JP2014201762A - Composite material with crystal grains of base material micronized and production method thereof - Google Patents
Composite material with crystal grains of base material micronized and production method thereof Download PDFInfo
- Publication number
- JP2014201762A JP2014201762A JP2013076507A JP2013076507A JP2014201762A JP 2014201762 A JP2014201762 A JP 2014201762A JP 2013076507 A JP2013076507 A JP 2013076507A JP 2013076507 A JP2013076507 A JP 2013076507A JP 2014201762 A JP2014201762 A JP 2014201762A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- composite material
- base metal
- base
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、母材結晶粒が従来よりも微細化された高強度な複合材料およびその製造方法に関するものである。 The present invention relates to a high-strength composite material in which base material crystal grains are made finer than before and a method for producing the same.
近年、軽量で高強度な材料の開発が進められている。その1つに、軽量なAlなどを母材として用いた複合材料が挙げられる。複合材料とは、母材と母材とは異なる組織や組成の材料を組み合わせた材料である。組み合わせた材料の長所を組み合わせることが可能であるため、複合材料は例えば内燃焼機関用コンロッドやヒートシンクなど様々な分野への応用が期待されている。 In recent years, development of lightweight and high-strength materials has been promoted. One of them is a composite material using lightweight Al or the like as a base material. The composite material is a material in which the base material and the base material are combined with materials having different structures and compositions. Since the advantages of the combined materials can be combined, the composite material is expected to be applied to various fields such as a connecting rod for an internal combustion engine and a heat sink.
複合材料を製造する方法として、特許文献1や非特許文献1に示されている反応遠心力混合粉末法がある。この製造方法では、まず母材金属粉末と母材と反応して化合物を形成する物質粉末とを混合して混合粉末1を作製する。そして該混合粉末1を円筒形状金型2に投入した後に、前記円筒形状金型2を回転させることによって該混合粉末1に遠心力を作用させ、必要に応じて前記円筒形状金型2の予備加熱を行う(図1参照)。そして湯道3を通じて回転中の前記円筒形状金型2へ鋳造用溶解炉で溶解された母材溶融金属4を流し込む(図2参照)。 As a method for producing a composite material, there are reactive centrifugal force mixed powder methods disclosed in Patent Document 1 and Non-Patent Document 1. In this manufacturing method, first, a mixed powder 1 is prepared by mixing a base metal powder and a substance powder that reacts with the base material to form a compound. After the mixed powder 1 is put into the cylindrical mold 2, the cylindrical mold 2 is rotated so that a centrifugal force is applied to the mixed powder 1, and the cylindrical mold 2 is spared as necessary. Heating is performed (see FIG. 1). Then, the base metal molten metal 4 melted in the melting furnace for casting is poured into the rotating cylindrical mold 2 through the runner 3 (see FIG. 2).
遠心力の加圧効果により、混合粉末中の空隙に母材溶融金属4が含浸されると同時に、溶湯の熱により混合粉末1中の母材金属粉末が溶解する。この際に母材と物質粉末が反応し、化合物が生成される。本製造プロセスによって,前記化合物が母材金属に強固に固定され、かつ母材金属中に均一あるいは傾斜分散された複合材料が製造される。 Due to the pressurizing effect of the centrifugal force, the base metal molten metal 4 is impregnated into the voids in the mixed powder, and at the same time, the base metal metal powder in the mixed powder 1 is dissolved by the heat of the molten metal. At this time, the base material and the substance powder react to produce a compound. By this manufacturing process, a composite material in which the compound is firmly fixed to the base metal and is uniformly or inclinedly dispersed in the base metal is manufactured.
本発明の課題は、軽量ではあるが強度が低いAlなどの金属を母材とした複合材料を作製した場合、母材の強度が低いためにその複合材料の強度が低くなるという問題を解決することである。 An object of the present invention is to solve the problem that when a composite material made of a metal such as Al, which is lightweight but has low strength, is produced, the strength of the composite material is reduced because the strength of the base material is low. That is.
本発明者らは、複合材料を構成する母材金属の結晶粒を微細にすることで、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の複合材料およびその製造方法が提供される。 The present inventors have found that the above problem can be solved by making the crystal grains of the base metal constituting the composite material fine. That is, according to the present invention, the following composite material and the manufacturing method thereof are provided.
[1] 母材金属中に鋳造時に生成させた異質核となる化合物が分散した複合材料であって、母材金属の結晶粒径が300μm以下である複合材料。 [1] A composite material in which a compound serving as a heterogeneous nucleus generated during casting is dispersed in a base metal, and the crystal grain size of the base metal is 300 μm or less.
[2]前記母材金属の結晶粒径が100μm以下である前記[1]に記載の複合材料。 [2] The composite material according to [1], wherein a crystal grain size of the base metal is 100 μm or less.
[3]前記母材金属の結晶粒の大きさが複合材料中で傾斜して変化している前記[1]または[2]に記載の複合材料。 [3] The composite material according to [1] or [2], wherein the size of crystal grains of the base metal changes in an inclined manner in the composite material.
[4]前記母材金属がAlであり、前記化合物がAl3Zrである前記[1]〜[3]のいずれかに記載の複合材料。 [4] The composite material according to any one of [1] to [3], wherein the base metal is Al and the compound is Al 3 Zr.
[5]母材金属粉末を金型に投入し、該金型を回転させて該粉末に遠心力を与えながら、溶融された前記母材溶融金属を流し込み、該母材溶融金属が有する熱により前記母材金属粉末を溶融させ、遠心鋳造法による母材金属よりも、結晶粒を微細にし、かつ強度の高い複合材料の製造方法。 [5] The base metal powder is put into a mold, the melted base metal molten metal is poured while rotating the mold to give centrifugal force to the powder, and the heat of the base metal molten metal A method for producing a composite material in which the base metal powder is melted, the crystal grains are made finer, and the strength is higher than that of a base metal by centrifugal casting.
[6]前記金型に投入する粉末が、前記母材金属粉末と、該母材と整合性の良い化合物を生成する粉末との混合粉末である、前記[5]に記載の複合材料の製造方法。 [6] Production of composite material according to [5] above, wherein the powder charged into the mold is a mixed powder of the base metal powder and a powder that generates a compound having good consistency with the base material. Method.
[7]前記母材金属がAlであり、前記母材と化合物を生成する粉末がZrである、前記[6]に記載の複合材料の製造方法。 [7] The method for producing a composite material according to [6], wherein the base metal is Al, and the powder that forms the base material and the compound is Zr.
以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
本発明の複合材料は、母材金属中に鋳造時に生成させた異質核となる化合物が分散した複合材料であって、母材金属の結晶粒径が300μm以下であることが好ましく、100μm以下であることがより好ましい。本発明の複合材料は、母材である金属Aに、母材と反応して化合物を生成する他の金属Bが分散しており、該金属Bが該母材金属Aと十分に反応する。ただし、熱量不足のために該金属Bが該母材金属Aと反応しきれずに、該金属Bと前記母材金属Aとの化合物が金属Bの周囲を取り囲むようにして金属Aと金属Bの境界に生成されている組織になった場合においても問題ない。 The composite material of the present invention is a composite material in which a compound serving as a heterogeneous nucleus generated during casting is dispersed in a base metal, and the crystal grain size of the base metal is preferably 300 μm or less, preferably 100 μm or less. More preferably. In the composite material of the present invention, another metal B that reacts with the base material to form a compound is dispersed in the metal A that is the base material, and the metal B sufficiently reacts with the base metal A. However, the metal B cannot completely react with the base metal A due to a lack of heat, and the compound of the metal B and the base metal A surrounds the periphery of the metal B so that the metal A and the metal B There is no problem even when the organization is generated at the boundary.
さらに母材金属Aの結晶粒は、複合材料中でその大きさが傾斜して変化していることが好ましい。結晶粒の大きさが傾斜して変化していると、結晶粒が微細な部分では硬く、結晶粒が粗大なところでは加工が容易といった利点がある。 Furthermore, it is preferable that the crystal grains of the base metal A change in an inclined manner in the composite material. When the size of the crystal grains changes in an inclined manner, there is an advantage that the crystal grains are hard in a fine portion and that the processing is easy in a place where the crystal grains are coarse.
本発明の複合材料の製造方法は、図3に示すように、母材金属粉末と該母材金属と反応して化合物を生成する物質粉末とを混合した混合粉末5を作製し、該混合粉末5を円筒形状金型6に投入した後に、回転軸7まわりに該円筒形状金型6を回転させる。そして該混合粉末5に遠心力を与えることによって、前記混合粉末5は該円筒形状金型6の内壁に固定される。そして、母材溶融金属8を該円筒形状金型6に流し込むことにより、該混合粉末5中の母材溶融金属と反応して化合物を生成する前記物質粉末と母材を反応させ、母材と格子定数差が小さく整合性の良い金属間化合物を生成させる。この金属間化合物は、整合性が良いために母材に対して異質核として作用する。これによって母材の結晶粒微細化を促し、強度が向上した複合材料9が製造される。図4に、本発明の複合材料の製造フローを示す。 As shown in FIG. 3, the method for producing a composite material of the present invention produces a mixed powder 5 in which a base metal powder and a substance powder that reacts with the base metal to form a compound are produced, and the mixed powder After 5 is put into the cylindrical mold 6, the cylindrical mold 6 is rotated around the rotation shaft 7. The mixed powder 5 is fixed to the inner wall of the cylindrical mold 6 by applying a centrifugal force to the mixed powder 5. Then, by pouring the base metal molten metal 8 into the cylindrical mold 6, the substance powder that reacts with the base metal molten metal in the mixed powder 5 to form a compound reacts with the base material, An intermetallic compound having a small lattice constant difference and good consistency is generated. Since this intermetallic compound has good consistency, it acts as a heterogeneous nucleus on the base material. This promotes the refinement of crystal grains of the base material, and the composite material 9 with improved strength is manufactured. FIG. 4 shows a manufacturing flow of the composite material of the present invention.
混合粉末5に代わって、母材金属と同一材料である粉末に母材溶融金属を流し込んで、前記金属粉末を溶融させると、潜熱などによって凝固時の冷却速度が大きくなり、母材の結晶粒の微細化が得られる。このように母材金属のみの材料であっても、結晶粒の大きさが部分的に異なる結晶粒組織を有している場合は、本願発明では広い意味での複合材料と言う。 Instead of the mixed powder 5, when the base metal molten metal is poured into a powder that is the same material as the base metal and the metal powder is melted, the cooling rate during solidification increases due to latent heat or the like, and the crystal grains of the base metal Can be obtained. Thus, even if it is a material made of only a base metal, when it has a crystal grain structure in which the size of crystal grains is partially different, it is called a composite material in a broad sense in the present invention.
本発明の複合材料の製造方法では、より具体的には、母材としてAl粉末、あるいは母材Al粉末とAl粉末と反応して化合物を生成するZr粉末を混合することにより粉末を作製し、円筒形状金型中の該混合粉末に溶融したAlを該円筒形状金型に流し込むことにより、該混合粉末中の母材AlとZrが反応して、母材Alと整合性の良い金属間化合物Al3Zrを生成させる。この金属間化合物Al3Zrは、Alとの整合性が良いために母材Alに対して異質核として作用する。これによって母材Alの結晶粒微細化を促し、強度が向上した複合材料が製造される。母材金属と同一材料である粉末に母材溶融金属を流し込んで、前記金属粉末を溶融させる場合も、当該母材としてAlが好適であるが、Alに限らず、他の金属でも同様な効果が得られる。 In the method for producing a composite material of the present invention, more specifically, a powder is prepared by mixing Al powder as a base material, or Zr powder that reacts with the base material Al powder and Al powder to form a compound, By flowing Al melted into the mixed powder in a cylindrical mold into the cylindrical mold, the base material Al and Zr in the mixed powder react to form an intermetallic compound having good consistency with the base material Al. Al 3 Zr is generated. This intermetallic compound Al 3 Zr acts as a heterogeneous nucleus with respect to the base material Al because of its good compatibility with Al. This promotes the refinement of the crystal grains of the base material Al and produces a composite material with improved strength. In the case where a molten metal is poured into a powder that is the same material as the base metal and the metal powder is melted, Al is suitable as the base material, but not only Al but also other metals have the same effect. Is obtained.
なお、本発明の複合材料の製造に使用される金型の形状は、上記円筒状に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用可能である。例えば、三角柱、四角柱および多角柱などその他複雑な形状のものにも適用可能である。さらに本発明の複合材料の母材およびこれと化合物を生成する金属は、前記のAlとZrとの組み合わせに限らず、生成する金属間化合物と母材の整合性が良ければ、他の組み合わせにも適用可能である。 In addition, the shape of the metal mold | die used for manufacture of the composite material of this invention is not restrict | limited to the said cylindrical shape, It can apply suitably changing in the range which does not deviate from the meaning. For example, the present invention can be applied to other complicated shapes such as a triangular prism, a quadrangular prism, and a polygonal prism. Furthermore, the base material of the composite material of the present invention and the metal that generates the compound and the base material are not limited to the combination of Al and Zr described above, and other combinations can be used as long as the compatibility between the generated intermetallic compound and the base material is good. Is also applicable.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(実施例1:Al・Zr混合粉末のAl溶湯による溶解)
反応遠心力混合粉末法によって本発明の複合材料を製造する。母材金属粉末である粒子径100〜150μmの純Al粉末59.8gと、母材と反応して化合物を生成する粒子径2〜3mmのZr粉末15.2gからなる混合粉末を作製し、該混合粉末を直径80mm、幅50mmの空洞を有する円筒形状金型に投入する。一方、母材金属である純Alインゴット280gを鋳造用溶解炉に装填する。その後、真空中にて前記円筒形状金型を600℃、該純Alインゴットを溶解温度800℃に加熱することで母材溶融純Alとする。そして、該円筒形状金型を回転させて重力倍数1119G(重力倍数1Gが重力場に相当)の遠心力を混合粉末に作用させて、該母材溶融純Alを該円筒形状金型に流し込む。この製造工程により、図5に示すように母材純Alが微細化したAl基複合材料を製造した。図6は、本鋳造材の断面の走査型電子顕微鏡の反射電子組成像であり、Zr粒子と母材純Alの界面において、金属間化合物Al3Zrが生成されている様子が確認できる。
(Example 1: Melting Al / Zr mixed powder with molten Al)
The composite material of the present invention is produced by a reactive centrifugal force mixed powder method. A mixed powder composed of 59.8 g of pure Al powder having a particle diameter of 100 to 150 μm as a base metal powder and 15.2 g of Zr powder having a particle diameter of 2 to 3 mm that reacts with the base material to form a compound, The mixed powder is put into a cylindrical mold having a cavity with a diameter of 80 mm and a width of 50 mm. On the other hand, 280 g of pure Al ingot, which is a base metal, is loaded into a melting furnace for casting. Thereafter, the cylindrical mold is heated to 600 ° C. and the pure Al ingot is heated to a melting temperature of 800 ° C. in a vacuum to obtain a base material molten pure Al. Then, the cylindrical mold is rotated, and a centrifugal force of gravity multiple 1119G (gravity multiple 1G corresponds to the gravitational field) is applied to the mixed powder, so that the base material molten pure Al is poured into the cylindrical mold. Through this manufacturing process, an Al-based composite material in which the base metal pure Al was refined as shown in FIG. 5 was manufactured. FIG. 6 is a reflected electron composition image of the cross section of the cast material, and it can be seen that the intermetallic compound Al 3 Zr is generated at the interface between the Zr particles and the base metal pure Al.
(比較例)
前記製造工程にて作製したAl基複合材料と同条件で、遠心鋳造にて作製した比較材である純Al試料を作製した。
(Comparative example)
A pure Al sample, which is a comparative material produced by centrifugal casting, was produced under the same conditions as the Al-based composite material produced in the manufacturing process.
前記Al基複合材料と純Alの結晶粒径を測定し、さらにマイクロビッカース硬さ試験を行った。結晶粒径は、外周部から内周部に向かって1mmの所を測定した。結晶粒径は、純Alでは2.7mm、Al基複合材料では99μmであった。この結果より、比較試料の純Al試料の結晶粒よりも、Al基複合材料中の母材Alの結晶粒が格段に微細であることがわかる。Al基複合材料の結晶粒が微細になった原因として、金属間化合物Al3Zrが異質核として働いたためと推測できる。また、マイクロビッカース硬さ試験の評価結果を図7に示す。このマイクロビッカース硬さ試験では、Al基複合材料においてはZrや金属間化合物Al3Zrが存在しない母材純Alの部分にビッカース圧痕を打った。また、断面の厚さを内周部から外周部に向かって位置を規格化し、測定を行った。この図より、鋳造時にZrを含む混合粉末が存在していた規格化位置0.7〜1.0(外周部側)においては、純Al試料よりもAl基複合材料の硬さが大きいことがわかる。結晶粒径の結果と図7より、結晶粒径が小さいほど、母材のマイクロビッカース硬度が高い、つまり材料強度が高いことがわかる。以上の結果より、本発明により得られたAl基複合材料は純Al試料より高強度であることがわかる。 The crystal grain sizes of the Al-based composite material and pure Al were measured, and a micro Vickers hardness test was further performed. The crystal grain size was measured at 1 mm from the outer periphery toward the inner periphery. The crystal grain size was 2.7 mm for pure Al and 99 μm for Al-based composite material. From this result, it can be seen that the crystal grains of the base material Al in the Al-based composite material are much finer than the crystal grains of the pure Al sample of the comparative sample. It can be presumed that the reason why the crystal grains of the Al-based composite material became fine is that the intermetallic compound Al 3 Zr worked as a heterogeneous nucleus. Moreover, the evaluation result of a micro Vickers hardness test is shown in FIG. In the micro Vickers hardness test, in the Al-based composite material, Vickers indentation was applied to a portion of the base material pure Al where Zr and the intermetallic compound Al 3 Zr were not present. In addition, the cross-sectional thickness was standardized from the inner periphery toward the outer periphery, and measurement was performed. From this figure, the hardness of the Al-based composite material is larger than that of the pure Al sample at the normalized position 0.7 to 1.0 (outer peripheral side) where the mixed powder containing Zr was present at the time of casting. Recognize. From the results of the crystal grain size and FIG. 7, it can be seen that the smaller the crystal grain size, the higher the micro Vickers hardness of the base material, that is, the higher the material strength. From the above results, it can be seen that the Al-based composite material obtained by the present invention has higher strength than the pure Al sample.
(実施例2:Al粉末のAl溶湯による溶解)
母材金属粉末である粒子径100〜150μmの純Al粉末65.9gを直径80mm、幅50mmの空洞を有する円筒形状金型に投入する。また、純Alインゴット280gを鋳造用溶解炉に装填する。その後、真空中にて金型を600℃、該純Alインゴットを溶解温度800℃に加熱することで母材溶融純Alとする。そして、該円筒形状金型を回転させて重力倍数1119G(重力倍数1Gが重力場に相当)の遠心力を該純Al粉末に作用させることで該円筒形状金型内壁に固定し、該母材溶融純Alを流し込んだ。この際に、該純Al粉末は融点まで加熱され、また同時に溶融時の潜熱などにより粉末が存在していた部分では熱が奪われ、凝固時の冷却速度は大きくなる。この製造工程により、粉末が存在していた部分の純Alの結晶粒が微細化した複合材料を製造した。図8は、該複合材料の断面の腐食後の写真である。矢印の方向に遠心力が作用されており、外周部側の結晶粒が微細であることがわかる。
(Example 2: Dissolution of Al powder with molten Al)
65.9 g of pure Al powder having a particle diameter of 100 to 150 μm as a base metal powder is put into a cylindrical mold having a cavity with a diameter of 80 mm and a width of 50 mm. Further, 280 g of pure Al ingot is loaded into a melting furnace for casting. Thereafter, the mold is heated to 600 ° C. in vacuum and the pure Al ingot is heated to a melting temperature of 800 ° C. to obtain a base material molten pure Al. Then, the cylindrical mold is rotated and a centrifugal force of gravity multiple 1119G (gravity multiple 1G corresponds to a gravitational field) is applied to the pure Al powder to fix the cylindrical mold to the inner wall of the cylindrical mold, Molten pure Al was poured. At this time, the pure Al powder is heated to the melting point, and at the same time, heat is removed from the portion where the powder was present due to latent heat at the time of melting, and the cooling rate at the time of solidification is increased. Through this manufacturing process, a composite material was produced in which the pure Al crystal grains in the portion where the powder was present were refined. FIG. 8 is a photograph after corrosion of the cross section of the composite material. It can be seen that centrifugal force is applied in the direction of the arrow, and the crystal grains on the outer peripheral side are fine.
前記製造工程にて作製した複合材料と同条件で遠心鋳造にて作製した比較材であるAl試料の結晶粒径とマイクロビッカース硬さ試験を行った。結晶粒径は、前記同様に外周部から内周部に向かって1mmの所を測定した。Al粉末無しの場合は2.7mm、Al粉末有りの場合は129μmであった。この結果より、円筒形状金型に純Al粉末を投入後に母材溶融純Alを金型に流し込んで作製した該材料は、比較試料よりも結晶粒径が微細であることがわかる。また、マイクロビッカース硬さ試験の結果を図9に示す。こちらも実施例1と同様に断面の厚さを内周部から外周部に向かって位置を規格化して測定を行った。この図より、鋳造時に粉末が存在していた規格化位置0.7〜1.0においては、Al複合材料のマイクロビッカース硬さが大きいことがわかる。以上の結果より、本技術によって作製したAl複合材料は、通常の遠心鋳造品よりも結晶粒が微細になり高強度であることがわかる。 The crystal grain size and micro Vickers hardness test of an Al sample, which is a comparative material produced by centrifugal casting under the same conditions as the composite material produced in the manufacturing process, were performed. The crystal grain size was measured at 1 mm from the outer peripheral part toward the inner peripheral part as described above. When there was no Al powder, it was 2.7 mm, and when there was Al powder, it was 129 μm. From this result, it can be seen that the material produced by pouring pure Al powder into a cylindrical mold and then pouring the base material molten pure Al into the mold has a crystal grain size finer than that of the comparative sample. Moreover, the result of a micro Vickers hardness test is shown in FIG. Also in the same manner as in Example 1, the thickness of the cross section was measured by standardizing the position from the inner peripheral portion toward the outer peripheral portion. From this figure, it can be seen that the micro Vickers hardness of the Al composite material is large at the normalized position 0.7 to 1.0 where the powder was present at the time of casting. From the above results, it can be seen that the Al composite material produced by the present technology has finer crystal grains and higher strength than an ordinary centrifugal cast product.
本発明は遠心鋳造によって製造した管材等の強度向上を図り、また本発明を用いてベアリング等を作製した場合には、ベアリングの耐摩耗性、耐久性向上が見込まれる。
The present invention aims to improve the strength of pipes and the like manufactured by centrifugal casting, and when a bearing or the like is produced using the present invention, the wear resistance and durability of the bearing are expected to be improved.
Claims (7)
The method for producing a composite material according to claim 6, wherein the base metal is Al, and the powder that forms a compound with the base material is Zr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013076507A JP2014201762A (en) | 2013-04-02 | 2013-04-02 | Composite material with crystal grains of base material micronized and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013076507A JP2014201762A (en) | 2013-04-02 | 2013-04-02 | Composite material with crystal grains of base material micronized and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014201762A true JP2014201762A (en) | 2014-10-27 |
Family
ID=52352493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013076507A Pending JP2014201762A (en) | 2013-04-02 | 2013-04-02 | Composite material with crystal grains of base material micronized and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014201762A (en) |
-
2013
- 2013-04-02 JP JP2013076507A patent/JP2014201762A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013166982A (en) | Method for producing functionally gradient material by using both sintering method and casting method | |
AU732289B2 (en) | Particulate field distributions in centrifugally cast metal matrix composites | |
JP6256524B2 (en) | Cast-in member and manufacturing method thereof | |
US20050211407A1 (en) | Semi-solid metal casting process of hypoeutectic aluminum alloys | |
CN102869465A (en) | Casting long products | |
WO2019225038A1 (en) | Cylindrical member | |
JP2013198928A (en) | Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same | |
Agarwal et al. | Influence of powder-chip based reinforcement on tensile properties and fracture behaviors of LM6 aluminum alloy | |
Xie et al. | Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy | |
JP2017164756A (en) | Agitation rotor and manufacturing method for aluminum alloy billet using the same | |
Akbarifar et al. | On the interfacial characteristics of compound cast Al/brass bimetals | |
Sahin et al. | Analysis of microstructures and mechanical properties of particle reinforced AlSi7Mg2 matrix composite materials | |
JP4390762B2 (en) | Differential gear case and manufacturing method thereof | |
CN112096536B (en) | Multi-ratchet bush, method for manufacturing same, and method for identifying bonding strength | |
Jia et al. | Effects of centrifugal forces and casting modulus on structures and mechanical properties of Ti-6Al-4V Alloy | |
JP2014201762A (en) | Composite material with crystal grains of base material micronized and production method thereof | |
JP2014129593A (en) | Self-lubricating metal composite material and self-lubricating metal-based composite material each excellent in terms of strength, lubricity, and abrasion resistance and methods for manufacturing the self-lubricating metal composite material and self-lubricating metal-based composite material | |
CN106702227B (en) | A kind of wear-resistant aluminum alloy and preparation method thereof | |
CN109182819A (en) | A kind of smelting preparation method of graphene enhancing almag | |
JP2017094391A (en) | Manufacturing method for aluminium alloy billet | |
Mahdy et al. | Experimental Study of Manufacturing Aluminum Alloy Pistons Using Vertical Centrifugal Casting Process | |
Wang et al. | Deformation characteristic of semi-solid ZCuSn10 copper alloy during isothermal compression | |
Konopka et al. | The Influence of Pressure Die Casting Parameters on the Castability of AlSi11-SiC p Composites | |
Melali et al. | Effect of stirring speed and flow pattern on the microstructure of a rheocast Al-Mg alloy | |
Pulisheru et al. | Porosity of Al–Cu–Ni Alloy with Addition of FeNb Through Sand and Stir Casting Routes |