JP2014203524A - Light-emitting element drive device - Google Patents

Light-emitting element drive device Download PDF

Info

Publication number
JP2014203524A
JP2014203524A JP2013075928A JP2013075928A JP2014203524A JP 2014203524 A JP2014203524 A JP 2014203524A JP 2013075928 A JP2013075928 A JP 2013075928A JP 2013075928 A JP2013075928 A JP 2013075928A JP 2014203524 A JP2014203524 A JP 2014203524A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
constant current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013075928A
Other languages
Japanese (ja)
Inventor
新司 堀井
Shinji Horii
新司 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013075928A priority Critical patent/JP2014203524A/en
Publication of JP2014203524A publication Critical patent/JP2014203524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element drive device capable of saving power even in a case where there are variations in productions in forward voltage of a plurality of light-emitting element rows.SOLUTION: A light-emitting element drive device configured by one light-emitting element or a plurality of series-connected light-emitting elements to drive a plurality of light-emitting element rows 101-103 connected in parallel, comprises: a constant current drive circuit 200 applying a constant current to each of the light-emitting element rows; and a constant current value selection circuit 500 determining a current value of the constant current to be applied to each of the light-emitting element rows on the basis of a difference in forward voltage of the light-emitting element row.

Description

本発明は、発光素子駆動装置に関する。   The present invention relates to a light emitting element driving device.

近年では、液晶表示装置などに代表されるように、ディスプレイの薄型化が進んできているが、例えば液晶表示装置においては、液晶パネル自体は発光せず、光源装置、いわゆるバックライトを必要とする。   In recent years, as represented by liquid crystal display devices and the like, displays have been made thinner. For example, in a liquid crystal display device, the liquid crystal panel itself does not emit light, and a light source device, a so-called backlight is required. .

かつて、液晶表示装置のバックライトの多くは蛍光管を用いたCCFL(Cold Cathode Fluorescent Lamp)タイプが使用されていたが、寿命や消費電力、薄膜化の観点から、現在では発光ダイオードを用いたバックライトが主流となりつつある。   In the past, most of the backlights of liquid crystal display devices used the CCFL (Cold Cathode Fluorescent Lamp) type using a fluorescent tube. However, from the viewpoints of life, power consumption, and thinning, a backlight using a light emitting diode is currently used. Light is becoming mainstream.

特に携帯電話やモバイルコンピューター等の携帯機器では、ディスプレイの薄膜化は必須であり、発光ダイオードを用いたバックライトが広く用いられている。   Particularly in portable devices such as mobile phones and mobile computers, it is essential to make the display thin, and backlights using light emitting diodes are widely used.

さらに、上述のような携帯機器では、バッテリー駆動を前提としており、長時間の使用を実現するためには、携帯機器の消費電力のなかで比較的大きな電力を消費するバックライトの省電力化を行なうことが重要である。   Furthermore, the above-mentioned portable devices are premised on battery driving, and in order to realize long-term use, the power consumption of a backlight that consumes relatively large power among the power consumption of the portable devices is reduced. It is important to do.

そこで、現在の携帯機器のディスプレイでは、周囲の明るさに応じてバックライトの輝度を調整し、省電力化を行なっている(例えば特許文献1参照)。   Therefore, in the display of the current portable device, the brightness of the backlight is adjusted according to the ambient brightness to save power (for example, see Patent Document 1).

また、発光ダイオードを用いた照明装置の省電力化方法として、例えば特許文献2に開示された発光素子駆動装置(第4図)では、2つの発光ダイオード列と、前記発光ダイオード列に電源を供給する昇圧回路と、前記発光ダイオード列に定電流を流す2つの定電流源と、前記定電流源の耐圧保護用トランジスタと、前記定電流源に入力される各電圧を基準電圧Vrefと比較し差分を増幅するエラーアンプとを備えている。   Further, as a method for saving power of a lighting device using light emitting diodes, for example, in the light emitting element driving device disclosed in Patent Document 2 (FIG. 4), power is supplied to two light emitting diode rows and the light emitting diode rows. A step-up circuit that performs a constant current flow through the light-emitting diode array, a withstand voltage protection transistor of the constant current source, and each voltage input to the constant current source is compared with a reference voltage Vref. And an error amplifier for amplifying the signal.

そして、定電流源に入力される各電圧のうち最小の電圧を検出し、その最小電圧が、負荷電流に応じて変化する基準電圧Vrefに一致するように、昇圧回路の出力電圧Vout(=発光ダイオードのアノード電圧)が制御される。これにより、各定電流源で生じる電力損失を抑制し、省電力化を実現するとされている。   Then, the minimum voltage among the voltages input to the constant current source is detected, and the output voltage Vout (= light emission) of the booster circuit is set so that the minimum voltage matches the reference voltage Vref that changes according to the load current. The anode voltage of the diode) is controlled. Thereby, it is supposed that the power loss which arises in each constant current source is suppressed, and power saving is realized.

特開2010−224075号公報JP 2010-224075 A 特開2010−63332号公報(第4図)JP 2010-63332 A (FIG. 4)

しかしながら、上記特許文献2のように、複数の発光ダイオード列を制御する発光素子駆動装置を構成した場合、全ての発光ダイオード列が同じ温度、同じ負荷電流値であっても、生産上のばらつきによって発光ダイオード列の順方向電圧は比較的大きくばらつく。これにより、上記特許文献2では、発光ダイオード列による消費電力が増加するという問題がある。   However, when a light-emitting element driving device that controls a plurality of light-emitting diode rows is configured as in Patent Document 2, even if all the light-emitting diode rows have the same temperature and the same load current value, due to production variations The forward voltage of the light-emitting diode array varies relatively greatly. Thereby, in the said patent document 2, there exists a problem that the power consumption by a light emitting diode row | line | column increases.

特に携帯機器では、上述の通りバッテリー駆動であることによる省電力化への要求が大きい。   Particularly in portable devices, there is a great demand for power saving due to the battery drive as described above.

上記問題点に鑑み、本発明は、複数の発光素子列の順方向電圧に生産上のばらつきが存在する場合であっても、省電力化を可能とする発光素子駆動装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a light-emitting element driving device that enables power saving even when there is a production variation in the forward voltage of a plurality of light-emitting element arrays. And

上記目的を達成するために本発明の一態様は、1つの発光素子、又は複数直列に接続された発光素子から構成され、並列接続された複数列の発光素子列を駆動する発光素子駆動装置であって、
前記発光素子列のそれぞれに定電流を流す定電流駆動回路と、
前記発光素子列の順方向電圧の差分に基づいて前記発光素子列のそれぞれに流す定電流の電流値を決定する定電流値選択回路と、
を備える構成としている。
In order to achieve the above object, one embodiment of the present invention is a light-emitting element driving device configured to include one light-emitting element or a plurality of light-emitting elements connected in series, and drive a plurality of light-emitting element arrays connected in parallel. There,
A constant current driving circuit for supplying a constant current to each of the light emitting element rows;
A constant current value selection circuit that determines a current value of a constant current that flows to each of the light emitting element rows based on a difference in forward voltage of the light emitting element rows;
It is set as the structure provided with.

このような構成によれば、生産ばらつきによって複数列の発光素子列の順方向電圧がばらついた場合であっても、発光素子列における消費電力の増加を抑えて、省電力化が可能となる。   According to such a configuration, even when forward voltages of a plurality of light emitting element arrays vary due to production variations, an increase in power consumption in the light emitting element arrays can be suppressed and power saving can be achieved.

また、上記構成において、前記定電流駆動回路のパラメータに基づいて前記発光素子列の順方向電圧の差分を検出する順方向電圧差分検出回路を更に備えることとしてもよい。   The above configuration may further include a forward voltage difference detection circuit that detects a difference in forward voltage of the light emitting element array based on a parameter of the constant current drive circuit.

また、上記構成において、前記定電流駆動回路のパラメータは、電流シンク端子電圧であることとしてもよい。   In the above configuration, the parameter of the constant current driving circuit may be a current sink terminal voltage.

また、上記いずれかの構成において、前記定電流値選択回路の電流値決定結果に基づいて1つ以上の基準電圧を生成する基準電圧生成回路と、
前記定電流駆動回路の電流シンク端子電圧と前記生成された基準電圧を比較する1つ以上の比較回路と、
前記比較回路による比較結果に基づいて前記発光素子列に供給する電圧を制御する電源回路と、を更に備えることとしてもよい。
In any of the above configurations, a reference voltage generation circuit that generates one or more reference voltages based on a current value determination result of the constant current value selection circuit;
One or more comparison circuits for comparing a current sink terminal voltage of the constant current drive circuit and the generated reference voltage;
And a power supply circuit that controls a voltage supplied to the light emitting element array based on a comparison result by the comparison circuit.

このような構成によれば、発光素子列に定電流を流すのに適切な電圧に電流シンク端子電圧を制御でき、定電流駆動回路における消費電力を抑制できる。   According to such a configuration, the current sink terminal voltage can be controlled to a voltage suitable for flowing a constant current through the light emitting element array, and power consumption in the constant current drive circuit can be suppressed.

また、上記構成において、前記基準電圧生成回路は複数の基準電圧を生成し、複数設けられる前記比較回路は比較器であり、
前記比較回路の出力に基づいてカウントを行うカウンタ回路を更に備え、
前記電源回路は、前記カウンタ回路の出力に応じて前記発光素子列に供給する電圧を制御することとしてもよい。
In the above configuration, the reference voltage generation circuit generates a plurality of reference voltages, and the plurality of comparison circuits provided are comparators.
A counter circuit for counting based on the output of the comparison circuit;
The power supply circuit may control a voltage supplied to the light emitting element array in accordance with an output of the counter circuit.

このような構成によれば、電源回路の出力電圧を安定化させることが可能となる。   According to such a configuration, it is possible to stabilize the output voltage of the power supply circuit.

また、上記いずれかの構成において、前記発光素子列のうち、少なくとも1列の前記発光素子列は電流値をゼロに設定されることとしてもよい。   In any of the above-described configurations, the current value of at least one of the light emitting element arrays may be set to zero.

このような構成によれば、特に発光素子列の輝度が低くてもよい状況では、更なる低消費電力化が可能となる。   According to such a configuration, it is possible to further reduce power consumption particularly in a situation where the luminance of the light emitting element array may be low.

また、上記いずれかの構成において、前記定電流値選択回路は、前記発光素子列の順方向電圧の差分と、周囲環境の明るさを検出する照度検出回路による検出結果とに基づいて、前記発光素子列のそれぞれに流す定電流の電流値を決定することとしてもよい。   In any one of the configurations described above, the constant current value selection circuit is configured to generate the light emission based on a difference between forward voltages of the light emitting element arrays and a detection result by an illuminance detection circuit that detects brightness of an ambient environment. It is also possible to determine a current value of a constant current that flows to each of the element arrays.

このような構成によれば、周囲環境の明るさに応じて発光素子列の輝度を自動で調整することが可能となり、更なる低消費電力動作を可能とする。   According to such a configuration, it is possible to automatically adjust the luminance of the light emitting element array in accordance with the brightness of the surrounding environment, thereby enabling further low power consumption operation.

また、本発明の一態様に係る照明装置は、上記いずれかの構成の発光素子駆動装置と、前記発光素子駆動装置により駆動される発光素子列と、を備える構成としている。   An illumination device according to one embodiment of the present invention includes the light-emitting element driving device having any one of the above structures and a light-emitting element array driven by the light-emitting element driving device.

本発明によると、複数の発光素子列の順方向電圧に生産上のばらつきが存在する場合であっても、省電力化を可能とする。   According to the present invention, even when there is a production variation in the forward voltage of a plurality of light emitting element arrays, it is possible to save power.

本発明の第1実施形態に係る発光素子駆動装置の構成図である。1 is a configuration diagram of a light emitting element driving apparatus according to a first embodiment of the present invention. 本発明の第2実施形態に係る発光素子駆動装置の構成図である。It is a block diagram of the light emitting element drive device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る発光素子駆動装置の構成図である。It is a block diagram of the light emitting element drive device which concerns on 3rd Embodiment of this invention.

<第1実施形態>
以下に本発明の一実施形態について図面を参照して説明する。以下説明する実施形態に係る発光素子駆動装置は、一例として液晶パネルを用いた画像表示装置のバックライトに用いることができる。
<First Embodiment>
An embodiment of the present invention will be described below with reference to the drawings. The light emitting element driving device according to the embodiments described below can be used for a backlight of an image display device using a liquid crystal panel as an example.

本発明の第1実施形態に係る発光素子駆動装置の構成を図1に示す。図1に示す発光素子駆動装置は発光部100を駆動する装置であって、定電流駆動回路200と、電源回路300と、Vf差分検出回路400と、定電流値選択回路500と、基準電圧生成回路600と、誤差増幅器700を備えている。   FIG. 1 shows the configuration of the light emitting element driving apparatus according to the first embodiment of the present invention. The light emitting element driving device shown in FIG. 1 is a device that drives the light emitting unit 100, and includes a constant current driving circuit 200, a power supply circuit 300, a Vf difference detection circuit 400, a constant current value selection circuit 500, and a reference voltage generation. A circuit 600 and an error amplifier 700 are provided.

発光部100は、複数の発光ダイオードを直列接続されてなる発光ダイオード列101、102、及び103が並列に接続されて構成される。なお、発光ダイオード列は、1つの発光ダイオードから構成されてもよい。また、図1では発光ダイオード列は3列であるが、複数の列であればこれに限定されない。   The light emitting unit 100 is configured by connecting in parallel light emitting diode rows 101, 102, and 103 in which a plurality of light emitting diodes are connected in series. Note that the light-emitting diode array may be composed of one light-emitting diode. In FIG. 1, the number of light emitting diode rows is three, but the number is not limited to this as long as it is a plurality of rows.

電源回路300は、発光部100に電圧を供給し、例えば昇圧回路で構成される。   The power supply circuit 300 supplies a voltage to the light emitting unit 100 and includes, for example, a booster circuit.

定電流駆動回路200は、発光ダイオード列101〜103のそれぞれに定電流を流す回路である。   The constant current drive circuit 200 is a circuit that supplies a constant current to each of the light emitting diode arrays 101 to 103.

Vf差分検出回路400は、発光ダイオード列101〜103のカソードに接続された定電流駆動回路200の各電流シンク端子の電圧(電流シンク端子電圧)に基づき、発光ダイオード列101〜103の順方向電圧の差分を検出する。   The Vf difference detection circuit 400 is based on the voltage (current sink terminal voltage) of each current sink terminal of the constant current drive circuit 200 connected to the cathodes of the light emitting diode rows 101 to 103, and the forward voltage of the light emitting diode rows 101 to 103 is determined. The difference of is detected.

定電流値選択回路500は、Vf差分検出回路400の検出結果に基づき、発光ダイオード列101〜103のそれぞれに流す定電流の電流値を決定する。   Based on the detection result of the Vf difference detection circuit 400, the constant current value selection circuit 500 determines a current value of a constant current that flows to each of the light emitting diode arrays 101 to 103.

基準電圧生成回路600は、定電流値選択回路500による電流値決定結果に応じて基準電圧Vrefを生成する。   The reference voltage generation circuit 600 generates the reference voltage Vref according to the current value determination result by the constant current value selection circuit 500.

誤差増幅器700は、定電流駆動回路200の電流シンク端子電圧と基準電圧生成回路600により生成された基準電圧Vrefを比較し、誤差を増幅する回路である。   The error amplifier 700 is a circuit that compares the current sink terminal voltage of the constant current drive circuit 200 with the reference voltage Vref generated by the reference voltage generation circuit 600 and amplifies the error.

発光ダイオード列101〜103は、電源回路300からアノードに出力電圧Voutを供給され、定電流駆動回路200により定電流駆動動作を行なう。電源回路300で生成される出力電圧Voutは、誤差増幅器700の出力結果により可変である。   The light emitting diode arrays 101 to 103 are supplied with the output voltage Vout from the power supply circuit 300 to the anode, and perform a constant current driving operation by the constant current driving circuit 200. The output voltage Vout generated by the power supply circuit 300 is variable depending on the output result of the error amplifier 700.

誤差増幅器700は、発光ダイオード列101〜103のカソード電圧(=電流シンク端子電圧)のうち、最も低い電圧と基準電圧Vrefを比較して、誤差を増幅することにより、上記最も低い電圧と基準電圧Vrefとの差がなくなるように電源回路300の出力電圧Voutの制御を行う。   The error amplifier 700 compares the lowest voltage and the reference voltage Vref among the cathode voltages (= current sink terminal voltages) of the light emitting diode arrays 101 to 103, and amplifies the error, thereby the lowest voltage and the reference voltage. The output voltage Vout of the power supply circuit 300 is controlled so that there is no difference from Vref.

基準電圧生成回路600は、定電流値選択回路500により決定された発光ダイオード列101〜103に流す定電流の電流値のうち、最も大きな電流値に基づき、基準電圧Vrefを生成する。これにより、上記最も大きな電流値の電流を流すのに必要十分な電圧に、定電流駆動回路200の各電流シンク端子電圧が制御される。このように、各電流シンク端子電圧が適切に制御されるので、定電流駆動回路200における無駄な消費電力を抑制することが可能となる。   The reference voltage generation circuit 600 generates the reference voltage Vref based on the largest current value among the constant current values to be passed through the light emitting diode arrays 101 to 103 determined by the constant current value selection circuit 500. As a result, each current sink terminal voltage of the constant current drive circuit 200 is controlled to a voltage necessary and sufficient to flow the current having the largest current value. Thus, since each current sink terminal voltage is appropriately controlled, it is possible to suppress useless power consumption in the constant current drive circuit 200.

更に、発光ダイオード列101〜103は、発光ダイオードの直列数が同一で、同じ仕様の部品を用い、同じ電流値の電流を定電流駆動回路200によって流した場合であっても、生産ばらつきによって各順方向電圧が異なる場合がある。この場合、発光ダイオード列101〜103に対応する定電流駆動回路200の各電流シンク端子電圧は、それぞれの発光ダイオード列によって異なることになる。   Further, the light emitting diode arrays 101 to 103 have the same number of light emitting diodes in series, use parts having the same specifications, and even when current of the same current value is caused to flow by the constant current driving circuit 200, each of the light emitting diode arrays 101 to 103 may vary depending on production variations. The forward voltage may be different. In this case, each current sink terminal voltage of the constant current drive circuit 200 corresponding to the light emitting diode arrays 101 to 103 differs depending on each light emitting diode array.

この生産ばらつきを原因とする順方向電圧のばらつきによる消費電力増加を抑制するため、定電流駆動回路200の各電流シンク端子電圧に基づきVf差分検出回路400にて発光ダイオード列101〜103の順方向電圧の差分を検出し、その検出結果に応じた電流値を定電流値選択回路500にて設定し、低消費電力駆動を可能としている。   In order to suppress an increase in power consumption due to variations in the forward voltage due to this production variation, the Vf difference detection circuit 400 uses the forward direction of the light emitting diode rows 101 to 103 based on the current sink terminal voltages of the constant current drive circuit 200. The voltage difference is detected, and a current value corresponding to the detection result is set by the constant current value selection circuit 500 to enable low power consumption driving.

より具体的に説明すると、本実施形態の発光素子駆動装置の起動時に、全ての発光ダイオード列101〜103には画像表示装置として必要とされる輝度が得られる電流値Irefに設定し、定電流駆動回路200は全ての発光ダイオード列101〜103に電流値Irefの定電流を流すように制御する。この状態で、Vf差分検出回路400にて、定電流駆動回路200の各電流シンク端子電圧に基づき、発光ダイオード列101〜103の順方向電圧の差分を検出する。   More specifically, when the light emitting element driving device of the present embodiment is activated, all the light emitting diode rows 101 to 103 are set to a current value Iref that provides a luminance required as an image display device, and a constant current is set. The drive circuit 200 performs control so that a constant current having a current value Iref flows through all the light emitting diode arrays 101 to 103. In this state, the Vf difference detection circuit 400 detects the difference between the forward voltages of the light emitting diode arrays 101 to 103 based on the current sink terminal voltages of the constant current drive circuit 200.

その後、この差分に応じて発光ダイオード列101〜103の各電流値を個別設定する通常動作状態へ移行し、定電流値選択回路500にて電流シンク端子電圧が高い、つまり順方向電圧が低い発光ダイオード列の電流値を増加させ、電流シンク端子電圧が低い、つまり順方向電圧が高い発光ダイオード列の電流値を減少させるように電流値を決定する。   Thereafter, the current value of each of the light emitting diode arrays 101 to 103 is shifted to a normal operation state according to the difference, and the constant current value selection circuit 500 emits light with a high current sink terminal voltage, that is, a low forward voltage. The current value of the diode array is increased, and the current value is determined so as to decrease the current value of the light emitting diode array having a low current sink terminal voltage, that is, a high forward voltage.

このような設定とすることにより、順方向電圧の低い発光ダイオード列、つまり比較的低い電力消費で規定電流値を流すことができる発光ダイオード列の電流値を増加させ、順方向電圧の高い発光ダイオード列、つまり規定電流を流すのに比較的高い電力消費を必要とする発光ダイオード列の電流値を低減させるので、発光ダイオード列101〜103による消費電力を低減させることが可能となる。   With such a setting, the current value of the light emitting diode array having a low forward voltage, that is, the light emitting diode array capable of passing a specified current value with relatively low power consumption, is increased, and the light emitting diode having a high forward voltage. Since the current value of the light-emitting diode array that requires a relatively high power consumption for flowing the specified current is reduced, the power consumption by the light-emitting diode arrays 101 to 103 can be reduced.

なお、この際に、発光ダイオード列101〜103の電流値の合計は3×Irefとなるように制御することが、画像表示装置の輝度の変化がなくなる点で、より望ましい実施形態となる。   At this time, controlling the total current value of the light-emitting diode arrays 101 to 103 to be 3 × Iref is a more preferable embodiment in that the luminance of the image display device is not changed.

上記のような構成とすることで、発光ダイオード列101〜103の順方向電圧が生産ばらつきによってばらついた場合であっても、低消費電力動作が可能となり、省電力化が可能な発光素子駆動装置が提供できる。   With the above-described configuration, even when the forward voltages of the light-emitting diode arrays 101 to 103 vary due to production variations, a light-emitting element driving device that can operate with low power consumption and can save power. Can be provided.

なお、上記実施形態では、各発光ダイオード列の順方向電圧の差分を、発光素子駆動装置の起動時に検出したが、必ずしもそのタイミングにて検出する必要はなく、順方向電圧の差分の検出は任意のタイミングで構わない。   In the above embodiment, the difference in the forward voltage of each light-emitting diode array is detected at the time of starting the light-emitting element driving device. However, it is not always necessary to detect at that timing, and the detection of the difference in forward voltage is arbitrary. It does not matter at the timing.

また、予め工場出荷時に各発光ダイオード列の順方向電圧の差分を検出しておき、発光素子駆動装置が有する記憶部にその結果を記憶させておき、最終製品では定電流値選択回路500が上記記憶部に記憶された検出結果に基づいて電流値を決定してもよい。この場合、各発光ダイオードの順方向電圧の差分を検出するVf差分検出回路400は不要となる。   Further, the difference between the forward voltages of the respective light-emitting diode arrays is detected in advance at the time of shipment from the factory, and the result is stored in the storage unit included in the light-emitting element driving device. The current value may be determined based on the detection result stored in the storage unit. In this case, the Vf difference detection circuit 400 that detects the difference in the forward voltage of each light emitting diode is not necessary.

また、上記実施形態では、各発光ダイオード列の順方向電圧の差分を検出する際には、画像表示装置として必要な輝度が得られる電流値Irefに設定するとしたが、必ずしもその必要はなく、任意の電流値でも構わない。   Further, in the above embodiment, when the difference between the forward voltages of the respective light emitting diode arrays is detected, the current value Iref is obtained so as to obtain the luminance necessary for the image display device. The current value may be any value.

また、画像表示装置として比較的低輝度、つまり発光ダイオード列の電流が比較的少なくても構わない状況では、発光ダイオード列のうち、順方向電圧が大きい列は電流値設定をゼロとすることで更なる省電力動作が可能となる。   Further, in a situation where the image display device has relatively low brightness, that is, the current of the light-emitting diode array may be relatively small, among the light-emitting diode arrays, the current value setting is set to zero for the column having a large forward voltage. Further power saving operation is possible.

<第2実施形態>
次に、本発明の第2実施形態に係る発光素子駆動装置の構成を図2に示す。図2に示した発光素子駆動装置は、図1に示した発光素子駆動装置(第1実施形態)に対して、外部周囲環境の照度を検出する照度検出回路800が追加されている以外は、同一である。定電流値選択回路500は、Vf差分検出回路400による検出結果と、照度検出回路800による検出結果に基づき、発光ダイオード列101〜103に流す定電流の電流値を決定する。
Second Embodiment
Next, FIG. 2 shows a configuration of a light emitting element driving apparatus according to the second embodiment of the present invention. The light-emitting element driving device shown in FIG. 2 is different from the light-emitting element driving device (first embodiment) shown in FIG. 1 except that an illuminance detection circuit 800 that detects the illuminance of the external ambient environment is added. Are the same. The constant current value selection circuit 500 determines a current value of a constant current that flows through the light emitting diode arrays 101 to 103 based on the detection result by the Vf difference detection circuit 400 and the detection result by the illuminance detection circuit 800.

本実施形態のような構成をとれば、外部周囲環境の明るさに応じて、自動的に画像表示装置の輝度を調整でき、更に、各輝度設定時に電力消費が適切なものとなるように各発光ダイオード列の電流を設定し、その電流値に応じた基準電圧Vrefを設定することで、省電力化が可能な発光素子駆動装置を提供できる。   With the configuration as in the present embodiment, the brightness of the image display device can be automatically adjusted according to the brightness of the external ambient environment, and each power consumption is set appropriately so that power consumption is appropriate at each brightness setting. By setting the current of the light emitting diode array and setting the reference voltage Vref according to the current value, it is possible to provide a light emitting element driving device capable of saving power.

なお、外部環境の明るさに応じて画像表示装置の輝度を調整する方法は特に限定しないが、例えば、照度検出回路800としてのデジタル照度センサーにより外部環境の明るさをデジタルデータとして検出し、定電流値選択回路500では、予め設定されたテーブルに従って外部環境の明るさのデジタルデータに応じた発光ダイオード列の基準となる電流値を選択し、その基準となる電流値に対して、発光ダイオード列ごとにVf差分検出回路400にて検出した順方向電圧の差分に応じた電流値へ変換する。これにより、電力消費を適切とした発光素子駆動装置が実現できる。   Note that a method for adjusting the brightness of the image display device according to the brightness of the external environment is not particularly limited. For example, the brightness of the external environment is detected as digital data by a digital illuminance sensor as the illuminance detection circuit 800, and is fixed. The current value selection circuit 500 selects a reference current value of the light emitting diode array according to the digital data of the brightness of the external environment according to a preset table, and the light emitting diode array is selected with respect to the reference current value. Every time, the voltage is converted into a current value corresponding to the difference in the forward voltage detected by the Vf difference detection circuit 400. Thereby, the light emitting element drive device which made electric power consumption suitable is realizable.

<第3実施形態>
次に、本発明の第3実施形態に係る発光素子駆動装置の構成を図3に示す。図3に示す構成は、図1に示す構成(第1実施形態)と比して、基準電圧生成回路600が2つの基準電圧Vref1とVref2を生成すること、比較器(コンパレータ)701、702、カウンタ回路750及びD/A変換回路770を備えることが異なる。
<Third Embodiment>
Next, FIG. 3 shows a configuration of a light emitting element driving apparatus according to the third embodiment of the present invention. 3 is different from the configuration shown in FIG. 1 (first embodiment) in that the reference voltage generation circuit 600 generates two reference voltages Vref1 and Vref2, and comparators (comparators) 701, 702, The difference is that a counter circuit 750 and a D / A conversion circuit 770 are provided.

基準電圧生成回路600は、定電流値選択回路500によって発光ダイオード列101〜103に設定された電流値のうち、最も大きな電流値に応じた基準電圧Vref1とVref2を生成する。ここでは、一例として、Vref1<Vref2とする。   The reference voltage generation circuit 600 generates reference voltages Vref1 and Vref2 corresponding to the largest current value among the current values set in the light emitting diode arrays 101 to 103 by the constant current value selection circuit 500. Here, as an example, Vref1 <Vref2.

発光ダイオード列101〜103のカソード電圧(=電流シンク端子電圧)のうち、最も低い電圧と基準電圧Vref1を比較器701で、上記最も低い電圧と基準電圧Vref2を比較器702で比較する。   Of the cathode voltages (= current sink terminal voltages) of the light emitting diode arrays 101 to 103, the comparator 701 compares the lowest voltage with the reference voltage Vref1, and the comparator 702 compares the lowest voltage with the reference voltage Vref2.

比較器701での比較によりカソード電圧が基準電圧Vref1より低い場合には、カウンタ回路750にてカウントアップする。比較器702での比較によりカソード電圧が基準電圧Vref2より高い場合には、カウンタ回路750にてカウントダウンする。そして、比較器701での比較によりカソード電圧が基準電圧Vref1より高く、且つ比較器702での比較によりカソード電圧が基準電圧Vref2より低い場合には、カウンタ回路750にてカウントアップもカウントダウンもしない。   If the cathode voltage is lower than the reference voltage Vref1 as a result of comparison by the comparator 701, the counter circuit 750 counts up. If the cathode voltage is higher than the reference voltage Vref2 by the comparison by the comparator 702, the counter circuit 750 counts down. When the cathode voltage is higher than the reference voltage Vref1 by comparison with the comparator 701 and the cathode voltage is lower than the reference voltage Vref2 by comparison with the comparator 702, the counter circuit 750 does not count up or count down.

このようにカウンタ回路750のカウント値を制御し、そのカウント値をD/A変換回路770にてアナログ信号へ変換し、電源回路300へフィードバックする。電源回路300では、そのアナログ信号に応じて出力電圧Voutを制御する。   In this way, the count value of the counter circuit 750 is controlled, and the count value is converted into an analog signal by the D / A conversion circuit 770 and fed back to the power supply circuit 300. The power supply circuit 300 controls the output voltage Vout according to the analog signal.

このように構成することで、電流シンク端子電圧のうち最も低い電圧が基準電圧Vref1とVref2の間になるように電源回路300の出力電圧Voutが制御され、出力電圧Voutは安定化する。そして、定電流駆動回路200に設定された電流のうち、最も大きな電流を流すのに必要十分な電圧に各電流シンク端子電圧は制御される。   With this configuration, the output voltage Vout of the power supply circuit 300 is controlled so that the lowest voltage among the current sink terminal voltages is between the reference voltages Vref1 and Vref2, and the output voltage Vout is stabilized. Then, each current sink terminal voltage is controlled to a voltage necessary and sufficient for flowing the largest current among the currents set in the constant current driving circuit 200.

なお、図3の構成において、図2に示したような照度検出回路を付加しても構わない。   In the configuration of FIG. 3, an illuminance detection circuit as shown in FIG. 2 may be added.

以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々変形が可能である。   The embodiment of the present invention has been described above, but the embodiment can be variously modified within the scope of the gist of the present invention.

例えば、上記実施形態では、定電流駆動回路200の電流シンク端子電圧に基づいて順方向電圧の差分を検出したが、定電流駆動回路200のパラメータとして電流を用いてもよい。その場合、発光ダイオード列の順方向電圧の差を検出する時のみ、一時的に定電流駆動回路を定電流シンクとしては用いずに電流検出回路として用いて、電流を検出し、その電流の違いから発光ダイオード列の順方向電圧の差へ変換する。   For example, in the above embodiment, the difference in the forward voltage is detected based on the current sink terminal voltage of the constant current drive circuit 200. However, a current may be used as a parameter of the constant current drive circuit 200. In that case, only when detecting the forward voltage difference of the LED array, the current is detected by using the constant current drive circuit temporarily as a current detection circuit rather than as a constant current sink, and the difference in current is detected. To the difference in forward voltage of the light-emitting diode array.

100 発光部
101〜103 発光ダイオード列
200 定電流駆動回路
300 電源回路
400 Vf差分検出回路
500 定電流値選択回路
600 基準電圧生成回路
700 誤差増幅器
701、702 比較器
750 カウンタ回路
770 D/A変換回路
800 照度検出回路
DESCRIPTION OF SYMBOLS 100 Light emission part 101-103 Light emitting diode row | line | column 200 Constant current drive circuit 300 Power supply circuit 400 Vf difference detection circuit 500 Constant current value selection circuit 600 Reference voltage generation circuit 700 Error amplifier 701, 702 Comparator 750 Counter circuit 770 D / A conversion circuit 800 Illuminance detection circuit

Claims (5)

1つの発光素子、又は複数直列に接続された発光素子から構成され、並列接続された複数列の発光素子列を駆動する発光素子駆動装置であって、
前記発光素子列のそれぞれに定電流を流す定電流駆動回路と、
前記発光素子列の順方向電圧の差分に基づいて前記発光素子列のそれぞれに流す定電流の電流値を決定する定電流値選択回路と、
を備えることを特徴とする発光素子駆動装置。
A light-emitting element driving device configured to drive one light-emitting element or a plurality of light-emitting element arrays connected in parallel, the light-emitting element driving apparatus comprising:
A constant current driving circuit for supplying a constant current to each of the light emitting element rows;
A constant current value selection circuit that determines a current value of a constant current that flows to each of the light emitting element rows based on a difference in forward voltage of the light emitting element rows;
A light-emitting element driving device comprising:
前記定電流駆動回路のパラメータに基づいて前記発光素子列の順方向電圧の差分を検出する順方向電圧差分検出回路を更に備えることを特徴とする請求項1に記載の発光素子駆動装置。   The light emitting element driving apparatus according to claim 1, further comprising a forward voltage difference detection circuit that detects a difference in forward voltage of the light emitting element array based on a parameter of the constant current driving circuit. 前記定電流値選択回路の電流値決定結果に基づいて1つ以上の基準電圧を生成する基準電圧生成回路と、
前記定電流駆動回路の電流シンク端子電圧と前記生成された基準電圧を比較する1つ以上の比較回路と、
前記比較回路による比較結果に基づいて前記発光素子列に供給する電圧を制御する電源回路と、を更に備えることを特徴とする請求項1又は請求項2に記載の発光素子駆動装置。
A reference voltage generation circuit that generates one or more reference voltages based on a current value determination result of the constant current value selection circuit;
One or more comparison circuits for comparing a current sink terminal voltage of the constant current drive circuit and the generated reference voltage;
The light emitting element drive device according to claim 1, further comprising: a power supply circuit that controls a voltage supplied to the light emitting element array based on a comparison result by the comparison circuit.
前記発光素子列のうち、少なくとも1列の前記発光素子列は電流値をゼロに設定されることを特徴とする請求項1〜請求項3のいずれか1項に記載の発光素子駆動装置。   4. The light emitting element driving device according to claim 1, wherein a current value of at least one of the light emitting element arrays is set to zero. 5. 前記定電流値選択回路は、前記発光素子列の順方向電圧の差分と、周囲環境の明るさを検出する照度検出回路による検出結果とに基づいて、前記発光素子列のそれぞれに流す定電流の電流値を決定することを特徴とする請求項1〜請求項4のいずれか1項に記載の発光素子駆動装置。   The constant current value selection circuit is configured to output a constant current to be supplied to each of the light emitting element arrays based on a difference between forward voltages of the light emitting element arrays and a detection result by an illuminance detection circuit that detects brightness of an ambient environment. The light emitting element driving device according to claim 1, wherein a current value is determined.
JP2013075928A 2013-04-01 2013-04-01 Light-emitting element drive device Pending JP2014203524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075928A JP2014203524A (en) 2013-04-01 2013-04-01 Light-emitting element drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075928A JP2014203524A (en) 2013-04-01 2013-04-01 Light-emitting element drive device

Publications (1)

Publication Number Publication Date
JP2014203524A true JP2014203524A (en) 2014-10-27

Family

ID=52353824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075928A Pending JP2014203524A (en) 2013-04-01 2013-04-01 Light-emitting element drive device

Country Status (1)

Country Link
JP (1) JP2014203524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094555A1 (en) * 2015-11-30 2017-06-08 シャープ株式会社 Method for testing led backlight

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094555A1 (en) * 2015-11-30 2017-06-08 シャープ株式会社 Method for testing led backlight

Similar Documents

Publication Publication Date Title
TWI418252B (en) Control method capable of avoiding flicker effect and light emitting device
US20070200513A1 (en) Drive device of color led backlight
US8339049B2 (en) LED driving circuit having a large operational range in voltage
US8952622B2 (en) Light emitting diode driving apparatus, driving method of light emitting diode, and computer-readable recording medium
TWI419609B (en) Led device with simultaneous open and short detection function and method thereof
JP5591848B2 (en) Adaptive switch mode LED system
TWI423724B (en) Light source driving device capable of dynamically keeping constant current sink and related method
KR101712676B1 (en) PWM controlling circuit and LED driver circuit having the same in
KR102298224B1 (en) Backlight unit and display apparatus having the same
JP5331158B2 (en) Light emitting element drive circuit
JP4983735B2 (en) Semiconductor integrated circuit for power control
US7999486B2 (en) Driving circuit and method for light emitting diode
US8217592B2 (en) Light emitting diode driving device and driving method thereof
JP4973814B2 (en) Drive device for organic EL element and organic EL lighting device
KR20140089938A (en) Backlight unit and display device having the same
CN112669778B (en) Backlight control circuit, control method thereof and display terminal
JP2011199220A (en) Light emitting element driving device
JP2014220200A (en) Illuminating device and control method thereof
KR101247506B1 (en) Driving apparatus for led string
KR20150006967A (en) Dc-dc converter, organic light emitting diode having the same and method for operating the same
US9148928B2 (en) Light emitting diode driver
JP2014203524A (en) Light-emitting element drive device
KR20130026780A (en) Driving circuit for light emitting diode(led) and driving method thereof
KR101891261B1 (en) LCD and method of driving the same
JP2009016460A (en) Driving device and illuminating device