystyrene-based resin, the flame retardant and the foaming agent, where the flame retardant contains (1) a bromine-based flame retardant containing a polystyrene-bromated polybutadiene block copolymer and (2) a poly(1,4-diisopropylbenzene).

Description

本発明は、ポリスチレン系樹脂押出発泡体の製造方法に関し、詳しくは、難燃性に優れると共に高い断熱性を有し、リサイクル性に優れるポリスチレン系樹脂押出発泡体であって、建築物の壁、床、屋根等の断熱材や畳芯材等に好適に使用され主に板状に形成されるポリスチレン系樹脂押出発泡体の製造方法に関する。   The present invention relates to a method for producing a polystyrene resin extruded foam. More specifically, the present invention is a polystyrene resin extruded foam having excellent flame retardancy and high heat insulation, and excellent recyclability. The present invention relates to a method for producing a polystyrene-based resin extruded foam that is suitably used for heat insulating materials such as floors and roofs, tatami core materials, and the like and is mainly formed in a plate shape.

従来、ポリスチレン系樹脂材料に気泡調整剤を加え、押出機で加熱溶融混練し、次いで物理発泡剤を該押出機中に圧入し更に混練し、これらの溶融混合物を高圧域から低圧域(通常は大気中)に押し出し、押出機のダイ出口に連結された賦形装置により板状に賦形して、高厚みのポリスチレン系樹脂押出発泡体(以下、押出発泡体又は発泡体ともいう。)を得る方法が知られている。   Conventionally, an air conditioner is added to a polystyrene-based resin material, heated and melt-kneaded by an extruder, and then a physical foaming agent is pressed into the extruder and further kneaded. Extruded in the atmosphere) and shaped into a plate shape by a shaping device connected to the die outlet of the extruder, and a high-thickness polystyrene resin extruded foam (hereinafter also referred to as extruded foam or foam) is used. The method of obtaining is known.

前記押出発泡体を建築用の断熱材として使用するには、例えば、JIS A 9511(2006R)記載の押出ポリスチレンフォーム保温板の燃焼性規格を満足することが要求される。そのために、該押出発泡体中には難燃剤が添加されており、該難燃剤としては、ヘキサブロモシクロドデカン(以下、HBCDという。)が広く使用されてきた。HBCDは、汎用性があり、比較的少量の添加で難燃効果が得られる優れた難燃剤である。
しかし、HBCDに対しては化審法やREACHによる規制の動きがあり、規制対象物質に指定された場合を想定し、HBCD難燃剤を使用しない難燃剤代替押出発泡体製造技術の開発が求められている。
In order to use the extruded foam as a heat insulating material for construction, for example, it is required to satisfy the flammability standard of an extruded polystyrene foam heat insulating plate described in JIS A 9511 (2006R). For this purpose, a flame retardant is added to the extruded foam, and hexabromocyclododecane (hereinafter referred to as HBCD) has been widely used as the flame retardant. HBCD is an excellent flame retardant that is versatile and can provide a flame retardant effect with a relatively small amount of addition.
However, there is a movement of regulation by the Chemical Substances Control Law and REACH for HBCD, and it is required to develop a flame retardant alternative extrusion foam manufacturing technology that does not use HBCD flame retardant assuming that it is designated as a regulated substance. ing.

一方、前記押出発泡体の製造方法における発泡剤としては、従来、ジクロロジフルオロメタン等の塩化フッ化炭化水素(以下、CFCという。)が広く使用されてきたが、オゾンホール拡大の問題との関連性が疑われているCFCは使用が控えられ、オゾン破壊係数の小さい水素原子含有塩化フッ化炭化水素(以下、HCFCという。)やオゾン破壊係数が0(ゼロ)の水素原子含有フッ化炭化水素(以下、HFCという。)がCFCの代わりに用いられるようになった。また更に、地球温暖化の観点からHCFCやHFCに代わり、オゾン破壊係数が0(ゼロ)であるとともに、地球温暖化係数も小さいイソブタンやイソペンタン等の飽和炭化水素が用いられるようになった。   On the other hand, chlorofluorocarbons (hereinafter referred to as CFC), such as dichlorodifluoromethane, have been widely used as a foaming agent in the process for producing extruded foams. CFCs that are suspected of being refractory are refrained from use, and hydrogen atom-containing fluorinated fluorinated hydrocarbons (hereinafter referred to as HCFC) with a low ozone depletion potential and hydrogen atom-containing fluorinated hydrocarbons with an ozone depletion potential of 0 (Hereinafter referred to as HFC) has been used instead of CFC. Furthermore, from the viewpoint of global warming, saturated hydrocarbons such as isobutane and isopentane having an ozone depletion coefficient of 0 (zero) and a small global warming coefficient have been used instead of HCFC and HFC.

しかし、ブタンなどの飽和炭化水素は可燃性であることから、ポリスチレン系樹脂押出発泡体に十分な難燃性を付与するためには、HFC等の不燃性発泡剤を用いて製造する場合よりも多くの難燃剤を添加しなければならなくなった。多量の難燃剤が添加されると、押出発泡の安定性が著しく損なわれたり、得られた発泡体の物性が損なわれたりするという問題が新たに発生した。   However, since saturated hydrocarbons such as butane are flammable, in order to impart sufficient flame retardancy to polystyrene-based resin extruded foams, compared to the case of using non-flammable foaming agents such as HFC. Many flame retardants had to be added. When a large amount of a flame retardant is added, there is a new problem that the stability of extrusion foaming is remarkably impaired or the physical properties of the obtained foam are impaired.

上記の状況において、HBCD以外の優れた難燃剤を用いたポリスチレン系樹脂押出発泡体の検討がなされてきた。
たとえば、特許文献1には、難燃剤としてテトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)等のハロゲン化芳香族アルキルアリールエーテル類のハロゲン化物を使用することが開示されている。
しかし、テトラブロモビスフェノールA−(2,3−ジブロモ−2−メチルプロピルエーテル)は押出発泡体に高い難燃性を付与することができるものの発泡体を回収してリペレット化する工程において分解しやすく、この回収原料を製品の一部として使用する場合、発泡させる為に必要な圧力を保持することができない、或いは押出条件が安定しない等の問題が生じることがあった。
In the above situation, a polystyrene resin extruded foam using an excellent flame retardant other than HBCD has been studied.
For example, Patent Document 1 discloses the use of halides of halogenated aromatic alkyl aryl ethers such as tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) as flame retardants. ing.
However, although tetrabromobisphenol A- (2,3-dibromo-2-methylpropyl ether) can impart high flame retardancy to the extruded foam, it is easily decomposed in the process of recovering the foam and re-pelletizing. When this recovered raw material is used as a part of a product, there may be a problem that the pressure required for foaming cannot be maintained or the extrusion conditions are not stable.

特許文献2には、臭素化イソシアヌレート、臭素化ビスフェノールと、ジフェニルアルカン及び/又はジフェニルアルケンを用いることが開示されている。
しかし、臭素化イソシアヌレートは、HBCDまたはテトラブロモビスフェノールA−(2,3−ジブロモ−2−メチルプロピルエーテル)に比べ、難燃性付与効果が劣るため、添加量を増やした上で、更にジフェニルアルカン等の難燃助剤を添加することが必要となるが、このジフェニルアルカンは押出条件下での熱安定性が不十分であり、熱安定性において改善の余地を残すものである。
Patent Document 2 discloses the use of brominated isocyanurate, brominated bisphenol, diphenylalkane and / or diphenylalkene.
However, since brominated isocyanurate is inferior in flame retardancy compared with HBCD or tetrabromobisphenol A- (2,3-dibromo-2-methylpropyl ether), the addition amount is increased and further diphenyl is added. Although it is necessary to add a flame retardant aid such as alkane, this diphenylalkane is insufficient in thermal stability under extrusion conditions, and leaves room for improvement in thermal stability.

また、特許文献3、4には、ポリスチレン臭素化ブタジエンコポリマータイプの難燃剤が提案されている。この難燃剤は、難燃性付与効果が高いといった利点を有するものである。   Patent Documents 3 and 4 propose a polystyrene brominated butadiene copolymer type flame retardant. This flame retardant has an advantage of high flame retardancy imparting effect.

特開2005-139356号公報JP 2005-139356 A 特開2003-292664号公報JP 2003-292664 A 特開2009−516019号公報JP 2009-516019 A 特開2012−512942号公報JP 2012-512942 A

しかし、押出発泡体にJIS A9511(2006R)の難燃規格をクリアするような高度な難燃性を付与するためには、その添加量を基材ポリスチレン系樹脂に対して少なくとも3重量部以上とする必要がある。さらに、上記代替難燃剤を発泡を阻害しない範囲において多量に添加しても、十分な酸素指数(具体的には26以上)を有する発泡体を得ることはできなかった。   However, in order to give the extruded foam high flame retardancy that satisfies the flame retardance standard of JIS A9511 (2006R), the amount added is at least 3 parts by weight or more with respect to the base polystyrene resin. There is a need to. Furthermore, even if the above alternative flame retardant is added in a large amount within a range not inhibiting the foaming, a foam having a sufficient oxygen index (specifically 26 or more) could not be obtained.

本発明は、前記問題点に鑑み、高度な難燃性及び十分な酸素指数を有する発泡体を得ることができ、しかも基材樹脂であるポリスチレン系樹脂の分解による分子量の低下を抑制された、ポリスチレン系樹脂押出発泡体の製造方法を提供することを、その課題とするものである。   In view of the above problems, the present invention is able to obtain a foam having high flame retardancy and a sufficient oxygen index, and further suppresses a decrease in molecular weight due to decomposition of a polystyrene resin as a base resin, An object of the present invention is to provide a method for producing a polystyrene resin extruded foam.

本発明によれば、以下に示すポリスチレン系樹脂押出発泡体の製造方法が提供される。
<1>ポリスチレン系樹脂、難燃剤及び発泡剤を押出機に供給し、これらを押出機にて混練してなる発泡性溶融樹脂組成物を押出して押出発泡体を製造する方法において、難燃剤が、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含有することを特徴とする<1>に記載のポリスチレン系樹脂押出発泡体の製造方法。
<2>(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)との重量比が100:1〜100:20であることを特徴とする<1>に記載のポリスチレン系樹脂押出発泡体の製造方法。
<3>(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤の添加量が、ポリスチレン系樹脂100重量部に対して1重量部以上3重量部未満であることを特徴とする<1>又は<2>に記載のポリスチレン系樹脂押出発泡体の製造方法。
<4>難燃剤が、更に(3)エポキシ系熱安定剤、リン系熱安定剤、ヒンダードフェノール系熱安定剤及びヒンダードアミン系熱安定剤から選ばれた少なくとも一種以上の熱安定剤を含有することを特徴とする<1>〜<3>のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。
<5>(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤に(3)熱安定剤を配合して混練してなる溶融混練物を押出機に供給することを特徴とする<4>に記載のポリスチレン系樹脂押出発泡体の製造方法。
<6>発泡剤が、(A)炭素数3〜5の飽和脂肪族炭化水素10〜80モル%と、(B)塩化メチル、塩化エチル、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、メタノール、エタノール、水、及び二酸化炭素の中から選択される1種又は2種以上の発泡剤90〜20モル%〔但し、(A)発泡剤と(B)発泡剤との合計量は100モル%〕からなることを特徴とする<1>〜<5>のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。
<7>(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含有するポリスチレン系樹脂押出発泡体を加熱融解して得られる再生ポリスチレン系樹脂組成物をさらに押出機に供給することを特徴とする<1>〜<6>のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。
According to this invention, the manufacturing method of the polystyrene-type resin extrusion foam shown below is provided.
<1> In a method for producing an extruded foam by extruding a foamable molten resin composition obtained by supplying a polystyrene-based resin, a flame retardant and a foaming agent to an extruder and kneading them with the extruder. (1) A bromine-based flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene), and the polystyrene-based resin according to <1> Method for producing extruded foam.
<2> (1) The weight ratio of the brominated flame retardant containing polystyrene-brominated polybutadiene block copolymer to (2) poly (1,4-diisopropylbenzene) is 100: 1 to 100: 20. <1> The manufacturing method of the polystyrene-type resin extrusion foam as described in <1> characterized by the above-mentioned.
<3> (1) The addition amount of the brominated flame retardant containing polystyrene-brominated polybutadiene block copolymer is 1 part by weight or more and less than 3 parts by weight with respect to 100 parts by weight of the polystyrene resin. The manufacturing method of the polystyrene-type resin extrusion foam as described in <1> or <2>.
<4> The flame retardant further contains (3) at least one heat stabilizer selected from an epoxy heat stabilizer, a phosphorus heat stabilizer, a hindered phenol heat stabilizer, and a hindered amine heat stabilizer. The manufacturing method of the polystyrene-type resin extrusion foam in any one of <1>-<3> characterized by the above-mentioned.
<5> (1) A melt-kneaded product obtained by blending and kneading (3) a thermal stabilizer with a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer is supplied to an extruder. The manufacturing method of the polystyrene-type resin extrusion foam as described in <4>.
<6> The blowing agent is (A) 10 to 80 mol% of a saturated aliphatic hydrocarbon having 3 to 5 carbon atoms, and (B) methyl chloride, ethyl chloride, dimethyl ether, diethyl ether, ethyl methyl ether, methanol, ethanol, It consists of 90-20 mol% [however, the total amount of (A) blowing agent and (B) blowing agent is 100 mol%] selected from water and carbon dioxide. The manufacturing method of the polystyrene-type resin extrusion foam in any one of <1>-<5> characterized by the above-mentioned.
<7> Obtained by heating and melting a polystyrene resin extruded foam containing a brominated flame retardant containing (1) polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene). The method for producing a polystyrene resin extruded foam according to any one of <1> to <6>, wherein the recycled polystyrene resin composition is further supplied to an extruder.

本発明においては、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤に対して、難燃助剤として(2)ポリ(1,4−ジイソプロピルベンゼン)を含有させた難燃剤を用いたことから、高度な難燃性及び十分な酸素指数を有する発泡体を得ることができ、しかも該難燃剤が押出時には熱安定性に優れるため、基材樹脂であるポリスチレン系樹脂の分解による分子量の低下が抑制された、外観の不具合のないポリスチレン系樹脂押出発泡体を製造することができる。
さらに、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体は、ポリスチレン系樹脂の加工温度付近で樹脂を着色させやすく、押出後の発泡体が変色したり、再生原料を製造する際、押出温度、滞留時間などの押出条件が変わると、再生原料が褐色に変色したりすることがあるが、該難燃剤を用いることで、配合される臭素系難燃剤を減量しても、高度な難燃性及び十分な酸素指数を有する押出発泡体を得ることができるため、該押出発泡体又はその端材やスクラップを加熱溶融しリサイクル原料として再利用する際にもリサイクル原料の分子量の低下や変色が抑制できる効果を有する。
In the present invention, (1) a flame retardant containing (2) poly (1,4-diisopropylbenzene) as a flame retardant auxiliary to a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer Therefore, it is possible to obtain a foam having a high degree of flame retardancy and a sufficient oxygen index, and the flame retardant is excellent in thermal stability during extrusion. It is possible to produce a polystyrene-based resin extruded foam in which a decrease in molecular weight due to is suppressed and there is no defect in appearance.
Furthermore, (1) the polystyrene-brominated polybutadiene block copolymer is easy to color the resin near the processing temperature of the polystyrene-based resin, and when the foam after extrusion is discolored or when producing a recycled material, If the extrusion conditions such as the residence time change, the recycled raw material may turn brown, but by using this flame retardant, even if the amount of brominated flame retardant blended is reduced, it is highly flame retardant. In addition, it is possible to obtain an extruded foam having a sufficient oxygen index. Therefore, even when the extruded foam or its end materials and scrap are heated and melted and reused as a recycled material, reduction in molecular weight and discoloration of the recycled material are suppressed. It has an effect that can be done.

以下、本発明のポリスチレン系樹脂押出発泡体の製造方法について詳細に説明する。
本発明のポリスチレン系樹脂押出発泡体の製造方法は、ポリスチレン系樹脂と難燃剤と発泡剤を混練して得られる発泡性溶融樹脂組成物を押出発泡する押出発泡体の製法が採用される。具体例としては、ポリスチレン系樹脂、難燃剤、必要に応じて気泡調整剤やその他の添加剤、再生ポリスチレン系樹脂組成物などを押出機に供給して、加熱、混練し、更に発泡剤を該押出機中に圧入して供給し、混練して得られた発泡性ポリスチレン系樹脂溶融組成物を、フラットダイを通して高圧の押出機内より低圧域(通常は大気中)に押出して発泡させ、該ダイの出口に配置された成形型〔平行あるいは入口から出口に向かって緩やかに拡大するよう設置された上下2枚のポリテトラフルオロエチレン樹脂等からなる板で構成されるもの(以下、ガイダーとも言う。)〕や成形ロール等の成形具を通過させることによって板状に成形して、ポリスチレン系樹脂押出発泡体(以下、単に押出発泡体ともいう。)を製造する方法が挙げられる。本発明の製造方法においては、後述する特定の難燃剤を用いる以外の基本的な製造方法は、従来公知の押出発泡体の製造方法を利用できる。
Hereinafter, the manufacturing method of the polystyrene-type resin extrusion foam of this invention is demonstrated in detail.
The manufacturing method of the polystyrene-type resin extrusion foam of this invention employ | adopts the manufacturing method of the extrusion foam which extrude-foams the foamable molten resin composition obtained by knead | mixing a polystyrene-type resin, a flame retardant, and a foaming agent. As specific examples, a polystyrene resin, a flame retardant, if necessary, a cell conditioner and other additives, a recycled polystyrene resin composition, etc. are supplied to an extruder, heated and kneaded, and further a foaming agent is added. A foamable polystyrene resin melt composition obtained by press-fitting into an extruder and kneaded is extruded through a flat die into a low pressure region (usually in the atmosphere) from the inside of the high pressure extruder and foamed. A molding die arranged at the outlet of the plate [comprising a plate made of two or more upper and lower polytetrafluoroethylene resins installed in parallel or gently so as to expand gradually from the inlet to the outlet (hereinafter also referred to as a guider). )] And a forming roll or the like, and a method of producing a polystyrene resin extruded foam (hereinafter also simply referred to as an extruded foam) by molding it into a plate shape by passing it through a molding tool such as a molding roll. . In the production method of the present invention, a conventionally known method for producing an extruded foam can be used as a basic production method other than using a specific flame retardant described later.

本発明において押出機に供給されるポリスチレン系樹脂としては、例えばポリスチレンやスチレンを主成分とするスチレン−アクリル酸共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−メタクリル酸共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−無水マレイン酸共重合体、スチレン−ポリフェニレンエーテル共重合体、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、スチレン−メチルスチレン共重合体、スチレン−ジメチルスチレン共重合体、スチレン−エチルスチレン共重合体、スチレン−ジエチルスチレン共重合体等が挙げられる。上記スチレン系共重合体におけるスチレン単位成分含有量は50モル%以上が好ましく、特に好ましくは80モル%以上である。   Examples of the polystyrene-based resin supplied to the extruder in the present invention include styrene-acrylic acid copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer mainly containing polystyrene or styrene, Styrene-methacrylic acid copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-maleic anhydride copolymer, styrene-polyphenylene ether copolymer, styrene-butadiene copolymer, Styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-methylstyrene copolymer, styrene-dimethylstyrene copolymer, styrene-ethylstyrene copolymer, styrene-diethylstyrene copolymer, etc. It is done. The styrene unit component content in the styrenic copolymer is preferably 50 mol% or more, particularly preferably 80 mol% or more.

上記ポリスチレン系樹脂としては、本発明の目的、効果が達成される範囲内において、その他の重合体を混合したものであってもよい。その他の重合体としては、ポリエステル樹脂、ポリエチレン系樹脂(エチレン単独重合体及びエチレン単位成分含有量が50モル%以上のエチレン共重合体の群から選択される1種、或いは2種以上の混合物)、ポリプロピレン系樹脂(プロピレン単独重合体及びプロピレン単位成分含有量が50モル%以上のプロピレン共重合体の群から選択される1種、或いは2種以上の混合物)、ポリフェニレンエーテル樹脂、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体水添物、スチレン−イソプレン−スチレンブロック共重合体水添物、スチレン−エチレン共重合体等が挙げられ、これらの他の重合体は、ポリスチレン系樹脂中で50重量%未満となるように、好ましくは30重量%以下となるように、更に好ましくは10重量%以下となるように、目的に応じて混合することができる。   As said polystyrene-type resin, what mixed the other polymer may be sufficient in the range in which the objective of this invention and an effect are achieved. Other polymers include polyester resins and polyethylene resins (one or a mixture of two or more selected from the group consisting of ethylene homopolymers and ethylene copolymers having an ethylene unit component content of 50 mol% or more). , Polypropylene resins (one or a mixture of two or more selected from the group of propylene homopolymers and propylene copolymers having a propylene unit component content of 50 mol% or more), polyphenylene ether resins, styrene-butadiene- Styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer hydrogenated product, styrene-isoprene-styrene block copolymer hydrogenated product, styrene-ethylene copolymer, etc. These other polymers are listed in polystyrene resins. As it will be less than an amount%, preferably such that 30 wt% or less, more preferably such that 10 wt% or less, can be mixed according to the purpose.

後記するように、前記ポリスチレン系樹脂のほかに、その特性を阻害しない範囲で、再生ポリスチレン系樹脂組成物を配合してもよい。このような再生ポリスチレン系樹脂組成物としては、本発明方法で製造される、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含むポリスチレン系樹脂押出発泡体を加熱融解して得られる再生ポリスチレン系樹脂組成物などを挙げることができる。   As will be described later, in addition to the polystyrene resin, a recycled polystyrene resin composition may be blended within a range that does not impair the characteristics. As such a regenerated polystyrene resin composition, (1) a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene) produced by the method of the present invention. And a recycled polystyrene-based resin composition obtained by heating and melting a polystyrene-based extruded resin foam.

本発明においては、(A)炭素数3〜5の飽和脂肪族炭化水素と以下に示す(B)他の発泡剤とを含有する混合発泡剤を用いることが、背景技術に記載した観点から好ましい。   In the present invention, it is preferable from the viewpoint described in the background art to use a mixed foaming agent containing (A) a saturated aliphatic hydrocarbon having 3 to 5 carbon atoms and (B) another foaming agent shown below. .

前記(A)炭素数3〜5の飽和脂肪族炭化水素としては、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン、シクロペンタンなどが挙げられる。
上記の(A)飽和脂肪族炭化水素は、単独または2種以上混合して使用することができる。
前記(A)飽和脂肪族炭化水素の中では、発泡性の点からプロパン、n−ブタン、i−ブタンあるいはこれらの混合物が好ましい。また、発泡体の断熱性能の点からn−ブタン、i−ブタンあるいはこれらの混合物が好ましく、特に好ましくはi−ブタンである。
Examples of the saturated aliphatic hydrocarbon having 3 to 5 carbon atoms (A) include propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane.
Said (A) saturated aliphatic hydrocarbon can be used individually or in mixture of 2 or more types.
Among the (A) saturated aliphatic hydrocarbons, propane, n-butane, i-butane or a mixture thereof is preferable from the viewpoint of foamability. Moreover, n-butane, i-butane or a mixture thereof is preferable from the viewpoint of the heat insulating performance of the foam, and i-butane is particularly preferable.

(B)他の発泡剤としては、有機系物理発泡剤、及び無機系物理発泡剤を用いることができる。
前記有機系物理発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、ジ−n−ブチルエーテル、ジイソプロピルエーテルなどのエーテル類、メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコールなどのアルコール類、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチルなどの蟻酸エステル類、塩化メチル、塩化エチルなどの塩化アルキル類などが挙げられる。また、オゾン破壊係数が0、かつ地球温暖化係数の小さいトランス−1,3,3,3−テトラフルオロプロペン、シス−1,3,3,3−テトラフルオロプロペン、1,1,1,2−テトラフルオロプロペンなどのフッ化不飽和炭化水素を用いることもできる。
前記無機系物理発泡剤としては、例えば水、二酸化炭素、窒素などが挙げられる。
上記の(B)他の発泡剤は、単独または2種以上混合して使用することができる。
(B) As other foaming agents, organic physical foaming agents and inorganic physical foaming agents can be used.
Examples of the organic physical foaming agent include ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, di-n-butyl ether, diisopropyl ether, methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i- Examples include alcohols such as butyl alcohol and t-butyl alcohol, formic acid esters such as methyl formate, ethyl formate, propyl formate, and butyl formate, and alkyl chlorides such as methyl chloride and ethyl chloride. In addition, trans-1,3,3,3-tetrafluoropropene, cis-1,3,3,3-tetrafluoropropene, 1,1,1,2 having a low ozone depletion coefficient and a low global warming potential Fluorinated unsaturated hydrocarbons such as tetrafluoropropene can also be used.
Examples of the inorganic physical foaming agent include water, carbon dioxide, nitrogen and the like.
Said (B) other foaming agent can be used individually or in mixture of 2 or more types.

前記(B)他の発泡剤の中では、発泡性、発泡体成形性などの点からは、塩化メチル、塩化エチル、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、メタノール、エタノール、水、二酸化炭素が好ましい。   Among the other foaming agents (B), methyl chloride, ethyl chloride, dimethyl ether, diethyl ether, ethyl methyl ether, methanol, ethanol, water, and carbon dioxide are preferable from the viewpoint of foamability and foam moldability. .

前記混合発泡剤においては、(A)飽和脂肪族炭化水素の配合割合が10〜80モル%であり、(B)他の発泡剤の配合割合が90〜20モル%〔但し、(A)発泡剤と(B)発泡剤との合計量は100モル%〕であることが好ましい。配合割合がこの範囲内の混合発泡剤を使用することにより、安全かつ安定的に高発泡倍率の押出発泡体の製造することができるようになると共に断熱性、難燃性に優れた押出発泡体を製造する上で好ましい。かかる観点から、(A)飽和脂肪族炭化水素30〜70モル%と(B)他の発泡剤70〜30モル%〔但し、(A)発泡剤と(B)発泡剤との合計量は100モル%〕とを含有する混合発泡剤がより好ましい。   In the mixed foaming agent, the blending ratio of (A) saturated aliphatic hydrocarbon is 10 to 80 mol%, and (B) the blending ratio of other foaming agent is 90 to 20 mol% [however, (A) foaming The total amount of the agent and (B) blowing agent is preferably 100 mol%]. By using a mixed foaming agent having a blending ratio within this range, an extruded foam having a high expansion ratio can be produced safely and stably, and at the same time, an extruded foam excellent in heat insulation and flame retardancy. Is preferable in manufacturing. From this point of view, (A) 30 to 70 mol% of saturated aliphatic hydrocarbon and (B) 70 to 30 mol% of other blowing agent [provided that the total amount of (A) blowing agent and (B) blowing agent is 100 Mole%] is more preferable.

本発明における発泡剤の添加量は、発泡性溶融樹脂組成物1kg中に、0.5〜2.5モルとなるように添加することが好ましく、0.8〜2.0モルがより好ましい。   In the present invention, the amount of the foaming agent added is preferably 0.5 to 2.5 mol, more preferably 0.8 to 2.0 mol, in 1 kg of the foamable molten resin composition.

本発明においては、難燃剤として、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)を用いることを特徴とする。   In the present invention, (1) a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene) are used as the flame retardant.

本発明において臭素系難燃剤として用いる前記(1)のポリスチレン-臭素化ポリブタジエンブロック共重合体それ自体は従来公知のものであり、たとえば特許文献3や4で開示されるものがそのまま使用できる。
本発明で用いるポリスチレン−臭素化ポリブタジエンブロック共重合体は下記一般式で表することができる。

Figure 2014208736

(式中、X,Y及びZは、正の整数である。)
このようなポリスチレン−臭素化ポリブタジエン共重合体は、たとえばポリスチレン−ポリブタジエンブロック共重合体を臭素化することにより製造される。 The polystyrene-brominated polybutadiene block copolymer (1) used as a brominated flame retardant in the present invention is a conventionally known one. For example, those disclosed in Patent Documents 3 and 4 can be used as they are.
The polystyrene-brominated polybutadiene block copolymer used in the present invention can be represented by the following general formula.
Figure 2014208736

(In the formula, X, Y and Z are positive integers.)
Such a polystyrene-brominated polybutadiene copolymer is produced, for example, by brominating a polystyrene-polybutadiene block copolymer.

本発明で好ましく用いられるポリスチレン−臭素化ポリブタジエン共重合体としては、Chemtura社のEmerald3000、ICL−IP社のFR122Pなどの市販品を挙げられる。   Examples of the polystyrene-brominated polybutadiene copolymer preferably used in the present invention include commercially available products such as Emerald 3000 from Chemtura and FR122P from ICL-IP.

本発明では、(1)の臭素系難燃剤の難燃助剤として、(2)ポリ(1,4−ジイソプロピルベンゼン)を用いる。   In the present invention, (2) poly (1,4-diisopropylbenzene) is used as a flame retardant aid for the brominated flame retardant (1).

このポリ(1,4−ジイソプロピルベンゼン)が下記の構造式で表され、それ自体公知の化合物である。

Figure 2014208736
This poly (1,4-diisopropylbenzene) is represented by the following structural formula and is a known compound per se.
Figure 2014208736

HBCDの代替難燃剤として最近注目されている(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体系難燃剤は、前記したように、つぎのような問題点を有するものであった。
(a)多量に添加することにより、JIS A9511の難燃規格をクリアするポリスチレン系樹脂押出発泡体を得ることは可能ではあるが、高い酸素指数LOI(具体的には26以上)を有する発泡体を得ることが困難である。
(b)多量添加により、押出時(押出発泡時、リペレット時)にポリスチレン系樹脂が黄色や褐色などに着色してやすく、再生原料として使用することが難しい。
(c)少量の添加により、着色現象は抑制できるものの難燃性に優れた発泡体を得ることができない。
The polystyrene-brominated polybutadiene block copolymer-based flame retardant (1), which has recently attracted attention as an alternative flame retardant for HBCD, has the following problems as described above.
(A) By adding a large amount, it is possible to obtain a polystyrene resin extruded foam that satisfies the flame retardant standard of JIS A9511, but a foam having a high oxygen index LOI (specifically, 26 or more). Is difficult to get.
(B) Due to the large amount of addition, the polystyrene-based resin is easily colored yellow or brown at the time of extrusion (at the time of extrusion foaming or at the time of re-pellet), and is difficult to use as a regenerated raw material.
(C) Although a coloring phenomenon can be suppressed by addition of a small amount, a foam excellent in flame retardancy cannot be obtained.

本発明者等は、上記問題点を解決するために鋭意検討した結果、(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体系難燃剤の難燃助剤として、(2)ポリ(1,4−ジイソプロピルベンゼン)を選定使用すると、意外なことに、高度な難燃性及び十分な酸素指数を有する発泡体を得ることができることを知見した。さらに、配合される(1)の難燃剤がたとえ少量であっても、高度な難燃性及び十分な酸素指数を有する発泡体を得ることができるため、この場合には、基材樹脂であるポリスチレン系樹脂の着色が抑制され、再生原料としても使用可能な、ポリスチレン系樹脂押出発泡体が得られ、(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体系難燃剤の有する上記問題点が一挙に解消されることを知見した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors, as a flame retardant aid for the flame retardant of (1) polystyrene-brominated polybutadiene block copolymer, (2) poly (1,4- Surprisingly, it has been found that when diisopropylbenzene) is selected and used, a foam having high flame retardancy and a sufficient oxygen index can be obtained. Furthermore, since a foam having high flame retardancy and a sufficient oxygen index can be obtained even if the amount of the flame retardant of (1) blended is small, in this case, it is a base resin. Polystyrene resin extruded foam that can be used as a raw material is obtained by suppressing the coloring of the polystyrene resin, and the above-mentioned problems of the flame retardant of polystyrene-brominated polybutadiene block copolymer (1) are all at once. I found out that it was resolved.

この理由は現時点では定かではないが、つぎのように考えている。
一般に、臭素系難燃剤に用いられる難燃助剤は、熱によって分解しラジカルを発生させ、臭素系難燃剤の臭素を早いタイミングで引き抜きその難燃性を向上させる機能を有する。
The reason for this is not clear at this time, but I think as follows.
In general, a flame retardant aid used for brominated flame retardants has a function of decomposing by heat to generate radicals and drawing out bromine brominated flame retardants at an early timing to improve the flame retardancy.

この種の難燃助剤としては、従来、2,3−ジメチル−2,3−ジフェニルブタン(ジクミルともいう)が常用されており、その50%加熱重量減少温度は200℃程度である。   Conventionally, 2,3-dimethyl-2,3-diphenylbutane (also referred to as dicumyl) is commonly used as this type of flame retardant aid, and its 50% heating weight loss temperature is about 200 ° C.

これに対して、本発明で用いるポリ(1,4−ジイソプロピルベンゼン)は50%加熱重量減少温度が211℃であり、上記ジクミルよりもその熱分解温度が高く、押出時には熱安定性に優れており、しかも熱分解した際には多量のラジカルが発生する特性を有しており、かかる特性が難燃剤である、(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体に特異的に作用し、かかる難燃剤の難燃性と押出時の熱安定性の向上が図られるものと推定している。   On the other hand, poly (1,4-diisopropylbenzene) used in the present invention has a 50% heating weight loss temperature of 211 ° C., and its thermal decomposition temperature is higher than that of dicumyl, and has excellent thermal stability during extrusion. In addition, it has a characteristic that a large amount of radicals are generated when pyrolyzed, and this characteristic specifically acts on the polystyrene-brominated polybutadiene block copolymer of (1), which is a flame retardant, It is estimated that the flame retardancy of such a flame retardant and the thermal stability during extrusion are improved.

(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)の配合割合に特に制約はないが、押出時の熱安定性と得られる発泡体の難燃性とのバランスをより向上させるという観点からみて、(1):(2)の重量比を100:1〜100:20とすることが好ましく、より好ましくは100:2〜100:15、更に好ましくは100:3〜100:12である。   (1) The blending ratio of the brominated flame retardant containing the polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene) is not particularly limited, but is obtained with thermal stability during extrusion. From the viewpoint of further improving the balance with the flame retardancy of the foam, the weight ratio of (1) :( 2) is preferably 100: 1 to 100: 20, more preferably 100: 2 to 100. : 15, more preferably 100: 3 to 100: 12.

本発明では、(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤に対して難燃助剤として(2)のポリ(1,4−ジイソプロピルベンゼン)を含有させたことから、ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤の使用量を従来に比べ、大幅に減量することができる。   In the present invention, (2) poly (1,4-diisopropylbenzene) is added as a flame retardant aid to the brominated flame retardant containing the polystyrene-brominated polybutadiene block copolymer of (1). The amount of brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer can be greatly reduced as compared with the conventional one.

(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤の添加量は、所望の難燃性により適宜決定されるものであるが、通常は、ポリスチレン系樹脂100重量部に対して、1〜10重量部程度添加される。本発明では、上記した理由により、ポリスチレン系樹脂100重量部に対して、(1)のポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤の添加量を3重量部未満とした場合であっても、更に2.5重量部以下とした場合であっても、難燃性を維持しつつ熱安定性に優れたポリスチレン系樹脂押出発泡体を得ることが可能である。   The addition amount of the brominated flame retardant containing the polystyrene-brominated polybutadiene block copolymer of (1) is appropriately determined depending on the desired flame retardancy, but is usually based on 100 parts by weight of the polystyrene resin. About 1 to 10 parts by weight. In the present invention, for the reason described above, the addition amount of the brominated flame retardant containing the polystyrene-brominated polybutadiene block copolymer (1) is less than 3 parts by weight with respect to 100 parts by weight of the polystyrene resin. Even if it is a case where it is further 2.5 weight part or less, it is possible to obtain the polystyrene-type resin extrusion foam excellent in thermal stability, maintaining a flame retardance.

本発明においては、前記(1)の難燃剤に他の難燃剤を混合して使用することができる。他の難燃剤として、例えば、テトラブロモビスフェノール−A−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノール−S−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノール−F−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))に代表される2,3−ジブロモ−2−メチルプロピル基を有する有機化合物、テトラブロモビスフェノール−A−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノール−S−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノール−F−ビス(2,3−ジブロモプロピルエーテル)、トリス(2,3−ジブロモプロピル)イソシアヌレートおよびトリス(2,3−ジブロモプロピル)シアヌレートに代表される2,3−ジブロモプロピル基を有する有機化合物、モノ(2,3,4−トリブロモブチル)イソシアヌレート、ジ(2,3,4−トリブロモブチル)イソシアヌレート、トリス(2,3,4−トリブロモブチル)イソシアヌレートに代表されるその他の臭素化イソシアヌレート、クレジルジ2,6−キシレニルホスフェート、三酸化アンチモン、五酸化二アンチモン、硫酸アンモニウム、スズ酸亜鉛、シアヌル酸、ペンタブロモトルエン、イソシアヌル酸、トリアリルイソシアヌレート、メラミンシアヌレート、メラミン、メラム、メレム等の窒素含有環状化合物、シリコーン系化合物、酸化ホウ素、ホウ酸亜鉛、硫化亜鉛などの無機化合物、赤リン系、ポリリン酸アンモニウム、フォスファゼン、次亜リン酸塩等のリン系化合物等が挙げられる。これらの化合物は単独又は2種以上を混合して使用できる。この配合量としては、0.1〜5重量部、好ましくは0.2〜3重量部である。   In the present invention, the flame retardant (1) may be used by mixing other flame retardants. Other flame retardants include, for example, tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol-S-bis (2,3-dibromo-2-methylpropyl ether), An organic compound having a 2,3-dibromo-2-methylpropyl group represented by tetrabromobisphenol-F-bis (2,3-dibromo-2-methylpropyl ether)), tetrabromobisphenol-A-bis (2 , 3-dibromopropyl ether), tetrabromobisphenol-S-bis (2,3-dibromopropyl ether), tetrabromobisphenol-F-bis (2,3-dibromopropyl ether), tris (2,3-dibromopropyl) ) Isocyanurate and tris (2,3-dibromopropyl) silane Organic compounds having a 2,3-dibromopropyl group typified by annulate, mono (2,3,4-tribromobutyl) isocyanurate, di (2,3,4-tribromobutyl) isocyanurate, tris (2 , 3,4-tribromobutyl) isocyanurate represented by other brominated isocyanurates, cresyl di-2,6-xylenyl phosphate, antimony trioxide, diantimony pentoxide, ammonium sulfate, zinc stannate, cyanuric acid, Nitrogen-containing cyclic compounds such as pentabromotoluene, isocyanuric acid, triallyl isocyanurate, melamine cyanurate, melamine, melam, melem, silicone compounds, inorganic compounds such as boron oxide, zinc borate, zinc sulfide, red phosphorus, Such as ammonium polyphosphate, phosphazene, hypophosphite, etc. Emissions-based compounds, and the like. These compounds can be used alone or in admixture of two or more. As this compounding quantity, it is 0.1-5 weight part, Preferably it is 0.2-3 weight part.

本発明に係る難燃剤は、上記したように、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含有するものであるが、更に(3)熱安定剤を含有することが好ましい。
(3)熱安定剤としては、エポキシ系安定剤、リン系安定剤、ヒンダードフェノール系安定剤及びヒンダードアミン系安定剤から選ばれる一種以上のものが挙げられる。これらの熱安定剤の総配合量は、ポリスチレン−臭素化ポリブタジエンブロック共重合体100重量部に対して、5〜30重量部とすることが好ましく、より好ましくは10〜25重量部である。
また、予め、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤に、上記(3)熱安定剤を配合し溶融混練して難燃剤溶融混練物とし、この難燃剤溶融混練物を押出機に供給することが好ましい。
難燃剤溶融混練物として押出機に供給することにより、押出時の押出発泡体の変色や黒点の発生、又は該押出発泡体を溶融再生した際の再生原料の変色や黒点の発生をより効果的に抑制することができる。臭素系難燃剤と熱安定剤との溶融混練時の樹脂温度は、概ね200℃以下、好ましくは190℃以下とする。溶融混練時の樹脂温度の下限は特に制限されることはないが、安定して臭素系難燃剤と熱安定剤とを溶融混練するためには概ね140℃以上とすることが好ましく、150℃以上とすることが好ましい。
As described above, the flame retardant according to the present invention contains (1) a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene). However, it is preferable to further contain (3) a heat stabilizer.
(3) Examples of the thermal stabilizer include one or more selected from an epoxy stabilizer, a phosphorus stabilizer, a hindered phenol stabilizer, and a hindered amine stabilizer. The total amount of these heat stabilizers is preferably 5 to 30 parts by weight, more preferably 10 to 25 parts by weight, based on 100 parts by weight of the polystyrene-brominated polybutadiene block copolymer.
In addition, (1) the flame stabilizer containing the polystyrene-brominated polybutadiene block copolymer is blended with the above (3) heat stabilizer and melt kneaded to obtain a flame retardant melt kneaded product. It is preferred to feed the product to an extruder.
By supplying to the extruder as a flame retardant melt-kneaded product, discoloration and black spots of the extruded foam during extrusion, or discoloration and black spots of the recycled raw material when the extruded foam is melted and regenerated are more effective. Can be suppressed. The resin temperature at the time of melt-kneading the brominated flame retardant and the heat stabilizer is approximately 200 ° C. or less, preferably 190 ° C. or less. The lower limit of the resin temperature at the time of melt kneading is not particularly limited, but in order to stably knead the brominated flame retardant and the heat stabilizer, it is preferably about 140 ° C. or higher, preferably 150 ° C. or higher. It is preferable that

前記エポキシ系安定剤としては、ノボラック型またはビスフェノール型が好ましい。ビスフェノール型エポキシ系化合物としては、特に臭素化ビスフェノールA型エポキシ化合物、所謂臭素化エポキシ化合物が好ましい。   The epoxy stabilizer is preferably a novolak type or a bisphenol type. As the bisphenol type epoxy compound, a brominated bisphenol A type epoxy compound, that is, a so-called brominated epoxy compound is particularly preferable.

前記リン系安定剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)−4,4’−ブチリデン−ビス(2−t−ブチル−5−メチルフェニル)ジホスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4,−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスフォナイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビスステアリルペンタエリスリトールジホスファイト、2,2’−メチレンビス(4,6−ジ−t−ブチル−1−フェニルオキシ)(2−エチルヘキシルオキシ)ホスホラス、モノ(ジノニルフェニル)モノ−p−ノニルフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、テトラアルキル(C=12〜16)−4,4’−イソプロピリデン−(ビスフェニル)ジホスファイト、ヘキサトリデシル−1,1,3−トリス(3−t−ブチル−6−メチル−4オキシフェニル)−3−メチルプロパントリホスファイト、ジフェニルイソデシルホスファイト、トリデシルホスファイトなどがあげられる。これらは、単独または2種以上を組み合わせて用いてもよい。これらのうちでも、押出安定性の点から、トリス(2,4−ジ−t−ブチルフェニル)ホスファイトまたはビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジホスファイトが好ましい。   Examples of the phosphorus stabilizer include tris (2,4-di-t-butylphenyl) phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-diphosphite, bis ( 2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tetra (tridecyl) -4,4′-butylidene-bis (2-tert-butyl-5-methylphenyl) diphosphite, bis [2,4- Bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, tetrakis (2,4, -di-t-butylphenyl) [1,1-biphenyl] -4,4′-diylbis Phosphonite, bis (nonylphenyl) pentaerythritol diphosphite, bisstearyl pentaerythritol diphosphite, 2,2'- Tylene bis (4,6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, mono (dinonylphenyl) mono-p-nonylphenyl phosphite, tris (monononylphenyl) phosphite, tetra Alkyl (C = 12-16) -4,4′-isopropylidene- (bisphenyl) diphosphite, hexatridecyl-1,1,3-tris (3-tert-butyl-6-methyl-4oxyphenyl)- Examples include 3-methylpropane triphosphite, diphenylisodecyl phosphite, and tridecyl phosphite. You may use these individually or in combination of 2 or more types. Among these, from the viewpoint of extrusion stability, tris (2,4-di-t-butylphenyl) phosphite or bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-diphosphite is used. preferable.

前記ヒンダードフェノール系安定剤としては、例えば、2,6−ジ−t−ブチル−p−クレゾール、トリエチレングリコールビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、テトラキス−[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,2−メチレンビス(4−メチル−6−t−ブチルフェノール)、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]等が挙げられる。
これらは、単独または2種以上を組み合わせて用いてもよい。これらの中でも、押出安定性、難燃性の点から、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]が好ましい。
Examples of the hindered phenol stabilizer include 2,6-di-t-butyl-p-cresol, triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate. ], Tetrakis- [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,2-methylenebis (4-methyl-6-tert-butylphenol), 1,6- Hexanediol-bis [3- (3,5-di-tert-butyl-4-droxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ] Etc. are mentioned.
You may use these individually or in combination of 2 or more types. Among these, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] is preferable from the viewpoint of extrusion stability and flame retardancy.

前記ヒンダードアミン系化合物としては、例えば、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、4−ヒドロキシ−1,2,2,6,6−ペンタメチルピペリジン、または4−ヒドロキシ−1−オクチルオキシ−2,2,6,6−テトラメチルピペリジンの脂肪族または芳香族カルボン酸エステル、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジニル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、テトラキス(2,2,6,6−テトラメチル−4−ピペリジニル)−1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)−1,2,3,4−ブタンテトラカルボキシレートなどがあげられる。これらは、単独または2種以上を組み合わせて用いてもよい。これらのうちでも、難燃性に関して消炎を早める効果、および押出発泡体の耐熱性を低下させない点から、テトラキス(2,2,6,6−テトラメチル−4−ピペリジニル)−1,2,3,4−ブタンテトラカルボキシラート、又はビス(2,2,6,6−テトラメチル−4−ピペリジニル)セバケートが好ましい。   Examples of the hindered amine compound include 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-hydroxy-1,2,2,6,6-pentamethylpiperidine, or 4-hydroxy-1- Octyloxy-2,2,6,6-tetramethylpiperidine aliphatic or aromatic carboxylic acid ester, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) -2- (3,5- Di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidinyl) sebacate, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, tetrakis (2,2,6,6-tetramethyl-4 Piperidinyl) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidinyl) -1,2,3,4-butanetetracarboxylate It is done. You may use these individually or in combination of 2 or more types. Among these, tetrakis (2,2,6,6-tetramethyl-4-piperidinyl) -1,2,3 is effective because it accelerates the extinction of flame retardancy and does not decrease the heat resistance of the extruded foam. , 4-butanetetracarboxylate or bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate is preferred.

本発明の製造方法において、発泡性溶融樹脂組成物には、難燃剤以外に、押出発泡体の平均気泡径を調整するために気泡調整剤を添加することができる。気泡調整剤としては、タルク、カオリン、マイカ、シリカ、炭酸カルシウム、硫酸バリウム、酸化チタン、クレー、酸化アルミニウム、ベントナイト、ケイソウ土等の無機物が例示される。また、本発明において該気泡調整剤は2種以上組合せて用いることもできる。前記各種の気泡調整剤の中で、得られる発泡体の気泡径の調整が容易で気泡径を小さくし易い等の理由でタルクが好適に用いられ、特に、粒子径の細かい平均粒径(光透過遠心沈降法による50%粒径)が0.5〜75μmのタルクが好ましい。   In the production method of the present invention, in addition to the flame retardant, a foam adjusting agent can be added to the foamable molten resin composition in order to adjust the average cell diameter of the extruded foam. Examples of the air conditioner include inorganic substances such as talc, kaolin, mica, silica, calcium carbonate, barium sulfate, titanium oxide, clay, aluminum oxide, bentonite, and diatomaceous earth. Further, in the present invention, two or more kinds of the air bubble adjusting agents can be used in combination. Among the various bubble regulators, talc is preferably used because it is easy to adjust the bubble diameter of the foam obtained and to easily reduce the bubble diameter. In particular, the average particle diameter (light Talc having a 50% particle size (permeation centrifugal sedimentation method) of 0.5 to 75 μm is preferred.

該気泡調整剤の添加量は、ポリスチレン系樹脂100重量部に対して0.01〜7.5重量部、更に0.1〜5重量部の割合で添加されることが好ましい。   The amount of the air bubble regulator added is preferably 0.01 to 7.5 parts by weight and more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polystyrene resin.

本発明の製造方法においては、前記気泡調整剤、難燃剤以外にも、本発明の目的、効果を妨げない範囲において、グラファイト、ハイドロタルサイト、カーボンブラックやアルミニウム等の断熱性向上剤、着色剤、酸化防止剤、充填剤、滑剤等の各種添加剤を適宜添加することができる。尚、上記難燃剤、気泡調整剤や、着色剤等の各種添加剤は、ポリスチレン等の熱可塑性樹脂を基材とするマスターバッチとして添加してもよい。   In the production method of the present invention, in addition to the above-mentioned bubble regulator and flame retardant, a heat insulation improver such as graphite, hydrotalcite, carbon black and aluminum, and a colorant, as long as the object and effect of the present invention are not hindered. Various additives such as antioxidants, fillers and lubricants can be appropriately added. In addition, you may add various additives, such as the said flame retardant, a bubble regulator, and a coloring agent, as a masterbatch which uses thermoplastic resins, such as a polystyrene, as a base material.

本発明により得られる押出発泡体の密度は、優れた断熱性と機械的強度の観点から、20〜60kg/m、更に22〜50kg/mであることが好ましく、厚みは、5〜150mm、更に15〜100mmであることが好ましい。 The density of the extruded foam obtained by the present invention is preferably 20 to 60 kg / m 3 , more preferably 22 to 50 kg / m 3 from the viewpoint of excellent heat insulation and mechanical strength, and the thickness is 5 to 150 mm. Furthermore, it is preferable that it is 15-100 mm.

本発明の方法によって製造されるポリスチレン系樹脂押出発泡体において、厚み方向の平均気泡径は、より高い断熱性を有する発泡体とする上で0.8mm以下、更に0.5mm以下であることが好ましい。尚、該気泡径が小さすぎる場合は、厚みが厚く、低見掛け密度の板状の押出発泡体を得ること自体が難しい。かかる観点から、厚み方向の平均気泡径は0.05mm以上、更に0.06mm以上、特に0.07mm以上であることが好ましい。   In the polystyrene resin extruded foam produced by the method of the present invention, the average cell diameter in the thickness direction is 0.8 mm or less, and more preferably 0.5 mm or less in order to obtain a foam having higher heat insulating properties. preferable. When the bubble diameter is too small, it is difficult to obtain a plate-like extruded foam having a large thickness and a low apparent density. From this viewpoint, the average cell diameter in the thickness direction is preferably 0.05 mm or more, more preferably 0.06 mm or more, particularly preferably 0.07 mm or more.

上記厚み方向の平均気泡径の測定方法は次のとおりである。まず、押出発泡体を幅方向に3等分し、分割した各測定用サンプルの幅方向中央部付近の幅方向垂直断面(押出発泡体の押出方向と直交する垂直断面)の顕微鏡拡大写真を得る。次いで、該拡大写真上において発泡体の厚み方向に沿って押出発泡体の全厚みに亘る直線を引き、その直線と交差する気泡の数を計数し、直線の長さ(当然のことながら、この長さは拡大写真上の直線の長さではなく、写真の拡大率を考慮した直線の長さを指す。)を計数された気泡の数で割ることによって、各直線上に存在する気泡の平均径Tn(直線の長さ/該直線と交差する気泡の数)を求め、求められた3箇所の平均径Tnの算術平均値を厚み方向の平均気泡径T(mm)とする。なお、押出発泡体の全厚みが1枚の顕微鏡拡大写真に納まらない場合には、数枚に分けて撮影すればよい。   The method for measuring the average cell diameter in the thickness direction is as follows. First, the extruded foam is divided into three equal parts in the width direction, and a microscopic enlarged photograph of the widthwise vertical cross section (vertical cross section perpendicular to the extrusion direction of the extruded foam) of each divided measurement sample is obtained. . Next, on the enlarged photograph, a straight line is drawn over the entire thickness of the extruded foam along the thickness direction of the foam, and the number of bubbles crossing the straight line is counted. The length is not the length of the straight line on the enlarged photo, but the length of the straight line taking into account the magnification of the photo.) Dividing by the number of bubbles counted, the average of the bubbles present on each straight line The diameter Tn (the length of the straight line / the number of bubbles intersecting with the straight line) is determined, and the arithmetic average value of the three average diameters Tn thus determined is defined as the average bubble diameter T (mm) in the thickness direction. In addition, what is necessary is just to divide | segment and image | photograph several sheets, when the whole thickness of an extrusion foam does not fit in one microscope enlarged photograph.

本発明においては、前記押出発泡体を加熱融解して得られる再生ポリスチレン系樹脂組成物を、バージン原料のポリスチレン系樹脂、難燃剤と共に押出機中にて加熱、混練し、更に発泡剤を該押出機中に圧入し、混練して得られる発泡性溶融樹脂組成物を押出発泡することにより、押出発泡体を製造することができる。本発明の押出発泡体は、前記難燃剤(1)及び(2)を用いて製造されたものであり、押出時の熱安定性に優れているものであることから、その再生原料(再生ポリスチレン系樹脂組成物)は回収時における分子量低下、黄変の程度が少ないものである。従って、該回収原料を用いることにより、前記押出発泡体を低コストで製造することができる。前記再生ポリスチレン系樹脂組成物は、前記押出発泡体を破砕・粉砕したものや前記押出発泡体を製造する際に発生する切削屑などを押出機にて溶融混練することによって得ることができ、取扱い性の観点からペレット化したものであることが好ましい。なお、溶融混練時の樹脂温度は、発泡体を構成するポリスチレン系樹脂を押出可能な温度以上でかつ、樹脂分子の劣化が生じないような温度、例えば200〜230℃とするのが好ましい。   In the present invention, the recycled polystyrene resin composition obtained by heating and melting the extruded foam is heated and kneaded in an extruder together with the virgin raw material polystyrene resin and a flame retardant, and the foaming agent is further extruded. An extruded foam can be produced by extruding and foaming a foamable molten resin composition obtained by press-fitting into a machine and kneading. The extruded foam of the present invention is produced using the flame retardants (1) and (2), and has excellent thermal stability during extrusion. The resin composition) has a low molecular weight reduction and yellowing at the time of recovery. Therefore, the extruded foam can be produced at low cost by using the recovered raw material. The regenerated polystyrene-based resin composition can be obtained by crushing and pulverizing the extruded foam or by cutting and kneading cutting chips generated when producing the extruded foam by an extruder. From the viewpoint of properties, it is preferably pelletized. In addition, it is preferable that the resin temperature at the time of melt kneading is equal to or higher than a temperature at which the polystyrene resin constituting the foam can be extruded and does not cause deterioration of the resin molecules, for example, 200 to 230 ° C.

次に、実施例により本発明を更に詳細に説明する。但し、本発明は実施例により限定されるものではない。   Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

実施例及び比較例の押出発泡板を得るために、以下に示す装置及び材料を用いた。
[押出装置]
内径65mmの第1押出機と内径90mmの第2押出機が直列に連結されており、発泡剤注入口が第1押出機の終端付近に設けられており、横断面が長方形の樹脂排出口(ダイリップ)を備えたフラットダイが第2押出機の出口に連結され、第2押出機の樹脂出口にはこれと平行するように設置された上下一対のポリテトラフルオロエチレン樹脂からなる板により構成された賦形装置(ガイダー)が付設された装置を用いた。
In order to obtain the extruded foam plates of Examples and Comparative Examples, the following apparatuses and materials were used.
[Extruding equipment]
A first extruder having an inner diameter of 65 mm and a second extruder having an inner diameter of 90 mm are connected in series, a foaming agent inlet is provided near the end of the first extruder, and a resin outlet having a rectangular cross section ( A flat die having a die lip) is connected to the outlet of the second extruder, and the resin outlet of the second extruder is constituted by a plate made of a pair of upper and lower polytetrafluoroethylene resins installed so as to be parallel thereto. A device provided with an additional shaping device (guider) was used.

[ポリスチレン系樹脂]
(i)PS1:ポリスチレン(重量平分子量27万)
(ii)RPS1:再生ポリスチレン系樹脂組成物
実施例1で得られたポリスチレン系樹脂押出発泡板を破砕し、その破砕物を内径90mm、L/D=50の単軸押出機に供給して最高温度220℃で混練し、その溶融樹脂を吐出量250kg/hrでストランド状に押出し、ペレット状にカットすることにより再生PS樹脂組成物のペレット(RPS1)を得た。
[Polystyrene resin]
(I) PS1: Polystyrene (weight average molecular weight 270,000)
(Ii) RPS1: Recycled polystyrene resin composition The polystyrene resin extruded foam plate obtained in Example 1 was crushed, and the crushed material was supplied to a single screw extruder having an inner diameter of 90 mm and L / D = 50. Kneaded at a temperature of 220 ° C., the molten resin was extruded into a strand at a discharge rate of 250 kg / hr, and cut into a pellet to obtain a recycled PS resin composition pellet (RPS1).

[難燃剤]
臭素系難燃剤としては、下記表1に示すものを用いた。なお、表中の臭素含有量は、JIS K7392:2009に準じて測定された値である。

Figure 2014208736
[Flame retardants]
As the brominated flame retardant, those shown in Table 1 below were used. The bromine content in the table is a value measured according to JIS K7392: 2009.
Figure 2014208736

[熱安定剤]
(i)ノボラック型エポキシ系安定剤:DIC製、商品名「EPICLON N680」(ii)リン系安定剤:ADEKA製、商品名「PEP36」(ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジホスファイト)
(iii)ヒンダードフェノール系安定剤:BASF製、商品名「Irganox1010」(ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート])
[Heat stabilizer]
(I) Novolac type epoxy stabilizer: manufactured by DIC, trade name “EPICLON N680” (ii) phosphorus stabilizer: manufactured by ADEKA, trade name “PEP36” (bis (2,6-di-t-butyl-4- Methylphenyl) pentaerythritol-diphosphite)
(Iii) Hindered phenol stabilizer: manufactured by BASF, trade name “Irganox 1010” (pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate])

[難燃助剤]
難燃助剤としては、下記表2に示すものを用いた。

Figure 2014208736
[Flame retardant aid]
As the flame retardant aid, those shown in Table 2 below were used.
Figure 2014208736

[気泡調整剤]
タルク(松村産業製、ハイフィラー#12)
[Bubble conditioner]
Talc (Matsumura Sangyo, high filler # 12)

(実施例1)
(ポリスチレン系樹脂押出発泡体の製造)
前記第1押出機に、表3に示す配合量となるように上記した、ポリスチレン系樹脂(PS1)、臭素系難燃剤A、さらに臭素系難燃剤A100重量部に対してノボラック型エポキシ系安定剤10重量部、リン系安定剤5重量部、ヒンダードフェノール系安定剤5重量部、難燃助剤aからなる難燃剤、及び気泡調整剤(タルク)を供給し、第1押出機内で220℃まで加熱して、これらを混練し、第1押出機の先端付近に設けられた物理発泡剤注入口から、表3に示す配合組成の物理発泡剤の所要量を供給した。
なお、上記臭素系難燃剤A、ノボラック型エポキシ系安定剤、リン系安定剤、ヒンダードフェノール系熱安定剤は、これらを二軸押出機(内径20mm、L/D=48)に供給し、溶融混練部の最高温度190℃、押出時の樹脂温度175℃となるように温度を調整して、吐出10kg/hrでストランド状に押出し、ペレット状にカットすることにより作製した難燃剤溶融混練物1として、前記押出機に供給した。
Example 1
(Manufacture of polystyrene resin extruded foam)
In the first extruder, the novolac-type epoxy stabilizer was added to 100 parts by weight of the polystyrene resin (PS1), the brominated flame retardant A, and the brominated flame retardant A described above so as to have the blending amounts shown in Table 3. 10 parts by weight, 5 parts by weight of a phosphorus stabilizer, 5 parts by weight of a hindered phenol stabilizer, a flame retardant comprising a flame retardant aid a, and a bubble regulator (talc) are supplied, and 220 ° C. in the first extruder. These were kneaded, and the required amount of the physical foaming agent having the composition shown in Table 3 was supplied from the physical foaming agent inlet provided near the tip of the first extruder.
The brominated flame retardant A, novolac epoxy stabilizer, phosphorus stabilizer, hindered phenol thermal stabilizer are supplied to a twin screw extruder (inner diameter 20 mm, L / D = 48), Flame retardant melt-kneaded material prepared by adjusting the temperature so that the maximum temperature of the melt-kneading part is 190 ° C. and the resin temperature during extrusion is 175 ° C., extruding into a strand at a discharge of 10 kg / hr, and cutting into a pellet 1 was supplied to the extruder.

そして、第1押出機内でさらに混練した発泡性溶融樹脂組成物を、続く第2押出機に供給して樹脂温度を、表3に示すような発泡適性温度(表3では発泡樹脂温度と表記した。この発泡樹脂温度は押出機とダイとの接合部の位置で測定された発泡性溶融樹脂組成物の温度である)に調整した後、吐出量70kg/hrでダイリップから50mmの間隙で平行に配置されたガイダー内に押出し、発泡させながらガイダー内を通過させることにより板状に成形(賦形)し、ポリスチレン系樹脂押出発泡体を製造した。   Then, the foamable molten resin composition further kneaded in the first extruder is supplied to the subsequent second extruder, and the resin temperature is expressed as the foaming suitable temperature as shown in Table 3 (in Table 3, the foamed resin temperature is indicated). (This foamed resin temperature is the temperature of the foamable molten resin composition measured at the position of the joint between the extruder and the die), and is parallel in a gap of 50 mm from the die lip at a discharge rate of 70 kg / hr. It was extruded into a placed guider and passed through the guider while being foamed to form (shape) into a plate shape to produce a polystyrene resin extruded foam.

実施例1で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表3に示す。   Table 3 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of regenerated resin, and colorability of the polystyrene resin extruded foam obtained in Example 1. Shown in

(実施例2〜6)
臭素系難燃剤および難燃助剤を表3に記載の割合に代えた以外は実施例1と同様にして実施例2〜6のポリスチレン系樹脂押出発泡体を製造した。なお、臭素系難燃剤Aは上記難燃剤溶融混練物1として押出機に供給し、臭素系難燃剤Bはそのまま押出機に供給した。
実施例2〜6で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表3に示す。
(Examples 2 to 6)
Extruded polystyrene resin foams of Examples 2 to 6 were produced in the same manner as in Example 1 except that the brominated flame retardant and flame retardant aid were changed to the ratios shown in Table 3. The brominated flame retardant A was supplied to the extruder as the flame retardant melt kneaded material 1, and the brominated flame retardant B was supplied to the extruder as it was.
The apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of recycled resin, and colorability of the polystyrene resin extruded foams obtained in Examples 2-6 Table 3 shows.

(実施例7)
ポリスチレン系樹脂PS1のほかに、再生ポリスチレン系樹脂RPS1を用い、臭素系難燃剤および難燃助剤を表3に記載の割合に代えた以外は実施例1と同様にして実施例7のポリスチレン系樹脂押出発泡体を製造した。なお、臭素系難燃剤、難燃助剤及び気泡調整剤の添加量は、ポリスチレン系樹脂「PS1」100重量部に対する値である。
実施例7で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表3に示す。
(Example 7)
In addition to the polystyrene resin PS1, a recycled polystyrene resin RPS1 was used, and the polystyrene series of Example 7 was used in the same manner as in Example 1 except that the brominated flame retardant and flame retardant aid were changed to the ratios shown in Table 3. A resin extruded foam was produced. In addition, the addition amount of a brominated flame retardant, a flame retardant adjuvant, and a bubble regulator is a value with respect to 100 weight part of polystyrene resin "PS1".
Table 3 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of regenerated resin, and colorability of the polystyrene resin extruded foam obtained in Example 7. Shown in

(比較例1)
難燃助剤aを用いない以外は実施例1と同様にして比較例1のポリスチレン系樹脂押出発泡体を製造した。
比較例1で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表4に示す。
(Comparative Example 1)
A polystyrene resin extruded foam of Comparative Example 1 was produced in the same manner as in Example 1 except that the flame retardant aid a was not used.
Table 4 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of regenerated resin, and colorability of the polystyrene resin extruded foam obtained in Comparative Example 1. Shown in

(比較例2)
臭素系難燃剤Aの添加量を表4に記載の割合に代えた以外は比較例1と同様にして比較例2のポリスチレン系樹脂押出発泡体を製造した。
比較例2で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表4に示す。
(Comparative Example 2)
A polystyrene resin extruded foam of Comparative Example 2 was produced in the same manner as Comparative Example 1, except that the amount of brominated flame retardant A added was changed to the ratio shown in Table 4.
Table 4 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of recycled resin, and colorability of the polystyrene resin extruded foam obtained in Comparative Example 2. Shown in

(比較例3)
比較例3において、表4に示す割合の難燃助剤bを添加した以外は比較例1と同様にして比較例3のポリスチレン系樹脂押出発泡体を製造した。
比較例3で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表4に示す。
(Comparative Example 3)
In Comparative Example 3, a polystyrene resin extruded foam of Comparative Example 3 was produced in the same manner as Comparative Example 1 except that the flame retardant aid b in the ratio shown in Table 4 was added.
Table 4 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of recycled resin, and colorability of the polystyrene resin extruded foam obtained in Comparative Example 3. Shown in

(比較例4)
比較例4において、表4に示す割合の難燃助剤bを添加した以外は比較例1と同様にして比較例4のポリスチレン系樹脂押出発泡体を製造した。
比較例4で得られたポリスチレン系樹脂押出発泡体の、見掛け密度、厚み、独立気泡率、厚み方向平均気泡径、難燃性、重量平均分子量、再生樹脂の重量平均分子量、着色性を表4に示す。
(Comparative Example 4)
In Comparative Example 4, a polystyrene resin extruded foam of Comparative Example 4 was produced in the same manner as Comparative Example 1, except that the flame retardant aid b in the ratio shown in Table 4 was added.
Table 4 shows the apparent density, thickness, closed cell ratio, thickness direction average cell diameter, flame retardancy, weight average molecular weight, weight average molecular weight of recycled resin, and colorability of the polystyrene resin extruded foam obtained in Comparative Example 4. Shown in

Figure 2014208736
Figure 2014208736

Figure 2014208736
Figure 2014208736

表3〜4に示す押出発泡体の各種物性の測定方法及び評価方法は以下のとおりである。 The measurement methods and evaluation methods for various physical properties of the extruded foams shown in Tables 3 to 4 are as follows.

(見掛け密度)
押出発泡体の見掛け密度は、次のようにして求めた。得られた押出発泡体の幅方向の中央部、両端部付近から50×50×40mmの直方体の試料を各々切り出して重量を測定し、該重量を体積で割算することにより夫々の試料の見掛け密度を求め、それらの算術平均値を当該見掛け密度とした。
(Apparent density)
The apparent density of the extruded foam was determined as follows. A 50 × 50 × 40 mm rectangular parallelepiped sample was cut from the widthwise central portion and both end portions of the obtained extruded foam, and the weight was measured. By dividing the weight by the volume, the appearance of each sample was obtained. The density was determined, and the arithmetic average value thereof was taken as the apparent density.

(厚み)
押出発泡体の幅方向中央部付近において、等間隔に5点の厚みを測定し、それらの測定値の算術平均値を押出発泡体の厚み(mm)とした。
(Thickness)
In the vicinity of the central portion in the width direction of the extruded foam, thicknesses at five points were measured at equal intervals, and the arithmetic average value of these measured values was defined as the thickness (mm) of the extruded foam.

(独立気泡率)
押出発泡体の独立気泡率は、次のようにして求めた。まず、押出発泡体を幅方向に5等分し、それらの中央部付近から25mm×25mm×20mmのサイズに成形表皮を持たないカットサンプル(計5個)を切り出した。次に、ASTM−D2856−70の手順Cに従って、各カットサンプルの真の体積Vxを測定し、下記(1)式により独立気泡率S(%)を計算し、それら計算値の算術平均値を押出発泡体の独立気泡率とした。なお、測定装置として東芝ベックマン株式会社の空気比較式比重計930型を使用した。
(Closed cell rate)
The closed cell ratio of the extruded foam was determined as follows. First, the extruded foam was divided into 5 equal parts in the width direction, and cut samples (total of 5 pieces) having no molded skin with a size of 25 mm × 25 mm × 20 mm were cut out from the vicinity of the central part thereof. Next, according to the procedure C of ASTM-D2856-70, the true volume Vx of each cut sample is measured, the closed cell ratio S (%) is calculated by the following formula (1), and the arithmetic average value of these calculated values is calculated. The closed cell ratio of the extruded foam was used. In addition, Toshiba Beckman Co., Ltd. air comparison type hydrometer 930 type | mold was used as a measuring apparatus.

S(%)=(Vx−W/ρ)×100/(Va−W/ρ) (1)
ただし、Vx:上記空気比較式比重計による測定により求められるカットサンプルの真の体積(cm)(押出発泡体のカットサンプルを構成する樹脂組成物の容積と、カットサンプル内の独立気泡部分の気泡全容積との和に相当する。)
Va:測定に使用されたカットサンプルの外形寸法から算出されたカットサンプルの見掛け上の体積(cm
W:測定に使用されたカットサンプル全重量(g)
ρ:押出発泡体を構成する樹脂組成物の密度(g/cm
S (%) = (Vx−W / ρ) × 100 / (Va−W / ρ) (1)
However, Vx: the true volume (cm 3 ) of the cut sample obtained by measurement with the above air comparison hydrometer (the volume of the resin composition constituting the cut sample of the extruded foam and the closed cell portion in the cut sample (This corresponds to the sum of the total volume of bubbles.)
Va: Apparent volume of the cut sample calculated from the outer dimensions of the cut sample used for measurement (cm 3 )
W: Total weight of cut sample used for measurement (g)
ρ: density of the resin composition constituting the extruded foam (g / cm 3 )

(厚み方向の平均気泡径)
前記方法により、各部位の厚み方向の平均気泡径を測定し、それらの測定値の算術平均値を押出発泡体の平均気泡径(mm)とした。
(Average cell diameter in the thickness direction)
By the above method, the average cell diameter in the thickness direction of each part was measured, and the arithmetic average value of these measured values was defined as the average cell diameter (mm) of the extruded foam.

(難燃性評価−JIS A9511)
製造直後の押出発泡体を気温23℃、相対湿度50%の部屋に移し、その部屋で4週間放置した後、押出発泡体から試験片を無作為に5個切り出して(N=5)、JIS A9511(2006R)の5.13.1「測定方法A」に基づいて燃焼性を測定し、5個の試験片の平均燃焼時間により、押出発泡体の難燃性を評価した。
(Flame retardancy evaluation-JIS A9511)
The extruded foam immediately after production was transferred to a room with an air temperature of 23 ° C. and a relative humidity of 50%, left in that room for 4 weeks, and then five test pieces were randomly cut out from the extruded foam (N = 5). Combustibility was measured based on 5.13.1 “Measurement method A” of A9511 (2006R), and the flame retardancy of the extruded foam was evaluated based on the average burning time of five test pieces.

(難燃性評価−LOI−酸素指数)
製造直後の押出発泡体を気温23℃、相対湿度50%の部屋に移し、その部屋で4週間放置した後、押出発泡体から試験片を切り出し、JIS K7201−2:2007に準拠して測定し、難燃性を評価した。点火器の熱源の種類は、液化石油ガス(LPG)を使用し、点火手順はA法を使用し、試験片を試験機内の所定の位置に自立させて行った。試験場所の温度は23℃、湿度50%で行った。
(Flame retardant evaluation-LOI-Oxygen index)
The extruded foam immediately after production was transferred to a room with an air temperature of 23 ° C. and a relative humidity of 50%, left in that room for 4 weeks, and then a test piece was cut out from the extruded foam and measured according to JIS K7201-2: 2007. The flame retardancy was evaluated. The type of the heat source of the igniter was liquefied petroleum gas (LPG), the ignition procedure was method A, and the test piece was performed independently at a predetermined position in the tester. The test place temperature was 23 ° C. and humidity 50%.

(押出発泡体の重量平均分子量,再生樹脂の重量平均分子量)
それぞれの実施例にて得られた発泡体、及び発泡体をリサイクル用の押出機にて溶融しリペレット化したものの重量平均分子量を測定した。リペレットは、得られた発泡体を押出機に供給可能な大きさに破砕し、その破砕物を内径90mm、L/D=50の単軸押出機に供給して最高温度220℃で溶融混練し、その溶融樹脂を吐出量250kg/hrでストランド状に押出し、ペレット状にカットすることによって行なった。
重量平均分子量は、発泡体10mg又はスチレン系樹脂10mgをTHF(テトラヒドロフラン)10mLに溶解させ、GPC(ゲルパーミエーションクロマトグラフ)法により測定し、標準ポリスチレンで校正した値である。上記GPC分析は、使用機器:東ソー(株)製、SC−8020型、カラム:昭和電工(株)製、Shodex AC−80M 2本を直列に連結、カラム温度:40℃、流速:1.0ml/分、検出器:東ソー(株)製、紫外可視光検出機UV−8020型、を用いて測定した。
(Weight average molecular weight of extruded foam, weight average molecular weight of recycled resin)
The weight average molecular weights of the foams obtained in the respective examples and those obtained by melting and re-pelletizing the foams with a recycle extruder were measured. The re-pellet is crushed into a size that can be supplied to an extruder, and the crushed material is supplied to a single-screw extruder having an inner diameter of 90 mm and L / D = 50, and melt kneaded at a maximum temperature of 220 ° C. The molten resin was extruded into strands at a discharge rate of 250 kg / hr and cut into pellets.
The weight average molecular weight is a value obtained by dissolving 10 mg of foam or 10 mg of styrene resin in 10 mL of THF (tetrahydrofuran), measuring by GPC (gel permeation chromatography) method, and calibrating with standard polystyrene. The above GPC analysis was performed using equipment: Tosoh Corporation, SC-8020 type, column: Showa Denko KK, Shodex AC-80M, connected in series, column temperature: 40 ° C., flow rate: 1.0 ml. / Min. Detector: Measured using an ultraviolet-visible light detector UV-8020 manufactured by Tosoh Corporation.

(着色性)
再生樹脂の黄変度を以下の基準により評価した。まず、180℃に加熱したヒートプレス機を用いて、再生樹脂をプレス加工して、縦×横×厚み=40×40×2mmの板状の試験片を作製した。分光式色差計(日本電色工業株式会社製SE−2000)を用いてASTM D1925に基づき反射法にて該試験片のYI値(イエローインデックス)を測定することにより評価した(n=3)。
◎:YI値が10未満
○:YI値が10〜15
×:YI値が15を超える
(Colorability)
The yellowing degree of the recycled resin was evaluated according to the following criteria. First, using a heat press machine heated to 180 ° C., the recycled resin was pressed to prepare a plate-shaped test piece of length × width × thickness = 40 × 40 × 2 mm. Evaluation was performed by measuring the YI value (yellow index) of the test piece by a reflection method based on ASTM D1925 using a spectroscopic color difference meter (SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) (n = 3).
A: YI value is less than 10 B: YI value is 10-15
X: YI value exceeds 15

実施例1〜7の結果は、本発明方法によれば、たとえ配合される臭素系難燃剤が少量であっても、JIS A9511の規格による燃焼試験が極めて良好でありかつ、十分な酸素指数(具体的にはLOI値:26.5〜27.0%)を有する発泡体を得ることができ、しかもこの発泡体は押出加工時の熱安定性に優れ、基材樹脂であるポリスチレン系樹脂の分解による分子量の低下や変色を抑制された、リサイクル特性に優れたポリスチレン系樹脂押出発泡体であることを示している。   The results of Examples 1 to 7 show that according to the method of the present invention, even if a small amount of the brominated flame retardant is blended, the combustion test according to the standard of JIS A9511 is very good and a sufficient oxygen index ( Specifically, a foam having a LOI value of 26.5 to 27.0%) can be obtained, and this foam is excellent in thermal stability during extrusion processing, and is a polystyrene resin as a base resin. This indicates that this is a polystyrene resin extruded foam with excellent recycling characteristics, in which molecular weight reduction and discoloration due to decomposition are suppressed.

比較例1は実施例1〜7と対比されるものであって、難燃助剤aを使用しない例である。この比較例1では、再生樹脂の着色性は○と少ないもの、JIS規格による燃焼試験が極めて悪く(具体的には5.7)また、酸素指数も低く(具体的には24.5%)であり、高い難燃性を兼備することができない。   Comparative Example 1 is contrasted with Examples 1-7 and is an example in which flame retardant aid a is not used. In Comparative Example 1, the color of the recycled resin is as small as ◯, the combustion test according to JIS standards is extremely poor (specifically 5.7), and the oxygen index is low (specifically 24.5%). And cannot have high flame retardancy.

比較例2は、実施例1〜7と対比されるものであって、比較例1の臭素系難燃剤の使用量を多くした例である。この比較例2では、JIS規格による燃焼試験が改良されるもの(具体的には2.0秒)、酸素指数が不十分であり(具体的に25.5%)、更には再生樹脂の着色性が×と極めて悪く、高い熱安定性を兼備することができない。   The comparative example 2 is contrasted with Examples 1-7, Comprising: It is the example which increased the usage-amount of the brominated flame retardant of the comparative example 1. FIG. In Comparative Example 2, the combustion test according to the JIS standard is improved (specifically, 2.0 seconds), the oxygen index is insufficient (specifically 25.5%), and the color of the recycled resin is further increased. The property is extremely poor as x and cannot have high thermal stability.

比較例3は、実施例1〜7と対比されるものであって、実施例1〜7で用いた難燃助剤a(ポリ(1,4−ジイソプロピルベンゼン))に代えて難燃助剤b(2,3−ジメチル−2,3−ジフェニルブタン)を使用した例である。この比較例3では、再生樹脂の着色性は○と少なくなるものの、JIS規格による燃焼試験が極めて悪く(具体的には3.5秒)また、酸素指数も低く(具体的には25.0%)であり、高い難燃性を兼備することができない。   Comparative Example 3 is to be compared with Examples 1 to 7, and instead of the flame retardant aid a (poly (1,4-diisopropylbenzene)) used in Examples 1 to 7, the flame retardant aid. This is an example using b (2,3-dimethyl-2,3-diphenylbutane). In Comparative Example 3, although the colorability of the recycled resin is as small as ◯, the combustion test according to JIS standards is extremely poor (specifically 3.5 seconds) and the oxygen index is low (specifically 25.0). %) And cannot have high flame retardancy.

比較例4は、実施例1〜7と対比されるものであって、実施例1〜7で用いた難燃助剤a(ポリ(1,4−ジイソプロピルベンゼン))に代えて難燃助剤b(2,3−ジメチル−2,3−ジフェニルブタン)を使用した例である。この比較例4では、JIS A9511の規格による燃焼試験が良好であり、かつ十分な酸素指数を有しているが、再生樹脂の着色性が×ときわめて悪く、高い熱安定性を兼備することができない。
Comparative Example 4 is contrasted with Examples 1-7, and is replaced with flame retardant aid a (poly (1,4-diisopropylbenzene)) used in Examples 1-7. This is an example using b (2,3-dimethyl-2,3-diphenylbutane). In Comparative Example 4, the combustion test according to the standard of JIS A9511 is good and has a sufficient oxygen index, but the colorability of the recycled resin is very poor as x, and it has high thermal stability. Can not.

Claims (7)

ポリスチレン系樹脂、難燃剤及び発泡剤を押出機に供給し、これらを押出機にて混練してなる発泡性溶融樹脂組成物を押出して押出発泡体を製造する方法において、
難燃剤が、(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含有することを特徴とするポリスチレン系樹脂押出発泡体の製造方法。
In a method for producing an extruded foam by extruding a foamable molten resin composition obtained by supplying a polystyrene-based resin, a flame retardant and a foaming agent to an extruder, and kneading these with an extruder.
A flame retardant contains (1) a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene), a polystyrene resin extruded foam, Manufacturing method.
(1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)との重量比が100:1〜100:20であることを特徴とする請求項1に記載のポリスチレン系樹脂押出発泡体の製造方法。   (1) The weight ratio of a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene) is 100: 1 to 100: 20. The manufacturing method of the polystyrene-type resin extrusion foam of Claim 1. (1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤の添加量が、ポリスチレン系樹脂100重量部に対して1重量部以上3重量部未満であることを特徴とする請求項1又は2に記載のポリスチレン系樹脂押出発泡体の製造方法。   (1) The addition amount of a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer is 1 part by weight or more and less than 3 parts by weight with respect to 100 parts by weight of a polystyrene resin. Or the manufacturing method of the polystyrene-type resin extrusion foam of 2. 難燃剤が、更に(3)エポキシ系熱安定剤、リン系熱安定剤、ヒンダードフェノール系熱安定剤及びヒンダードアミン系熱安定剤から選ばれた少なくとも一種以上の熱安定剤を含有することを特徴とする請求項1〜3のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。   The flame retardant further comprises (3) at least one heat stabilizer selected from an epoxy heat stabilizer, a phosphorus heat stabilizer, a hindered phenol heat stabilizer, and a hindered amine heat stabilizer. The manufacturing method of the polystyrene-type resin extrusion foam in any one of Claims 1-3. (1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤に(3)熱安定剤を配合して混練してなる溶融混練物を押出機に供給することを特徴とする請求項4に記載のポリスチレン系樹脂押出発泡体の製造方法。   5. A melt-kneaded product obtained by blending (3) a thermal stabilizer with a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer is supplied to an extruder. The manufacturing method of the polystyrene-type resin extrusion foam as described in 1 above. 発泡剤が、(A)炭素数3〜5の飽和脂肪族炭化水素10〜80モル%と、(B)塩化メチル、塩化エチル、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、メタノール、エタノール、水、及び二酸化炭素の中から選択される1種又は2種以上の発泡剤90〜20モル%〔但し、発泡剤(A)と発泡剤(B)との合計量は100モル%〕からなることを特徴とする請求項1〜5のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。   The blowing agent is (A) 10 to 80 mol% of a saturated aliphatic hydrocarbon having 3 to 5 carbon atoms, and (B) methyl chloride, ethyl chloride, dimethyl ether, diethyl ether, ethyl methyl ether, methanol, ethanol, water, and 90 to 20 mol% of one or more blowing agents selected from carbon dioxide (however, the total amount of the blowing agent (A) and the blowing agent (B) is 100 mol%). The manufacturing method of the polystyrene-type resin extrusion foam in any one of Claims 1-5. (1)ポリスチレン−臭素化ポリブタジエンブロック共重合体を含む臭素系難燃剤と(2)ポリ(1,4−ジイソプロピルベンゼン)とを含有するポリスチレン系樹脂押出発泡体を加熱融解して得られる再生ポリスチレン系樹脂組成物をさらに押出機に供給することを特徴とする請求項1〜6のいずれかに記載のポリスチレン系樹脂押出発泡体の製造方法。
(1) Recycled polystyrene obtained by heating and melting a polystyrene resin extruded foam containing a brominated flame retardant containing a polystyrene-brominated polybutadiene block copolymer and (2) poly (1,4-diisopropylbenzene) The method for producing a polystyrene-based resin extruded foam according to any one of claims 1 to 6, wherein the resin-based resin composition is further supplied to an extruder.
JP2013108168A 2013-03-25 2013-05-22 Method for producing extruded polystyrene resin foam Active JP6141099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108168A JP6141099B2 (en) 2013-03-25 2013-05-22 Method for producing extruded polystyrene resin foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013062980 2013-03-25
JP2013062980 2013-03-25
JP2013108168A JP6141099B2 (en) 2013-03-25 2013-05-22 Method for producing extruded polystyrene resin foam

Publications (3)

Publication Number Publication Date
JP2014208736A true JP2014208736A (en) 2014-11-06
JP2014208736A5 JP2014208736A5 (en) 2016-06-30
JP6141099B2 JP6141099B2 (en) 2017-06-07

Family

ID=51903174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108168A Active JP6141099B2 (en) 2013-03-25 2013-05-22 Method for producing extruded polystyrene resin foam

Country Status (1)

Country Link
JP (1) JP6141099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007156A (en) * 2013-06-24 2015-01-15 株式会社カネカ Styrenic resin extruded foam and method for producing the same
KR20160057600A (en) * 2014-11-14 2016-05-24 명일폼테크주식회사 Interior or exterior finish materials for building and manufacturing method thereof
CN107418047A (en) * 2017-06-02 2017-12-01 中山康诺德新材料有限公司 A kind of High glow wire halogen-free flame retardant polyolefin composition and preparation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030174A (en) * 2000-05-12 2002-01-31 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and its manufacturing method
JP2003528189A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Method for producing macrocellular acoustic foam
JP2011219631A (en) * 2010-04-09 2011-11-04 Jsp Corp Heat insulation plate of extruded thermoplastic resin foam
JP2011225641A (en) * 2010-04-15 2011-11-10 Kaneka Corp Extruded foam of polystyrenic resin and method for producing the same
JP2012512942A (en) * 2008-12-18 2012-06-07 ダウ グローバル テクノロジーズ エルエルシー Stabilizers for polymers containing aliphatic bonded bromine
JP2012177052A (en) * 2011-02-28 2012-09-13 Jsp Corp Extruded polystyrene resin foam board
JP2012218364A (en) * 2011-04-12 2012-11-12 Jsp Corp Multilayer extruded polystyrene resin foam board, and method of manufacturing the same
JP2012236959A (en) * 2011-05-13 2012-12-06 Jsp Corp Method for producing extrusion-foamed board of polystyrenic resin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528189A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Method for producing macrocellular acoustic foam
JP2002030174A (en) * 2000-05-12 2002-01-31 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and its manufacturing method
JP2012512942A (en) * 2008-12-18 2012-06-07 ダウ グローバル テクノロジーズ エルエルシー Stabilizers for polymers containing aliphatic bonded bromine
JP2011219631A (en) * 2010-04-09 2011-11-04 Jsp Corp Heat insulation plate of extruded thermoplastic resin foam
JP2011225641A (en) * 2010-04-15 2011-11-10 Kaneka Corp Extruded foam of polystyrenic resin and method for producing the same
JP2012177052A (en) * 2011-02-28 2012-09-13 Jsp Corp Extruded polystyrene resin foam board
JP2012218364A (en) * 2011-04-12 2012-11-12 Jsp Corp Multilayer extruded polystyrene resin foam board, and method of manufacturing the same
JP2012236959A (en) * 2011-05-13 2012-12-06 Jsp Corp Method for producing extrusion-foamed board of polystyrenic resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007156A (en) * 2013-06-24 2015-01-15 株式会社カネカ Styrenic resin extruded foam and method for producing the same
KR20160057600A (en) * 2014-11-14 2016-05-24 명일폼테크주식회사 Interior or exterior finish materials for building and manufacturing method thereof
KR101656026B1 (en) 2014-11-14 2016-09-22 명일폼테크주식회사 Interior or exterior finish materials for building and manufacturing method thereof
CN107418047A (en) * 2017-06-02 2017-12-01 中山康诺德新材料有限公司 A kind of High glow wire halogen-free flame retardant polyolefin composition and preparation method

Also Published As

Publication number Publication date
JP6141099B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6113576B2 (en) Method for producing extruded polystyrene resin foam
JP5787358B2 (en) Method for producing extruded polystyrene resin foam
JP6099495B2 (en) Flame retardant melt kneaded material and method for producing polystyrene resin extruded foam using the same
JP6133150B2 (en) Method for producing polystyrene resin foam using flame retardant melt kneaded material
JP6141099B2 (en) Method for producing extruded polystyrene resin foam
JP6389591B2 (en) Method for producing polystyrene resin foam
JP5943730B2 (en) Method for producing extruded polystyrene resin foam
JP2014208736A5 (en)
JP6061742B2 (en) Method for producing extruded polystyrene resin foam
JP6257023B2 (en) Method for producing polystyrene resin extruded foam plate, and polystyrene resin extruded foam plate
JP6173038B2 (en) Method for producing extruded polystyrene resin foam
JP6381223B2 (en) Polystyrene resin foam
JP6185413B2 (en) Method for producing polystyrene resin foam
JP6335368B2 (en) Method for producing polystyrene resin extruded foam plate
JP6335367B2 (en) Method for producing polystyrene resin extruded foam plate
JP6512580B2 (en) Method for producing polystyrene resin foam board
JP6192106B2 (en) Method for producing polystyrene resin extruded foam plate
JP6395214B2 (en) Polystyrene resin foam
JP6091305B2 (en) Flame retardant melt kneaded material and method for producing polystyrene resin extruded foam using the same
JP6588245B2 (en) Method for producing polystyrene resin foam
JP6061780B2 (en) Method for producing extruded polystyrene resin foam
JP6366149B2 (en) Polystyrene resin extrusion foam board
JP6128940B2 (en) Method for producing polystyrene resin extruded foam plate
JP6541555B2 (en) Method for producing polystyrene resin foam board
JP6124484B2 (en) Method for producing extruded polystyrene resin foam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250