JP2014206123A - Gas conversion rate determination method of reductant in exhaust gas after treatment device - Google Patents

Gas conversion rate determination method of reductant in exhaust gas after treatment device Download PDF

Info

Publication number
JP2014206123A
JP2014206123A JP2013084829A JP2013084829A JP2014206123A JP 2014206123 A JP2014206123 A JP 2014206123A JP 2013084829 A JP2013084829 A JP 2013084829A JP 2013084829 A JP2013084829 A JP 2013084829A JP 2014206123 A JP2014206123 A JP 2014206123A
Authority
JP
Japan
Prior art keywords
conversion rate
exhaust gas
exhaust pipe
fuel
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013084829A
Other languages
Japanese (ja)
Inventor
長岡 大治
Taiji Nagaoka
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013084829A priority Critical patent/JP2014206123A/en
Publication of JP2014206123A publication Critical patent/JP2014206123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas conversion rate determination method of a reductant in an exhaust gas after treatment device which can exactly estimate temperatures of fuel and urea water immediately before catalyst when injecting fuel and urea water and can exactly determine the conversion rate of fuel and urea water.SOLUTION: An exhaust pipe injector 23 is disposed on an exhaust pipe 20 of an engine E, DOC 25 and NOx occlusion reduction type catalyst 26 are connected to the exhaust pipe 20 of the downstream side, NOx in exhaust gas is occluded by an NOx occlusion reduction type catalyst 26 and, thereafter, fuel is injected from the exhaust pipe injector 23 through the exhaust pipe to produce reduction gas. When occluded NOx is reduced and purified by using the reduction gas, an HC conversion rate map 36 of fuel with respect to exhaust gas temperature and distance after fuel injection is prepared beforehand, exhaust gas temperature until just before the DOC 25 from fuel injection position is detected and, based on the detection temperature and the distance after fuel injection to the DOC 25, HC conversion rate of fuel is determined from the HC conversion rate map 36.

Description

本発明は、NOx吸蔵還元型触媒やSCR触媒を用いた排ガス後処理装置に係り、特に、NOx吸蔵還元型触媒のリッチ還元に用いる燃料やSCR触媒に用いる尿素水を還元剤として噴射する際に、その還元剤のガス転換率を的確に判定できる排ガス後処理装置における還元剤のガス転換率判定方法に関するものである。   The present invention relates to an exhaust gas aftertreatment device using a NOx storage reduction catalyst or an SCR catalyst, and in particular, when fuel used for rich reduction of a NOx storage reduction catalyst or urea water used for an SCR catalyst is injected as a reducing agent. The present invention relates to a method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device capable of accurately determining the gas conversion rate of the reducing agent.

ディーゼルエンジンの排ガス後処理装置としてDOC(Diesel Oxidation Catalyst;酸化触媒)、DPF(Diesel Particulate Filter)、NOx吸蔵還元型触媒(LNT:Lean NOx TrapもしくはNSR:NOx Strage Reduction)、尿素SCR(Selective Catalystic Reduction)システム等が実用化されている。   As exhaust gas aftertreatment devices for diesel engines, DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter), NOx occlusion reduction catalyst (LNT: Lean NOx Trap or NSR: NOx Storage Reduction), Urea SCR (Selective Crate) ) System etc. are put into practical use.

DOCとDPFシステムは、PM低減のための有力な手段である。排ガス流の前段に設けられるDOCは、固体のSoot自体は酸化できないが、PM全体の30〜70%を占める可溶性有機成分(SOF)の大部分を酸化し、HCやCOも同時に除去し、後段に設けられるDPFは、細孔径を有する多孔質セラミック等で形成され、排ガス中のPMの大部分を捕捉する。   DOC and DPF systems are powerful tools for reducing PM. The DOC provided in the front stage of the exhaust gas flow cannot oxidize the solid soot itself, but oxidizes most of the soluble organic component (SOF) that occupies 30 to 70% of the total PM, and simultaneously removes HC and CO. The DPF provided in is formed of a porous ceramic or the like having a pore diameter and captures most of the PM in the exhaust gas.

NOx吸蔵還元型触媒は、アルミナ(Al23)等の触媒担体に、PtやPdなどの貴金属触媒と、Na、K、Cs等のアルカリ金属やCa、Ba等のアルカリ土類金属、Y、La等の希土類等のNOx吸蔵機能をもつ吸蔵材を担持したもので、排ガス中の酸素濃度によって、NOx吸蔵とNOx放出・浄化の二つの機能を発揮する。 The NOx occlusion reduction type catalyst includes a catalyst carrier such as alumina (Al 2 O 3 ), a noble metal catalyst such as Pt and Pd, an alkali metal such as Na, K and Cs, an alkaline earth metal such as Ca and Ba, Y , La and other rare earths and other storage materials having NOx storage function are supported, and exhibit two functions of NOx storage and NOx release / purification depending on the oxygen concentration in the exhaust gas.

このNOx吸蔵還元型触媒による浄化システムは、通常運転状態のように排ガス中の酸素濃度が高い条件(リーン空燃比)では、排ガス中のNOが、PtやPdなどの貴金属触媒等でNO2に酸化され、これを吸蔵材が、硝酸塩(Ba(NO32)として吸蔵しNOxを浄化する。また、NOxの吸蔵が継続すると、硝酸塩が飽和して吸蔵材の吸蔵機能を失うため、運転条件を変え、低酸素濃度の条件で、EGR(Exhaust Gas Recirculation:排ガス再循環)、燃料のポスト噴射や、排気管噴射を行って、リッチ状態を形成し、燃料を貴金属触媒上で還元することで、排ガス中にCO、HC、H2を生成させてNOxをリッチ還元にてNOxを放出・浄化する。 In this purification system using NOx occlusion reduction type catalyst, NO in exhaust gas is converted to NO 2 by a noble metal catalyst such as Pt and Pd under conditions of high oxygen concentration in the exhaust gas (lean air-fuel ratio) as in the normal operation state. Oxidized and the occlusion material occludes it as nitrate (Ba (NO 3 ) 2 ) to purify NOx. Moreover, if NOx occlusion continues, nitrate will be saturated and the occlusion function of the occlusion material will be lost. Therefore, EGR (Exhaust Gas Recirculation) and fuel post-injection will be performed under conditions of low oxygen concentration by changing the operating conditions. In addition, exhaust pipe injection is performed to form a rich state, and fuel is reduced on the noble metal catalyst, so that CO, HC, H 2 is generated in the exhaust gas, and NOx is released and purified by rich reduction. To do.

尿素SCRシステムは、SCR触媒の上流側に尿素水を噴射し、尿素水を排ガスの熱で加水分解してアンモニアを生成し、そのアンモニアと排ガス中のNOxをSCR触媒上で反応させてNOxを脱硝するものである。   The urea SCR system injects urea water upstream of the SCR catalyst, hydrolyzes the urea water with the heat of exhaust gas, generates ammonia, and reacts the NOx in the exhaust gas with NOx on the SCR catalyst to generate NOx. Denitration.

このNOx吸蔵還元型触媒のリッチ還元やDPFのPM強制再生時の触媒昇温のために、排気管への燃料(軽油)噴射が使用されている。また、尿素SCR触媒でも、NOx還元のため、尿素水を排気管に噴射している。   Fuel (light oil) injection into the exhaust pipe is used for the rich reduction of the NOx storage reduction catalyst and the temperature rise of the catalyst during the forced regeneration of DPF PM. Further, even in the urea SCR catalyst, urea water is injected into the exhaust pipe for NOx reduction.

排気燃料噴射は、燃焼の膨張行程に筒内への噴射を行う(所謂ポスト噴射)に対して、燃料によるオイル希釈が無い、噴射量の全てを昇温のために使用できるので昇温にかかる燃費悪化を低減できる、等のメリットがある。   Exhaust fuel injection involves injecting into the cylinder during the expansion stroke of combustion (so-called post-injection), and there is no oil dilution with fuel. There are advantages such as reduction in fuel consumption.

特開2004−092497号公報JP 2004-092497 A 特開2011−247135号公報JP 2011-247135 A 特開2012−127301号公報JP 2012-127301 A 特開2009−085172号公報JP 2009-085172 A

しかしながら、逆に排気管内は膨張行程時の筒内温度に対して、ガス温度が低く、燃料(軽油)がHCにガス化される迄に時間が掛かると言う欠点もある。完全にガス化されずに燃料が触媒に到達すると、触媒前面で燃料が部分酸化してすすを生成し、前面のコーキングを生じて圧損が上昇することがある。また、触媒後へのHCのスリップや、触媒をHC被毒して活性が低下したり、逆に被毒後の排ガス温度の昇温時にHCに着火し、異常燃焼を起こし、最悪の場合触媒が溶損する場合も考えられる。   However, conversely, the exhaust pipe has a disadvantage that the gas temperature is lower than the in-cylinder temperature during the expansion stroke, and it takes time until the fuel (light oil) is gasified into HC. If the fuel reaches the catalyst without being completely gasified, the fuel partially oxidizes on the front surface of the catalyst to generate soot, which may cause coking on the front surface and increase pressure loss. Also, HC slips after the catalyst, HC poisons the catalyst to reduce its activity, or conversely, HC is ignited when the exhaust gas temperature rises after poisoning, causing abnormal combustion, and in the worst case the catalyst It is also conceivable that the material melts.

また、尿素SCR触媒の場合でも、排ガス温度が低いと、尿素水噴射弁からSCR触媒までの間の距離が短く、尿素水の液滴がガス化せずに触媒に到達すると、アンモニアへの転換が不均一になり、尿素の利用効率が低下する、局所的に濃いアンモニアがアンモニアスリップを起こす、等の問題がある。   Even in the case of a urea SCR catalyst, if the exhaust gas temperature is low, the distance from the urea water injection valve to the SCR catalyst is short, and when urea water droplets reach the catalyst without being gasified, it is converted to ammonia. Becomes uneven, the utilization efficiency of urea decreases, and locally concentrated ammonia causes ammonia slip.

そこで、従来においては、排気燃料噴射や尿素水噴射が可能な温度閾値を設けてそれ以上で噴射している(特許文献1〜3)。   In view of this, conventionally, a temperature threshold that enables exhaust fuel injection and urea water injection is provided, and the fuel is injected at a higher temperature (Patent Documents 1 to 3).

しかし、触媒直前での温度計測なので、それ以前のエンジン出口からの温度分布や排気管の長さが考慮されておらず、その部分での転換率に差が生じる。また、排気管は、大気温度や車速風の違いによる放熱の影響も考慮されていない。すなわち、触媒直前での温度が適正でも、冬季や車速風が速いときは、放熱量が大となり、噴射位置から触媒直前に達する間に、温度閾値以下に下がる問題が考慮されていない。   However, since the temperature is measured immediately before the catalyst, the temperature distribution from the previous engine outlet and the length of the exhaust pipe are not taken into consideration, and a difference occurs in the conversion rate at that portion. In addition, the exhaust pipe does not take into account the effects of heat radiation due to differences in atmospheric temperature and vehicle speed wind. That is, even if the temperature just before the catalyst is appropriate, the amount of heat release becomes large during the winter season or when the vehicle speed wind is fast, and the problem of falling below the temperature threshold is not taken into consideration while reaching the catalyst immediately before the injection position.

そこで、本発明の目的は、上記課題を解決し、燃料や尿素水を噴射する際に、それらの触媒直前での温度を的確に予測できると共にこれら燃料や尿素水の転換率を的確に判定できる排ガス後処理装置の還元剤のガス転換率判定方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and accurately predict the temperature immediately before the catalyst and inject the fuel and urea water and accurately determine the conversion rate of these fuel and urea water. An object of the present invention is to provide a method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device.

上記目的を達成するために本発明は、エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DOC、NOx吸蔵還元型触媒、DPFを接続して排ガス後処理装置を構成し、空燃比がリーン条件で排ガス中のNOxをNOx吸蔵還元型触媒で吸蔵し、空燃比がリッチ条件で前記排気管インジェクタから燃料を排気管噴射して還元ガスを生成し、その還元ガスで、吸蔵したNOxを還元・浄化するに際して、排ガス温度と燃料噴射後距離に対する燃料のHC転換率マップを予め作成しておき、燃料噴射位置から前記DOC直前までの排ガス温度を検出し、その検出温度と前記DOCまでの燃料噴射後距離とを基に、前記HC転換率マップから燃料のHC転換率を求めることを特徴とする排ガス後処理装置の還元剤のガス転換率判定方法である。   In order to achieve the above object, the present invention provides an exhaust pipe injector in an exhaust pipe of an engine, and a DOC, NOx occlusion reduction type catalyst, and DPF are connected to an exhaust pipe downstream of the exhaust pipe injector. Constituting a processing device, storing NOx in the exhaust gas with a lean air-fuel ratio with a NOx storage-reduction catalyst, generating a reducing gas by injecting fuel from the exhaust pipe injector under a rich air-fuel ratio condition, When reducing and purifying the stored NOx with the reducing gas, a fuel HC conversion rate map is prepared in advance for the exhaust gas temperature and the distance after fuel injection, and the exhaust gas temperature from the fuel injection position to just before the DOC is detected. An exhaust gas aftertreatment device characterized in that the HC conversion rate of fuel is obtained from the HC conversion rate map based on the detected temperature and the distance after fuel injection to the DOC. Of a gas conversion determining method of the reducing agent.

求めたHC転換率が一定値以上のときに燃料を排気管噴射するようにし、HC転換率が一定値未満のとき、HC転換率が一定値以上となるようポスト噴射を行って排ガス温度を上昇させた後、排気管噴射するのが好ましい。   Fuel is injected into the exhaust pipe when the calculated HC conversion rate is above a certain value, and when the HC conversion rate is below a certain value, post-injection is performed to increase the exhaust gas temperature so that the HC conversion rate is above a certain value. After this, it is preferable that the exhaust pipe is injected.

前記HC転換率マップにおける燃料噴射後距離は、燃料噴射位置から前記DOC直前までの空間距離で求めると共に、HC転換率は、エンジンが通常負荷のときの排ガス流量とその排ガス温度から求め、アイドリングや全負荷時のHC転換率は、アイドリングや全負荷時の排ガスの空間速度を係数とし、その係数で前記通常負荷の空間距離を補正して求めるのが好ましい。   The distance after fuel injection in the HC conversion rate map is obtained from the spatial distance from the fuel injection position to immediately before the DOC, and the HC conversion rate is obtained from the exhaust gas flow rate and the exhaust gas temperature when the engine is at a normal load. The HC conversion rate at the full load is preferably obtained by idling or using the space velocity of the exhaust gas at the full load as a coefficient, and correcting the spatial distance of the normal load with the coefficient.

また本発明は、エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DPFを接続し、そのDPFの下流側の排気管にSCR、DOCを接続し、前記SCRの上流側排気管に尿素水噴射ノズルを設けて排ガス後処理装置を構成し、尿素水噴射ノズルから尿素水を噴射してアンモニアからなる還元ガスを生成し、その還元ガスで、前記SCR上でNOxを脱硝するに際して、排ガス温度と尿素水噴射後距離に対する尿素水のアンモニア転換率マップを予め作成しておき、尿素水噴射位置から前記SCRまでの排ガス温度を検出し、その検出温度と前記SCRまでの尿素水噴射後距離とを基に、前記アンモニア転換率マップから尿素水のアンモニア転換率を求めることを特徴とする排ガス後処理装置における還元剤のガス転換率判定方法である。   In the present invention, an exhaust pipe injector is provided in an exhaust pipe of an engine, a DPF is connected to an exhaust pipe downstream of the exhaust pipe injector, and an SCR and a DOC are connected to an exhaust pipe downstream of the DPF, A urea water injection nozzle is provided in the upstream exhaust pipe of the SCR to constitute an exhaust gas aftertreatment device, and urea water is injected from the urea water injection nozzle to generate a reducing gas composed of ammonia, and the SCR When NOx is denitrated above, an ammonia conversion rate map of urea water relative to the exhaust gas temperature and the distance after urea water injection is prepared in advance, the exhaust gas temperature from the urea water injection position to the SCR is detected, and the detected temperature and An exhaust gas aftertreatment device characterized in that an ammonia conversion rate of urea water is obtained from the ammonia conversion rate map based on a distance after urea water injection to the SCR. It takes a gas conversion determining method of the reducing agent.

求めたアンモニア転換率が一定値以上のときに尿素水噴射ノズルから尿素水を噴射するようにし、アンモニア転換率が一定値未満のとき、アンモニア転換率が一定値以上となるようポスト噴射を行って排ガス温度を上昇させた後、尿素水を噴射するのが好ましい。   When the calculated ammonia conversion rate is above a certain value, urea water is injected from the urea water injection nozzle, and when the ammonia conversion rate is less than a certain value, post injection is performed so that the ammonia conversion rate is above a certain value. It is preferable to inject urea water after raising the exhaust gas temperature.

さらに本発明は、エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DOC、DPFを接続して排ガス後処理装置を構成し、そのDPFにPMが堆積したとき、前記排気管インジェクタから燃料を排気管噴射して還元ガスを生成し、その還元ガスを前記DOCで燃焼させて排ガス温度を上昇させてDPFに堆積したPMを燃焼させてDPFを再生するに際し、排ガス温度と燃料噴射後距離に対する燃料のHC転換率マップを予め作成しておき、燃料噴射位置から前記DOC直前までの排ガス温度を検出し、その検出温度と前記DOCまでの燃料噴射後距離とを基に、前記HC転換率マップから燃料のHC転換率を求めることを特徴とする排ガス後処理装置における還元剤のガス転換率判定方法である。   Further, according to the present invention, an exhaust pipe injector is provided in an exhaust pipe of an engine, and an exhaust gas aftertreatment device is configured by connecting a DOC and a DPF to an exhaust pipe downstream of the exhaust pipe injector, and PM is deposited on the DPF. When this occurs, fuel is injected from the exhaust pipe injector into the exhaust pipe to generate a reducing gas, the reducing gas is burned in the DOC, the exhaust gas temperature is raised, and the PM deposited on the DPF is burned to regenerate the DPF. In this case, a fuel HC conversion rate map with respect to the exhaust gas temperature and the distance after fuel injection is prepared in advance, the exhaust gas temperature from the fuel injection position to immediately before the DOC is detected, and the detected temperature and the fuel injection distance to the DOC are detected. Based on the HC conversion rate map, the HC conversion rate of the fuel is obtained from the HC conversion rate map. That.

求めたHC転換率が一定値以上のときに排気管インジェクタから燃料を噴射してHCなどからなる還元ガスを生成し、その還元ガスを前記DOCで燃焼させて排ガス温度をDPF再生温度まで上昇させ、HC転換率が一定値未満のとき、HC転換率が一定値以上となるようポスト噴射を行って前記DOCに至る排ガス温度を上昇させた後、排気管噴射するのが好ましい。   When the calculated HC conversion rate is equal to or higher than a certain value, fuel is injected from the exhaust pipe injector to generate reducing gas composed of HC and the like, and the reducing gas is burned in the DOC to raise the exhaust gas temperature to the DPF regeneration temperature. When the HC conversion rate is less than a certain value, it is preferable to perform post injection so that the HC conversion rate is equal to or greater than a certain value, raise the exhaust gas temperature reaching the DOC, and then perform exhaust pipe injection.

本発明は、燃料や尿素水を噴射する際に、それらの触媒直前での温度を的確に予測できると共にこれら燃料や尿素水の転換率を的確に判定でき、これら還元剤の噴射を的確に制御して、DOCの前面へのすすのコーキングや触媒のHC被毒、HC被毒後の異常昇温等の問題を避けることができるという優れた効果を発揮する。   In the present invention, when fuel or urea water is injected, the temperature immediately before the catalyst can be accurately predicted, the conversion rate of these fuel and urea water can be accurately determined, and the injection of these reducing agents is accurately controlled. As a result, it is possible to avoid problems such as soot coking on the front surface of the DOC, HC poisoning of the catalyst, and abnormal temperature rise after HC poisoning.

本発明のNOx吸蔵還元型触媒を用いた排ガス後処理装置の還元剤のガス転換率判定方法の装置構成を示す図である。It is a figure which shows the apparatus structure of the gas conversion rate determination method of the reducing agent of the exhaust gas aftertreatment apparatus using the NOx storage reduction catalyst of this invention. 本発明において、燃料噴射位置の上流側から触媒入口までの排ガス温度分布を説明する図である。In this invention, it is a figure explaining the exhaust gas temperature distribution from the upstream of a fuel injection position to a catalyst inlet. 本発明において、燃料噴射後距離と排ガス温度に対する燃料のHC転換率を求めたHC転換率マップを示す図である。In this invention, it is a figure which shows the HC conversion rate map which calculated | required the HC conversion rate of the fuel with respect to the distance after fuel injection, and exhaust gas temperature. 本発明のSCR触媒を用いた排ガス後処理装置の還元剤のガス転換率判定方法の装置構成を示す図である。It is a figure which shows the apparatus structure of the gas conversion rate determination method of the reducing agent of the exhaust gas aftertreatment apparatus using the SCR catalyst of this invention.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、NOx吸蔵還元型触媒による排ガス後処理装置10を示したものである。   FIG. 1 shows an exhaust gas aftertreatment device 10 using a NOx occlusion reduction type catalyst.

エンジンEの吸排気系には、ターボチャージャ11とEGR管12が接続されており、エアクリーナ13から吸入される空気は、ターボチャージャ11のコンプレッサ14で圧縮されると共に吸気通路15に圧送され、エンジンEの吸気マニホールド16からエンジンE内に供給される。吸気通路15には、エンジンEへの空気量を調節するための吸気バルブ17が設けられる。   A turbocharger 11 and an EGR pipe 12 are connected to the intake / exhaust system of the engine E, and the air sucked from the air cleaner 13 is compressed by the compressor 14 of the turbocharger 11 and is pumped to the intake passage 15. E is supplied into the engine E from the intake manifold 16 of E. An intake valve 17 for adjusting the amount of air to the engine E is provided in the intake passage 15.

エンジンEから排出された排ガスは、排気マニホールド18からターボチャージャ11のタービン19に排出されると共にタービン19を駆動し、排気管20に排気される。   The exhaust gas discharged from the engine E is discharged from the exhaust manifold 18 to the turbine 19 of the turbocharger 11, drives the turbine 19, and is discharged to the exhaust pipe 20.

吸気マニホールド16と排気マニホールド18にはEGR管12が接続され、EGR管12に、排気マニホールド18から吸気マニホールド16に至る排ガスを冷却するためのEGRクーラ21が接続されると共に、EGR量を調節するEGRバルブ22が接続される。   An EGR pipe 12 is connected to the intake manifold 16 and the exhaust manifold 18, and an EGR cooler 21 for cooling exhaust gas from the exhaust manifold 18 to the intake manifold 16 is connected to the EGR pipe 12, and the EGR amount is adjusted. An EGR valve 22 is connected.

排ガス後処理装置10は、タービン19の下流側の排気管20に排気管インジェクタ23が設けられ、その排気管インジェクタ23の下流側の排気管20に形成されたキャニング容器24内に、DOC25、NOx吸蔵還元型触媒26、DPF27が順次キャニングされて構成される。   In the exhaust gas aftertreatment device 10, an exhaust pipe injector 23 is provided in an exhaust pipe 20 on the downstream side of the turbine 19, and a DOC 25, NOx is placed in a canning container 24 formed in the exhaust pipe 20 on the downstream side of the exhaust pipe injector 23. The storage reduction catalyst 26 and the DPF 27 are sequentially canned.

排気管インジェクタ23の上流側の排気管20には、エンジン出口側の排ガス温度を検出するエンジン出口側温度センサ28、DOC25の上流側には、DOC入口側温度センサ29、NOx吸蔵還元型触媒26の入口側には触媒入口側温度センサ30、出口側には触媒出口側温度センサ31が設けられる。   An exhaust pipe 20 on the upstream side of the exhaust pipe injector 23 is provided with an engine outlet side temperature sensor 28 for detecting the exhaust gas temperature on the engine outlet side. A DOC inlet side temperature sensor 29 and a NOx occlusion reduction type catalyst 26 are provided on the upstream side of the DOC 25. A catalyst inlet side temperature sensor 30 is provided on the inlet side, and a catalyst outlet side temperature sensor 31 is provided on the outlet side.

エンジンEは、ECU32により運転の全般的な制御がなされる。ECU32には、温度検出手段33、空燃比制御手段34、噴射制御手段35が形成されると共にHC転換率マップ36が格納される。   The engine E is generally controlled by the ECU 32. The ECU 32 includes a temperature detection unit 33, an air-fuel ratio control unit 34, and an injection control unit 35, and stores an HC conversion rate map 36.

エンジン出口側から触媒出口側の温度センサ28〜31の各検出値は、エンジンEの運転を制御するECU32の温度検出手段33に入力される。   The detected values of the temperature sensors 28 to 31 from the engine outlet side to the catalyst outlet side are input to the temperature detection means 33 of the ECU 32 that controls the operation of the engine E.

空燃比制御手段34は、EGRバルブ22、吸気バルブ17を制御し、噴射制御手段35は、エンジンEの燃焼噴射量を制御すると共にインジェクタによるポスト噴射などのマルチ噴射を制御し、さらに排気管インジェクタ23から噴射する燃料を制御する。   The air-fuel ratio control means 34 controls the EGR valve 22 and the intake valve 17, and the injection control means 35 controls the combustion injection amount of the engine E, controls multi-injection such as post-injection by the injector, and further exhaust pipe injector The fuel injected from 23 is controlled.

このNOx吸蔵還元型触媒による排ガス後処理装置10は、通常は空燃比リーン状態でNOxをNOx吸蔵還元型触媒26で吸蔵し、その間に排気管インジェクタ23で燃料HCをパルス的に噴射して空燃比リッチ状態でNOx還元浄化を行う。   The exhaust gas aftertreatment device 10 using the NOx occlusion reduction catalyst normally stores NOx by the NOx occlusion reduction catalyst 26 in an air-fuel ratio lean state, and in the meantime, the exhaust gas injector 23 pulsates the fuel HC in a pulsed manner. NOx reduction purification is performed in the fuel-rich state.

また排ガス中のPMは、DPF27で捕捉されるが、DPF27へのPM堆積量が所定量溜まったならば、例えば、DPF27前後の差圧が一定に達したときや、所定の走行距離を走行したとき、ECU32がPMの自動再生制御を行う。このPM再生の際には、ポスト噴射や排気管インジェクタ23による燃料噴射を行って排ガス温度を600℃に上げることで、DPF27へ堆積したPMを燃焼させる。   PM in the exhaust gas is captured by the DPF 27. If a predetermined amount of PM accumulated on the DPF 27 accumulates, for example, when the differential pressure before and after the DPF 27 reaches a constant value, or travels a predetermined travel distance. At this time, the ECU 32 performs automatic regeneration control of PM. At the time of this PM regeneration, post-injection or fuel injection by the exhaust pipe injector 23 is performed to raise the exhaust gas temperature to 600 ° C., thereby burning the PM deposited on the DPF 27.

このリッチ還元やPM再生時に燃料HCを噴射するに際し、ECU32は、温度検出手段33に入力される温度センサ28〜31の排ガス温度に基づき、HC転換率マップ36から燃料HCを噴射したときのHC転換率を求め、そのHC転換率が噴射可能な閾値K以上かどうかを判断して、触媒前で燃料がHCに分解ガス化可能かを推定し、可能な場合のみ排気管20への燃料噴射によりリッチを行ったり、DPF27のPM再生を行う。それ以外は燃焼の膨張行程でのポスト噴射を行って、HCを供給する。   When injecting the fuel HC during the rich reduction or PM regeneration, the ECU 32 determines the HC when the fuel HC is injected from the HC conversion rate map 36 based on the exhaust gas temperature of the temperature sensors 28 to 31 input to the temperature detection means 33. A conversion rate is obtained, and it is determined whether or not the HC conversion rate is equal to or greater than an injectable threshold value K, and it is estimated whether the fuel can be decomposed into HC before the catalyst, and fuel injection into the exhaust pipe 20 is performed only when possible. To perform rich or DPM 27 PM regeneration. Otherwise, post-injection in the expansion stroke of combustion is performed to supply HC.

この排ガス温度に基づく、HC転換率マップ36から噴射した燃料のHC転換率を求めるガス転換率判定方法を図2、図3により説明する。   A gas conversion rate determination method for obtaining the HC conversion rate of the fuel injected from the HC conversion rate map 36 based on the exhaust gas temperature will be described with reference to FIGS.

図2は、排気管インジェクタの上流側のエンジン出口から触媒(DOC)入口までの排ガスの温度分布の一例を示したものである。   FIG. 2 shows an example of the temperature distribution of exhaust gas from the engine outlet upstream of the exhaust pipe injector to the catalyst (DOC) inlet.

この図2において、エンジン出口の排ガスが温度Yaで、排気管内を流れる間に放熱により触媒入口の排ガスが温度Ybまで降下する温度分布Tabを標準状態とすると、冬季や車速が速く放熱量が大きいと、エンジン出口の排ガスが温度Yaでも、破線で示した温度分布Tacとなり、触媒入口の排ガスが温度Ycまで降下する。この場合、エンジン出口の排ガスが高くても(温度Ya)、エンジン出口の排ガスが温度Ydと低く、放熱量が小さい温度分布Tdcの触媒入口の排ガス温度Ycと同じ、排ガス温度Ycとなってしまう。またエンジン出口と触媒入口の中間点で計測した場合、標準温度Yeに対して、放熱が大きいときには、温度Yfと低下し、また、エンジン出口温度が低下した場合には温度Ygとなる。   In FIG. 2, assuming that the temperature distribution Tab in which the exhaust gas at the engine outlet falls to the temperature Yb due to heat dissipation while flowing in the exhaust pipe at the temperature Ya is the standard state, the winter and vehicle speed are fast and the heat radiation is large. Even if the exhaust gas at the engine outlet is at the temperature Ya, the temperature distribution Tac indicated by the broken line is obtained, and the exhaust gas at the catalyst inlet falls to the temperature Yc. In this case, even if the exhaust gas at the engine outlet is high (temperature Ya), the exhaust gas at the engine outlet is as low as the temperature Yd, and the exhaust gas temperature Yc is the same as the exhaust gas temperature Yc at the catalyst inlet of the temperature distribution Tdc with a small amount of heat release. . Further, when measured at an intermediate point between the engine outlet and the catalyst inlet, the temperature Yf decreases when heat dissipation is large with respect to the standard temperature Ye, and the temperature Yg decreases when the engine outlet temperature decreases.

このように、触媒入口の排ガス温度の計測では、同じ温度でもその手前の温度履歴が不明であり、またエンジン出口と触媒入口の中間点で計測しても、触媒入口での温度に差が生じるため、触媒入口や中間点での温度計測値から燃料HCのHC転換率を求めると誤差の要因となる。   As described above, in the measurement of the exhaust gas temperature at the catalyst inlet, the temperature history before that is unknown even at the same temperature, and even if measured at the midpoint between the engine outlet and the catalyst inlet, there is a difference in the temperature at the catalyst inlet. Therefore, obtaining the HC conversion rate of the fuel HC from the temperature measurement values at the catalyst inlet and the intermediate point causes an error.

そこで、本発明では、エンジン出口側温度センサ28でのエンジン出口の排ガス温度とDOC入口側温度センサ29での触媒入口温度との温度差を基に、排気管インジェクタ位置で噴射位置から触媒入口までの排ガス温度の平均温度を求め、この平均温度を基にHC転換率を求める。   Therefore, in the present invention, based on the temperature difference between the exhaust gas temperature at the engine outlet at the engine outlet side temperature sensor 28 and the catalyst inlet temperature at the DOC inlet side temperature sensor 29, from the injection position to the catalyst inlet at the exhaust pipe injector position. The average temperature of the exhaust gas temperature is obtained, and the HC conversion rate is obtained based on this average temperature.

図3は、ECU32のHC転換率マップ36に記憶されたHC転換率マップを示したものである。   FIG. 3 shows the HC conversion rate map stored in the HC conversion rate map 36 of the ECU 32.

このHC転換率マップは、燃料噴射後触媒入口に達するまでの燃料噴射後距離を横軸に排ガス温度を縦軸にとり、試験的に、排ガス温度と燃料噴射後距離を変えて、HC転換率を測定し、転換率が100%、80%、60%、40%、20%、0%となる燃料噴射後距離と排ガス温度の関係の曲線を作成して3次元マップとしたものである。   This HC conversion rate map shows the HC conversion rate by changing the exhaust gas temperature and the distance after fuel injection experimentally by taking the exhaust gas temperature on the horizontal axis and the exhaust gas temperature on the vertical axis. A three-dimensional map is created by creating a curve of the relationship between the distance after fuel injection and the exhaust gas temperature at which the conversion rate is 100%, 80%, 60%, 40%, 20%, 0%.

また、このHC転換率マップは、エンジンが通常負荷で運転されたときの排ガス流量における排ガスの空間速度(SV=3×104(h-1))を基準としたときのものであり、アイドル運転時は、空間速度(SV=1×104(h-1))、全負荷時は、空間速度(SV=1×105(h-1))となるため、これら空間速度を係数として図3の燃料噴射後距離を補正して、後述するHC転換率を求める。 This HC conversion rate map is based on the exhaust gas space velocity (SV = 3 × 10 4 (h −1 )) at the exhaust gas flow rate when the engine is operated at a normal load. During operation, the space velocity (SV = 1 × 10 4 (h −1 )) and at full load the space velocity (SV = 1 × 10 5 (h −1 )). The distance after fuel injection shown in FIG. 3 is corrected to obtain an HC conversion rate described later.

このHC転換率マップからHC転換率を求めるには、排気管インジェクタの燃料噴射位置から触媒までの距離X(定数)と、エンジン出口側温度センサ28とDOC入口側温度センサ29で検出した排ガス温度を基に排気管インジェクタの燃料噴射位置から触媒入口までの平均温度を、排ガス温度Y(センサ値)とし、これらから、HCへの転換率Zを求めることができる。   In order to obtain the HC conversion rate from this HC conversion rate map, the distance X (constant) from the fuel injection position of the exhaust pipe injector to the catalyst, the exhaust gas temperature detected by the engine outlet side temperature sensor 28 and the DOC inlet side temperature sensor 29. Based on this, the average temperature from the fuel injection position of the exhaust pipe injector to the catalyst inlet is defined as the exhaust gas temperature Y (sensor value), and the conversion rate Z to HC can be obtained from these.

ここで、求めた転換率Zが、噴射可能なHC転換率の閾値K(一定値:例えば70%)以上であれば、排気管インジェクタでの排気管噴射を許可して、リッチ還元或いはPM再生を行う。   Here, if the obtained conversion rate Z is equal to or greater than the threshold value K (a constant value: 70%, for example) of the HC conversion rate that can be injected, the exhaust pipe injection in the exhaust pipe injector is permitted to perform rich reduction or PM regeneration. I do.

また、求めた転換率Zが閾値K未満で、排気管噴射不可の場合は、筒内でのポスト噴射で排気管噴射可能な状態まで排ガス温度を上げてから排気管噴射を行う。   When the obtained conversion rate Z is less than the threshold value K and the exhaust pipe cannot be injected, the exhaust pipe is injected after the exhaust gas temperature is raised to a state where the exhaust pipe can be injected by post injection in the cylinder.

また、アイドル運転や全負荷運転で、排ガス量が変わり、排ガス温度Yが同じでも、排気管インジェクタから触媒までの燃料滞留時間が相違するため、その空間速度を係数として、排気管インジェクタの燃料噴射位置から触媒までの距離Xを補正してHC転換率を求める。   In addition, even if the exhaust gas amount changes and the exhaust gas temperature Y is the same during idle operation or full load operation, the fuel residence time from the exhaust pipe injector to the catalyst is different. Therefore, the fuel injection of the exhaust pipe injector is performed using the space velocity as a coefficient. The HC conversion rate is obtained by correcting the distance X from the position to the catalyst.

なお、DPF再生の場合、排ガス温度をリッチ還元と同一温度とすると、ポスト噴射量をやや多め(+5%くらい)に噴射しているが、DPF再生時は、排ガスの温度をフィードバック制御を行っているので、特にHC転換率マップの補正は不要である。また、ポスト噴射と排気管噴射の両方を行うリッチ噴射の場合でも、排気管噴射によるガス変換効率が低くて使えない場合は、その分の量をポスト噴射に加算する。   In the case of DPF regeneration, if the exhaust gas temperature is the same as that for rich reduction, the post-injection amount is slightly increased (about + 5%). However, during DPF regeneration, feedback control is performed on the exhaust gas temperature. Therefore, it is not particularly necessary to correct the HC conversion rate map. Even in the case of rich injection that performs both post injection and exhaust pipe injection, if the gas conversion efficiency by exhaust pipe injection is low and cannot be used, the amount is added to post injection.

排ガス温度は、エンジン出口側温度センサ28とDOC入口側温度センサ29で検出して求める例を示しているが、エンジン出口から触媒入口の間のどこで計測してもよく、排気管インジェクタから触媒入口までの温度分布が求められれば、いずれの位置でもよい。両温度センサ28、29で温度分布を求め、燃料噴射位置から触媒までの平均温度を求めることで、排気管20への走行風や気温により放熱量が変化して触媒入口温度低下が変化しても的確な排ガス温度を求めることができるため、放熱による影響を受けても正確な排ガス温度を求めることができると共に的確なHC転換率を求めることができる。   Although the exhaust gas temperature is detected by the engine outlet side temperature sensor 28 and the DOC inlet side temperature sensor 29, the exhaust gas temperature may be measured anywhere between the engine outlet and the catalyst inlet. Any position may be used as long as the temperature distribution up to is obtained. The temperature distribution is obtained by both the temperature sensors 28 and 29, and the average temperature from the fuel injection position to the catalyst is obtained, so that the heat radiation amount changes due to the traveling wind and the air temperature to the exhaust pipe 20, and the catalyst inlet temperature drop changes. Since an accurate exhaust gas temperature can be obtained, an accurate exhaust gas temperature can be obtained even under the influence of heat radiation, and an accurate HC conversion rate can be obtained.

図4は、SCR触媒による排ガス後処理装置10を示したものであり、排ガス後処理装置10を除いてエンジンEの基本構成は図1と同じであり、これを再度説明する。   FIG. 4 shows an exhaust gas aftertreatment device 10 using an SCR catalyst. Except for the exhaust gas aftertreatment device 10, the basic configuration of the engine E is the same as that in FIG. 1, and this will be described again.

エンジンEの吸排気系には、ターボチャージャ11とEGR管12が接続され、エアクリーナ13からの空気は、ターボチャージャ11のコンプレッサ14で圧縮されると共に吸気通路15に圧送され、吸気バルブ17を通してエンジンEの吸気マニホールド16からエンジンE内に供給される。エンジンEから排出された排ガスは、排気マニホールド18からターボチャージャ11のタービン19に排出されると共にタービン19を駆動し、排気管20に排気される。   The turbocharger 11 and the EGR pipe 12 are connected to the intake / exhaust system of the engine E, and the air from the air cleaner 13 is compressed by the compressor 14 of the turbocharger 11 and is pumped to the intake passage 15, and passes through the intake valve 17 to the engine. E is supplied into the engine E from the intake manifold 16 of E. The exhaust gas discharged from the engine E is discharged from the exhaust manifold 18 to the turbine 19 of the turbocharger 11, drives the turbine 19, and is discharged to the exhaust pipe 20.

吸気マニホールド16と排気マニホールド18にはEGR管12が接続され、そのEGR管12に、EGRクーラ21が接続されると共にEGRバルブ22が接続される。   An EGR pipe 12 is connected to the intake manifold 16 and the exhaust manifold 18, and an EGR cooler 21 and an EGR valve 22 are connected to the EGR pipe 12.

排ガス後処理装置10は、タービン19の下流側の排気管20に排気管インジェクタ23が設けられ、その排気管インジェクタ23の下流側の排気管20に、DPF装置41とSCR装置42が設けられる。DPF装置41は、排気管20に形成されたDPF用キャニング容器43内に、DOC44、DPF45がキャニングされて構成される。SCR装置42は、排気管20に形成されたSCRキャニング容器46内に、SCR触媒47とアンモニアスリップを防止するDOC48が設けられ、さらにSCRキャニング容器46の上流側の排気管20に尿素水噴射ノズル49が設けられて構成される。   In the exhaust gas aftertreatment device 10, an exhaust pipe injector 23 is provided in the exhaust pipe 20 on the downstream side of the turbine 19, and a DPF device 41 and an SCR device 42 are provided in the exhaust pipe 20 on the downstream side of the exhaust pipe injector 23. The DPF device 41 is configured by canning a DOC 44 and a DPF 45 in a DPF canning container 43 formed in the exhaust pipe 20. The SCR device 42 is provided with a SCR catalyst 47 and a DOC 48 for preventing ammonia slip in an SCR canning container 46 formed in the exhaust pipe 20, and a urea water injection nozzle in the exhaust pipe 20 upstream of the SCR canning container 46. 49 is provided.

排気管インジェクタ23の上流側の排気管20には、エンジン出口側の排ガス温度を検出するエンジン出口側温度センサ28、DPF装置41のDOC44の上流側には、DOC入口側温度センサ50、DPF45の入口側にはDPF温度センサ51が設けられ、またSCR装置42のSCR触媒47の入口側には、SCR触媒入口側温度センサ52、出口側には、SCR触媒出口側温度センサ53が設けられる。   The exhaust pipe 20 on the upstream side of the exhaust pipe injector 23 has an engine outlet side temperature sensor 28 for detecting the exhaust gas temperature on the engine outlet side, and the DOC inlet side temperature sensor 50 and the DPF 45 on the upstream side of the DOC 44 of the DPF device 41. A DPF temperature sensor 51 is provided on the inlet side, an SCR catalyst inlet side temperature sensor 52 is provided on the inlet side of the SCR catalyst 47 of the SCR device 42, and an SCR catalyst outlet side temperature sensor 53 is provided on the outlet side.

エンジンEは、ECU32により運転の全般的な制御がなされる。ECU32には、温度検出手段33、空燃比制御手段34、噴射制御手段35が形成されると共にHCと尿素水の転換率マップ37が格納される。   The engine E is generally controlled by the ECU 32. The ECU 32 includes a temperature detection unit 33, an air-fuel ratio control unit 34, and an injection control unit 35, and stores a conversion rate map 37 of HC and urea water.

排ガス後処理装置10の各温度センサ28、50、51、52、53の検出値は、エンジンEの運転を制御するECU32の温度検出手段33に入力される。   The detection values of the temperature sensors 28, 50, 51, 52, 53 of the exhaust gas aftertreatment device 10 are input to the temperature detection means 33 of the ECU 32 that controls the operation of the engine E.

空燃比制御手段34は、EGRバルブ22、吸気バルブ17を制御し、噴射制御手段35は、エンジンEの燃焼噴射量を制御すると共にインジェクタによるポスト噴射などのマルチ噴射を制御し、さらに排気管インジェクタ23から噴射する燃料を制御する。   The air-fuel ratio control means 34 controls the EGR valve 22 and the intake valve 17, and the injection control means 35 controls the combustion injection amount of the engine E, controls multi-injection such as post-injection by the injector, and further exhaust pipe injector The fuel injected from 23 is controlled.

尿素水噴射ノズル49は、ECU32と接続されたDCU(ドージングコントロールユニット)55で制御される。尿素水噴射ノズル49による尿素水の噴射は、図示では省略しているが、DCU55で制御されるサプライモジュールが尿素水タンク内の尿素水を吸い込むと共にこれを所定の圧に昇圧し、尿素水噴射ノズル49内の開閉弁をDCU55が制御することで、排ガス中のNOx濃度に応じた所定量の尿素水を尿素水噴射ノズル49から噴射するようになっている。   The urea water injection nozzle 49 is controlled by a DCU (Dosing Control Unit) 55 connected to the ECU 32. Although the urea water injection by the urea water injection nozzle 49 is omitted in the drawing, the supply module controlled by the DCU 55 sucks the urea water in the urea water tank and raises it to a predetermined pressure, thereby injecting the urea water. The DCU 55 controls the on-off valve in the nozzle 49 so that a predetermined amount of urea water corresponding to the NOx concentration in the exhaust gas is injected from the urea water injection nozzle 49.

噴射された尿素水は排気管20からSCR装置42に流入する間に加水分解によりアンモニアが生成され、生成したアンモニアと排ガス中のNOxとをSCR触媒47で反応させて脱硝する。また余剰のアンモニアはDOC48に吸着されアンモニアスリップが防止される。   While the injected urea water flows into the SCR device 42 from the exhaust pipe 20, ammonia is generated by hydrolysis, and the generated ammonia and NOx in the exhaust gas are reacted by the SCR catalyst 47 to denitrate. Excess ammonia is adsorbed on the DOC 48 to prevent ammonia slip.

このSCR触媒47による排ガス後処理装置10では、前段のDPF装置41で排ガス中のPMを捕捉し、後段のSCR装置42で排ガス中のNOxを脱硝する。   In the exhaust gas aftertreatment device 10 using the SCR catalyst 47, PM in the exhaust gas is captured by the front DPF device 41, and NOx in the exhaust gas is denitrated by the rear SCR device 42.

この脱硝の際、ECU32は、温度検出手段33に入力される温度センサ28〜31、特にDPF温度センサ51とSCR触媒入口側温度センサ52の排ガス温度Yに基づき、転換率マップ37から尿素水を噴射したときのアンモニア転換率を求め、そのアンモニア転換率が噴射可能な閾値K以上かどうかを判断して、SCR触媒47の入口側で尿素水がアンモニアに分解可能かを推定し、可能な場合のみ尿素水噴射ノズル49から排気管20へ尿素水を噴射する。   At the time of the denitration, the ECU 32 receives urea water from the conversion rate map 37 based on the temperature sensors 28 to 31 input to the temperature detection means 33, particularly the exhaust gas temperature Y of the DPF temperature sensor 51 and the SCR catalyst inlet side temperature sensor 52. When the ammonia conversion rate at the time of injection is obtained, it is determined whether the ammonia conversion rate is equal to or higher than a threshold K for injection, and it is estimated whether urea water can be decomposed into ammonia at the inlet side of the SCR catalyst 47. Only urea water is injected from the urea water injection nozzle 49 to the exhaust pipe 20.

このアンモニアの転換率マップ37は、図2で説明したように尿素水噴射ノズル49からSCR触媒47の入口までの排ガス温度分布を、DPF温度センサ51とSCR触媒入口側温度センサ52とで求めると共に尿素水噴射ノズル49からSCR触媒47の入口までの噴射後距離を求めて平均温度を求め、この平均温度を基に図3で説明した手法と同様に事前に作成したアンモニア転換率マップからアンモニア転換率Zを求め、アンモニア転換率Zが閾値K以上かどうかを推定し、閾値K(K=略100%近く)以上であれば、尿素水の噴射を許可する。不可の場合は尿素噴射を禁止する。   The ammonia conversion rate map 37 obtains the exhaust gas temperature distribution from the urea water injection nozzle 49 to the inlet of the SCR catalyst 47 by the DPF temperature sensor 51 and the SCR catalyst inlet side temperature sensor 52 as described in FIG. The post-injection distance from the urea water injection nozzle 49 to the inlet of the SCR catalyst 47 is obtained to obtain the average temperature, and the ammonia conversion from the ammonia conversion rate map prepared in advance in the same manner as described in FIG. 3 based on this average temperature. The rate Z is obtained, and it is estimated whether or not the ammonia conversion rate Z is equal to or greater than the threshold value K. If it is equal to or greater than the threshold value K (K = approximately 100%), the urea water injection is permitted. If it is not possible, urea injection is prohibited.

また、DPF再生の場合の排気管インジェクタ23からの燃料HC噴射は、転換率マップ37のHC転換率マップを用いて図1〜図3で説明したようにHC転換率を求め、その転換率を基に、噴射を許可したり不許可とする。   Further, in the case of DPF regeneration, the fuel HC injection from the exhaust pipe injector 23 is obtained by using the HC conversion rate map of the conversion rate map 37 to obtain the HC conversion rate as described with reference to FIGS. Based on this, jetting is permitted or not permitted.

このように尿素SCR触媒の場合、SCR触媒47の直前で尿素水がアンモニアに転換可能かを推定し、可能な場合のみ、尿素水を噴射することで、尿素水の利用効率の向上やアンモニアスリップの防止などのメリットがある。   As described above, in the case of the urea SCR catalyst, it is estimated whether the urea water can be converted to ammonia immediately before the SCR catalyst 47, and only when possible, the urea water is injected to improve the use efficiency of the urea water or to reduce the ammonia slip. There is merit such as prevention.

20 排気管
23 排気管インジェクタ
25 DOC
26 NOx吸蔵還元型触媒
36 HC転換率マップ
E エンジン
20 Exhaust pipe 23 Exhaust pipe injector 25 DOC
26 NOx storage reduction catalyst 36 HC conversion map E Engine

Claims (7)

エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DOC、NOx吸蔵還元型触媒、DPFを接続して排ガス後処理装置を構成し、空燃比がリーン条件で排ガス中のNOxをNOx吸蔵還元型触媒で吸蔵し、空燃比がリッチ条件で前記排気管インジェクタから燃料を排気管噴射して還元ガスを生成し、その還元ガスで、吸蔵したNOxを還元・浄化するに際して、排ガス温度と燃料噴射後距離に対する燃料のHC転換率マップを予め作成しておき、燃料噴射位置から前記DOC直前までの排ガス温度を検出し、その検出温度と前記DOCまでの燃料噴射後距離とを基に、前記HC転換率マップから燃料のHC転換率を求めることを特徴とする排ガス後処理装置の還元剤のガス転換率判定方法。   An exhaust pipe injector is provided in the exhaust pipe of the engine, and an exhaust gas aftertreatment device is configured by connecting a DOC, NOx occlusion reduction type catalyst, and DPF to the exhaust pipe downstream of the exhaust pipe injector, and the air-fuel ratio is lean The NOx in the exhaust gas is occluded by the NOx occlusion reduction type catalyst, the fuel is injected into the exhaust pipe from the exhaust pipe injector under the rich air-fuel ratio condition to generate the reducing gas, and the reduced NOx is reduced / reduced by the reducing gas. At the time of purification, a fuel HC conversion rate map with respect to the exhaust gas temperature and the distance after fuel injection is prepared in advance, the exhaust gas temperature from the fuel injection position to immediately before the DOC is detected, and the detected temperature and the fuel injection to the DOC are detected. A method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device, wherein an HC conversion rate of fuel is obtained from the HC conversion rate map based on a rear distance. 求めたHC転換率が一定値以上のときに燃料を排気管噴射するようにし、HC転換率が一定値未満のとき、HC転換率が一定値以上となるようポスト噴射を行って排ガス温度を上昇させた後、排気管噴射する請求項1記載の排ガス後処理装置における還元剤のガス転換率判定方法。   Fuel is injected into the exhaust pipe when the calculated HC conversion rate is above a certain value, and when the HC conversion rate is below a certain value, post-injection is performed to increase the exhaust gas temperature so that the HC conversion rate is above a certain value. The method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device according to claim 1, wherein the exhaust pipe injection is performed after the exhaust pipe is injected. 前記HC転換率マップにおける燃料噴射後距離は、燃料噴射位置から前記DOC直前までの空間距離で求めると共に、HC転換率は、エンジンが通常負荷のときの排ガス流量とその排ガス温度から求め、アイドリングや全負荷時のHC転換率は、アイドリングや全負荷時の排ガスの空間速度を係数とし、その係数で前記通常負荷の空間距離を補正して求める請求項1記載の排ガス後処理装置における還元剤のガス転換率判定方法。   The distance after fuel injection in the HC conversion rate map is obtained from the spatial distance from the fuel injection position to immediately before the DOC, and the HC conversion rate is obtained from the exhaust gas flow rate and the exhaust gas temperature when the engine is at a normal load. The HC conversion rate at the full load is obtained by using the space velocity of the exhaust gas at idling or full load as a coefficient, and correcting the spatial distance of the normal load by the coefficient. Gas conversion rate judgment method. エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DPFを接続し、そのDPFの下流側の排気管にSCR、DOCを接続し、前記SCRの上流側排気管に尿素水噴射ノズルを設けて排ガス後処理装置を構成し、尿素水噴射ノズルから尿素水を噴射してアンモニアからなる還元ガスを生成し、その還元ガスで、前記SCR上でNOxを脱硝するに際して、排ガス温度と尿素水噴射後距離に対する尿素水のアンモニア転換率マップを予め作成しておき、尿素水噴射位置から前記SCRまでの排ガス温度を検出し、その検出温度と前記SCRまでの尿素水噴射後距離とを基に、前記アンモニア転換率マップから尿素水のアンモニア転換率を求めることを特徴とする排ガス後処理装置における還元剤のガス転換率判定方法。   An exhaust pipe injector is provided in an exhaust pipe of the engine, a DPF is connected to an exhaust pipe downstream of the exhaust pipe injector, an SCR and a DOC are connected to an exhaust pipe downstream of the DPF, and an upstream side of the SCR A urea water injection nozzle is provided in the exhaust pipe to constitute an exhaust gas after-treatment device, and urea water is injected from the urea water injection nozzle to generate a reducing gas composed of ammonia, and NOx is denitrated on the SCR with the reducing gas. In this case, an ammonia conversion rate map of urea water with respect to the exhaust gas temperature and the distance after urea water injection is prepared in advance, the exhaust gas temperature from the urea water injection position to the SCR is detected, and the detected temperature and urea to the SCR are detected. Based on the distance after water injection, the ammonia conversion rate of urea water is obtained from the ammonia conversion rate map. Scan conversion rate determination method. 求めたアンモニア転換率が一定値以上のときに尿素水噴射ノズルから尿素水を噴射するようにし、アンモニア転換率が一定値未満のとき、アンモニア転換率が一定値以上となるようポスト噴射を行って排ガス温度を上昇させた後、尿素水を噴射する請求項4記載の排ガス後処理装置の還元剤のガス転換率判定方法。   When the calculated ammonia conversion rate is above a certain value, urea water is injected from the urea water injection nozzle, and when the ammonia conversion rate is less than a certain value, post injection is performed so that the ammonia conversion rate is above a certain value. The method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device according to claim 4, wherein urea water is injected after raising the exhaust gas temperature. エンジンの排気管に、排気管インジェクタを設け、その排気管インジェクタの下流側の排気管に、DOC、DPFを接続して排ガス後処理装置を構成し、そのDPFにPMが堆積したとき、前記排気管インジェクタから燃料を排気管噴射して還元ガスを生成し、その還元ガスを前記DOCで燃焼させて排ガス温度を上昇させてDPFに堆積したPMを燃焼させてDPFを再生するに際し、排ガス温度と燃料噴射後距離に対する燃料のHC転換率マップを予め作成しておき、燃料噴射位置から前記DOC直前までの排ガス温度を検出し、その検出温度と前記DOCまでの燃料噴射後距離とを基に、前記HC転換率マップから燃料のHC転換率を求めることを特徴とする排ガス後処理装置における還元剤のガス転換率判定方法。   An exhaust pipe injector is provided in the exhaust pipe of the engine, and an exhaust gas aftertreatment device is configured by connecting DOC and DPF to the exhaust pipe downstream of the exhaust pipe injector. When PM is deposited on the DPF, When exhaust gas is injected from the pipe injector into the exhaust pipe to generate reducing gas, the reducing gas is burned in the DOC to raise the exhaust gas temperature, and the PM deposited on the DPF is burned to regenerate the DPF. An HC conversion rate map of the fuel with respect to the distance after fuel injection is prepared in advance, the exhaust gas temperature from the fuel injection position to immediately before the DOC is detected, and based on the detected temperature and the distance after fuel injection to the DOC, A method for determining a gas conversion rate of a reducing agent in an exhaust gas aftertreatment device, wherein an HC conversion rate of fuel is obtained from the HC conversion rate map. 求めたHC転換率が一定値以上のときに排気管インジェクタから燃料を噴射してHCなどからなる還元ガスを生成し、その還元ガスを前記DOCで燃焼させて排ガス温度をDPF再生温度まで上昇させ、HC転換率が一定値未満のとき、HC転換率が一定値以上となるようポスト噴射を行って前記DOCに至る排ガス温度を上昇させた後、排気管噴射する請求項6記載の排ガス後処理装置における還元剤のガス転換率判定方法。   When the calculated HC conversion rate is equal to or higher than a certain value, fuel is injected from the exhaust pipe injector to generate reducing gas composed of HC and the like, and the reducing gas is burned in the DOC to raise the exhaust gas temperature to the DPF regeneration temperature. The exhaust gas aftertreatment according to claim 6, wherein when the HC conversion rate is less than a certain value, post-injection is performed so that the HC conversion rate becomes a certain value or more, the exhaust gas temperature reaching the DOC is increased, and then exhaust pipe injection is performed. A method for determining a gas conversion rate of a reducing agent in an apparatus.
JP2013084829A 2013-04-15 2013-04-15 Gas conversion rate determination method of reductant in exhaust gas after treatment device Pending JP2014206123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084829A JP2014206123A (en) 2013-04-15 2013-04-15 Gas conversion rate determination method of reductant in exhaust gas after treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084829A JP2014206123A (en) 2013-04-15 2013-04-15 Gas conversion rate determination method of reductant in exhaust gas after treatment device

Publications (1)

Publication Number Publication Date
JP2014206123A true JP2014206123A (en) 2014-10-30

Family

ID=52119868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084829A Pending JP2014206123A (en) 2013-04-15 2013-04-15 Gas conversion rate determination method of reductant in exhaust gas after treatment device

Country Status (1)

Country Link
JP (1) JP2014206123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014567A (en) * 2016-08-05 2016-10-12 广西联邦农业科技有限公司 Engine exhaust-gas treatment system
CN109779722A (en) * 2017-11-14 2019-05-21 浙江福爱电子有限公司 A kind of engine exhaust heat management system and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014567A (en) * 2016-08-05 2016-10-12 广西联邦农业科技有限公司 Engine exhaust-gas treatment system
CN109779722A (en) * 2017-11-14 2019-05-21 浙江福爱电子有限公司 A kind of engine exhaust heat management system and its control method
CN109779722B (en) * 2017-11-14 2023-12-29 浙江福爱电子有限公司 Engine exhaust heat management system and control method thereof

Similar Documents

Publication Publication Date Title
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
EP2554816B1 (en) NH3 emissions management in a nox reduction system
US7950224B2 (en) Method for controlling exhaust gas purification system
WO2013172215A1 (en) Exhaust gas purification system and method for purifying exhaust gas
JP2014202126A (en) Deterioration determination method of nox occlusion reduction type catalyst in exhaust gas aftertreatment device
JP2007198283A (en) Exhaust emission control method and system
JP2019035370A (en) Exhaust emission control device and vehicle comprising the same
JP6344259B2 (en) Urea addition control device, learning device
JP2014206123A (en) Gas conversion rate determination method of reductant in exhaust gas after treatment device
JP2017106399A (en) Exhaust emission control device for internal combustion engine
CN106605048B (en) Method for controlling NOx reduction in exhaust gas aftertreatment device
US20150192045A1 (en) Exhaust gas treatment system comprising a catalytic particulate filter, and corresponding method
US10443465B2 (en) Engine exhaust system and control system for an engine exhaust system
JP2014109228A (en) Nozzle clogging detector
KR101610060B1 (en) Exhaust gas purification system
JP6398401B2 (en) Exhaust purification system
JP6398402B2 (en) Exhaust purification system
JP6248807B2 (en) Function recovery method of exhaust gas aftertreatment device, exhaust gas aftertreatment device, and internal combustion engine
JP2016173037A (en) Exhaust emission control system
JP6686516B2 (en) Exhaust gas treatment method and device using LNT
JP2022054626A (en) Exhaust emission control system for internal combustion engine
JP2018048568A (en) Internal combustion engine and method for increasing temperature of exhaust gas thereof