JP2014205085A - Method for producing functional carrier, functional carrier, method for treating carbon dioxide and reaction vessel - Google Patents

Method for producing functional carrier, functional carrier, method for treating carbon dioxide and reaction vessel Download PDF

Info

Publication number
JP2014205085A
JP2014205085A JP2013082341A JP2013082341A JP2014205085A JP 2014205085 A JP2014205085 A JP 2014205085A JP 2013082341 A JP2013082341 A JP 2013082341A JP 2013082341 A JP2013082341 A JP 2013082341A JP 2014205085 A JP2014205085 A JP 2014205085A
Authority
JP
Japan
Prior art keywords
carrier
functional
producing
carbon dioxide
functional carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082341A
Other languages
Japanese (ja)
Other versions
JP6267437B2 (en
Inventor
武次 廣田
Takeji Hirota
武次 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013082341A priority Critical patent/JP6267437B2/en
Publication of JP2014205085A publication Critical patent/JP2014205085A/en
Application granted granted Critical
Publication of JP6267437B2 publication Critical patent/JP6267437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for producing a functional carrier having satisfactory contact cracking power to carbon dioxide, a functional carrier produced by the method for producing a functional carrier, a method for treating carbon dioxide using the functional carrier, and a reaction vessel used in the method for producing a functional carrier.SOLUTION: Raw material at least containing nitride and metal is baked while being exposed to a magnetic field produced by permanent magnets or electric magnets to produce a functional carrier having contact cracking power to carbon dioxide.

Description

本発明は、炭酸ガスに対する接触分解能を有する機能性担体の製造方法、前記機能性担体の製造方法によって製造された機能性担体、前記機能性担体を用いた炭酸ガスの処理方法、前記機能性担体の製造方法において用いられる反応容器に関する。   The present invention relates to a method for producing a functional carrier having a resolution capable of contacting carbon dioxide, a functional carrier produced by the method for producing the functional carrier, a method for treating carbon dioxide using the functional carrier, and the functional carrier. The present invention relates to a reaction vessel used in the production method.

地球温暖化現象は、種々の要因によって引き起こされている現象であるが、人間の産業活動に伴って大気中に排出された炭酸ガス(CO)などの温室効果ガスが大きな要因となっているとする説が主流となっている。そのため、炭酸ガスの排出量の削減が国際的な課題とされている。又、排出された炭酸ガスを回収する手段についても開発が進められている。 Global warming is a phenomenon caused by various factors, but greenhouse gases such as carbon dioxide (CO 2 ) discharged into the atmosphere with human industrial activities are a major factor. The theory is becoming mainstream. Therefore, reducing carbon dioxide emissions is an international issue. Development of means for collecting the discharged carbon dioxide gas is also in progress.

炭酸ガスを回収する手段としては、大気中の二酸化炭素を吸着し、吸着した二酸化炭素を光分解する吸着分解触媒が開発されている(例えば、下記特許文献1参照)。   As means for recovering carbon dioxide gas, an adsorptive decomposition catalyst that adsorbs carbon dioxide in the atmosphere and photodecomposes the adsorbed carbon dioxide has been developed (for example, see Patent Document 1 below).

特開2010‐274258号公報JP 2010-274258 A

しかしながら、光分解による二酸化炭素の分解は、紫外線領域の光エネルギーが必要であり、夜間や暗所では、効率よく二酸化炭素を分解することができない。   However, decomposition of carbon dioxide by photolysis requires light energy in the ultraviolet region, and carbon dioxide cannot be efficiently decomposed at night or in dark places.

本発明は、前記技術的課題を解決するために開発されたものであって、炭酸ガスに対する良好な接触分解能を有する新規な機能性担体の製造方法、前記機能性担体の製造方法によって製造された機能性担体、前記機能性担体を用いた炭酸ガスの処理方法、前記機能性担体の製造方法において用いられる反応容器を提供することを目的とする。   The present invention was developed to solve the technical problem, and was produced by a novel functional carrier production method having good contact resolution with respect to carbon dioxide gas and the functional carrier production method. It is an object of the present invention to provide a functional carrier, a method for treating carbon dioxide using the functional carrier, and a reaction vessel used in the method for producing the functional carrier.

本発明の機能性担体の製造方法は、炭酸ガスに対する接触分解能を有する機能性担体を製造する方法であって、窒化物と、金属と、を少なくとも含む原料を容器内に収容し、永久磁石又は電磁石によって生じさせた磁場に晒しながら焼成することを特徴とする(以下、「本発明製造方法」と称する。)。   The method for producing a functional carrier according to the present invention is a method for producing a functional carrier having a resolution capable of contacting carbon dioxide gas. A raw material containing at least a nitride and a metal is contained in a container, and a permanent magnet or It is characterized by firing while being exposed to a magnetic field generated by an electromagnet (hereinafter referred to as “the manufacturing method of the present invention”).

本発明製造方法において、前記「窒化物」とは、窒素(電気陰性度:3.04(ポーリングの値))より電気陰性度の低い原子と、窒素との組み合わせからなる化合物を意味する。   In the production method of the present invention, the “nitride” means a compound comprising a combination of an atom having an electronegativity lower than that of nitrogen (electronegativity: 3.04 (Pauling value)) and nitrogen.

本発明製造方法において、前記「金属」とは、純金属及び合金を意味する。   In the production method of the present invention, the “metal” means a pure metal and an alloy.

本発明製造方法において、前記「永久磁石」とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことを意味する。前記永久磁石としては、例えば、フェライト磁石、サマリウムコバルト磁石、及びネオジウム磁石等を挙げることができる。本発明製造方法においては、前記永久磁石として、耐熱性に優れるサマリウムコバルト磁石を用いることが好ましい。   In the production method of the present invention, the “permanent magnet” means an object that keeps the properties as a magnet for a relatively long period of time without being supplied with a magnetic field or current from the outside. Examples of the permanent magnet include a ferrite magnet, a samarium cobalt magnet, and a neodymium magnet. In the production method of the present invention, it is preferable to use a samarium cobalt magnet having excellent heat resistance as the permanent magnet.

一方、前記「電磁石」とは、通電することによって一時的に磁力を発生させる機械要素を意味する。前記電磁石としては、磁性材料の芯のまわりにコイルが巻き回されてなり、前記コイルに通電されることによって磁力を発生させるものが好適に用いられる。   On the other hand, the “electromagnet” means a mechanical element that temporarily generates a magnetic force when energized. As the electromagnet, a coil in which a coil is wound around a core made of a magnetic material and a magnetic force is generated by energizing the coil is preferably used.

本発明製造方法においては、前記金属100重量部に対して、前記窒化物が1重量部以上の配合割合となされた原料を用いることが好ましい態様となる。   In the production method of the present invention, it is preferable to use a raw material in which the nitride is mixed at 1 part by weight or more with respect to 100 parts by weight of the metal.

本発明製造方法においては、前記原料を20mT以上の磁束密度を有する磁場に晒しながら焼成することが好ましい態様となる。   In the production method of the present invention, it is preferable that the raw material is fired while being exposed to a magnetic field having a magnetic flux density of 20 mT or more.

本発明製造方法においては、前記原料を200℃以上の焼成温度にて焼成することが好ましい態様となる。   In the production method of the present invention, it is preferable that the raw material is fired at a firing temperature of 200 ° C. or higher.

本発明製造方法においては、前記容器として、鉄製、又は鉄合金製のものをもちいることが好ましい態様となる。   In the production method of the present invention, it is preferable that the container is made of iron or iron alloy.

本発明製造方法においては、前記窒化物として、窒化リチウム、窒化ホウ素、又は窒化アルミニウムから選ばれた少なくとも一種以上を用いることが好ましい態様となる。   In the manufacturing method of the present invention, it is preferable to use at least one selected from lithium nitride, boron nitride, or aluminum nitride as the nitride.

本発明製造方法においては、前記金属として、錫、又は錫合金を用いることが好ましい態様となる。   In the production method of the present invention, it is preferable to use tin or a tin alloy as the metal.

本発明製造方法においては、前記原料として、アルカリ溶液中に分散させた前記窒化物と、前記金属と、を少なくとも含むものを用いることが好ましい態様となる。   In the production method of the present invention, it is preferable to use a material containing at least the nitride dispersed in an alkaline solution and the metal as the raw material.

本発明の機能性担体は、前記本発明製造方法によって製造されてなるものであって、炭酸ガスに対する接触分解能を有することを特徴とする(以下、「本発明担体」と称する。)。   The functional carrier of the present invention is produced by the production method of the present invention, and has a contact resolution with respect to carbon dioxide gas (hereinafter referred to as “the carrier of the present invention”).

本発明の炭酸ガス処理方法は、前記本発明担体を用いて炭酸ガスを接触分解することを特徴とする(以下、「本発明方法」と称する。)。   The carbon dioxide treatment method of the present invention is characterized in that carbon dioxide is catalytically decomposed using the carrier of the present invention (hereinafter referred to as “the method of the present invention”).

本発明の反応容器は、前記本発明製造方法において用いられる容器と、永久磁石又は電磁石と、の組み合わせからなることを特徴とする(以下、「本発明容器」と称する。)。   The reaction container of the present invention is characterized by comprising a combination of a container used in the production method of the present invention and a permanent magnet or an electromagnet (hereinafter referred to as “the container of the present invention”).

本発明によれば、気体状態にある二酸化炭素に対する接触分解能を有する機能性担体を製造することができる。   According to the present invention, a functional carrier having a contact resolution for carbon dioxide in a gaseous state can be produced.

図1(a)は、本発明容器における容器を示す斜視図であり、図1(b)は、前記容器に永久磁石を張り付けた状態の本発明容器を示す斜視図である。Fig.1 (a) is a perspective view which shows the container in this invention container, FIG.1 (b) is a perspective view which shows this invention container of the state which stuck the permanent magnet to the said container.

以下、本発明の実施形態を説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to this embodiment.

[実施例1]
錫60重量部と、鉛40重量部とからなる錫合金100重量部に対し、粉末状の窒化アルミニウム(粒径1〜1.5μm)5重量部を加えて原料を調整した。この原料を、図1(a)に示す鉄製の容器(縦700mm×横500mm×深さ50mm)2に収容したうえで、前記容器2の上部開口を鉄製の蓋3にて覆った。
[Example 1]
A raw material was prepared by adding 5 parts by weight of powdered aluminum nitride (particle size: 1 to 1.5 μm) to 100 parts by weight of a tin alloy composed of 60 parts by weight of tin and 40 parts by weight of lead. The raw material was accommodated in an iron container (length 700 mm × width 500 mm × depth 50 mm) 2 shown in FIG. 1A, and the upper opening of the container 2 was covered with an iron lid 3.

前記容器2を前記蓋3にて覆った後、図1(b)に示すように、16kgの吸着力を有する永久磁石(サマリウムコバルト磁石)4を前記容器2の底面側に五個、前記蓋3の表面に五個、それぞれサイコロの5の目の配置となるように張り付けることによって、本発明容器1とした。この際、前記容器2の底面側に張り付けた永久磁石4と、前記蓋3の表面に張り付けた永久磁石4とが、互いに吸引し合う関係となるように、各々の磁極の向きを揃えて張り付けた。これにより、前記補本発明容器1は、前記容器2に向かって前記蓋3が強く引き付けられた状態となる。又、前記容器2内に収容された前記原料は、前記永久磁石4によって生じた磁場(磁束密度:100mT)に晒されることになる。   After covering the container 2 with the lid 3, as shown in FIG. 1B, five permanent magnets (samarium cobalt magnets) 4 having an adsorption force of 16 kg on the bottom surface side of the container 2, the lid The present invention container 1 was obtained by pasting 5 pieces on the surface of 3 so as to be arranged in the form of the fifth of the dice. At this time, the permanent magnets 4 attached to the bottom surface of the container 2 and the permanent magnets 4 attached to the surface of the lid 3 are attached with their magnetic poles aligned so that they attract each other. It was. Thereby, the said complementary invention container 1 will be in the state by which the said lid | cover 3 was attracted | sucked toward the said container 2 strongly. Further, the raw material accommodated in the container 2 is exposed to a magnetic field (magnetic flux density: 100 mT) generated by the permanent magnet 4.

この状態の本発明容器1を電気炉にて、400℃の焼成温度で30分加熱することによって、本発明担体を得た。   The carrier of the present invention was obtained by heating the container 1 of the present invention in this state in an electric furnace at a firing temperature of 400 ° C. for 30 minutes.

[実施例2]
前記窒化アルミニウムにつき、アルカリ溶液としての3号水ガラスに分散させた状態として、前記原料を調整した以外は、前記実施例1と同様にして本発明担体を得た。
[Example 2]
The carrier of the present invention was obtained in the same manner as in Example 1 except that the aluminum nitride was dispersed in No. 3 water glass as an alkaline solution and the raw material was adjusted.

[比較例1]
前記実施例1と同様の原料を前記容器2内に収容し、前記容器2の上部開口を前記蓋3にて覆ったうえで、磁場に晒すことなく焼成(400℃、30分)を行うことによって、比較例1に係る担体を得た。
[Comparative Example 1]
The same raw material as in Example 1 is accommodated in the container 2, and the upper opening of the container 2 is covered with the lid 3, and then firing (400 ° C., 30 minutes) without exposure to a magnetic field. Thus, a carrier according to Comparative Example 1 was obtained.

[比較例2]
錫60重量部と、鉛40重量部とからなる錫合金を前記容器本体2に投入し、前記容器本体2の上部開口を前記蓋3にて覆ったうえで、前記実施形態1と同様の磁場に晒しながら焼成(400℃、30分)を行うことによって、比較例2に係る担体を得た。即ち、比較例2では、窒化物が配合されていない原料を焼成に供した。
[Comparative Example 2]
A tin alloy composed of 60 parts by weight of tin and 40 parts by weight of lead is put into the container body 2, and the upper opening of the container body 2 is covered with the lid 3. The carrier according to Comparative Example 2 was obtained by performing calcination (400 ° C., 30 minutes) while being exposed to water. That is, in Comparative Example 2, a raw material not containing a nitride was subjected to firing.

<本発明方法(炭酸ガスの接触分解)>
実施例1、実施例2にて得られた本発明担体、及び比較例1、比較例2にて得られた担体を下記に示す手順からなる接触分解試験に供した。
<Method of the present invention (catalytic decomposition of carbon dioxide gas)>
The carrier of the present invention obtained in Example 1 and Example 2, and the carrier obtained in Comparative Example 1 and Comparative Example 2 were subjected to a catalytic decomposition test comprising the following procedure.

‐試験‐
(1)各担体を破砕し、2〜3cm角程度の破砕物とする。
(2)容量5リットルのテトラバッグを用意し、各担体の粉砕物200gを各々前記テトラバッグに入れる。
(3)各テトラバッグ内に、3リットルずつ炭酸ガス(二酸化炭素濃度:99.5%)を注入する。
(4)炭酸ガスの注入後、各テトラバックを室内(25℃)に静置し、定期的に各テトラバッグ内の二酸化炭素濃度をガス検知管にて測定する。
係る接触分解試験の結果を下記表1に示す。
-test-
(1) Each carrier is crushed into a crushed material of about 2 to 3 cm square.
(2) A tetra-bag having a capacity of 5 liters is prepared, and 200 g of each carrier pulverized product is put into the tetra-bag.
(3) Carbon dioxide (carbon dioxide concentration: 99.5%) is injected into each tetra bag by 3 liters.
(4) After injecting carbon dioxide, each tetrabag is left in the room (25 ° C.), and the carbon dioxide concentration in each tetrabag is periodically measured with a gas detector tube.
The results of the catalytic cracking test are shown in Table 1 below.

Figure 2014205085
Figure 2014205085

表1に示す結果より、実施例1、実施例2にて得られた本発明担体は、試験開始後72時間以内で、テトラバック内に注入された3リットルの炭酸ガスを全て処理した。これより、本発明担体における、炭酸ガスに対する良好な接触分解能を確認することができた。   From the results shown in Table 1, the carrier of the present invention obtained in Example 1 and Example 2 treated all 3 liters of carbon dioxide injected into the tetrabag within 72 hours after the start of the test. From this, it was possible to confirm good contact resolution with respect to carbon dioxide gas in the carrier of the present invention.

又、実施例1にて得られた本発明担体と比較して、実施例2にて得られた本発明担体の方が二酸化炭素に対する接触分解スピードが高いことが確認された。これは、原料を調整する際に、窒化アルミニウムをアルカリ溶液に分散させたことにより、空気中の水分によって窒化アルミニウムが分解される反応が抑制されたことを原因とすると考えられる。   In addition, it was confirmed that the carrier of the present invention obtained in Example 2 has a higher catalytic decomposition speed for carbon dioxide than the carrier of the present invention obtained in Example 1. This is considered to be caused by the fact that aluminum nitride is dispersed in an alkaline solution when the raw material is prepared, thereby suppressing the reaction of aluminum nitride being decomposed by moisture in the air.

一方、焼成工程時において磁場に晒すことなく焼成された比較例1に係る担体や、窒化物が配合されていない比較例2に係る担体は、炭酸ガスに対する接触分解能を有していないことが認められた。   On the other hand, the carrier according to Comparative Example 1 that was fired without being exposed to a magnetic field during the firing step or the carrier according to Comparative Example 2 that was not compounded with nitride did not have a contact resolution for carbon dioxide gas. It was.

次いで、実施例1、及び実施例2に係る本発明担体につき、テトラバック内の二酸化炭素濃度が0%となった時点で、テトラバック内に3リットルの炭酸ガスを再度注入する作業を繰り返すことによって、本発明担体一重量単位当たりの二酸化炭素分解量を検討したところ、実施例1に係る本発明担体は、一重量単位当たり、重量にして100倍以上の二酸化炭素を分解し得ることが確認された。又、実施例2に係る本発明担体は、一重量単位当たり、重量にして150倍以上の二酸化炭素を分解し得ることが確認された。   Next, for the carrier of the present invention according to Example 1 and Example 2, when the carbon dioxide concentration in the tetrabac becomes 0%, the operation of injecting 3 liters of carbon dioxide gas again into the tetrabac is repeated. The amount of carbon dioxide decomposition per unit of weight of the carrier of the present invention was examined by the above, and it was confirmed that the carrier of the present invention according to Example 1 can decompose carbon dioxide 100 times or more by weight per unit of weight. It was done. Further, it was confirmed that the carrier of the present invention according to Example 2 can decompose 150 times or more of carbon dioxide by weight per weight unit.

又、炭酸ガスに替えて、テトラバック内にアンモニアガスを注入して同様の試験を行ったところ、本発明担体は、アンモニアガスに対する接触分解能も有することが確認された。   In addition, when a similar test was performed by injecting ammonia gas into the tetrabag instead of carbon dioxide, it was confirmed that the carrier of the present invention also has a contact resolution for ammonia gas.

これより、本発明担体は、炭酸ガスのみならず、アンモニアガス等のその他の気体成分についても、良好な接触分解能を有することが認められた。   From this, it was confirmed that the carrier of the present invention has good contact resolution not only with carbon dioxide gas but also with other gas components such as ammonia gas.

[実施例3〜6]
下記表2に、前記実施例2と同様の原料を用い、焼成温度、及び磁束密度を適宜変更して焼成を行うことによって本発明担体を得た、実施例3〜6の内容を示す。
[Examples 3 to 6]
Table 2 below shows the contents of Examples 3 to 6 in which the carrier of the present invention was obtained by performing firing by appropriately changing the firing temperature and magnetic flux density using the same raw materials as in Example 2.

Figure 2014205085
Figure 2014205085

実施例3〜6にて得られた本発明担体を、前記接触分解試験に供した結果を下記表3に示す。   Table 3 below shows the results obtained by subjecting the carriers of the present invention obtained in Examples 3 to 6 to the catalytic cracking test.

Figure 2014205085
Figure 2014205085

表3に示す結果より、実施例3〜6にて得られた本発明担体は、いずれも二酸化炭素ガスに対する接触分解能を有していることが認められた。   From the results shown in Table 3, it was confirmed that all of the carriers of the present invention obtained in Examples 3 to 6 have a contact resolution for carbon dioxide gas.

[実施例7〜9]
下記表4に、窒化アルミニウムの配合量を適宜変更した原料を用い、前記実施例2と同様の焼成を行うことによって本発明担体を得た実施例7〜10の内容を示す。
[Examples 7 to 9]
Table 4 below shows the contents of Examples 7 to 10 in which the carrier of the present invention was obtained by firing in the same manner as in Example 2 using raw materials in which the amount of aluminum nitride was appropriately changed.

Figure 2014205085
Figure 2014205085

実施例7〜9にて得られた本発明担体を、前記接触分解試験に供した結果を下記表5に示す。   Table 5 below shows the results obtained by subjecting the carriers of the present invention obtained in Examples 7 to 9 to the catalytic cracking test.

Figure 2014205085
Figure 2014205085

表3に示す結果より、実施例7〜9にて得られた本発明担体は、いずれも、試験開始後72時間以内で、テトラバック内に注入された3リットルの炭酸ガスのうちの90%以上を処理し得ることが確認された。   From the results shown in Table 3, the carriers of the present invention obtained in Examples 7 to 9 were all 90% of 3 liters of carbon dioxide injected into the tetrabag within 72 hours after the start of the test. It was confirmed that the above could be processed.

[実施例10〜15]
下記表6に、原料中の金属や窒化物を適宜変更して本発明担体を得た実施例10〜15の内容を示す。なお、焼成温度は、母材となる金属の融点に応じて適宜変更した。又、実施例15においては、磁場を発生させる要素として、電磁石を用いた。
[Examples 10 to 15]
Table 6 below shows the contents of Examples 10 to 15 in which the carrier of the present invention was obtained by appropriately changing the metal and nitride in the raw material. Note that the firing temperature was appropriately changed according to the melting point of the metal as the base material. In Example 15, an electromagnet was used as an element for generating a magnetic field.

Figure 2014205085
Figure 2014205085

実施例10〜15にて得られた本発明担体を、前記接触分解試験に供した結果を下記表7に示す。   The results obtained by subjecting the carriers of the present invention obtained in Examples 10 to 15 to the catalytic cracking test are shown in Table 7 below.

Figure 2014205085
Figure 2014205085

表7に示す結果より、実施例10〜15にて得られた本発明担体は、いずれも試験開始後72時間以内で、テトラバック内に注入された3リットルの炭酸ガスのうちの90%以上を処理し得ることが確認された。   From the results shown in Table 7, the carriers of the present invention obtained in Examples 10 to 15 were 90% or more of 3 liters of carbon dioxide gas injected into the tetrabag within 72 hours after the start of the test. It was confirmed that can be processed.

又、前記実施例15においては、磁場を発生させる要素として電磁石を用いているが、焼成時において電磁石による磁場に晒した場合にあっても、二酸化炭素ガスに対する接触分解能が得られることが確認された。   In Example 15, an electromagnet is used as an element for generating a magnetic field, but it has been confirmed that contact resolution with carbon dioxide gas can be obtained even when exposed to a magnetic field generated by an electromagnet during firing. It was.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、炭酸ガスをはじめとする種々の気体成分の分解除去に用いられる新規材料として好適に利用することができる。   The present invention can be suitably used as a novel material used for decomposing and removing various gas components including carbon dioxide.

1 本発明容器(本発明の反応容器)
2 容器
3 蓋
4 永久磁石


1 Container of the present invention (Reaction container of the present invention)
2 Container 3 Lid 4 Permanent magnet


Claims (11)

炭酸ガスに対する接触分解能を有する機能性担体を製造する方法であって、
窒化物と、金属と、を少なくとも含む原料を容器内に収容し、
永久磁石又は電磁石によって生じさせた磁場に晒しながら焼成することを特徴とする機能性担体の製造方法。
A method for producing a functional carrier having a contact resolution for carbon dioxide gas,
A raw material containing at least a nitride and a metal is contained in a container,
A method for producing a functional carrier, comprising firing while being exposed to a magnetic field generated by a permanent magnet or an electromagnet.
請求項1に記載の機能性担体の製造方法において、
前記金属100重量部に対して、前記窒化物が1重量部以上の配合割合となされた原料を用いる機能性担体の製造方法。
In the method for producing a functional carrier according to claim 1,
The manufacturing method of the functional support | carrier which uses the raw material by which the said nitride became a mixture ratio of 1 weight part or more with respect to 100 weight part of said metals.
請求項1又は2に記載の機能性担体の製造方法において、
前記原料を20mT以上の磁束密度を有する磁場に晒しながら焼成する機能性担体の製造方法。
In the method for producing a functional carrier according to claim 1 or 2,
A method for producing a functional carrier, wherein the raw material is fired while being exposed to a magnetic field having a magnetic flux density of 20 mT or more.
請求項1ないし3のいずれか1項に記載の機能性担体の製造方法において、
前記原料を200℃以上の焼成温度にて焼成する機能性担体の製造方法。
In the manufacturing method of the functional support | carrier of any one of Claim 1 thru | or 3,
A method for producing a functional carrier, wherein the raw material is fired at a firing temperature of 200 ° C. or higher.
請求項1ないし4のいずれか1項に記載の機能性担体の製造方法において、
前記容器として、鉄製、又は鉄合金製のものを用いる機能性担体の製造方法。
In the manufacturing method of the functional support | carrier of any one of Claim 1 thru | or 4,
The manufacturing method of the functional support | carrier using the thing made from iron or an iron alloy as said container.
請求項1ないし5のいずれか1項に記載の機能性担体の製造方法において、
前記窒化物として、窒化リチウム、窒化ホウ素、又は窒化アルミニウムから選ばれた少なくとも一種以上を用いる機能性担体の製造方法。
In the manufacturing method of the functional support | carrier of any one of Claim 1 thru | or 5,
A method for producing a functional carrier, wherein at least one selected from lithium nitride, boron nitride, or aluminum nitride is used as the nitride.
請求項1ないし6のいずれか1項に記載の機能性担体の製造方法において、
前記金属として、錫、又は錫合金を用いる機能性担体の製造方法。
In the manufacturing method of the functional support | carrier of any one of Claim 1 thru | or 6,
A method for producing a functional carrier using tin or a tin alloy as the metal.
請求項1ないし7のいずれか1項に記載の機能性担体の製造方法において、
前記原料として、アルカリ溶液に分散させた前記窒化物と、前記金属と、を少なくとも含むものを用いる機能性担体の製造方法。
In the manufacturing method of the functional support | carrier of any one of Claim 1 thru | or 7,
A method for producing a functional carrier, wherein the raw material contains at least the nitride dispersed in an alkaline solution and the metal.
請求項1ないし8のいずれか1項に記載の機能性担体の製造方法によって製造されてなる機能性担体であって、
炭酸ガスに対する接触分解能を有することを特徴とする機能性担体。
A functional carrier produced by the method for producing a functional carrier according to any one of claims 1 to 8,
A functional carrier having a contact resolution for carbon dioxide gas.
請求項9に記載の機能性担体を用いて、炭酸ガスを接触分解することを特徴とする炭酸ガス処理方法。   A carbon dioxide treatment method comprising catalytically decomposing carbon dioxide using the functional carrier according to claim 9. 請求項1ないし8のいずれか1項に記載の機能性担体の製造方法において用いられる容器と、永久磁石又は電磁石と、の組み合わせからなることを特徴とする反応容器。

A reaction container comprising a combination of a container used in the method for producing a functional carrier according to any one of claims 1 to 8, and a permanent magnet or an electromagnet.

JP2013082341A 2013-04-10 2013-04-10 Method for producing functional carrier, method for treating carbon dioxide gas Active JP6267437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082341A JP6267437B2 (en) 2013-04-10 2013-04-10 Method for producing functional carrier, method for treating carbon dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082341A JP6267437B2 (en) 2013-04-10 2013-04-10 Method for producing functional carrier, method for treating carbon dioxide gas

Publications (2)

Publication Number Publication Date
JP2014205085A true JP2014205085A (en) 2014-10-30
JP6267437B2 JP6267437B2 (en) 2018-01-24

Family

ID=52119129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082341A Active JP6267437B2 (en) 2013-04-10 2013-04-10 Method for producing functional carrier, method for treating carbon dioxide gas

Country Status (1)

Country Link
JP (1) JP6267437B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JP2010274258A (en) * 2009-04-28 2010-12-09 Hidenori Kato Catalyst for adsorbing/decomposing carbon dioxide and method for producing the catalyst
JP2012246174A (en) * 2011-05-27 2012-12-13 Sumitomo Electric Ind Ltd Method for manufacturing iron nitride material, and iron nitride material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JP2010274258A (en) * 2009-04-28 2010-12-09 Hidenori Kato Catalyst for adsorbing/decomposing carbon dioxide and method for producing the catalyst
JP2012246174A (en) * 2011-05-27 2012-12-13 Sumitomo Electric Ind Ltd Method for manufacturing iron nitride material, and iron nitride material

Also Published As

Publication number Publication date
JP6267437B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
CN103717764B (en) The recovery method of rare earth element
Wei et al. Synthesis, magnetization and photocatalytic activity of LaFeO3 and LaFe0. 5Mn0. 5− xO3− δ
CN103381363B (en) Catalysts and its preparation method, the purposes of deozonize and harmful organic substance simultaneously
Shen et al. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants
JP5849956B2 (en) Method for producing RTB-based sintered magnet
JP2013537877A5 (en)
CN107138168B (en) Ozone catalyst for high concentration organic nitrogen wastewater treatment
JP2012025636A (en) Adsorption reducing agent and reducing method of carbon dioxide
RU2013142363A (en) CATALYTIC COMPOSITION FOR THE SYNTHESIS OF CARBON NANOTUBES
CN106716573B (en) The manufacturing method of R-T-B systems sintered magnet
Singh et al. Traversing the advantageous role of samarium doped spinel nanoferrites for photocatalytic removal of organic pollutants
CN107649145B (en) Catalyst for decomposing ozone and preparation method thereof
Yin et al. Selective adsorption and stable solidification of radioactive cesium ions by porous silica gels loaded with insoluble ferrocyanides
JP6267437B2 (en) Method for producing functional carrier, method for treating carbon dioxide gas
JPWO2015133240A1 (en) Imide anion-containing mayenite type compound and method for producing the same
JPWO2013157585A1 (en) Method for stably fixing cesium
WO2018061915A1 (en) Shungite refinement method
JP6299181B2 (en) Recovery method of rare earth elements
Ho et al. Effect of neodymium on the physico‐chemical properties and N2O decomposition activity of Co (Cu)− Al mixed oxides
Abdullah et al. Preparation, characterization, and lead removal appraisal of zinc aluminate prepared at different calcination temperatures
JP6281261B2 (en) Method for reducing boron content of rare earth oxides containing boron
JP2011230087A (en) Decomposition catalyst and decomposition method of organic compound
JP5852912B2 (en) Method for producing zeolite
JP2016114396A (en) Disposal method and disposal device for radioactive substance adsorbent
JP2016019959A (en) Processing method for water containing heavy waters and processing device for water containing heavy waters

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6267437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250