JP2014204540A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2014204540A
JP2014204540A JP2013077980A JP2013077980A JP2014204540A JP 2014204540 A JP2014204540 A JP 2014204540A JP 2013077980 A JP2013077980 A JP 2013077980A JP 2013077980 A JP2013077980 A JP 2013077980A JP 2014204540 A JP2014204540 A JP 2014204540A
Authority
JP
Japan
Prior art keywords
power
power transmission
power supply
unit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013077980A
Other languages
Japanese (ja)
Other versions
JP6071709B2 (en
Inventor
典央 川見
Norihisa Kawami
典央 川見
長谷川 裕章
Hiroaki Hasegawa
裕章 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU ELECTRIC Manufacturing
Hokuriku Electric Co Ltd
Original Assignee
HOKURIKU ELECTRIC Manufacturing
Hokuriku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU ELECTRIC Manufacturing, Hokuriku Electric Co Ltd filed Critical HOKURIKU ELECTRIC Manufacturing
Priority to JP2013077980A priority Critical patent/JP6071709B2/en
Publication of JP2014204540A publication Critical patent/JP2014204540A/en
Application granted granted Critical
Publication of JP6071709B2 publication Critical patent/JP6071709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device that can obtain relatively high power supply efficiency without requiring operation skills for power supply work under the installation space of a practical primary winding part and the power supply efficiency is stable.SOLUTION: A non-contact power supply device comprises a power reception unit 1 comprised in an electric vehicle X, and a power transmission unit 2 comprised in a power supply platform Y set on a road surface that enables the electric vehicle X to go and stop. The power reception unit 1 comprises a power reception winding part 4, and the power transmission unit 2 comprises a power transmission winding part 7 for exciting inductive electromotive force and attraction force at the power reception winding part 4. The power supply platform Y comprises a storage tank P for storing insulation fluid G. The power transmission winding part 7 comprises a buoyant source 9 for enabling the power transmission winding part 7 to move horizontally at a constant depth in the storage tank P.

Description

本発明は、電気自動車や電動車椅子など、電力を当該車両における機能発揮のエネルギーとする電動車両の電源装置を充電する為の非接触給電装置に関する。   The present invention relates to a non-contact power feeding device for charging a power supply device of an electric vehicle that uses electric power as energy for demonstrating the function of the vehicle, such as an electric vehicle and an electric wheelchair.

電動車両の電源装置を充電する為に用いられる非接触給電装置は、一般的に、分離型変圧器の一次側(以下、送電と記す。)巻線部を給電プラットフォームに備え、二次側(以下、受電と記す。)巻線部を電動車両の底部に備える構成を採る。
前記分離型変圧器において、前記送電巻線部と受電巻線部に位置ズレが存在すると、磁気結合の不十分さにより前記送電巻線部による受電巻線部への給電効率が低くなることから、従来、この様な事態を回避すべく様々な措置が講じられている。
A non-contact power feeding device used for charging a power supply device of an electric vehicle generally includes a primary side (hereinafter referred to as power transmission) winding portion of a separation transformer in a power feeding platform, and a secondary side ( Hereinafter, this is referred to as “power reception.”) A configuration in which the winding portion is provided at the bottom of the electric vehicle is adopted.
In the separate transformer, if there is a positional deviation between the power transmission winding portion and the power receiving winding portion, the power feeding efficiency to the power receiving winding portion by the power transmission winding portion is lowered due to insufficient magnetic coupling. Conventionally, various measures have been taken to avoid such a situation.

具体的には、送電巻線部又は受電巻線部に位置センサー等の位置検出装置を設置し、両巻線部が一定の範囲内(例えば、各巻線部の中心からの位置ズレが±10cmの範囲内など。)に位置することを給電開始条件とした非接触給電装置(第一の従来技術:例えば、下記特許文献1参照。)や、送電巻線部に円盤型コイルを複数個設置し、受電巻線部が置かれた箇所に近いコイルのみに通電することによって、良好な給電効率を確保する措置が採られた携帯電話用非接触給電装置(第二の従来技術)や、送電巻線部及び受電巻線部にそれぞれ送信側コイル及び受信側コイルを備え、双方の通信感度を検知することにより適正な位置関係を検出する手法(第三の従来技術。例えば、下記特許文献2参照。)等が挙げられる。   Specifically, a position detection device such as a position sensor is installed in the power transmission winding part or the power reception winding part, and both winding parts are within a certain range (for example, the positional deviation from the center of each winding part is ± 10 cm). A non-contact power feeding device (first conventional technology: see, for example, Patent Document 1 below) or a plurality of disk-type coils installed in the power transmission winding section. In addition, a non-contact power feeding device for mobile phones (second prior art) in which measures are taken to ensure good power feeding efficiency by energizing only the coil close to the place where the power receiving winding is placed, power transmission A method of detecting an appropriate positional relationship by providing a transmission side coil and a reception side coil in a winding part and a receiving winding part respectively and detecting the communication sensitivity of both (for example, Patent Document 2 below). And the like).

更には、送電巻線部と受電巻線部の位置ズレを補正するために、別途モーターを付設し、その動力を利用して送電巻線部を効率の良好な位置関係となる様に移動させる手法(第四の従来技術)や、送電巻線部と受電巻線部との間に生じる磁力により自動的に位置合わせを行わせる手法(第五の従来技術。例えば、下記特許文献3又は特許文献4参照。)等を合わせた構成も紹介されている。   Furthermore, in order to correct the positional deviation between the power transmission winding portion and the power receiving winding portion, a separate motor is attached, and the power transmission winding portion is moved so as to have a good positional relationship using the power. A technique (fourth conventional technique) or a technique (fifth conventional technique, for example, Patent Document 3 or Patent below) that automatically aligns by a magnetic force generated between a power transmission winding section and a power receiving winding section. The structure which combined literature 4 etc.) etc. is also introduced.

特開昭63−48102号公報JP-A-63-48102 特許第4772744号公報Japanese Patent No. 4772744 特開平10−215532号公報Japanese Patent Laid-Open No. 10-215532 特開2009−95072号公報JP 2009-95072 A

しかしながら、前記第一の従来技術及び第三の従来技術にあっては、所定の位置からの位置ズレが一定範囲内となる様に素早く電動車両を停車させるには、運転手に高度の熟練を求める必要があるという問題があり、前記第二の従来技術を採用するにあっては、電動車両用の非接触給電装置の様な大容量の受電巻線部に対応できる比較的大型の送電巻線部を複数設置するスペースを確保する必要があるという問題がある。   However, in the first prior art and the third prior art, in order to quickly stop the electric vehicle so that the positional deviation from the predetermined position is within a certain range, the driver needs to be highly skilled. In adopting the second prior art, there is a problem that it is necessary to obtain a relatively large power transmission winding that can accommodate a large capacity power receiving winding portion such as a non-contact power feeding device for an electric vehicle. There is a problem that it is necessary to secure a space for installing a plurality of wire portions.

前記第四の従来技術の様に、モーター等の駆動手段を使用して機械的に位置ズレを補正する手法にあっては、電動車両用を移動させるための駆動装置が大型化し、設置スペースの確保が困難となる他、別途当該駆動装置の保守点検が必要となるという問題がある。
更に、前記第五の従来技術の様に、浮遊する送電巻線部を磁力によって自動的に受電巻線部に引き寄せて位置合わせを行わせる手法にあっては、磁力の強度を相当程度維持しなければ送電巻線部の位置がリード線の応力等、比較的弱い力でずれてしまい、磁力を高めた際にあっては位置決め用の電力コストが増し、又は磁力を高めない場合にあっては給電効率が不安定となるという問題があった。
As in the fourth prior art, in the method of mechanically correcting the positional deviation using a driving means such as a motor, the driving device for moving the electric vehicle is enlarged, and the installation space is reduced. In addition to being difficult to ensure, there is a problem that separate maintenance and inspection of the drive device is required.
Further, as in the fifth prior art, in the technique of automatically pulling the floating power transmission winding portion to the power receiving winding portion by magnetic force to perform alignment, the strength of the magnetic force is maintained to a considerable extent. Otherwise, the position of the power transmission winding will be shifted by a relatively weak force such as the stress of the lead wire. Had the problem of unstable feeding efficiency.

本発明は上記実情に鑑みてなされたものであって、実用性の高い送電巻線部の設置スペースの下、給電作業に運転の熟練を要することなく比較的高い給電効率が得られ、且つ当該給電効率が安定した非接触給電装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and a relatively high power supply efficiency can be obtained without requiring skill in operation for power supply work under the installation space of a highly practical power transmission winding section, and An object of the present invention is to provide a non-contact power feeding device with stable power feeding efficiency.

上記課題を解決するためになされた本発明による非接触給電装置は、電動車両が具備する受電部と、電動車両の通行及び停止が可能となる路面に設定された給電プラットフォームが具備する送電部を備え、前記受電部は、受電巻線部を備え、前記送電部は、当該受電巻線部に誘導起電力及び引力を励起する送電巻線部を備え、前記給電プラットフォームは、絶縁性流動体を蓄える貯留槽を備え、前記送電巻線部は、前記貯留槽内において当該送電巻線部を一定の深度で水平移動可能とする浮力源を備えることを特徴とする。   A non-contact power feeding device according to the present invention made to solve the above problems includes a power receiving unit provided in an electric vehicle and a power transmission unit provided in a power feeding platform set on a road surface on which the electric vehicle can pass and stop. The power receiving unit includes a power receiving winding unit, the power transmitting unit includes a power transmitting winding unit that excites induced electromotive force and attractive force in the power receiving winding unit, and the power feeding platform includes an insulating fluid. A storage tank is provided, and the power transmission winding section includes a buoyancy source that enables the power transmission winding section to move horizontally at a certain depth in the storage tank.

前記非接触給電装置は、前記送電巻線部が励起する引力で動作する制動手段を備える非接触給電装置とすることができる。前記制動手段の動作は、前記送電巻線部が励起する引力で制動する形態と制動を解除する形態のいずれを採っても良いし、引力の強さに応じて制動手段の動作が異なる構成を採用しても良い。   The non-contact power feeding device may be a non-contact power feeding device including a braking unit that operates with an attractive force excited by the power transmission winding unit. The operation of the braking means may take either a form of braking with an attractive force excited by the power transmission winding part or a form of releasing the braking, and a structure in which the operation of the braking means differs depending on the strength of the attractive force. It may be adopted.

前記受電部は、その受電巻線部を前記送電巻線部の逆極性とする電源装置を備えることによって、送電部及び受電部相互に生じる引力を強め得る構成を採用しても良い。   The power receiving unit may include a power supply device having a power receiving winding unit with a polarity opposite to that of the power transmitting winding unit, thereby increasing the attractive force generated between the power transmitting unit and the power receiving unit.

上記本発明による非接触給電装置によれば、一次巻線(以下、送電コイルと記す。)への通電により、送電巻線部が発生する磁力により送電巻線部を受電巻線部に近接させ、自動的に位置ズレ補正を行うことができる。また、前記送電巻線部を絶縁性流動体上に浮遊させることによって、比較的弱い磁力であってもモーター等を別途用いることなく前記位置ズレ補正を行う事が出来る。この様に絶縁性流動体上に前記送電巻線部を浮遊させる構成は、比較的簡素な構造で実現できるので、当該構造の追加による装置規模の拡大やコストの増加を回避することができる。   According to the non-contact power feeding device according to the present invention, when the primary winding (hereinafter referred to as a power transmission coil) is energized, the power transmission winding portion is brought close to the power reception winding portion by the magnetic force generated by the power transmission winding portion. In addition, it is possible to automatically perform positional deviation correction. Further, by suspending the power transmission winding part on the insulating fluid, the positional deviation correction can be performed without using a motor or the like even if the magnetic force is relatively weak. Thus, since the structure which makes the said power transmission winding part float on an insulating fluid can be implement | achieved by a comparatively simple structure, the expansion of the apparatus scale by the said structure addition and the increase in cost can be avoided.

前記受電巻線部に送電巻線部が近接した際、前記送電巻線部の動揺を抑制する制動手段を備えれば、両巻線部が非接触給電に最適な位置関係で固定され給電効率を高い状態に安定保持することができる。
また、前記制動手段を、前記送電巻線部が励起する引力で動作させる構成を採ることによって、別途アクチュエータを付設することなく簡素な構成で十分な制動手段を低コストで得ることができる。
When a power transmission winding section is in proximity to the power receiving winding section, a braking means that suppresses fluctuation of the power transmission winding section is provided so that both winding sections are fixed in an optimum positional relationship for non-contact power feeding, and power feeding efficiency Can be stably held in a high state.
Further, by adopting a configuration in which the braking means is operated by the attractive force excited by the power transmission winding portion, a sufficient braking means can be obtained at a low cost with a simple configuration without additionally providing an actuator.

また、前記送電巻線部の導通電流を増加させ、又は前記二次巻線(以下、受電コイルと記す。)に前記送電コイルとは逆極性の二次電流を供給する電源装置を備えることによって、位置ズレ補正動作の許容範囲が拡大され若しくはその動作が安定し、且つ位置ズレ補正後の動揺を回避する作用も得ることができる。   Further, by providing a power supply device that increases the conduction current of the power transmission winding section or supplies a secondary current having a polarity opposite to that of the power transmission coil to the secondary winding (hereinafter referred to as a power receiving coil). The allowable range of the positional deviation correction operation can be expanded or the operation can be stabilized, and an effect of avoiding the shaking after the positional deviation correction can be obtained.

本発明による非接触給電装置の一例を示す、(A):位置ズレ補正過程、(B):位置ズレ補正後の要部正面図である。FIG. 4A is a front view of a main part after correction of positional deviation, and FIG. 5B shows an example of a non-contact power feeding device according to the present invention. 本発明による非接触給電装置の一例を示す、(A):位置ズレ補正過程、(B):位置ズレ補正後の側面図である。It is a side view after (A): position shift correction process and (B): position shift correction which show an example of the non-contact electric power feeder by this invention. 本発明による非接触給電装置の一例における磁束の状態を示す、(A):位置ズレ補正過程、(B):位置ズレ補正達成時での要部正面図である。It is a principal part front view at the time of achieving (A): position shift correction process and (B): position shift correction showing the state of magnetic flux in an example of the non-contact power feeding device according to the present invention. 本発明による非接触給電装置における制動手段の一例を示す、(A):制動時、(B):制動解除時、(C):制動開始時の要部正面図である。FIG. 4 is a front view of an essential part of an example of a braking means in the non-contact power feeding device according to the present invention, (A): during braking, (B): when braking is released, and (C): when braking is started. 本発明による非接触給電装置の一例を示す給電モードと電磁石モードにおける回路図である。It is a circuit diagram in the electric power feeding mode and electromagnet mode which show an example of the non-contact electric power feeder by this invention. 本発明による非接触給電装置における二次巻線部の一例を示す、平面図、側面図、及び正面図である。It is the top view, side view, and front view which show an example of the secondary winding part in the non-contact electric power feeder by this invention. 本発明による非接触給電装置における一次巻線部の一例を示す、平面図、側面図、正面図、及び底面図である。It is the top view, side view, front view, and bottom view which show an example of the primary winding part in the non-contact electric power supply by this invention. 本発明による非接触給電装置の制動手段一例を示す、(A):固定部、(B):可動部の平面図、側面図、及び正面図である。It is a top view, a side view, and a front view of (A): a fixed part and (B): a movable part which show an example of the braking means of the non-contact electric power feeder by this invention. 本発明による非接触給電装置における一次巻線部の一例を示す、平面図、側面図、正面図、及び底面図である。It is the top view, side view, front view, and bottom view which show an example of the primary winding part in the non-contact electric power supply by this invention.

以下、本発明による非接触給電装置の実施の形態を図面に基づき説明する。
図2に示す例は、電動車両Xが具備する受電部1と、電動車両Xの通行及び停止が可能となる様に、道路上又は駐車スペース(これらの表面を路面とする。)に設定された給電プラットフォームYが具備する送電部2を備えたものである(図5参照)。
Embodiments of a non-contact power feeding device according to the present invention will be described below with reference to the drawings.
The example shown in FIG. 2 is set on the road or in a parking space (these surfaces are used as road surfaces) so that the power receiving unit 1 included in the electric vehicle X and the electric vehicle X can be passed and stopped. The power supply platform Y includes the power transmission unit 2 (see FIG. 5).

当該例において前記受電部1は、蓄電池16に給電する充電器3と、受電(二次)並列共振コンデンサC2と、電動車両の底面に固定した受電巻線部4と、これらを要する受電回路を開閉するモード切替スイッチSW2を備える。
一方、前記送電部2は、三相200V電源5と、当該電源5を給電用電源に調整するインバータ給電装置6と、送電巻線部7と、送電(一次)直列共振コンデンサ(一次コンデンサ)C1と、当該一次コンデンサC1を短絡するモード切替スイッチSW1を備える(図5参照)。
In this example, the power receiving unit 1 includes a charger 3 that supplies power to the storage battery 16, a power receiving (secondary) parallel resonant capacitor C2, a power receiving winding portion 4 fixed to the bottom of the electric vehicle, and a power receiving circuit that requires these. A mode changeover switch SW2 that opens and closes is provided.
On the other hand, the power transmission unit 2 includes a three-phase 200V power source 5, an inverter power feeding device 6 that adjusts the power source 5 to a power source for power feeding, a power transmission winding unit 7, and a power transmission (primary) series resonance capacitor (primary capacitor) C1. And a mode changeover switch SW1 for short-circuiting the primary capacitor C1 (see FIG. 5).

前記送電巻線部7は、前記受電巻線部4に誘導起電力及び引力を励起する分離型変圧器を構成する。ここで、前記分離型変圧器(以下、変圧器と記す。)とは、前記送電巻線部7と前記受電巻線部4を分離して使用する変圧器である。
当該例における前記送電巻線部7と受電巻線部4は、方形コア(フェライトや鉄等の磁性体)を二分割したかの如きコの字状を呈するコア7a,4aの各々に、送電コイル7bと受電コイル4bが巻きつけられたものである。
前記送電コイル7bは、単一又は複数のコイルで構成し(複数の場合、コイルの数や各コイルの巻き数は問わない。)、複数のコイルで構成する場合には、目的に応じてそれらの接続を切り換える回路切換スイッチ(図示省略)を設けてもよい(図7及び図9参照)。
The power transmission winding unit 7 constitutes a separation type transformer that excites induced electromotive force and attractive force in the power receiving winding unit 4. Here, the separation type transformer (hereinafter referred to as a transformer) is a transformer that uses the power transmission winding portion 7 and the power receiving winding portion 4 separately.
In the example, the power transmission winding portion 7 and the power receiving winding portion 4 transmit power to each of the cores 7a and 4a having a U-shape as if a rectangular core (a magnetic material such as ferrite or iron) was divided into two. The coil 7b and the power receiving coil 4b are wound.
The power transmission coil 7b is composed of a single coil or a plurality of coils (in the case of a plurality of coils, the number of coils and the number of windings of each coil are not limited). A circuit changeover switch (not shown) for switching the connections may be provided (see FIGS. 7 and 9).

前記給電プラットフォームYは、絶縁性流動体Gを蓄える貯留槽Pを備え、前記送電巻線部7は、前記貯留槽P内に浸される。
当該送電巻線部7は、前記貯留槽P内において前記絶縁性流動体Gの表面を一定の深度で水平移動可能とする浮力源9を備える。
前記絶縁性流動体Gは、絶縁油(鉱油、植物油、シリコン油等)等でよい。
The power feeding platform Y includes a storage tank P that stores the insulating fluid G, and the power transmission winding unit 7 is immersed in the storage tank P.
The power transmission winding unit 7 includes a buoyancy source 9 that allows the surface of the insulating fluid G to move horizontally at a certain depth in the storage tank P.
The insulating fluid G may be an insulating oil (mineral oil, vegetable oil, silicone oil, etc.) or the like.

前記貯留槽Pは、電動車両Xに設けた受電巻線部4と給電プラットフォームYに設けた送電巻線部7との位置合わせの際に十分な補正範囲を提供できる大きさとし、全体に亘って均一な深さを持つ容器を水平に載置した場合と同様の構成とする。
前記絶縁性流動体Gの充填量は、当該貯留槽Pに磁束が通過可能な蓋Sをした際に、前記送電巻線部7が当該蓋Sの裏面と出来るだけ近接し、且つ当該送電巻線部7が蓋Sの裏面又は前記貯留槽Pの底面と接することなく自由に移動できる量であることが望ましい。
The storage tank P has a size that can provide a sufficient correction range when aligning the power receiving winding portion 4 provided in the electric vehicle X and the power transmission winding portion 7 provided in the power feeding platform Y. The configuration is the same as when a container having a uniform depth is placed horizontally.
The filling amount of the insulating fluid G is such that when the lid S through which magnetic flux can pass is stored in the storage tank P, the power transmission winding portion 7 is as close as possible to the back surface of the lid S, and the power transmission winding. It is desirable that the amount of the line portion 7 can be freely moved without contacting the back surface of the lid S or the bottom surface of the storage tank P.

当該例においては、前記送電巻線部7は、前記絶縁性流動体G上を浮遊し得るフロート(浮力源)9に支持フレーム10を挟んで固定する。
前記送電巻線部7に給電するリード線7cには、浮遊するフロート9の自由な動きを阻害しない柔軟で耐久性の高いケーブルを選択し、前記フロート9や支持フレーム10の形状や構造も、前記リード線7cが引っ掛かる等、相互に干渉し難い滑らかなものを選択することが望ましい。
In this example, the power transmission winding portion 7 is fixed with a support frame 10 sandwiched between a float (buoyancy source) 9 that can float on the insulating fluid G.
A flexible and durable cable that does not hinder the free movement of the floating float 9 is selected for the lead wire 7c that supplies power to the power transmission winding section 7, and the shape and structure of the float 9 and the support frame 10 are as follows. It is desirable to select smooth ones that do not easily interfere with each other, such as the lead wire 7c being caught.

当該例における前記支持フレーム10は、非磁性体からなる方形状のプレート部10aと、その左右端部などにバランスを失することなく(前後対称又は左右対称等)適宜付設した制動手段11とで構成される。
前記フロート9は、例えば、ゴムや合成樹脂など絶縁性を持つ非磁性体を、例えば、直方体状等に成形してなり、前記プレート部10aの裏面中央部及び表面左右側縁部に前後左右対称となる様に貼着することによって、前記支持フレーム10に前記の通り適当な浮力を与え、前記送電巻線部7の浮遊姿勢の安定を図る。
The support frame 10 in this example includes a rectangular plate portion 10a made of a non-magnetic material, and braking means 11 appropriately attached to the left and right end portions of the support frame 10 without losing balance (such as front-rear symmetry or left-right symmetry). Composed.
The float 9 is made of, for example, a non-magnetic material having an insulating property such as rubber or synthetic resin, for example, in a rectangular parallelepiped shape, and is symmetrical in the front-rear and left-right directions at the center of the back surface and the left and right side edges of the plate portion 10a. By adhering to the above, an appropriate buoyancy is given to the support frame 10 as described above, and the floating posture of the power transmission winding portion 7 is stabilized.

前記制動手段11は、前記プレート部10aに対して不動状態に固定された固定部11aと昇降可能な可動部11bとで構成する。
前記固定部11a及び可動部11bは、ともに磁性体で構成され、前記固定部11aの制止部材12と前記送電巻線部7のコア7aとで前記可動部11bの上位の一部をバランスよく覆うことによって、その昇降動作の上限を規制する。
尚、前記制止部材12の形状は、前記コア7a、可動部11b、及び当該制止部材12で一連の磁路が形成できる限り、その形状は適宜選択可能である(例えば、図7又は図9参照)。
The braking means 11 includes a fixed portion 11a fixed to the plate portion 10a so as not to move and a movable portion 11b that can be moved up and down.
The fixed part 11a and the movable part 11b are both made of a magnetic material, and the restraining member 12 of the fixed part 11a and the core 7a of the power transmission winding part 7 cover a part of the upper part of the movable part 11b with a good balance. Therefore, the upper limit of the raising / lowering operation is regulated.
The shape of the restraining member 12 can be appropriately selected as long as a series of magnetic paths can be formed by the core 7a, the movable portion 11b, and the restraining member 12 (see, for example, FIG. 7 or FIG. 9). ).

当該例における前記可動部11bは、方形状の略平坦なテーブル14と、その裏面中央部から垂下する爪部13を備え、当該爪部13の先端が前記貯留槽Pの底に形成された凹凸(当該貯留槽Pの底に沈む状態で敷設されたシート表面に形成された凹凸でも良い。)Dに係ることによって、前記送電巻線部7の移動を制し(制動し)、当該可動部11bが上昇し前記爪部13の先端が前記凹凸Dから離脱することによって前記制動が解除される構造とする(図4参照)。
前記貯留槽Pの底に形成された凹凸に替えて、前記可動部11bの下端との間で、前記送信巻線部7の制動に足る摩擦力を発生する素材や構造を採用してもよい。
The movable part 11b in the example includes a substantially flat table 14 having a square shape and a claw part 13 hanging from the center part of the back surface thereof, and the protrusions and recesses formed at the bottom of the storage tank P. (It may be irregularities formed on the surface of the sheet laid in a state of sinking to the bottom of the storage tank P.) By relating to D, the movement of the power transmission winding part 7 is restricted (braking), and the movable part The brake is released when 11b rises and the tip of the claw portion 13 is detached from the unevenness D (see FIG. 4).
Instead of the unevenness formed on the bottom of the storage tank P, a material or a structure that generates a frictional force sufficient for braking the transmission winding portion 7 between the lower end of the movable portion 11b may be adopted. .

前記可動部11bは、前記プレート部10aの左右に対称的に設けたガイド孔10bでその昇降軌道を規制し、前記送信巻線部7の磁力によって、以下の通り、他の駆動手段を要することなく駆動し且つその動きを制御する。   The movable part 11b regulates its ascending and descending orbits with guide holes 10b provided symmetrically on the left and right of the plate part 10a, and requires other driving means as follows by the magnetic force of the transmission winding part 7. Drive and control its movement.

<電磁石モード>
前記送電巻線部7は、例えば、図5に示す様な回路に接続され、モード切替スイッチSW1を閉じて前記送電巻線部7の送電コイル7bに電流を流通させることにより磁束が発生し、コア7a、可動部11b、及び固定部(制止部材12)11aで磁路を形成する(図4(A)参照)。
前記送電コイル7bへの電流の供給量を増加させると、前記送電巻線部7で形成された磁路の磁力が増加し、前記テーブル(可動部11b)14の両側縁部が前記制止部材12と前記コア7aにそれぞれ引き寄せられ当接するに至るまで上昇する(図4(B)参照)。
<Electromagnet mode>
The power transmission winding unit 7 is connected to a circuit as shown in FIG. 5, for example, and a magnetic flux is generated by closing the mode changeover switch SW <b> 1 and passing a current through the power transmission coil 7 b of the power transmission winding unit 7. A magnetic path is formed by the core 7a, the movable portion 11b, and the fixed portion (restraining member 12) 11a (see FIG. 4A).
When the amount of current supplied to the power transmission coil 7b is increased, the magnetic force of the magnetic path formed by the power transmission winding portion 7 increases, and both side edges of the table (movable portion 11b) 14 are connected to the stop member 12. As shown in FIG. 4 (B), the core 7a is pulled up and brought into contact with the core 7a.

一方、図9に示す様に、複数の送電コイル7bを有する場合には、前記回路切換スイッチによって、複数の送電コイル7bを直列接続に切り換え、磁路の磁力を増加させる手法を採ることもできる。特に、巻き数が異なる複数の送電コイル7bを有する場合には、前記回路切換スイッチによって、巻き数の多い方の送電コイル7bに電流を供給し磁路の磁力を上記の如く増加させる手法を採ることもできる。   On the other hand, as shown in FIG. 9, when a plurality of power transmission coils 7b are provided, a method of switching the plurality of power transmission coils 7b to series connection and increasing the magnetic force of the magnetic path by the circuit changeover switch can be adopted. . In particular, when a plurality of power transmission coils 7b having different numbers of turns are provided, a method is employed in which the circuit changeover switch supplies a current to the power transmission coil 7b having a larger number of turns to increase the magnetic force of the magnetic path as described above. You can also.

前記送電巻線部7のコア7aから前記受電巻線部4のコア4aへ磁束が入ることで、前記絶縁性流動体Gに浮遊する前記送電巻線部7が、電動車両Xに設けた受電巻線部4に引き寄せられて移動する(図3参照)。   The power transmission winding portion 7 floating in the insulating fluid G is received by the electric vehicle X when the magnetic flux enters the core 4a of the power reception winding portion 4 from the core 7a of the power transmission winding portion 7. It is attracted to the winding part 4 and moves (see FIG. 3).

この際、位置ズレ補正時の給電を禁止し、ひいては受電部1の回路(整流器や充電器3等)の損傷を防止すべく、前記モード切替スイッチSW2を開いて前記受電巻線部4の受電コイル4bを充電器3に通じる回路から遮断することが望ましい。
また、他の励磁用蓄電池(図示省略)から前記受電巻線部4に対して当該受電巻線部4を逆極性とする電流を供給すれば、より強い位置ズレ補正用の磁力が得られることによって、位置ズレ補正の許容範囲や精度や安定性を高めることができる場合がある。
At this time, the power supply at the time of correcting the misalignment is prohibited, and as a result, the mode selector switch SW2 is opened to receive power from the power receiving winding unit 4 in order to prevent damage to the circuit (rectifier, charger 3, etc.) of the power receiving unit 1. It is desirable to cut off the coil 4b from the circuit leading to the charger 3.
Further, if a current having a polarity opposite to that of the power receiving winding portion 4 is supplied from another exciting storage battery (not shown) to the power receiving winding portion 4, a stronger magnetic force for correcting the misalignment can be obtained. In some cases, the allowable range, accuracy, and stability of positional deviation correction can be improved.

<給電モード>
給電モードでは、前記送電巻線部7と受電巻線部4とで前記変圧器を構成し、インバータ給電装置6で発生させた電力を、前記充電器3を通して前記蓄電池16に供給する。
<Power supply mode>
In the power feeding mode, the power transmission winding unit 7 and the power receiving winding unit 4 constitute the transformer, and the power generated by the inverter power feeding device 6 is supplied to the storage battery 16 through the charger 3.

前記送電巻線部7が前記受電巻線部4の略直下における許容範囲内に移動したことを検出した際、前記モード切替スイッチSW1を開放しSW2を閉じることによって給電モードに切り替わる(図5参照)。   When it is detected that the power transmission winding portion 7 has moved within an allowable range substantially below the power receiving winding portion 4, the mode changeover switch SW1 is opened and SW2 is closed to switch to the power supply mode (see FIG. 5). ).

一方、図9に示す様に、複数の送電コイル7bを有する場合には、前記回路切換スイッチによって、複数の送電コイル7bを並列接続に切り換えることで、前記送電直列共振コンデンサC1と送電コイル7bの共振周波数を前記インバータ給電装置6の運転周波数と一致させて給電を行う手法を採ることができる。
特に、巻き数が異なる複数の送電コイル7bを有する場合には、巻き数の少ない送電コイル7bと送電直列共振コンデンサC1による共振周波数がインバータ給電装置6の運転周波数と一致する様に巻き数を設定し、前記回路切換スイッチで、巻き数の多い送電コイル7bから巻き数の少ない送電コイル7bに切り換えて給電を行う手法を採ることもできる。
On the other hand, as shown in FIG. 9, when a plurality of power transmission coils 7b are provided, the power transmission series resonance capacitor C1 and the power transmission coil 7b are switched by switching the plurality of power transmission coils 7b to parallel connection by the circuit switch. It is possible to adopt a method of supplying power by making the resonance frequency coincide with the operation frequency of the inverter power supply device 6.
In particular, when a plurality of power transmission coils 7b having different numbers of turns are provided, the number of turns is set so that the resonance frequency by the power transmission coil 7b having a small number of turns and the power transmission series resonance capacitor C1 matches the operation frequency of the inverter power supply device 6. In addition, it is also possible to use a method of supplying power by switching from the power transmission coil 7b having a large number of turns to the power transmission coil 7b having a small number of turns by the circuit changeover switch.

この際、前記送電巻線部7に供給される電流及びそれによって生じる磁力が電磁石モードに比べて減少することで、前記テーブル14の上昇が維持できずにその爪部13が前記貯留槽Pの底に達するまで自重降下し、給電モードに移行する直前の位置ズレ補正終了位置において前記送電巻線部7の移動が制止される(図4(C)参照)。   At this time, the current supplied to the power transmission winding portion 7 and the magnetic force generated thereby are reduced as compared with the electromagnet mode, so that the ascending portion of the table 14 is not maintained in the storage tank P without being able to maintain the rise of the table 14. The weight is lowered until reaching the bottom, and the movement of the power transmission winding portion 7 is stopped at the position deviation correction end position immediately before the shift to the power feeding mode (see FIG. 4C).

前記可動部11bの昇降状態は、その重量若しくは浮力と磁力とのバランスに照らし、各モードに移行する際の閾値を磁力で調整する手法で調整しても良いし、前記送電巻線部7の磁力で上昇させるに前記テーブル14が重すぎる場合には、前記テーブル14に、浮力源たるフロート9を付設し、軽すぎる場合にはテーブル14の上に重り15を載せるなどで調整することができる。
前記送電巻線部7が前記受電巻線部4の略直下における許容範囲内に移動したことを検出する手法としては、前記従来手法をはじめとする規制の手法から適宜選択すれば良い。
The raising / lowering state of the movable portion 11b may be adjusted by a method of adjusting the threshold value when shifting to each mode with magnetic force in light of the weight or balance between buoyancy and magnetic force, If the table 14 is too heavy to be raised by magnetic force, the table 14 can be adjusted by attaching a float 9 as a buoyancy source, and if it is too light, placing a weight 15 on the table 14. .
As a method for detecting that the power transmission winding portion 7 has moved within an allowable range almost directly below the power receiving winding portion 4, a method of regulation including the conventional method may be appropriately selected.

前記電磁石モードにおける、前記送電コイル7b及び前記受電コイル4bに供給する電流は、前記両巻線部7,4間に生じる磁力によっても両者のギャップを維持し、前記送電巻線部7を引き上げるには至らない大きさである。
前記送電コイル7bに供給する電流の態様は直流電流でもよいしパルス電流でもよく、前記インバータ給電装置6で供給する電流を変化させても良いし、当該例の様に、前記一次コンデンサC1を前記モード切替スイッチSW1を閉じて短絡し、運転周波数を数Hz〜数kHzまで引き下げる等により電磁石モードに適した磁気を発生する様に調整しても良い。
In the electromagnet mode, the current supplied to the power transmission coil 7b and the power receiving coil 4b is maintained by the magnetic force generated between the two winding portions 7 and 4, and the power transmission winding portion 7 is pulled up. Is not large enough.
The mode of the current supplied to the power transmission coil 7b may be a direct current or a pulse current, and the current supplied by the inverter power supply device 6 may be changed. As in this example, the primary capacitor C1 is You may adjust so that the magnetism suitable for an electromagnet mode may be generate | occur | produced by closing mode switching switch SW1 and short-circuiting and pulling down an operating frequency to several Hz-several kHz.

C1 送電(一次)直列共振コンデンサ,C2 受電(二次)並列共振コンデンサ,
D 凹凸,G 絶縁性流動体,P 貯留槽,S 蓋,
X 電動車両,Y 給電プラットフォーム,
1 受電部,2 送電部,3 充電器,
4 受電(二次)巻線部,4a コア,4b 受電コイル,4c リード線,
5 電源,6 インバータ給電装置,
7 送電(一次)巻線部,7a コア,7b 送電コイル,7c リード線,
9 浮力源(フロート),
10 支持フレーム,10a プレート部,10b ガイド孔,
11 制動手段,11a 固定部,11b 可動部,
12 制止部材,13 爪部,14 テーブル,15 重り,16 蓄電池,
C1 power transmission (primary) series resonance capacitor, C2 power reception (secondary) parallel resonance capacitor,
D unevenness, G insulating fluid, P reservoir, S lid,
X electric vehicle, Y power supply platform,
1 power receiving unit, 2 power transmitting unit, 3 charger,
4 power receiving (secondary) winding, 4a core, 4b power receiving coil, 4c lead wire,
5 power supply, 6 inverter power supply device,
7 power transmission (primary) winding part, 7a core, 7b power transmission coil, 7c lead wire,
9 Buoyancy source (float),
10 support frame, 10a plate part, 10b guide hole,
11 braking means, 11a fixed part, 11b movable part,
12 stop member, 13 claw part, 14 table, 15 weight, 16 storage battery,

Claims (3)

電動車両が具備する受電部と、電動車両の通行及び停止が可能となる路面に設定された給電プラットフォームが具備する送電部を備え、
前記受電部は、受電巻線部を備え、
前記送電部は、当該受電巻線部に誘導起電力及び引力を励起する送電巻線部を備え、
前記給電プラットフォームは、絶縁性流動体を蓄える貯留槽を備え、
前記送電巻線部は、前記貯留槽内において当該送電巻線部を一定の深度で水平移動可能とする浮力源を備えることを特徴とする非接触給電装置。
A power receiving unit provided in the electric vehicle, and a power transmission unit provided in a power supply platform set on a road surface on which the electric vehicle can pass and stop,
The power receiving unit includes a power receiving winding unit,
The power transmission unit includes a power transmission winding unit that excites induced electromotive force and attractive force in the power receiving winding unit,
The power supply platform includes a storage tank for storing an insulating fluid,
The non-contact power feeding apparatus, wherein the power transmission winding unit includes a buoyancy source that enables the power transmission winding unit to move horizontally at a certain depth in the storage tank.
前記送電巻線部が励起する引力で動作する制動手段を備えることを特徴とする前記請求項1に記載の非接触給電装置。   The contactless power feeding device according to claim 1, further comprising a braking unit that operates with an attractive force excited by the power transmission winding unit. 前記受電部は、その受電巻線部を前記送電巻線部の逆極性とする電源装置を備える前記請求項1又は請求項2のいずれかに記載の非接触給電装置。   The non-contact power feeding device according to claim 1, wherein the power receiving unit includes a power supply device having a power receiving winding unit with a polarity opposite to that of the power transmitting winding unit.
JP2013077980A 2013-04-03 2013-04-03 Non-contact power feeding device Active JP6071709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077980A JP6071709B2 (en) 2013-04-03 2013-04-03 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077980A JP6071709B2 (en) 2013-04-03 2013-04-03 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2014204540A true JP2014204540A (en) 2014-10-27
JP6071709B2 JP6071709B2 (en) 2017-02-01

Family

ID=52354548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077980A Active JP6071709B2 (en) 2013-04-03 2013-04-03 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP6071709B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186715A (en) * 2015-09-12 2015-12-23 龙家坚 Non-plug-type wireless power transmission structure
JP2016101029A (en) * 2014-11-25 2016-05-30 北陸電機製造株式会社 Non-contact power supply device
CN107640047A (en) * 2017-09-14 2018-01-30 重庆大学 A kind of magnetic coupling and electric bus wireless charging system based on magnetic liquid
JP2018050365A (en) * 2016-09-20 2018-03-29 大井電気株式会社 Non-contact power supply device
CN110658378A (en) * 2018-06-28 2020-01-07 日置电机株式会社 Measuring apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215532A (en) * 1997-01-28 1998-08-11 Sanyo Electric Co Ltd Charging system of electrically powered vehicle
JP2009095072A (en) * 2007-10-04 2009-04-30 Oki Electric Ind Co Ltd Efficient non-contact power supply system, power supply device, power receiving device, electronic apparatus
JP2012085472A (en) * 2010-10-13 2012-04-26 Mitsubishi Motors Corp Vehicular charge apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215532A (en) * 1997-01-28 1998-08-11 Sanyo Electric Co Ltd Charging system of electrically powered vehicle
JP2009095072A (en) * 2007-10-04 2009-04-30 Oki Electric Ind Co Ltd Efficient non-contact power supply system, power supply device, power receiving device, electronic apparatus
JP2012085472A (en) * 2010-10-13 2012-04-26 Mitsubishi Motors Corp Vehicular charge apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101029A (en) * 2014-11-25 2016-05-30 北陸電機製造株式会社 Non-contact power supply device
CN105186715A (en) * 2015-09-12 2015-12-23 龙家坚 Non-plug-type wireless power transmission structure
JP2018050365A (en) * 2016-09-20 2018-03-29 大井電気株式会社 Non-contact power supply device
CN107640047A (en) * 2017-09-14 2018-01-30 重庆大学 A kind of magnetic coupling and electric bus wireless charging system based on magnetic liquid
CN110658378A (en) * 2018-06-28 2020-01-07 日置电机株式会社 Measuring apparatus
CN110658378B (en) * 2018-06-28 2023-06-02 日置电机株式会社 Measuring device

Also Published As

Publication number Publication date
JP6071709B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6071709B2 (en) Non-contact power feeding device
JP5574107B2 (en) Vehicle charging device
US9283858B2 (en) Inductive power transfer apparatus
US8912686B2 (en) Wireless power system and method with improved alignment
JP5958266B2 (en) Non-contact power supply pad and non-contact charging system for forklift using the non-contact power supply pad
JP2010183814A (en) Non-contact power transmitter
KR20140009127A (en) Selectively controllable electromagnetic shielding
EP2773019A1 (en) Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
EP3248268B1 (en) Methods and apparatus for a modular coil holder for an extended wireless charging roadway assembly
JP5141285B2 (en) Non-contact charger
JP2010173503A (en) Non-contact power supply device
JP2011061942A (en) Contactless power supply apparatus of relay system
US10340740B2 (en) Power receiving unit, power transmission unit, and feed system
JP2010183706A (en) Charging cradle
JP6107715B2 (en) Non-contact charging system of forklift using power feeding pad and power feeding pad, and secondary side power receiving circuit of power receiving pad and non-contact power feeding equipment using power receiving pad
JP2012095456A (en) Non-contact power transmission system, primary side apparatus and secondary side apparatus
JP2015050808A (en) Non-contact power receiving device
JP2015116013A (en) Wireless power feeding system
JP2010239853A (en) Non-contact charger for electric vehicle
WO2016072351A1 (en) Coil device, contactless power supply system, and auxiliary magnetic member
JP2013090392A (en) Non-contact charging device and non-contact power supply facility
JP2012257381A (en) On-vehicle non-contact charging device
JP6403550B2 (en) Non-contact power feeding device
JP6067597B2 (en) Magnetic levitation transfer device
JP2013225980A (en) Non-contact power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250