JP2014199554A - 2線式負荷制御装置 - Google Patents

2線式負荷制御装置 Download PDF

Info

Publication number
JP2014199554A
JP2014199554A JP2013074560A JP2013074560A JP2014199554A JP 2014199554 A JP2014199554 A JP 2014199554A JP 2013074560 A JP2013074560 A JP 2013074560A JP 2013074560 A JP2013074560 A JP 2013074560A JP 2014199554 A JP2014199554 A JP 2014199554A
Authority
JP
Japan
Prior art keywords
current transformer
winding
secondary winding
current
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013074560A
Other languages
English (en)
Inventor
興梠 武志
Takeshi Korogi
武志 興梠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013074560A priority Critical patent/JP2014199554A/ja
Publication of JP2014199554A publication Critical patent/JP2014199554A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】電子回路を備えた2線式負荷制御装置における電流変成器の二次側の高出力化、一次側の発熱量の低減及び電流変成器の小型化を図る。【解決手段】2つの入力端子の間に接続されたスイッチ素子及び電流変成器13の直列回路と、電流変成器13の二次巻線に接続され、二次巻線に流れる交流電流を用いて、スイッチ素子12が導通状態のときの直流電力を出力するオン電源部17とを備え、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2によって変換された電流変成器13の二次側のインピーダンスZ2が電流変成器13の一次側のインピーダンスZ1とほぼ等しくなる(Z2≒Z1?(n1/n2)2)ように、一次巻線13aと二次巻線13bの巻線比n1/n2が設定されているので、インピーダンス・マッチングがとられ、電流変成器の二次側に効率よく電力を伝達することができる。【選択図】図1

Description

本発明は、照明装置などの負荷のオン及びオフを制御するための2線式負荷制御装置、特にマイクロコンピュータ(CPU)などの電子回路に電力を供給する電源に関する。
近年、工場、オフィス、商業施設などの非住宅施設において、照明装置などの負荷のオン及びオフを離れた場所から遠隔操作したり、負荷のオン又はオフ状態を離れた場所でモニタしたりする負荷制御システムが実用化されつつある。負荷の近傍に設置され、負荷のオン及びオフを直接制御する負荷制御装置は、集中制御装置又はモニタ装置との間でデータの送受信を行うために、CPUなどで構成された制御回路や通信回路などの電子回路が設けられている。非住宅施設を新築する場合には、商用電源から負荷に電力を供給するルートとは別のルートで、個々の負荷制御装置の電子回路用の電源を確保することが可能である(いわゆる3線式配線)。それに対して、既存の非住宅施設において、機械的な開閉接点を備えた例えばタンブラースイッチなどの負荷制御スイッチを、電子回路を備えた負荷制御装置に置き換える場合、負荷制御装置を商用電源と負荷に対して直列に接続しなければならない(いわゆる2線式配線)。
そのような2線式配線の場合、上記電子回路の電力を供給するための電源を如何に確保するかが問題となる。本出願人が既に製造販売しているトライアックなどの半導体スイッチ素子を用いた2線式負荷制御装置では、半導体スイッチ素子に並列に整流回路を接続し、負荷がオフしているときでも、実際には負荷がオン又は誤動作しない程度の微弱電流を負荷に流し、整流された電流をバッファコンデンサに充電し、負荷がオフしているときの電源(オフ電源部)を確保している。また、負荷がオンしているときは、半導体スイッチ素子が非導通の間に、整流回路により整流された電流をバッファコンデンサに充電して、負荷がオンしているときの電源(オン電源部)を確保している(特許文献1参照)。
上記半導体スイッチ素子を用いた2線式負荷制御装置は専ら住宅用であって、半導体スイッチ素子によって流しうる負荷電流は比較的少なく、多数の白熱電球を備えた照明装置や、直列又は並列接続された複数の照明装置など、大電流を必要とする負荷の制御には適していない。そのため、専ら非住宅施設において用いられる電子回路を備えた2線式負荷制御装置では、大電流を必要とする負荷のオン及びオフを制御するために、例えばラッチ式リレーなど、機械的に駆動される接点を備えたスイッチ素子(以下、リレー式スイッチ素子とする)が使用される。負荷がオフのときには、リレー式スイッチ素子に並列に接続された整流回路から出力される電流をバッファコンデンサに充電することによって、負荷がオフしているときの電源(オフ電源部)を確保することができる。それに対して、リレー式スイッチ素子は、半導体スイッチ素子と異なり、一旦オンされると常時接点が導通しており、非導通状態になることはない。そのため、負荷又は商用電源とリレー式スイッチ素子の間に電流変成器を設け、電流変成器の二次巻線に発生する電力によって負荷がオンしているときの電源(オン電源部)を確保している。
特開2008−97535号公報
上記のように、離れた場所から照明装置などの負荷のオン及びオフを遠隔操作したり、負荷のオン又はオフ状態をモニタしたりする負荷制御システムにおいては、負荷制御装置側の制御回路や通信回路などの電子回路が多機能化され、それによって消費電力が増大する。そのため、上記電流変成器における損失をできるだけ少なくして、二次巻線に発生される電力を高出力化することが求められる。一方、上記電流変成器の一次巻線には負荷電流が直接流れるため、一次巻線側の発熱量をできるだけ少なくすることが求められる。さらに、既存のタンブラースイッチを置き換えるためには、負荷制御装置の小型化が求められる。
本発明は、上記課題を解決するためになされたものであり、電子回路を備えた2線式負荷制御装置における電流変成器の二次側の高出力化、一次側の発熱量の低減及び電流変成器の小型化を目的とする。
上記目的を達成するために本発明に係る電子回路を備えた2線式負荷制御装置は、
交流電源及び負荷にそれぞれ接続される2つの入力端子と、
前記2つの入力端子の間に接続されたスイッチ素子及び電流変成器の直列回路と、
前記スイッチ素子の開閉部の両端に並列に接続され、前記交流電源から前記負荷を介して流れる交流電流を用いて、前記スイッチ素子が非導通状態のときの直流電力を出力するオフ電源部と、
前記電流変成器の二次巻線に接続され、前記二次巻線に流れる交流電流を用いて、前記スイッチ素子が導通状態のときの直流電力を出力するオン電源部とを備え、
前記電流変成器の一次巻線と前記二次巻線の巻線比によって変換された前記電流変成器の二次側のインピーダンスが前記電流変成器の一次側のインピーダンスとほぼ等しくなるように、前記一次巻線と前記二次巻線の巻線比が設定されていることを特徴とする。
前記オン電源部は、前記電流変成器の前記二次巻線に接続された整流回路と、前記整流回路から出力される電力の電圧を昇圧する昇圧回路を備えていることが好ましい。
前記電流変成器の前記一次巻線は、略平行に配列され、電気的に接続された複数の電線を巻回したものであることが好ましい。
前記電流変成器の前記一次巻線と前記二次巻線は略同心円状に巻回され、前記二次巻線が前記略同心円状の内側に位置し、前記一次巻線が前記略同心円状の外側に位置していることが好ましい。
前記電流変成器の前記二次巻線には1又は複数の中間タップが設けられており、前記二次巻線側のインピーダンスに応じて、前記二次巻線の巻数が可変であることが好ましい。
前記電流変成器の前記一次巻線には1又は複数の中間タップが設けられており、前記一次巻線の巻数が可変であることが好ましい。
前記電流変成器の前記一次巻線側に、前記一次巻線の巻数を切り換えるための切替スイッチを設けることが好ましい。
前記切替スイッチは、作業者によって操作される手動設定スイッチであることが好ましい。
前記電流変成器の前記二次巻線側に、前記二次巻線に流れる電流を検出する電流検出手段を設け、前記電流検出手段により所定の閾値以上の電流が検出されたときに、前記切替スイッチを自動で切り換えることが好ましい。
本発明によれば、電流変成器の一次巻線と二次巻線の巻線比によって変換された二次巻線側のインピーダンスが一次巻線のインピーダンスとほぼ等しくなるように、電流変成器の一次巻線と二次巻線の巻線比が設定されているので、インピーダンス・マッチングがとられ、電流変成器の二次巻線側に効率よく電力を伝達することができる。
本発明の一実施形態に係る電子回路を備えた2線式負荷制御装置の基本構成を示すブロック図。 電流変成器(トランス)によるインピーダンス・マッチングの説明図。 上記実施形態における電流変成器の構成を示す概念図。 昇圧回路の一例としてチョッパ方式のDC−DCコンバータの構成を示す回路図。 昇圧回路の他の構成としてスイッチド・キャパシタ方式のDC−DCコンバータの構成を示す回路図。 、整流回路と昇圧回路を1つにした倍電圧整流回路の構成を示す回路図。 上記実施形態における電流変成器の具体的な構成を示す図。
本発明の一実施形態に係る電子回路を備えた2線式負荷制御装置について、図面を参照しつつ説明する。図1は、本実施形態に係る2線式負荷制御装置1の基本的なブロック構成を示す。この2線式負荷制御装置1は、交流電源2及び負荷3にそれぞれ接続される2つの入力端子11a,11bと、2つの入力端子11a,11bの間に接続されたスイッチ素子12及び電流変成器13の直列回路を備えている。上記のように、専ら非住宅施設において用いられる電子回路を備えた2線式負荷制御装置では、大電流を必要とする負荷のオン及びオフを制御するために、リレー式スイッチ素子が使用されるが、それに限定されるものではなく、トライアックやその他の半導体スイッチ素子を用いることも可能である。あるいは、リレー式スイッチ素子と半導体スイッチ素子を並列に接続し、負荷電流の値に応じていずれかを選択的に使用することも可能である。
スイッチ素子12の開閉部の両端子12a,12bには、交流電源2から負荷3を介して流れる交流電流を用いて、スイッチ素子12が非導通状態のときに、直流電力を出力するオフ電源部14が接続されている。オフ電源部14は、ダイオードブリッジなどで構成され、交流電源2から負荷3を介して流れる交流電流を直流電流(脈流)に変換する整流回路15と、電流を制限する抵抗、電圧をクランプするツェナーダイオード(定電圧ダイオード)、トランジスタなどで構成された定電圧回路(ブートストラップ回路)16で構成されている。オフ電源部14は、例えば駆動電圧が12〜24Vの高電圧系統と、駆動電圧が1.5〜6Vの低電圧系統の、2つの電圧系統を有している。なお、オフ電源部14の構成は、本発明の特徴部分ではなく、従来例と同様であるため、その詳細な説明は省略する。
電流変成器13の2次側には、電流変成器13の2次側に流れる交流電流を用いてスイッチ素子12が導通しているときの直流電力を出力するオン電源部17が接続されている。オン電源部17は、ダイオードブリッジなどで構成され、交流電源2から負荷3を介して流れる交流電流を直流電流(脈流)に変換する整流回路18と、降圧回路又は昇圧回路19と、定電圧回路20などで構成されている。オン電源部17も、例えば駆動電圧が12〜24Vの高電圧系統と、駆動電圧が1.5〜6Vの低電圧系統の、2つの電圧系統を有している。オフ電源部14の高電圧系統の出力端子とオン電源部17の高電圧系統の出力端子は、それぞれ逆流防止用のダイオード(図示せず)を介して接続されている。同様に、オフ電源部14の低電圧系統の出力端子とオン電源部17の低電圧系統の出力端子は、それぞれ逆流防止用のダイオード(図示せず)を介して接続されている。
制御部21は、例えば壁面に設けられた操作ハンドルなどの入力部26をユーザが操作したときに、その操作情報に応じてスイッチ素子12の導通及び非導通を制御する。制御部21は、例えばCPUなどで構成され、低電圧(例えば3V)で駆動される第1制御部22と、高電圧(例えば24V)で駆動される第2制御部23を備えている。第1制御部22は、オフ電源部14及びオン電源部17の低電圧系統の出力端子に接続されている。第2制御部23は、スイッチ素子12がリレー式スイッチ素子である場合に、その電磁石装置を駆動するための大電力を出力する。また、制御部21は、離れた場所に設けられている集中制御装置又はモニタ装置との間でデータの送受信を行うための無線通信部27を備えている。これら第1制御部22、第2制御部23、無線通信部27などが上記2線式負荷制御装置1の電子回路に相当する。
オフ電源部14及びオン電源部17の低電圧系統の出力端子と第1制御部22の間には、CPU動作用の補助電源部24が接続されている。また、オフ電源部14及びオン電源部17の高電圧系統の出力端子と第2制御部23の間には、スイッチ素子12の接点開閉用の補助電源部25が接続されている。CPU動作用の補助電源部24及び接点開閉用の補助電源部25は、いずれも、バッファコンデンサなどで構成されている。接点開閉用の補助電源部25のバッファコンデンサは、スイッチ素子12を非導通状態から導通状態に切り替え、さらに連続して導通状態から非導通状態に切り替える、すなわち少なくとも2回駆動するだけの所定の電力を充電しうる容量を有している。
電流変成器13の二次側には、二次巻線に流れる電流値を検出するための電流検出部30が設けられている。また、電流変成器13の一次巻線13a及び二次巻線13bには、それぞれ1又は複数のタップが設けられており(図3参照)、タップ切替スイッチ31及び31’により、必要に応じて一次巻線13a及び二次巻線13bの巻数を変化させることができる。これら電流検出部30及びタップ切替スイッチ31及び31’の機能については後述する。
次に、本発明において用いられている電流変成器(トランス)の基本的な原理について、図2を参照しつつ説明する。なお、以下の説明においては、損失が零の理想的な場合を想定して説明するが、実際には変成器の巻線を流れる電流による発熱損失やコアに発生する渦電流損失及びヒステリシス損失などが発生するため、それらを考慮する必要がある。なお、以下の説明を簡単にするため、低電圧系統についてのみ説明する。
商用電源2の電圧の大部分は負荷3に分圧され、電流変成器13の一次巻線13aの端子間電圧はごく僅かである。また、電流変成器13の一次巻線13aの端子間電圧は負荷電流によって変化する。商用電源2の電圧を100V、電流変成器13の一次巻線13aのインピーダンスを1Ω、負荷電流を1A、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1:n2とすると、電流変成器13の一次巻線13aの端子間電圧は1Vであり、二次巻線13bには巻線比に比例した電圧が発生し、巻線比に反比例した電流が流れる。この二次巻線13bに発生する電流を整流回路18で整流し、電圧を降圧回路19によって降圧し、定電圧回路20によって定電圧化することにより、第1制御部22には、例えば3Vの電圧が印加される。但し、この状態では、インピーダンス・マッチングがとれていない。
一方で、電流変成器13はインピーダンス・マッチング効果を有しており、電流変成器13の一次側のインピーダンスZ1に対する二次側のインピーダンスZ2が巻線比n1/n2の二乗倍になっていれば、インピーダンス・マッチングをとることができる。制御部21の駆動電圧を3V、消費電流を10mAと仮定すると、制御部21のインピーダンスZ2は3V÷10mA=300Ωとなる。オン電源部17のインピーダンスを無視して、電流変成器13の二次側のインピーダンスZ2を300Ωとし、一次側のインピーダンスZ1を1Ωと仮定すると、インピーダンス・マッチングをとるには、(n1/n2)=1Ω/300Ωにすればよく、巻線比n1/n2=(1/300)1/2≒1/17とすればよい。実際に電流変成器13の一次巻線13aと二次巻線13bの巻線比n1:n2を決定するに当たっては、電流変成器13の一次側のインピーダンスZ1と二次側のインピーダンスZ2の実測値を考慮すべきことは言うまでもない。なお、電流変成器13の一次巻線13aの端子間電圧を上記のように1Vであると仮定すると、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2を1/17とすると、電流変成器13の二次巻線には17Vの電圧が発生する。この場合も、整流回路18で整流し、平滑化し、電圧を降圧回路19によって降圧し、定電圧回路20によって定電圧化することにより、制御部21には、例えば3Vの電圧が印加される。
一次側のインピーダンスZ1はほぼ一定であると見なすことができるが、二次側のインピーダンスZ2は制御部21の動作状態によって変化する。例えば、無線通信部27が信号の送受信を行っているときは、消費電力が増加し、二次側のインピーダンスが増加する。例えば、制御部21の消費電流が20mAに増加したとすると、二次側のインピーダンスZ2は3V÷20mA=150Ωに減少する。その場合、巻線比n1/n2を(1Ω/150Ω)1/2≒1/12.2とすればよい。このように、二次側のインピーダンスZ2の変化に応じて電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2を変化させることができれば、常にインピーダンス・マッチングがとれた状態で電流変成器13の二次側に効率よく電力を伝達することができる。
図3は、電流変成器13の二次巻線13bに、1又は複数の中間タップを設け、二次側のインピーダンスZ2の値に応じて、二次巻線13bの巻数を可変としたものである。また、電流変成器13の一次巻線13aにも、1又は複数の中間タップが設けられている。ここでは、電流変成器13の二次巻線13bのタップ切り替えについて説明する。タップ切替スイッチ31は、例えば半導体スイッチ素子で構成された無接点リレーであり、二次巻線13bの一端又はいずれかの中間タップを選択可能である。制御部21は、その動作状態に応じてタップ切替スイッチ31の選択を制御する。例えば、制御部21が待機状態にあるときは、消費電流はひじょうに少なく、二次側のインピーダンスZ2は大きい。その場合、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2として、例えば上記1/17を選択する。それに対して、無線通信部27が信号の送受信を行っているときは、第1制御部22及び無線通信部27などによる消費電流が増加し、二次側のインピーダンスZ2が小さくなる。その場合、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2として、例えば上記1/12.2を選択する。それによって、二次側のインピーダンスZ2が変化したとしても、インピーダンス・マッチングをとることができる。
ところで、制御部21を駆動するために、最終的に上記のような電圧3V、電流10mAの電力が得られればよいと仮定すると、定電圧回路20の入力端子に3V以上の電圧が印加されていればよい。そこで、上記降圧回路19の替わりに昇圧回路19を用い、昇圧回路19の入力部に、例えば電圧1V、電流30mAの電力が入力されるようにする。その場合、二次側のインピーダンスZ2は、1V/30mA≒33Ωとなり、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2=1/(33)1/2≒1/5.6となる。電流変成器13の二次巻線には5.6Vの電圧が発生するが、整流回路18で整流し、平滑化すると、昇圧回路19の入力端子で電圧は1V強程度になる。このように、降圧回路の替わりに昇圧回路を用いると、電流変成器13の二次巻線13bの巻数n2を少なくすることができ、電流変成器13を小型化することができる。
図4は、昇圧回路19の一例として、チョッパ方式のDC−DCコンバータの構成を示す。DC−DCコンバータの回路構成自体は周知であり、その詳細な説明は省略する。この場合、スイッチ素子Qのベース駆動信号をPWM制御することにより、昇圧電圧を自由に設定することができる。図5は、昇圧回路19の他の一例として、スイッチド・キャパシタ方式のDC−DCコンバータの構成を示す。図5中、(a)はキャパシタCに充電する際のスイッチ構成を示し、(b)は放電する際のスイッチ構成を示す。この構成では、充電する際に各キャパシタC1,C2は並列接続され、放電する際には各キャパシタC1,C2は直列接続される。図6は、整流回路18と昇圧回路19を1つの倍電圧整流回路とした構成例を示す。Bの入力端子の電圧が高いとき、キャパシタC3はダイオードD2を介して充電され、Aの入力端子の電圧が高いとき、入力電圧とキャパシタC3の電圧が直列になって、ダイオードD1を介してキャパシタC4を充電する。その結果、キャパシタC4の電圧が入力電圧の約2倍になる。なお、整流回路18、昇圧/降圧回路19及び定電圧回路20の構成は特に限定されない。また、整流回路18は全波整流回路であってもよいし、半波整流回路であってもよい。半波整流回路の場合、全波整流回路に比べて、整流回路での損失が増えるが、電流変成器13の二次側の一方の端子を常にGNDに接続(接地)することができ、GNDが安定する。
次に、電流変成器13の構成、すなわち一次巻線13a及び二次巻線13bの具体的な巻き方について説明する。この2線式負荷制御装置1は、既存のタンブラースイッチを取り外し、その後に設置されるものであるから、その筐体の大きさには制限がある。その一方で、制御部21は多機能化されており、様々な電子部品が搭載される。そのため、電流変成器13をできるだけ小型化すると共に、電流変成器13による発熱をできるだけ少なくすることが要請される。図7に示すように、一次巻線13aと二次巻線13bは、円筒状のボビン13cに略同心円状に巻回され、略同心円の内側に二次巻線13bが位置し、その外側に一次巻線13aが位置している。一次巻線13aに流れる電流値が二次巻線13bに流れる電流に比べて遙かに大きいため、一次巻線13aからの発熱量が大きい。一次巻線13aを外側に配置することにより、一次巻線13aからの発熱を効率よく放熱することができる。
また、一次巻線13aのインピーダンスを小さくするため、一般的には一次巻線13a用の電線を太くすることが考えられるが、一次巻線13aの巻数が少ない(例えば10巻程度)ため、一次巻線13aを密着して巻く必要はない。本実施形態では、2本の被覆電線を略平行にして一次巻線13aの巻数の複数倍(例えば2倍)巻回し、各電線の両端をそれぞれ電気的に結合している。それによって、一次巻線13aの見かけの断面積が増加し、インピーダンスが低下すると共に、表面積が増加し、一次巻線13aからの熱を効率よく放熱することができる。また、一次巻線13aは一回巻であるため、太い電線を使用する場合に比べて、電流変成器13の外径を小さくすることができる。
上記図3に示すように、本実施形態においては、電流変成器13の一次巻線13aにも1又は複数の(例えば1つ)中間タップ及びタップ切替スイッチ31’が設けられている。前述のように、この2線式負荷制御装置1は専ら非住宅施設において用いられ、負荷3として複数の照明装置が接続される。タップ切替スイッチ31’は、例えばDIPスイッチであり、2線式負荷制御装置1を負荷3に接続する際に、作業者によって設定される。スイッチ素子12の定格を1〜10Aと仮定して、負荷電流が5A未満のときは、電流変成器13の一次巻線13aの巻数n1を全数(例えば10巻)とし、負荷電流が5A以上のときは、一次巻線13aの巻数n1を1/2(例えば5巻)とする。負荷電流として、例えば5A以上の大電流が流れているときは、電流変成器13の二次側には十分すぎる電力が発生され、本発明の第1の課題である二次巻線13bに発生される電力の高出力化は達成されている。それよりも、電流変成器13の一次巻線13aに流れる負荷電流が大きいため、第2の課題である一次巻線13aによる発熱が問題となる。そこで、電流変成器13の一次巻線13aの巻数n1を減らし、インピーダンスを下げることによって、一次巻線13aによる発熱を低減させることができる。
ところで、負荷電流が上記負荷電流閾値である5Aよりも明らかに上である場合(例えば8A以上)や明らかに下である場合(例えば3A未満)は、上記のようにDPIスイッチなどを用いて、電流変成器13の一次巻線13aの巻数n1を固定しても問題はない。ところが、照明装置を調光制御する場合など、負荷3に流れる負荷電流が大きく変動する可能性がある場合も想定される。図1に示す構成例では、電流変成器13の二次巻線13b二流れる電流量をモニタするために電流検出部30を設けており、また、タップ切替スイッチ31’として、例えば半導体スイッチ素子で構成された無接点リレーを用いる。制御部21は、電流検出部30により検出された電流値と所定の二次電流閾値とを比較し、負荷電流が上記負荷電流閾値よりも大きいと推定されるときは、タップ切替スイッチ31’を制御して、一次巻線13aの巻数n1を切り換えるようにしてもよい。なお、一次巻線13aに2以上の中間タップが設け、電流検出部30により検出された電流値を複数の二次電流閾値と比較するように構成してもよい。さらに、電流変成器13の一次巻線13a巻数n1の切り替えに応じて、二次巻線13bの巻数n2を変化させ、インピーダンス・マッチングを維持するように構成することも可能である。
以上説明したように、本発明によれば、電流変成器13の一次巻線13aと二次巻線13bの巻線比n1/n2によって変換された電流変成器13の二次側のインピーダンスZ2が電流変成器13の一次側のインピーダンスZ1とほぼ等しくなる(Z2≒Z1×(n1/n2))ように、一次巻線13aと二次巻線13bの巻線比n1/n2が設定されているので、インピーダンス・マッチングがとられ、電流変成器の二次側に効率よく電力を伝達することができる。
また、オン電源部17に整流回路18から出力される電力の電圧を昇圧する昇圧回路19を設けることにより、電流変成器13の二次巻線13bに発生される電圧を制御部21に入力される電圧よりも低くすることが可能であり、見かけ上の電流変成器の二次側インピーダンスを小さくでき、インピーダンス・マッチングをとりつつ、一次巻線13aと二次巻線13bの巻線比n1/n2を小さくすることができる。その結果、電流変成器13の小型化が可能となる。
電流変成器13の一次巻線13aとして、略平行に配列され、電気的に接続された複数の電線を巻回することにより、電流変成器13の外径を大きくすることなく、一次巻線13aの断面積を増加させることができ、電流変成器13の一次側のインピーダンスの低減、それによる一次巻線13aからの発熱量の低減、及び一次巻線13aの表面積の増加による放熱効果の向上を達成することができる。
電流変成器13の一次巻線13aと二次巻線13bを略同心円状に巻回し、二次巻線13bを略同心円状の内側に位置させ、一次巻線13aを略同心円状の外側に位置させることにより、一次巻線13aにより発生される熱を効率よく放熱させることができる。また、電流変成器13の構造の簡素化及び小型化も可能となる。
電流変成器13の二次巻線13bに1又は複数の中間タップを設け、二次側のインピーダンスの変化に応じて、二次巻線の巻数を可変とすることにより、二次側のインピーダンスの変化に関わらず、インピーダンス・マッチング状態を維持することができる。
電流変成器13の一次巻線13aに1又は複数の中間タップを設け、一次巻線13aの巻数を可変とすることにより、例えば一次側に流れる負荷電流が大きく、インピーダンス・マッチングがとれていない状態でも二次側に十分な電力が発生されるときは、一次巻線13aの巻数を少なくして、一次巻線13aからの発熱量を少なくすることができる。
電流変成器13の一次巻線13aに、一次巻線13aの巻数を切り換えるための、例えばDIPスイッチなどの切替スイッチ31’を設けることにより、2線式負荷制御装置1を負荷3に接続する際、予想される負荷3の負荷電流に応じて、あらかじめ一次巻線13aの巻数を設定することができる。または、電流変成器13の二次巻線13bに流れる電流値を検出する電流検出部30を設け、切替スイッチ31’を、例えば半導体スイッチ素子で構成された無接点リレーとし、電流変成器13の二次側に十分な電力が発生されているときに、切替スイッチ31’を制御して、一次巻線13aの巻数を切り換えることができる。
1 電子回路を備えた2線式負荷制御装置
2 交流電源
3 負荷
11a,11b 入力端子
12 スイッチ素子
13 電流変成器
14 オフ電源部
15 第1整流回路
16 定電圧回路
17 オン電源部
18 第2整流回路
19 昇圧/高圧回路
20 定電圧回路
21 制御部
22 第1制御部
23 第2制御部
24 CPU動作用の補助電源部
25 接点開閉用の補助電源部
26 入力部
27 無線通信部
30 電流検出部
31,31’ タップ切替スイッチ

Claims (9)

  1. 交流電源及び負荷にそれぞれ接続される2つの入力端子と、
    前記2つの入力端子の間に接続されたスイッチ素子及び電流変成器の直列回路と、
    前記スイッチ素子の開閉部の両端に並列に接続され、前記交流電源から前記負荷を介して流れる交流電流を用いて、前記スイッチ素子が非導通状態のときの直流電力を出力するオフ電源部と、
    前記電流変成器の二次巻線に接続され、前記二次巻線に流れる交流電流を用いて、前記スイッチ素子が導通状態のときの直流電力を出力するオン電源部とを備え、
    前記電流変成器の一次巻線と前記二次巻線の巻線比によって変換された前記電流変成器の二次側のインピーダンスが前記電流変成器の一次側のインピーダンスとほぼ等しくなるように、前記一次巻線と前記二次巻線の巻線比が設定されていることを特徴とする電子回路を備えた2線式負荷制御装置。
  2. 前記オン電源部は、前記電流変成器の前記二次巻線に接続された整流回路と、前記整流回路から出力される電力の電圧を昇圧する昇圧回路を備えていることを特徴とする請求項1に記載の電子回路を備えた2線式負荷制御装置。
  3. 前記電流変成器の前記一次巻線は、略平行に配列され、電気的に接続された複数の電線を巻回したものであることを特徴とする請求項1又は請求項2に記載の電子回路を備えた2線式負荷制御装置。
  4. 前記電流変成器の前記一次巻線と前記二次巻線は略同心円状に巻回され、前記二次巻線が前記略同心円状の内側に位置し、前記一次巻線が前記略同心円状の外側に位置していることを特徴とする請求項1乃至請求項3のいずれか一項に記載の電子回路を備えた2線式負荷制御装置。
  5. 前記電流変成器の前記二次巻線には1又は複数の中間タップが設けられており、前記二次巻線側のインピーダンスに応じて、前記二次巻線の巻数が可変であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の電子回路を備えた2線式負荷制御装置。
  6. 前記電流変成器の前記一次巻線には1又は複数の中間タップが設けられており、前記一次巻線の巻数が可変であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の電子回路を備えた2線式負荷制御装置。
  7. 前記電流変成器の前記一次巻線側に、前記一次巻線の巻数を切り換えるための切替スイッチを設けることを特徴とする請求項6に記載の電子回路を備えた2線式負荷制御装置。
  8. 前記切替スイッチは、作業者によって操作される手動設定スイッチであることを特徴とする請求項7に記載の電子回路を備えた2線式負荷制御装置。
  9. 前記電流変成器の前記二次巻線側に、前記二次巻線に流れる電流を検出する電流検出手段を設け、前記電流検出手段により所定の閾値以上の電流が検出されたときに、前記切替スイッチを自動で切り換えることを特徴とする請求項7に記載の電子回路を備えた2線式負荷制御装置。
JP2013074560A 2013-03-29 2013-03-29 2線式負荷制御装置 Pending JP2014199554A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074560A JP2014199554A (ja) 2013-03-29 2013-03-29 2線式負荷制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074560A JP2014199554A (ja) 2013-03-29 2013-03-29 2線式負荷制御装置

Publications (1)

Publication Number Publication Date
JP2014199554A true JP2014199554A (ja) 2014-10-23

Family

ID=52356416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074560A Pending JP2014199554A (ja) 2013-03-29 2013-03-29 2線式負荷制御装置

Country Status (1)

Country Link
JP (1) JP2014199554A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124890A (en) * 1981-01-28 1982-08-03 Matsushita Electric Works Ltd Illuminator
JPH01240223A (ja) * 1988-03-22 1989-09-25 Mitsubishi Electric Corp 高周波放電加工装置
JPH02290281A (ja) * 1989-04-28 1990-11-30 Olympus Optical Co Ltd 超音波変換器駆動装置
JPH11162767A (ja) * 1997-12-02 1999-06-18 Toshiba Fa Syst Eng Corp 交流及び直流電圧検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124890A (en) * 1981-01-28 1982-08-03 Matsushita Electric Works Ltd Illuminator
JPH01240223A (ja) * 1988-03-22 1989-09-25 Mitsubishi Electric Corp 高周波放電加工装置
JPH02290281A (ja) * 1989-04-28 1990-11-30 Olympus Optical Co Ltd 超音波変換器駆動装置
JPH11162767A (ja) * 1997-12-02 1999-06-18 Toshiba Fa Syst Eng Corp 交流及び直流電圧検出装置

Similar Documents

Publication Publication Date Title
US10123393B1 (en) Power supply for a two-wire smart switch and lighting loads thereof
US11349353B2 (en) System and method for providing inductive power at multiple power levels
US10201064B1 (en) Power supply for a two-wire smart dimmer and lighting loads thereof
TW201607226A (zh) 開啟及關閉控制的共振直流對直流電源轉換器
US8446101B2 (en) Control switch
WO2019230052A1 (ja) 非接触給電装置
JPWO2011089776A1 (ja) 非接触給電装置
JP2011160508A (ja) スイッチング電源装置
KR101594699B1 (ko) 교류 전력선 통신 장치
US7863777B2 (en) Low power switching circuit
US7541691B2 (en) Standby power supply apparatus
US10070494B1 (en) Dimming switch device and methods for determining user operation events thereof
JP4956409B2 (ja) Led照明器具
JP2014199554A (ja) 2線式負荷制御装置
US20120020130A1 (en) Series Power Module
KR101091590B1 (ko) 스마트 조명 스위치에서의 전원 획득 장치
CN100372039C (zh) 对电开关提供电源的方法和电开关用的电源结构
KR200384124Y1 (ko) 스위치용 전원공급장치
EP3041140B1 (en) Proximity switch
KR102661090B1 (ko) 하이브리드 스위치 제어 장치
KR101830025B1 (ko) 전력 공급 모듈
KR100826924B1 (ko) 전자식 스위치
JP2012070544A (ja) 電源回路およびこれを用いた換気装置と照明装置
CN106664013A (zh) 开关模式电源
JP5928005B2 (ja) スイッチング電源

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627