JP2014199112A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2014199112A
JP2014199112A JP2013075104A JP2013075104A JP2014199112A JP 2014199112 A JP2014199112 A JP 2014199112A JP 2013075104 A JP2013075104 A JP 2013075104A JP 2013075104 A JP2013075104 A JP 2013075104A JP 2014199112 A JP2014199112 A JP 2014199112A
Authority
JP
Japan
Prior art keywords
output shaft
continuously variable
input shaft
variable transmission
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075104A
Other languages
Japanese (ja)
Other versions
JP6096565B2 (en
Inventor
優史 西村
Yuji Nishimura
優史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013075104A priority Critical patent/JP6096565B2/en
Priority to CN201410047182.8A priority patent/CN104074938B/en
Publication of JP2014199112A publication Critical patent/JP2014199112A/en
Application granted granted Critical
Publication of JP6096565B2 publication Critical patent/JP6096565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously variable transmission capable of suppressing generation of vibration and excessive loads.SOLUTION: A one-way rotation prevention mechanism 17 of a continuously variable transmission 1 fixes an oscillation link 18 to an output shaft 3 when an oscillation end portion 18b moves toward an input shaft 2. A length Lcon between an input side fulcrum and an output side fulcrum satisfies the following conditional expression: √(Lp+R1-R2)<Lcon, where the input side fulcrum is a coupling point between a radius-of-rotation adjustment mechanism and a connecting rod, the output side fulcrum is a coupling point between the oscillation end portion and the connecting rod, Lp indicates a distance between a rotational center axis of the input shaft and that of the output shaft, R1 indicates a distance between the rotational center axis of the input shaft and the input side fulcrum when eccentricity of the radius-of-rotation adjustment mechanism is equal to predetermined eccentricity, and R2 indicates a distance between the rotational center axis of the output shaft and the output side fulcrum.

Description

本発明は、てこクランク機構を用いた四節リンク機構型の無段変速機に関する。   The present invention relates to a continuously variable transmission of a four-bar linkage mechanism type using a lever crank mechanism.

従来、エンジン等の駆動源からの駆動力が伝達される入力軸と、入力軸と平行に配置された出力軸と、複数のてこクランク機構とを備える四節リンク機構型の無段変速機が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a four-bar linkage mechanism type continuously variable transmission including an input shaft to which driving force from a driving source such as an engine is transmitted, an output shaft arranged in parallel with the input shaft, and a plurality of lever crank mechanisms. It is known (see, for example, Patent Document 1).

特許文献1に記載の無段変速機において、てこクランク機構は、入力軸を中心として回転可能で回転半径を調節可能に設けられた回転半径調節機構と、出力軸に軸支される揺動リンクと、一方の端部が回転半径調節機構に回転自在に外嵌していて他方の端部が揺動リンクの揺動端部に連結されたコネクティングロッドとで構成されている。   In the continuously variable transmission described in Patent Document 1, a lever crank mechanism includes a rotation radius adjustment mechanism that is rotatable about an input shaft and is capable of adjusting a rotation radius, and a swing link that is pivotally supported by an output shaft. And a connecting rod in which one end is rotatably fitted to the turning radius adjusting mechanism and the other end is connected to the swing end of the swing link.

揺動リンクと出力軸との間には、揺動リンクが出力軸を中心として一方側に回転しようとするときに出力軸に対して揺動リンクを固定し、他方側に回転しようとするときに出力軸に対して揺動リンクを空転させる一方向回転阻止機構としての一方向クラッチが設けられている。   Between the swing link and the output shaft, when the swing link is about to rotate to one side around the output shaft, the swing link is fixed with respect to the output shaft and to the other side In addition, a one-way clutch is provided as a one-way rotation prevention mechanism that idles the swing link with respect to the output shaft.

回転半径調節機構は、中心から偏心して穿設された貫通孔を有する円盤形状の回転部と、貫通孔の内周面に設けられたリングギヤと、入力軸に固定されリングギヤに噛合する第1ピニオンと、調節用駆動源からの駆動力が伝達されるキャリアと、キャリアによって自転及び公転自在にそれぞれ軸支されていてリングギヤにそれぞれが噛合する2つの第2ピニオンとで構成されている。第1ピニオンと2つの第2ピニオンは、それらの中心を頂点とする三角形が正三角形となるように配置されている。   The turning radius adjusting mechanism includes a disk-shaped rotating portion having a through hole formed eccentrically from the center, a ring gear provided on the inner peripheral surface of the through hole, and a first pinion fixed to the input shaft and meshing with the ring gear. And a carrier to which the driving force from the adjusting drive source is transmitted, and two second pinions that are pivotally supported by the carrier so as to rotate and revolve, and mesh with the ring gear. The first pinion and the two second pinions are arranged so that a triangle whose vertex is the center thereof is an equilateral triangle.

この回転半径調節機構においては、走行用駆動源で回転する入力軸と調節用駆動源で回転するキャリアの回転速度が同一の場合は、入力軸の回転中心軸線に対する回転部の中心の偏心量が維持され、回転半径調節機構の回転半径も一定のまま維持される。一方、入力軸とキャリアの回転速度が異なる場合は、入力軸の回転中心軸線に対する回転部の中心の偏心量が変化し、回転半径調節機構の回転半径も変化する。   In this turning radius adjusting mechanism, when the rotational speed of the input shaft rotated by the traveling drive source and the carrier rotated by the adjusting drive source are the same, the eccentric amount of the center of the rotating portion with respect to the rotational center axis of the input shaft is The turning radius of the turning radius adjusting mechanism is also kept constant. On the other hand, when the rotational speeds of the input shaft and the carrier are different, the amount of eccentricity of the center of the rotating portion with respect to the rotational center axis of the input shaft changes, and the rotational radius of the rotational radius adjusting mechanism also changes.

したがって、回転半径調節機構は、その回転半径を変化させることによって、揺動リンクの揺動端部の振れ幅、ひいては変速比を変化させ、入力軸の回転速度に対する出力軸の回転速度を制御する。   Therefore, the turning radius adjusting mechanism changes the swing width of the swing end portion of the swing link, and thus the gear ratio, by changing the rotation radius, thereby controlling the rotational speed of the output shaft relative to the rotational speed of the input shaft. .

この無段変速機では、3つのピニオンの中心を頂点とする正三角形の中心と入力軸の回転中心軸線との距離を、この正三角形の中心と回転部の中心との距離と等しく設定していれば、入力軸の回転中心軸線と回転部の中心とを重ね合わせて偏心量を「0」にすることができる。偏心量が「0」の場合には、入力軸が回転している場合であっても揺動リンクの揺動端部の振れ幅が「0」となり、出力軸が回転しない状態となる。   In this continuously variable transmission, the distance between the center of the equilateral triangle whose apex is the center of the three pinions and the rotation center axis of the input shaft is set equal to the distance between the center of the equilateral triangle and the center of the rotating part. Then, the amount of eccentricity can be set to “0” by superimposing the rotation center axis of the input shaft and the center of the rotating portion. When the amount of eccentricity is “0”, even if the input shaft is rotating, the swing width of the swing end of the swing link is “0”, and the output shaft is not rotated.

この無段変速機のてこクランク機構では、キャリアと第2ピニオンとでカム部が構成され、カム部に調節用駆動源からの駆動力が伝達される。   In the lever crank mechanism of the continuously variable transmission, a cam portion is constituted by the carrier and the second pinion, and the driving force from the adjustment drive source is transmitted to the cam portion.

また、カム部は、てこクランク機構ごとにそれぞれ位相が異なるように設定され、複数のカム部で入力軸の周方向を一回りするようになっている。そのため、一端部が各回転半径調節機構に外嵌したコネクティングロッドによって、各揺動リンクが順にトルクを出力軸に伝達し、出力軸を回転させる。   Further, the cam portion is set so that the phase is different for each lever crank mechanism, and the plurality of cam portions make a round in the circumferential direction of the input shaft. Therefore, each connecting link sequentially transmits torque to the output shaft and rotates the output shaft by the connecting rod whose one end is externally fitted to each turning radius adjusting mechanism.

特開2012−1048号公報JP 2012-1048 A

上記の無段変速機のてこクランク機構は、一方向クラッチと組み合わせることによって、揺動リンクの揺動運動のうち一方側に向かう運動のときだけ、出力軸にトルクを伝達している。   The lever crank mechanism of the continuously variable transmission described above is combined with a one-way clutch, and transmits torque to the output shaft only during the movement toward one side of the swinging motion of the swinging link.

そのため、揺動リンクが激しく揺動運動する場合、振動が発生し、あるいは、揺動リンクとコネクティングロッドとの連結点に過剰な負荷が加わるおそれがあった。   For this reason, when the swinging link oscillates vigorously, vibration may occur, or an excessive load may be applied to the connection point between the swinging link and the connecting rod.

本発明は以上の点に鑑みてなされたものであり、振動や過剰な負荷の発生を抑えることができる無段変速機を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a continuously variable transmission that can suppress generation of vibration and excessive load.

本発明の無段変速機は、駆動源の駆動力が伝達される入力軸と、入力軸と平行に配置された出力軸と、入力軸を中心として回転可能であり回転半径を調節自在な回転半径調節機構と、出力軸に軸支された揺動リンクと、回転半径調節機構と揺動リンクとを連結するコネクティングロッドとを有し、入力軸の回転運動を揺動リンクの揺動運動に変換するてこクランク機構と、揺動端部が入力軸に近づくように出力軸を中心として回転するときに出力軸に対して揺動リンクを固定し、揺動端部が入力軸から離れるように回転とするときに出力軸に対して揺動リンクを空転させる一方向回転阻止機構とを備えている無段変速機であって、回転半径調節機構とコネクティングロッドとの連結点と、揺動端部とコネクティングロッドとの連結点との間の距離Lconが、次の条件式(1)を満足することを特徴とする。
√(Lp+R1−R2)<Lcon ・・・(1)
ただし、回転半径調節機構とコネクティングロッドとの連結点を入力側支点といい、揺動端部とコネクティングロッドとの連結点を出力側支点というとき、Lpは入力軸の回転中心軸線と出力軸の回転中心軸線との間の距離、R1は回転半径調節機構の偏心量が所定の偏心量のときの入力軸の回転中心軸線と入力側支点との間の距離、R2は出力軸の回転中心軸線と出力側支点との間の距離である。
The continuously variable transmission according to the present invention includes an input shaft to which a driving force of a driving source is transmitted, an output shaft arranged in parallel with the input shaft, and a rotation that can rotate around the input shaft and that can adjust a rotation radius. It has a radius adjustment mechanism, a swing link pivotally supported by the output shaft, and a connecting rod that connects the rotation radius adjustment mechanism and the swing link, and the rotational motion of the input shaft is changed to the swing motion of the swing link. The lever crank mechanism to be converted and the swing link is fixed to the output shaft so that the swing end moves away from the input shaft when rotating around the output shaft so that the swing end approaches the input shaft. A continuously variable transmission having a one-way rotation prevention mechanism that idles a rocking link with respect to an output shaft when rotating, wherein a connection point between a turning radius adjusting mechanism and a connecting rod, and a rocking end Between the connection point of the connecting part and the connecting rod Away Lcon, characterized by satisfying the following condition (1).
√ (Lp 2 + R1 2 −R2 2 ) <Lcon (1)
However, when the connection point between the turning radius adjusting mechanism and the connecting rod is called an input side fulcrum, and when the connection point between the swing end and the connecting rod is called an output side fulcrum, Lp is the rotation center axis of the input shaft and the output shaft. R1 is the distance between the rotation center axis, R1 is the distance between the rotation center axis of the input shaft and the input fulcrum when the eccentricity of the turning radius adjusting mechanism is a predetermined eccentricity, and R2 is the rotation center axis of the output shaft And the output fulcrum.

本発明によれば、Lconが、条件式(1)を満足しているので、揺動リンクとコネクティングロッドとの連結点(すなわち、出力側支点)に最も荷重が加わるときに、揺動リンクとコネクティングロッドとがなす角が直角になる。   According to the present invention, since Lcon satisfies the conditional expression (1), when the load is most applied to the connection point (that is, the output side fulcrum) between the swing link and the connecting rod, The angle formed by the connecting rod is a right angle.

そのため、そのときにコネクティングロッドによって揺動リンクに加えられる力が多方向に分散せず、振動の発生を抑制することができ、また、出力側支点に過剰な負荷が加わることを防止することができる。   For this reason, the force applied to the swing link by the connecting rod at that time is not distributed in multiple directions, the occurrence of vibrations can be suppressed, and an excessive load can be prevented from being applied to the output side fulcrum. it can.

また、本発明の無段変速機においては、回転半径調節機構とコネクティングロッドとの連結点と、揺動端部とコネクティングロッドとの連結点との間の距離Lconが、次の条件式(2)を満足することが好ましい。
Lcon≦√(Lp−R2)+R1 ・・・(2)
条件式(1)とともにこの条件式(2)を満足するように構成すれば、一方向クラッチ等の無段変速機を構成する他の部材の特性に関わらず、コネクティングロッドの長さが適度なものになる。
In the continuously variable transmission of the present invention, the distance Lcon between the connection point between the turning radius adjusting mechanism and the connecting rod and the connection point between the swing end and the connecting rod is expressed by the following conditional expression (2 ) Is preferably satisfied.
Lcon ≦ √ (Lp 2 −R2 2 ) + R1 (2)
If configured so as to satisfy the conditional expression (1) together with the conditional expression (1), the length of the connecting rod is moderate regardless of the characteristics of other members constituting the continuously variable transmission such as a one-way clutch. Become a thing.

また、本発明の無段変速機においては、所定の偏心量は、出力軸に伝達されるトルクが最大になる偏心量であることが好ましい。このように構成すれば、最も負荷の大きい状態で、効果的に負荷を軽減することができる。   In the continuously variable transmission of the present invention, it is preferable that the predetermined amount of eccentricity is an amount of eccentricity that maximizes the torque transmitted to the output shaft. If comprised in this way, a load can be reduced effectively in the state with the largest load.

また、本発明の無段変速機においては、てこクランク機構を複数備え、所定の偏心量は、出力軸に伝達されるトルクが最大になる偏心量のうち、変速比が最小になるときの偏心量であることが好ましい。このように構成すれば、てこクランク機構1つあたりの荷重分担が最も大きい状態で、効果的に負荷を軽減することができる。   In the continuously variable transmission according to the present invention, a plurality of lever crank mechanisms are provided, and the predetermined amount of eccentricity is the amount of eccentricity when the transmission ratio is the smallest of the amount of eccentricity that maximizes the torque transmitted to the output shaft. An amount is preferred. If comprised in this way, a load can be reduced effectively in the state with the largest load sharing per lever crank mechanism.

本発明の無段変速機の実施形態を示す断面図。Sectional drawing which shows embodiment of the continuously variable transmission of this invention. 図1の無段変速機の回転半径調節機構、コネクティングロッド及び揺動リンクを軸方向から示す模式図。The schematic diagram which shows the turning radius adjustment mechanism, connecting rod, and rocking | fluctuation link of the continuously variable transmission of FIG. 1 from an axial direction. 図1の無段変速機の回転半径調節機構の回転半径の変化を示す模式図。The schematic diagram which shows the change of the rotation radius of the rotation radius adjustment mechanism of the continuously variable transmission of FIG. 図1の無段変速機の回転半径調節機構の回転半径の変化と、揺動リンクの揺動運動の揺動角の関係を示す模式図であり、(a)は回転半径が最大、(b)は回転半径が中、(c)は回転半径が小である場合の揺動リンクの揺動運動の揺動角を示す。FIG. 2 is a schematic diagram showing a relationship between a change in a rotation radius of a rotation radius adjustment mechanism of the continuously variable transmission of FIG. 1 and a swing angle of a swing motion of a swing link, where (a) shows the maximum rotation radius; ) Shows the swing angle of the swing motion of the swing link when the rotation radius is medium, and (c) shows the swing angle of the swing link when the rotation radius is small. 図1の無段変速機の回転半径調節機構の回転半径の変化に対する揺動リンクの角速度の変化を示すグラフ。The graph which shows the change of the angular velocity of the rocking | fluctuation link with respect to the change of the rotation radius of the rotation radius adjustment mechanism of the continuously variable transmission of FIG. 出力軸が所定の角速度で回転している場合における、図1の無段変速機のてこクランク機構の動作を示す模式図であり、(a)は揺動端部が外死点にある状態、(b)は揺動端部が噛合点にある状態、(c)は揺動端部が最大角速度点にある状態、(d)は揺動端部が最大荷重点にある状態、(e)は揺動端部が内死点にある状態を示す。FIG. 2 is a schematic diagram showing an operation of a lever crank mechanism of the continuously variable transmission of FIG. 1 when an output shaft rotates at a predetermined angular velocity, (a) is a state where a swing end is at an external dead center; (B) is a state where the swing end is at the meshing point, (c) is a state where the swing end is at the maximum angular velocity point, (d) is a state where the swing end is at the maximum load point, (e) Indicates a state in which the rocking end is at the inner dead point. 図6に示した状態における、図1の無段変速機の入力軸及び出力軸の角速度の変化を示すグラフ。The graph which shows the change of the angular velocity of the input shaft and output shaft of the continuously variable transmission of FIG. 1 in the state shown in FIG. 出力軸が回転していない場合における、図1の無段変速機のてこクランク機構の動作を示す模式図であり、(a)は揺動端部が外死点(噛合点)にある状態、(b)は揺動端部が最大角速度点にある状態、(c)は揺動端部が内死点(最大荷重点)にある状態を示す。FIG. 2 is a schematic diagram illustrating an operation of a lever crank mechanism of the continuously variable transmission of FIG. 1 when an output shaft is not rotating, in which (a) is a state in which a swing end is at an external dead center (meshing point); (B) shows a state where the swing end is at the maximum angular velocity point, and (c) shows a state where the swing end is at the inner dead point (maximum load point). 図8に示した状態における、図1の無段変速機の入力軸の角速度の変化に対する出力軸の角速度の変化を示すグラフ。The graph which shows the change of the angular velocity of an output shaft with respect to the change of the angular velocity of the input shaft of the continuously variable transmission of FIG. 1 in the state shown in FIG. 図1の無段変速機の回転半径調節機構の回転半径の変化に対する出力軸トルクの変化を示すグラフ。The graph which shows the change of the output shaft torque with respect to the change of the rotation radius of the rotation radius adjustment mechanism of the continuously variable transmission of FIG. 図1の無段変速機の出力軸トルクの変化を示すグラフであり、(a)は回転半径調節機構の回転半径が図10に示すグラフのR1aであるときの状態、(b)は回転半径調節機構の回転半径が図10に示すグラフのR1bであるときの状態を示す。FIG. 11 is a graph showing a change in output shaft torque of the continuously variable transmission of FIG. 1, where (a) shows a state when the turning radius of the turning radius adjusting mechanism is R1a in the graph shown in FIG. 10, and (b) shows a turning radius. The state when the turning radius of the adjusting mechanism is R1b in the graph shown in FIG.

以下、本発明の無段変速機の実施形態を説明する。本実施形態の無段変速機は、四節リンク機構型の無段変速機であり、変速比i(i=入力軸の回転速度/出力軸の回転速度)を無限大(∞)にして出力軸の回転速度を「0」にできる変速機、いわゆるIVT(Infinity Variable Transmission)の一種である。   Hereinafter, embodiments of the continuously variable transmission of the present invention will be described. The continuously variable transmission of the present embodiment is a four-bar linkage mechanism type continuously variable transmission, and outputs with a gear ratio i (i = rotational speed of the input shaft / rotational speed of the output shaft) set to infinity (∞). This is a kind of transmission that can make the rotational speed of the shaft "0", so-called IVT (Infinity Variable Transmission).

まず、図1及び図2を参照して、本実施形態の無段変速機の構成について説明する。   First, with reference to FIG.1 and FIG.2, the structure of the continuously variable transmission of this embodiment is demonstrated.

本実施形態の無段変速機1は、入力軸2と、出力軸3と、6つの回転半径調節機構4とを備える。   The continuously variable transmission 1 according to the present embodiment includes an input shaft 2, an output shaft 3, and six turning radius adjustment mechanisms 4.

入力軸2は、中空の部材であり、内燃機関であるエンジンや電動機等の駆動源からの回転駆動力を受けることで入力軸2の回転中心軸線P1を中心に回転する。   The input shaft 2 is a hollow member, and rotates about the rotation center axis P <b> 1 of the input shaft 2 by receiving a rotational driving force from a driving source such as an internal combustion engine or an electric motor.

出力軸3は、入力軸2とは水平方向に離れた位置に入力軸2に平行に配置され、図外のデファレンシャルギヤやプロペラシャフト等を介して車両の駆動輪等の駆動部に回転動力を伝達させる。   The output shaft 3 is disposed in parallel to the input shaft 2 at a position separated from the input shaft 2 in the horizontal direction, and provides rotational power to a drive unit such as a drive wheel of a vehicle via a differential gear, a propeller shaft, etc. (not shown). Communicate.

回転半径調節機構4の各々は、入力軸2の回転中心軸線P1を中心として回転するように設けられ、カム部としてのカムディスク5と、回転部としての回転ディスク6と、ピニオンシャフト7とを有する。   Each of the turning radius adjusting mechanisms 4 is provided so as to rotate about the rotation center axis P1 of the input shaft 2, and includes a cam disk 5 as a cam part, a rotating disk 6 as a rotating part, and a pinion shaft 7. Have.

カムディスク5は、円盤形状であり、入力軸2の回転中心軸線P1から偏心して入力軸2と一体的に回転するように入力軸2に2個1組で設けられている。各1組のカムディスク5は、それぞれ位相を60°異なるように設定され、6組のカムディスク5で入力軸2の周方向を一回りするように配置されている。   The cam disks 5 have a disk shape, and are provided in pairs on the input shaft 2 so as to be eccentric from the rotation center axis P <b> 1 of the input shaft 2 and rotate integrally with the input shaft 2. Each set of cam disks 5 is set so as to have a phase difference of 60 °, and the six sets of cam disks 5 are arranged so as to make a round in the circumferential direction of the input shaft 2.

回転ディスク6は、その中心から偏心した位置に受入孔6aが設けられた円盤形状であり、その受入孔6aを介して、1組のカムディスク5に対して1つずつ、回転自在に外嵌している。   The rotating disk 6 has a disk shape in which a receiving hole 6a is provided at a position eccentric from the center thereof, and is rotatably fitted to the cam disk 5 one by one through the receiving hole 6a. doing.

回転ディスク6の受入孔6aは、その中心が、入力軸2の回転中心軸線P1からカムディスク5の中心P2(受入孔6aの中心)までの距離Raとカムディスク5の中心P2から回転ディスク6の中心P3までの距離Rbとが同一となるように形成されている。また、回転ディスク6の受入孔6aには、1組のカムディスク5の間となる位置に、内歯6bが設けられている。   The center of the receiving hole 6a of the rotating disk 6 is a distance Ra from the rotation center axis P1 of the input shaft 2 to the center P2 of the cam disk 5 (center of the receiving hole 6a) and the center P2 of the cam disk 5 to the rotating disk 6. The distance Rb to the center P3 is the same. The receiving hole 6 a of the rotating disk 6 is provided with an internal tooth 6 b at a position between the pair of cam disks 5.

ピニオンシャフト7は、中空の入力軸2内に、入力軸2と同心に配置され、入力軸2に対して相対回転自在になっている。また、ピニオンシャフト7の外周には、外歯7aが設けられている。さらに、ピニオンシャフト7には、差動機構8が接続されている。   The pinion shaft 7 is disposed concentrically with the input shaft 2 in the hollow input shaft 2 and is rotatable relative to the input shaft 2. Further, external teeth 7 a are provided on the outer periphery of the pinion shaft 7. Further, a differential mechanism 8 is connected to the pinion shaft 7.

ところで、入力軸2には、1組のカムディスク5の間において、カムディスク5の偏心方向に対向する個所に内周面と外周面とを連通させる切欠孔2aが形成されている。その入力軸2の切欠孔2aを介して、ピニオンシャフト7の外周に設けられた外歯7aは、回転ディスク6の受入孔6aの内周に設けられた内歯6bと噛合している。   By the way, the input shaft 2 is formed with a notch hole 2a between the pair of cam disks 5 at a location facing the eccentric direction of the cam disk 5 so that the inner peripheral surface and the outer peripheral surface communicate with each other. The external teeth 7 a provided on the outer periphery of the pinion shaft 7 are meshed with the internal teeth 6 b provided on the inner periphery of the receiving hole 6 a of the rotating disk 6 through the notch hole 2 a of the input shaft 2.

差動機構8は、遊星歯車機構として構成され、サンギヤ9と、入力軸2に連結された第1リングギヤ10と、ピニオンシャフト7に連結された第2リングギヤ11と、サンギヤ9及び第1リングギヤ10と噛合する大径部12aと、第2リングギヤ11と噛合する小径部12bとからなる段付きピニオン12を自転及び公転自在に軸支するキャリア13とを有している。また、差動機構8のサンギヤ9は、ピニオンシャフト7用の電動機からなる調節用駆動源14の回転軸14aに連結されている。   The differential mechanism 8 is configured as a planetary gear mechanism, and includes a sun gear 9, a first ring gear 10 connected to the input shaft 2, a second ring gear 11 connected to the pinion shaft 7, the sun gear 9 and the first ring gear 10. And a carrier 13 that pivotally supports a stepped pinion 12 including a small-diameter portion 12b meshing with the second ring gear 11 so as to rotate and revolve. The sun gear 9 of the differential mechanism 8 is connected to a rotating shaft 14a of an adjustment drive source 14 composed of an electric motor for the pinion shaft 7.

そのため、調節用駆動源14の回転速度を入力軸2の回転速度と同一にした場合、サンギヤ9と第1リングギヤ10とが同一速度で回転することとなり、サンギヤ9、第1リングギヤ10、第2リングギヤ11及びキャリア13の4つの要素が相対回転不能なロック状態となって、第2リングギヤ11と連結するピニオンシャフト7が入力軸2と同一速度で回転する。   Therefore, when the rotational speed of the adjusting drive source 14 is the same as the rotational speed of the input shaft 2, the sun gear 9 and the first ring gear 10 rotate at the same speed, so that the sun gear 9, the first ring gear 10, the second gear The four elements of the ring gear 11 and the carrier 13 are locked so as not to rotate relative to each other, and the pinion shaft 7 connected to the second ring gear 11 rotates at the same speed as the input shaft 2.

調節用駆動源14の回転速度を入力軸2の回転速度よりも遅くした場合、サンギヤ9の回転数をNs、第1リングギヤ10の回転数をNR1、サンギヤ9と第1リングギヤ10のギヤ比(第1リングギヤ10の歯数/サンギヤ9の歯数)をjとすると、キャリア13の回転数が(j・NR1+Ns)/(j+1)となる。また、サンギヤ9と第2リングギヤ11のギヤ比((第2リングギヤ11の歯数/サンギヤ9の歯数)×(段付きピニオン12の大径部12aの歯数/小径部12bの歯数))をkとすると、第2リングギヤ11の回転数が{j(k+1)NR1+(k−j)Ns}/{k(j+1)}となる。   When the rotational speed of the adjusting drive source 14 is made slower than the rotational speed of the input shaft 2, the rotational speed of the sun gear 9 is Ns, the rotational speed of the first ring gear 10 is NR1, and the gear ratio between the sun gear 9 and the first ring gear 10 ( When j is the number of teeth of the first ring gear 10 / the number of teeth of the sun gear 9, the rotation speed of the carrier 13 is (j · NR1 + Ns) / (j + 1). Further, the gear ratio between the sun gear 9 and the second ring gear 11 ((number of teeth of the second ring gear 11 / number of teeth of the sun gear 9) × (number of teeth of the large diameter portion 12a of the stepped pinion 12 / number of teeth of the small diameter portion 12b). ) Is k, the rotation speed of the second ring gear 11 is {j (k + 1) NR1 + (k−j) Ns} / {k (j + 1)}.

したがって、調節用駆動源14の回転速度を入力軸2の回転速度よりも遅くした場合であって、カムディスク5が固定された入力軸2の回転速度とピニオンシャフト7の回転速度とが同一である場合には、回転ディスク6はカムディスク5とともに一体に回転する。一方で、入力軸2の回転速度とピニオンシャフト7の回転速度とに差がある場合には、回転ディスク6はカムディスク5の中心P2を中心にカムディスク5の周縁を回転する。   Therefore, when the rotational speed of the adjusting drive source 14 is made slower than the rotational speed of the input shaft 2, the rotational speed of the input shaft 2 to which the cam disk 5 is fixed and the rotational speed of the pinion shaft 7 are the same. In some cases, the rotating disk 6 rotates together with the cam disk 5. On the other hand, when there is a difference between the rotation speed of the input shaft 2 and the rotation speed of the pinion shaft 7, the rotating disk 6 rotates around the center P <b> 2 of the cam disk 5.

図2に示すように、回転ディスク6は、カムディスク5に対して、P1からP2までの距離RaとP2からP3までの距離Rbとが同一となるように偏心されている。そのため、回転ディスク6の中心P3を入力軸2の回転中心軸線P1と同一線上に位置させて、入力軸2の回転中心軸線P1と回転ディスク6の中心P3との距離、すなわち、偏心量R1を「0」にすることもできる。   As shown in FIG. 2, the rotating disk 6 is eccentric with respect to the cam disk 5 so that the distance Ra from P1 to P2 and the distance Rb from P2 to P3 are the same. Therefore, the center P3 of the rotating disk 6 is positioned on the same line as the rotation center axis P1 of the input shaft 2, and the distance between the rotation center axis P1 of the input shaft 2 and the center P3 of the rotating disk 6, that is, the eccentric amount R1 is set. It can also be set to “0”.

回転半径調節機構4、具体的には回転半径調節機構4の回転ディスク6の周縁には、コネクティングロッド15が回転自在に外嵌している。   A connecting rod 15 is rotatably fitted around the periphery of the rotating radius adjusting mechanism 4, specifically, the rotating disk 6 of the rotating radius adjusting mechanism 4.

コネクティングロッド15は、一方の端部に大径の大径環状部15aを有し、他方の端部に大径環状部15aの径よりも小径の小径環状部15bを有している。コネクティングロッド15の大径環状部15aは、ボールベアリングからなるコンロッド軸受16を介して、回転ディスク6に外嵌している。   The connecting rod 15 has a large-diameter large-diameter annular portion 15a at one end, and a small-diameter annular portion 15b having a smaller diameter than the diameter of the large-diameter annular portion 15a at the other end. The large-diameter annular portion 15a of the connecting rod 15 is externally fitted to the rotary disk 6 via a connecting rod bearing 16 formed of a ball bearing.

出力軸3には、一方向回転阻止機構としての一方向クラッチ17を介して、揺動リンク18が軸支されている。   A swing link 18 is pivotally supported on the output shaft 3 via a one-way clutch 17 as a one-way rotation prevention mechanism.

一方向クラッチ17は、出力軸3の回転中心軸線P4を中心として一方側に回転しようとする場合に出力軸3に対して揺動リンク18を固定し、他方側に回転しようとする場合に出力軸3に対して揺動リンク18を空転させる。   The one-way clutch 17 fixes the swing link 18 with respect to the output shaft 3 when trying to rotate to one side around the rotation center axis P4 of the output shaft 3, and outputs when trying to rotate to the other side. The swing link 18 is idled with respect to the shaft 3.

揺動リンク18には、揺動端部18aが設けられ、揺動端部18aには、小径環状部15bを軸方向で挟み込むことができるように形成された一対の突片18bが設けられている。一対の突片18bには、小径環状部15bの内径に対応する貫通孔18cが穿設されている。貫通孔18c及び小径環状部15bに連結ピン19が挿入されることによって、コネクティングロッド15と揺動リンク18とが連結されている。また、揺動リンク18には、環状部18dが設けられている。   The swing link 18 is provided with a swing end portion 18a, and the swing end portion 18a is provided with a pair of projecting pieces 18b formed so as to sandwich the small-diameter annular portion 15b in the axial direction. Yes. The pair of projecting pieces 18b are formed with through holes 18c corresponding to the inner diameter of the small-diameter annular portion 15b. The connecting rod 15 and the swing link 18 are connected by inserting the connecting pin 19 into the through hole 18c and the small-diameter annular portion 15b. Further, the swing link 18 is provided with an annular portion 18d.

この環状部18dを外側部材、出力軸3を内側部材として、方向クラッチ17が構成されている。   The direction clutch 17 is configured with the annular portion 18d as an outer member and the output shaft 3 as an inner member.

次に、図1〜図5を参照して、本実施形態の無段変速機のてこクランク機構について説明する。   Next, the lever crank mechanism of the continuously variable transmission according to this embodiment will be described with reference to FIGS.

図2に示すように、本実施形態の無段変速機1では、回転半径調節機構4と、コネクティングロッド15と、揺動リンク18とで、てこクランク機構20(四節リンク機構)が構成されている。   As shown in FIG. 2, in the continuously variable transmission 1 of the present embodiment, a lever radius adjusting mechanism 4, a connecting rod 15, and a swing link 18 constitute a lever crank mechanism 20 (four-bar linkage mechanism). ing.

このてこクランク機構20によって、入力軸2の回転運動は、出力軸3の回転中心軸線P4を中心とする揺動リンク18の揺動運動に変換される。本実施形態の無段変速機1は、図1に示すように、合計6個のてこクランク機構20を備えている。   By this lever crank mechanism 20, the rotational motion of the input shaft 2 is converted into the swing motion of the swing link 18 about the rotation center axis P <b> 4 of the output shaft 3. As shown in FIG. 1, the continuously variable transmission 1 of this embodiment includes a total of six lever crank mechanisms 20.

このてこクランク機構20では、回転半径調節機構4の偏心量R1が「0」でない場合に、入力軸2とピニオンシャフト7を同一速度で回転させると、各コネクティングロッド15が、60度ずつ位相を変えながら、入力軸2と出力軸3との間で出力軸3側に押したり、入力軸2側に引いたりを交互に繰り返して、揺動リンク18を揺動させる。   In this lever crank mechanism 20, when the eccentric amount R1 of the turning radius adjusting mechanism 4 is not "0", when the input shaft 2 and the pinion shaft 7 are rotated at the same speed, each connecting rod 15 has a phase of 60 degrees. While changing, the swing link 18 is swung by alternately repeating pushing between the input shaft 2 and the output shaft 3 toward the output shaft 3 and pulling toward the input shaft 2.

そして、揺動リンク18と出力軸3との間には一方向クラッチ17が設けられているので、揺動リンク18が引かれた場合には、揺動リンク18が固定されて出力軸3に揺動リンク18の揺動運動の力が伝達されて出力軸3が回転し、揺動リンク18が押された場合には、揺動リンク18が空回りして出力軸3に揺動リンク18の揺動運動の力が伝達されない。6つの回転半径調節機構4は、それぞれ60度ずつ位相を変えて配置されているので、出力軸3は6つの回転半径調節機構4で順に回転させられる。   Since the one-way clutch 17 is provided between the swing link 18 and the output shaft 3, when the swing link 18 is pulled, the swing link 18 is fixed and attached to the output shaft 3. When the force of the swinging motion of the swinging link 18 is transmitted and the output shaft 3 rotates and the swinging link 18 is pushed, the swinging link 18 is idled and the swinging link 18 is moved to the output shaft 3. The force of rocking motion is not transmitted. Since the six turning radius adjusting mechanisms 4 are arranged by changing the phase by 60 degrees, the output shaft 3 is sequentially rotated by the six turning radius adjusting mechanisms 4.

また、本実施形態の無段変速機1では、図3に示すように、偏心量R1を変えることによって、回転半径調節機構4の回転半径を調節自在としている。   Moreover, in the continuously variable transmission 1 of this embodiment, as shown in FIG. 3, the rotation radius of the rotation radius adjustment mechanism 4 can be adjusted by changing the amount of eccentricity R1.

図3(a)は、偏心量R1を「最大」とした状態を示し、入力軸2の回転中心軸線P1とカムディスク5の中心P2と回転ディスク6の中心P3とが一直線に並ぶように、ピニオンシャフト7と回転ディスク6とが位置する。この場合の変速比iは最小となる。図3(b)は、偏心量R1を図3(a)よりも小さい「中」とした状態を示し、図3(c)は、偏心量R1を図3(b)よりも更に小さい「小」とした状態を示している。変速比iは、図3(b)では図3(a)の変速比iよりも大きい「中」となり、図3(c)では図3(b)の変速比iよりも大きい「大」とした状態を示している。図3(d)は、偏心量R1を「0」とした状態を示し、入力軸2の回転中心軸線P1と、回転ディスク6の中心P3とが同心に位置する。この場合の変速比iは無限大(∞)となる。   FIG. 3A shows a state in which the amount of eccentricity R1 is “maximum”, and the rotation center axis P1 of the input shaft 2, the center P2 of the cam disk 5, and the center P3 of the rotation disk 6 are aligned. The pinion shaft 7 and the rotating disk 6 are located. In this case, the gear ratio i is minimized. FIG. 3B shows a state in which the eccentric amount R1 is set to “medium” which is smaller than that in FIG. 3A, and FIG. 3C illustrates that the eccentric amount R1 is smaller than that in FIG. Is shown. The gear ratio i is “medium” which is larger than the gear ratio i in FIG. 3A in FIG. 3B, and “large” which is larger than the gear ratio i in FIG. 3B in FIG. Shows the state. FIG. 3D shows a state where the amount of eccentricity R1 is “0”, and the rotation center axis P1 of the input shaft 2 and the center P3 of the rotating disk 6 are located concentrically. In this case, the gear ratio i is infinite (∞).

また、図4は、本実施形態の回転半径調節機構4の回転半径、すなわち、偏心量R1の変化と、揺動リンク18の揺動運動の揺動角の関係を示す模式図である。   FIG. 4 is a schematic diagram showing the relationship between the rotation radius of the rotation radius adjusting mechanism 4 of the present embodiment, that is, the change in the eccentricity R1 and the swing angle of the swing motion of the swing link 18.

図4(a)は偏心量R1が図3(a)の「最大」である場合(変速比iが最小である場合)、図4(b)は偏心量R1が図3(b)の「中」である場合(変速比iが中である場合)、図4(c)は偏心量R1が図3(c)の「小」である場合(変速比iが大である場合)の、回転半径調節機構4の回転運動に対する揺動リンク18の揺動範囲θ2を示している。ここで、出力軸3の回転中心軸線P4からコネクティングロッド15と揺動端部18aの連結点、すなわち、連結ピン19の中心P5までの距離が、揺動リンク18の長さR2である。   4A shows the case where the eccentric amount R1 is “maximum” in FIG. 3A (when the gear ratio i is the minimum), and FIG. 4B shows the case where the eccentric amount R1 is “ 4 (c) shows the case where the eccentric amount R1 is “small” in FIG. 3 (c) (when the gear ratio i is large). The swing range θ2 of the swing link 18 with respect to the rotational movement of the turning radius adjusting mechanism 4 is shown. Here, the distance from the rotation center axis P4 of the output shaft 3 to the connecting point of the connecting rod 15 and the swinging end portion 18a, that is, the center P5 of the connecting pin 19, is the length R2 of the swinging link 18.

この図4から明らかなように、偏心量R1が小さくなるにつれ、揺動リンク18の揺動範囲θ2が狭くなり、偏心量R1が「0」になった場合には、揺動リンク18は揺動しなくなる。   As is apparent from FIG. 4, as the eccentric amount R1 becomes smaller, the swing range θ2 of the swing link 18 becomes narrower, and when the eccentric amount R1 becomes “0”, the swing link 18 swings. Stops moving.

また、図5は、無段変速機1の回転半径調節機構4の回転角度θ1を横軸、揺動リンク18の角速度ωを縦軸として、回転半径調節機構4の偏心量R1の変化に伴う角速度ωの変化の関係を示す図である。   FIG. 5 shows a change in the amount of eccentricity R1 of the rotational radius adjusting mechanism 4 with the rotational angle θ1 of the rotational radius adjusting mechanism 4 of the continuously variable transmission 1 as the horizontal axis and the angular velocity ω of the swing link 18 as the vertical axis. It is a figure which shows the relationship of the change of angular velocity (omega).

この図5から明らかなように、偏心量R1が大きい(変速比iが小さい)ほど揺動リンク18の角速度ωが大きくなることが分かる。   As can be seen from FIG. 5, the angular velocity ω of the swing link 18 increases as the eccentric amount R1 increases (the transmission ratio i decreases).

次に、図6〜図11を参照して、本実施形態の無段変速機1のてこクランク機構20について詳細に説明する。   Next, the lever crank mechanism 20 of the continuously variable transmission 1 according to the present embodiment will be described in detail with reference to FIGS.

図6に示すように、本実施形態の無段変速機1では、回転ディスク6の中心P3(入力側支点)の回転運動を、Lconの長さを持つコネクティングロッド15を介して、揺動リンク18の揺動端部18aとコネクティングロッド15との連結点、すなわち、連結ピン19の中心P5(出力側支点)の揺動運動に変換している。   As shown in FIG. 6, in the continuously variable transmission 1 according to the present embodiment, the rotational movement of the center P3 (input side fulcrum) of the rotating disk 6 is transmitted via the connecting rod 15 having the length Lcon. 18 is converted to a swinging motion of a connecting point between the swinging end portion 18a of the connecting rod 15 and the connecting rod 15, that is, the center P5 (output side fulcrum) of the connecting pin 19.

この回転運動の中心は、入力軸2の回転中心軸線P1、半径は、回転半径調節機構4の偏心量R1である。また、この揺動運動の中心は、出力軸3の回転中心軸線P4、半径は、連結ピン19の中心P5から出力軸3の回転中心軸線P4までの距離R2である。   The center of this rotational motion is the rotation center axis P1 of the input shaft 2, and the radius is the eccentric amount R1 of the rotation radius adjusting mechanism 4. The center of the swinging motion is the rotation center axis P4 of the output shaft 3, and the radius is the distance R2 from the center P5 of the connecting pin 19 to the rotation center axis P4 of the output shaft 3.

ここで、図6及び図7を参照して、一方向クラッチ17の内側部材である出力軸3の角速度が一定の場合におけるてこクランク機構20の動作を説明する。   Here, the operation of the lever crank mechanism 20 when the angular velocity of the output shaft 3 which is the inner member of the one-way clutch 17 is constant will be described with reference to FIGS.

まず、図6(a)に示すように、回転ディスク6の中心P3(入力側支点)が回転運動を開始すると、連結ピン19の中心P5(出力側支点)が、揺動リンク18の揺動範囲のうち入力軸2に最も遠い位置(以下、「外死点」という。)から、入力軸2に近づく方向に移動を開始するとともに、一方向クラッチの外側部材である揺動リンク18の環状部18dの角速度が増加し始める。この状態は、図7におけるt=t0の状態である。   First, as shown in FIG. 6A, when the center P3 (input side fulcrum) of the rotary disk 6 starts rotating, the center P5 (output side fulcrum) of the connecting pin 19 swings the swing link 18. The movement of the swing link 18 that is the outer member of the one-way clutch is started from the position farthest from the input shaft 2 in the range (hereinafter referred to as “external dead center”) in a direction approaching the input shaft 2. The angular velocity of the part 18d starts to increase. This state is a state at t = t0 in FIG.

次に、図6(b)に示すように、回転ディスク6の中心P3(入力側支点)がある程度まで回転すると、連結ピン19の中心P5(出力側支点)が、外側部材である揺動リンク18の環状部18dの角速度が一方向クラッチ17の内側部材である出力軸3の角速度と同一になるまで増加する位置(以下、「噛合点」という。)に到達し、出力軸3にトルクが伝達され始める。この状態は、図7におけるt=t1の状態である。   Next, as shown in FIG. 6B, when the center P3 (input side fulcrum) of the rotating disk 6 is rotated to a certain extent, the center P5 (output side fulcrum) of the connecting pin 19 is an oscillating link that is an outer member. 18 reaches a position where the angular velocity of the annular portion 18d increases until it becomes equal to the angular velocity of the output shaft 3 that is the inner member of the one-way clutch 17 (hereinafter referred to as "meshing point"), and torque is applied to the output shaft 3. Begin to be transmitted. This state is a state at t = t1 in FIG.

次に、図6(c)に示すように、回転ディスク6の中心P3(入力側支点)がさらに回転すると、連結ピン19の中心P5(出力側支点)が、一方向クラッチの外側部材である揺動リンク18の環状部18dの角速度が最大になる位置(以下、「最大角速度点」という。)に到達し、環状部18dの角速度が減少し始める。この状態は、図7におけるt=t2の状態である。   Next, as shown in FIG. 6C, when the center P3 (input side fulcrum) of the rotating disk 6 further rotates, the center P5 (output side fulcrum) of the connecting pin 19 is an outer member of the one-way clutch. The position reaches the position where the angular velocity of the annular portion 18d of the swing link 18 becomes maximum (hereinafter referred to as “maximum angular velocity point”), and the angular velocity of the annular portion 18d starts to decrease. This state is a state at t = t2 in FIG.

次に、図6(d)に示すように、回転ディスク6の中心P3(入力側支点)がさらに回転すると、連結ピン19の中心P5(出力側支点)が、外側部材である揺動リンク18の環状部18dの角速度が一方向クラッチ17の内側部材である出力軸3の角速度と同一になるまで減少する位置(以下、「最大荷重点」という。)に到達し、出力軸3に伝達されたトルクの累積値(図7におけるハッチングされた領域)が最大になる。この状態は、図7におけるt=t3の状態である。   Next, as shown in FIG. 6 (d), when the center P3 (input side fulcrum) of the rotating disk 6 further rotates, the center P5 (output side fulcrum) of the connecting pin 19 becomes the swing link 18 which is an outer member. Reaches a position where it decreases until the angular velocity of the annular portion 18d becomes equal to the angular velocity of the output shaft 3 that is the inner member of the one-way clutch 17 (hereinafter referred to as “maximum load point”), and is transmitted to the output shaft 3. The accumulated value of the torque (hatched area in FIG. 7) is maximized. This state is a state at t = t3 in FIG.

次に、図6(e)に示すように、回転ディスク6の中心P3(入力側支点)がさらに回転すると、連結ピン19の中心P5(出力側支点)が、揺動リンク18の揺動範囲のうち出力軸3に最も近い位置(以下、「内死点」という。)に到達し、入力軸2から離れる方向に移動を開始するとともに、一方向クラッチの外側部材である揺動リンク18の環状部18dの角速度が負の方向に増加し始める。この状態は、図7におけるt=t4の状態である。   Next, as shown in FIG. 6 (e), when the center P 3 (input side fulcrum) of the rotary disk 6 further rotates, the center P 5 (output side fulcrum) of the connecting pin 19 becomes the swing range of the swing link 18. Of the swing link 18 which reaches the position closest to the output shaft 3 (hereinafter referred to as “internal dead center”) and starts moving away from the input shaft 2 and is the outer member of the one-way clutch. The angular velocity of the annular portion 18d starts to increase in the negative direction. This state is a state at t = t4 in FIG.

その後、回転ディスク6の中心P3(入力側支点)がさらに回転し、図6(a)〜図6(e)の状態を繰り返すようにして、揺動リンク18の揺動運動が行われる。   Thereafter, the center P3 (input side fulcrum) of the rotating disk 6 further rotates, and the swinging movement of the swinging link 18 is performed so as to repeat the states of FIGS. 6 (a) to 6 (e).

このてこクランク機構20の動作からもわかるように、本実施形態の無段変速機1が備える一方向回転阻止機構である一方向クラッチ17は、揺動リンク18の揺動端部18aが入力軸2に近づくように動くときに、出力軸3に対して揺動リンク18を固定することによって、入力軸2から出力軸3に駆動力を伝達している。   As can be seen from the operation of the lever crank mechanism 20, the one-way clutch 17, which is a one-way rotation prevention mechanism provided in the continuously variable transmission 1 of the present embodiment, has a swing end 18 a of the swing link 18 as an input shaft. When moving so as to approach 2, the driving link is transmitted from the input shaft 2 to the output shaft 3 by fixing the swing link 18 to the output shaft 3.

そして、このてこクランク機構20は、入力側支点と出力側支点との距離Lconは、次の条件式(1)を満足するように構成されている。
√(Lp+R1−R2)<Lcon ・・・(1)
ただし、入力側支点は回転半径調節機構4とコネクティングロッド15との連結点、すなわち、回転ディスク6の中心P3、出力側支点は揺動端部18bとコネクティングロッド15との連結点、すなわち、連結ピン19の中心P5、Lpは入力軸2の回転中心軸線P1と出力軸3の回転中心軸線P4の距離、R1は回転半径調節機構4の偏心量が所定の偏心量のときの入力軸の回転中心軸線P1と入力側支点P3との距離、R2は出力軸3の回転中心軸線P4と出力側支点との距離をR2である。
The lever crank mechanism 20 is configured such that the distance Lcon between the input side fulcrum and the output side fulcrum satisfies the following conditional expression (1).
√ (Lp 2 + R1 2 −R2 2 ) <Lcon (1)
However, the input side fulcrum is a connection point between the turning radius adjusting mechanism 4 and the connecting rod 15, that is, the center P3 of the rotating disk 6, and the output side fulcrum is a connection point between the swing end 18b and the connecting rod 15, that is, a connection. The centers P5 and Lp of the pin 19 are the distance between the rotation center axis P1 of the input shaft 2 and the rotation center axis P4 of the output shaft 3, and R1 is the rotation of the input shaft when the eccentric amount of the rotation radius adjusting mechanism 4 is a predetermined eccentric amount. R2 is the distance between the central axis P1 and the input side fulcrum P3, and R2 is the distance between the rotation center axis P4 of the output shaft 3 and the output side fulcrum.

本実施形態の無段変速機1は、この条件式(1)を満足するように構成されているので、図6(d)に示すように、出力側支点である連結ピン19の中心P5が最大荷重点に位置するときに、コネクティングロッド15と揺動リンク18とのなす角が直角になる。   Since the continuously variable transmission 1 of the present embodiment is configured to satisfy the conditional expression (1), as shown in FIG. 6D, the center P5 of the connecting pin 19 that is the output side fulcrum is When located at the maximum load point, the angle formed by the connecting rod 15 and the swing link 18 becomes a right angle.

そのため、そのときにコネクティングロッド15によって揺動リンク18に加えられる力が多方向に分散せず、振動の発生を抑制することができ、また、出力側支点に過剰な負荷が加わることを防止することができる。   Therefore, the force applied to the rocking link 18 by the connecting rod 15 at that time is not dispersed in multiple directions, the occurrence of vibration can be suppressed, and an excessive load is prevented from being applied to the output side fulcrum. be able to.

また、この無段変速機1は、次の条件式(2)を満足するように構成されている。
Lcon≦√(Lp−R2)+R1 ・・・(2)
The continuously variable transmission 1 is configured to satisfy the following conditional expression (2).
Lcon ≦ √ (Lp 2 −R2 2 ) + R1 (2)

ここで、条件式(2)の上限値について説明するため、図8,9を参照して、一方向クラッチ17の内側部材である出力軸3の角速度が0の場合のてこクランク機構20の動作を説明する。   Here, in order to explain the upper limit value of the conditional expression (2), referring to FIGS. 8 and 9, the operation of the lever crank mechanism 20 when the angular velocity of the output shaft 3 that is the inner member of the one-way clutch 17 is zero. Will be explained.

まず、図8(a)に示すように、回転ディスク6の中心P3(入力側支点)が回転運動を開始すると、連結ピン19の中心P5(出力側支点)が、外死点から、入力軸2に近づく方向に移動を開始するとともに、一方向クラッチの外側部材である揺動リンク18の環状部18dの角速度が増加し始める。   First, as shown in FIG. 8A, when the center P3 (input side fulcrum) of the rotating disk 6 starts rotating, the center P5 (output side fulcrum) of the connecting pin 19 is moved from the external dead center to the input shaft. 2 starts moving in the direction approaching 2, and the angular velocity of the annular portion 18d of the swing link 18 which is the outer member of the one-way clutch starts to increase.

このとき、一方向クラッチ17の内側部材である出力軸3の角速度が0であるので、外死点と噛合点は一致し、揺動リンク18はその揺動運動の開始時点から出力軸3にトルクを伝達し始める。したがって、この状態は、図9におけるt=t0=t1の状態である。   At this time, since the angular velocity of the output shaft 3 which is an inner member of the one-way clutch 17 is 0, the external dead center and the meshing point coincide with each other, and the swing link 18 moves to the output shaft 3 from the start of the swing motion. Begin transmitting torque. Therefore, this state is a state of t = t0 = t1 in FIG.

次に、図8(b)に示すように、回転ディスク6の中心P3(入力側支点)がある程度まで回転すると、連結ピン19の中心P5(出力側支点)が、最大角速度点に到達し、環状部18dの角速度が減少し始める。この状態は、図9におけるt=t2の状態である。   Next, as shown in FIG. 8 (b), when the center P3 (input side fulcrum) of the rotating disk 6 rotates to a certain extent, the center P5 (output side fulcrum) of the connecting pin 19 reaches the maximum angular velocity point, The angular velocity of the annular portion 18d begins to decrease. This state is a state at t = t2 in FIG.

次に、図8(c)に示すように、回転ディスク6の中心P3(入力側支点)がさらに回転すると、連結ピン19の中心P5(出力側支点)が、内死点に到達し、入力軸2から離れる方向に移動を開始するとともに、一方向クラッチの外側部材である揺動リンク18の環状部18dの角速度が負の方向に増加し始める。   Next, as shown in FIG. 8 (c), when the center P3 (input side fulcrum) of the rotating disk 6 further rotates, the center P5 (output side fulcrum) of the connecting pin 19 reaches the inner dead point, and the input While starting to move away from the shaft 2, the angular velocity of the annular portion 18d of the swing link 18 which is the outer member of the one-way clutch starts to increase in the negative direction.

このとき、一方向クラッチ17の内側部材である出力軸3の角速度が0であるので、内死点と最大荷重点は一致し、揺動リンク18はその揺動運動の運動方向が反対になる時点において出力軸3に伝達するトルクの累積値(図9におけるハッチングされた領域)が最大になる。したがって、この状態は、図9におけるt=t3=t4の状態である。   At this time, since the angular velocity of the output shaft 3 which is an inner member of the one-way clutch 17 is 0, the internal dead point and the maximum load point coincide with each other, and the swing link 18 has the opposite motion direction. At the time, the cumulative value of the torque transmitted to the output shaft 3 (hatched area in FIG. 9) becomes maximum. Therefore, this state is a state of t = t3 = t4 in FIG.

その後、回転ディスク6の中心P3(入力側支点)がさらに回転し、図8(a)〜図8(c)の状態を繰り返すようにして、揺動リンク18の揺動運動が行われる。   Thereafter, the center P3 (input side fulcrum) of the rotating disk 6 further rotates, and the swinging movement of the swinging link 18 is performed so as to repeat the states of FIGS. 8 (a) to 8 (c).

このような揺動運動をするてこクランク機構20において、内死点(最大荷重点)に連結ピン19の中心P5(出力側支点)が到達した場合に、コネクティングロッド15と揺動リンク18とのなす角が直角になるような構成にするには、以下の条件式(2)’を満足すればよい。
√(Lp−R2)+R1=Lcon ・・・(2)’
In the lever crank mechanism 20 that performs such swinging motion, when the center P5 (output side fulcrum) of the connecting pin 19 reaches the inner dead point (maximum load point), the connecting rod 15 and the swing link 18 In order to obtain a configuration in which the angle formed is a right angle, the following conditional expression (2) ′ may be satisfied.
√ (Lp 2 −R2 2 ) + R1 = Lcon (2) ′

そして、最大荷重点が内死点よりも入力軸2に近い位置になることはないので、コネクティングロッド15の長さ「Lcon」は、この「√(Lp−R2)+R1」という値が最大値となる。 Since the maximum load point is never closer to the input shaft 2 than the internal dead center, the length “Lcon” of the connecting rod 15 has the value of “√ (Lp 2 −R2 2 ) + R1”. Maximum value.

そのため、コネクティングロッド15の長さ「Lcon」が、条件式(2)’の右側の値以下になるように構成する、すなわち、条件式(2)を満足するように構成すればよいことになる。   For this reason, the length “Lcon” of the connecting rod 15 may be configured to be equal to or less than the value on the right side of the conditional expression (2) ′, that is, the conditional expression (2) may be satisfied. .

条件式(1)とともにこの条件式(2)を満足している本実施形態の無段変速機1は、一方向クラッチ17の特性に関わらず、コネクティングロッド15の長さが適度なものになっている。   In the continuously variable transmission 1 according to this embodiment that satisfies the conditional expression (2) together with the conditional expression (1), the length of the connecting rod 15 is appropriate regardless of the characteristics of the one-way clutch 17. ing.

ところで、本実施形態の無段変速機1を一般的な車両等に用いた場合、回転半径調節機構4の回転半径の変化に対する出力軸3に加わる出力軸トルクの変化は、車両の特性などにより、図10に示すグラフのようになる。   By the way, when the continuously variable transmission 1 of the present embodiment is used for a general vehicle or the like, the change in the output shaft torque applied to the output shaft 3 with respect to the change in the rotation radius of the rotation radius adjustment mechanism 4 depends on the characteristics of the vehicle. As shown in the graph of FIG.

具体的には、出力軸トルクは、偏心量R1が所定の値以下の場合には、その車両の駆動輪の摩擦係数等によって定まるスリップ限界値となり、その後、偏心量R1の増加に伴って低下していく。   Specifically, when the eccentric amount R1 is equal to or less than a predetermined value, the output shaft torque becomes a slip limit value determined by the friction coefficient of the drive wheel of the vehicle, and then decreases as the eccentric amount R1 increases. I will do it.

また、図10において、出力軸トルクがスリップ限界値である場合であっても、その出力軸トルクを分担するてこクランク機構20の数は、常に同一とは限らない。   In FIG. 10, even if the output shaft torque is the slip limit value, the number of lever crank mechanisms 20 that share the output shaft torque is not always the same.

例えば、偏心量R1が0に近いR1aである場合、図11(a)に示すように、ある時点において、ある出力軸トルクを分担するてこクランク機構20の数は4つである。   For example, when the eccentric amount R1 is R1a close to 0, as shown in FIG. 11A, the number of lever crank mechanisms 20 that share a certain output shaft torque is four at a certain time.

しかし、偏心量R1がR1aよりも大きく、出力軸トルクが減少し始める直前のR1bである場合、図11(b)に示すように、図11(a)と同一の出力軸トルクを分担するてこクランク機構20の数は3つである。   However, when the eccentric amount R1 is larger than R1a and R1b is just before the output shaft torque starts to decrease, as shown in FIG. 11 (b), the lever that shares the same output shaft torque as FIG. 11 (a) is used. The number of crank mechanisms 20 is three.

すなわち、偏心量R1の増加に伴って、1つのてこクランク機構20が分担する荷重は大きくなっていく。   That is, as the eccentric amount R1 increases, the load shared by one lever crank mechanism 20 increases.

そこで、本実施形態の無段変速機1では、図10に示すような特性を持つ車両等に用いられる場合には、上記の条件式(1)及び条件式(2)を満足するときの偏心量R1を、R1bとしている。   Therefore, in the continuously variable transmission 1 of the present embodiment, when used in a vehicle or the like having the characteristics shown in FIG. 10, the eccentricity when the conditional expressions (1) and (2) are satisfied is satisfied. The amount R1 is R1b.

すなわち、本実施形態の無段変速機1は、条件式(1)を満足する場合の所定の偏心量R1が、出力軸3に伝達されるトルクが最大になる偏心量(0〜R1b)のうち、変速比iが最大になる場合の偏心量(R1b)になるように構成されている。   That is, in the continuously variable transmission 1 of the present embodiment, the predetermined eccentric amount R1 when the conditional expression (1) is satisfied is an eccentric amount (0 to R1b) that maximizes the torque transmitted to the output shaft 3. Of these, the eccentricity (R1b) when the speed ratio i is maximized is configured.

そのため、出力軸3に加わる荷重が最も大きく、かつ、その荷重を分担するてこクランク機構の数が最も少ない状態で、コネクティングロッド15と揺動リンク18とのなす角が直角になり、連結ピン19の中心P5に加わる最大荷重を極小化することができ、振動の発生を抑制することができる。   Therefore, in the state where the load applied to the output shaft 3 is the largest and the number of lever crank mechanisms sharing the load is the smallest, the angle formed by the connecting rod 15 and the swing link 18 becomes a right angle, and the connecting pin 19 The maximum load applied to the center P5 can be minimized, and the occurrence of vibration can be suppressed.

1…無段変速機、2…入力軸、2a…切欠孔、3…出力軸(内側部材)、4…回転半径調節機構、5…カムディスク、6…回転ディスク、6a…受入孔、6b…内歯、7…ピニオンシャフト、7a…外歯、8…差動機構、8a…差動機構ケース、9…サンギヤ、10…第1リングギヤ、11…第2リングギヤ、12…段付きピニオン、12a…大径部、12b…小径部、13…キャリア、14…調節用駆動源、14a…回転軸、15…コネクティングロッド、15a…大径環状部、15b…小径環状部、16…コンロッド軸受、17…一方向クラッチ(一方向回転阻止機構)、18…揺動リンク、18a…揺動端部、18b…突片、18c…貫通孔、18d…環状部(外側部材)、19…連結ピン(出力側支点)、20…てこクランク機構、i…変速比、Lcon…コネクティングロッド15の長さ、Lp…P1とP4の距離、P1…入力軸2の回転中心軸線、P2…カムディスク5の中心、P3…回転ディスク6の中心(入力側支点)、P4…出力軸3の回転中心軸線、P5…連結ピン19の中心、Ra…P1とP2の距離、Rb…P2とP3の距離、R1…P1とP3の距離(偏心量,回転半径調節機構4の回転半径)、R2…P4とP5の距離(揺動リンク18の長さ)、θ1…回転半径調節機構4の回転角度、θ2…揺動リンク18の揺動範囲。 DESCRIPTION OF SYMBOLS 1 ... Continuously variable transmission, 2 ... Input shaft, 2a ... Notch hole, 3 ... Output shaft (inner member), 4 ... Turning radius adjustment mechanism, 5 ... Cam disk, 6 ... Rotating disk, 6a ... Receiving hole, 6b ... Internal teeth, 7 ... pinion shaft, 7a ... external teeth, 8 ... differential mechanism, 8a ... differential mechanism case, 9 ... sun gear, 10 ... first ring gear, 11 ... second ring gear, 12 ... stepped pinion, 12a ... Large diameter portion, 12b ... small diameter portion, 13 ... carrier, 14 ... adjusting drive source, 14a ... rotating shaft, 15 ... connecting rod, 15a ... large diameter annular portion, 15b ... small diameter annular portion, 16 ... connecting rod bearing, 17 ... One-way clutch (one-way rotation prevention mechanism), 18 ... swing link, 18a ... swing end, 18b ... projecting piece, 18c ... through hole, 18d ... annular part (outer member), 19 ... connecting pin (output side) Fulcrum), 20 ... lever crank mechanism, ... gear ratio, Lcon ... length of connecting rod 15, Lp ... distance between P1 and P4, P1 ... rotation center axis of input shaft 2, P2 ... center of cam disk 5, P3 ... center of rotation disk 6 (input side fulcrum) ), P4... Rotation center axis of the output shaft 3, P5... Center of the connecting pin 19, Ra... P1 and P2 distance, Rb... P2 and P3 distance, R1. Rotation radius of mechanism 4), R2... Distance between P4 and P5 (length of swing link 18), .theta.1... Rotation angle of rotation radius adjustment mechanism 4, .theta.2.

Claims (4)

駆動源の駆動力が伝達される入力軸と、
前記入力軸と平行に配置された出力軸と、
前記入力軸を中心として回転可能であり回転半径を調節自在な回転半径調節機構と、前記出力軸に軸支された揺動リンクと、前記回転半径調節機構と前記揺動リンクとを連結するコネクティングロッドとを有し、前記入力軸の回転運動を前記揺動リンクの揺動運動に変換するてこクランク機構と、
前記揺動端部が前記入力軸に近づくように前記出力軸を中心として回転するときに前記出力軸に対して前記揺動リンクを固定し、前記揺動端部が前記入力軸から離れるように回転とするときに前記出力軸に対して前記揺動リンクを空転させる一方向回転阻止機構とを備えている無段変速機であって、
前記回転半径調節機構と前記コネクティングロッドとの連結点と、前記揺動端部と前記コネクティングロッドとの連結点との間の距離Lconが、次の条件式を満足することを特徴とする無段変速機。
√(Lp+R1−R2)<Lcon
ただし、前記回転半径調節機構と前記コネクティングロッドとの連結点を入力側支点といい、前記揺動端部と前記コネクティングロッドとの連結点を出力側支点というとき、Lpは前記入力軸の回転中心軸線と前記出力軸の回転中心軸線との間の距離、R1は前記回転半径調節機構の偏心量が所定の偏心量のときの前記入力軸の回転中心軸線と前記入力側支点との間の距離、R2は前記出力軸の回転中心軸線と前記出力側支点との間の距離である。
An input shaft to which the driving force of the driving source is transmitted;
An output shaft disposed parallel to the input shaft;
A turning radius adjusting mechanism that is rotatable about the input shaft and capable of adjusting a turning radius, a swing link that is pivotally supported by the output shaft, and a connection that connects the turning radius adjusting mechanism and the swing link. A lever crank, and a lever crank mechanism that converts the rotational motion of the input shaft into the swing motion of the swing link;
The swing link is fixed to the output shaft when the swing end rotates about the output shaft so that the swing end approaches the input shaft, and the swing end is separated from the input shaft. A continuously variable transmission that includes a one-way rotation prevention mechanism that idles the swing link with respect to the output shaft when rotating;
A continuously variable distance Lcon between a connection point between the turning radius adjusting mechanism and the connecting rod and a connection point between the swinging end and the connecting rod satisfies the following conditional expression: transmission.
√ (Lp 2 + R1 2 −R2 2 ) <Lcon
However, when the connecting point between the turning radius adjusting mechanism and the connecting rod is referred to as an input fulcrum, and when the connecting point between the swinging end and the connecting rod is referred to as an output fulcrum, Lp is the rotation center of the input shaft. The distance between the axis and the rotation center axis of the output shaft, R1 is the distance between the rotation center axis of the input shaft and the input side fulcrum when the eccentric amount of the rotation radius adjusting mechanism is a predetermined eccentric amount , R2 is the distance between the rotation center axis of the output shaft and the output side fulcrum.
請求項1に記載の無段変速機であって、
前記回転半径調節機構と前記コネクティングロッドとの連結点と、前記揺動端部と前記コネクティングロッドとの連結点との間の距離Lconが、次の条件式を満足することを特徴とする無段変速機。
Lcon≦√(Lp−R2)+R1
The continuously variable transmission according to claim 1,
A continuously variable distance Lcon between a connection point between the turning radius adjusting mechanism and the connecting rod and a connection point between the swinging end and the connecting rod satisfies the following conditional expression: transmission.
Lcon ≦ √ (Lp 2 −R2 2 ) + R1
請求項1又は請求項2に記載の無段変速機であって、
前記所定の偏心量は、前記出力軸に伝達されるトルクが最大になる偏心量であることを特徴とする無段変速機。
The continuously variable transmission according to claim 1 or 2,
The continuously variable transmission is characterized in that the predetermined amount of eccentricity is an amount of eccentricity that maximizes the torque transmitted to the output shaft.
請求項1〜請求項3のいずれか1項に記載の無段変速機であって、
前記てこクランク機構を複数備え、
前記所定の偏心量は、前記出力軸に伝達されるトルクが最大になる偏心量のうち、変速比が最小になるときの偏心量であることを特徴とする無段変速機。
The continuously variable transmission according to any one of claims 1 to 3,
A plurality of lever crank mechanisms;
The continuously variable transmission is characterized in that the predetermined amount of eccentricity is an amount of eccentricity when the gear ratio is minimized among the amount of eccentricity that maximizes the torque transmitted to the output shaft.
JP2013075104A 2013-03-29 2013-03-29 Continuously variable transmission Expired - Fee Related JP6096565B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013075104A JP6096565B2 (en) 2013-03-29 2013-03-29 Continuously variable transmission
CN201410047182.8A CN104074938B (en) 2013-03-29 2014-02-10 Buncher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075104A JP6096565B2 (en) 2013-03-29 2013-03-29 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2014199112A true JP2014199112A (en) 2014-10-23
JP6096565B2 JP6096565B2 (en) 2017-03-15

Family

ID=51596431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075104A Expired - Fee Related JP6096565B2 (en) 2013-03-29 2013-03-29 Continuously variable transmission

Country Status (2)

Country Link
JP (1) JP6096565B2 (en)
CN (1) CN104074938B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555930B (en) * 2015-10-27 2016-11-01 黃明仕 Multi-link rotation structure
CN112610672B (en) * 2020-12-08 2022-06-03 安徽工程大学 Design method of crank and rocker mechanism of rotation and reciprocating swing conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197981A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Transmission
WO2012060196A1 (en) * 2010-11-02 2012-05-10 本田技研工業株式会社 Drive system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693737A (en) * 2004-05-08 2005-11-09 王树春 Mochanical versible speed changer
CN101725683A (en) * 2008-10-24 2010-06-09 陈建武 Eccentric three-group linkage reducer
JP5501461B2 (en) * 2010-06-15 2014-05-21 本田技研工業株式会社 Vehicle drive system and method for controlling vehicle drive system
JP2012255473A (en) * 2011-06-08 2012-12-27 Honda Motor Co Ltd Power transmission device for vehicle
JP5822594B2 (en) * 2011-08-08 2015-11-24 本田技研工業株式会社 Four-bar linkage type continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197981A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Transmission
WO2012060196A1 (en) * 2010-11-02 2012-05-10 本田技研工業株式会社 Drive system

Also Published As

Publication number Publication date
CN104074938B (en) 2016-08-17
CN104074938A (en) 2014-10-01
JP6096565B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5552572B2 (en) Four-bar link type continuously variable transmission
JP5676380B2 (en) Four-bar link type continuously variable transmission
JP5822594B2 (en) Four-bar linkage type continuously variable transmission
JP2013036535A (en) Four-bar linkage mechanism type continuously variable transmission
JP2015001266A (en) Stepless speed change device
JP6072730B2 (en) Power transmission device for vehicle
JP6096565B2 (en) Continuously variable transmission
JP5882478B2 (en) Continuously variable transmission
JP2012251609A (en) Continuously variable transmission
JP5908610B2 (en) Continuously variable transmission
JP5982558B2 (en) Continuously variable transmission
JP6100609B2 (en) Continuously variable transmission
JP6002595B2 (en) Continuously variable transmission
JP5896868B2 (en) Four-bar linkage type continuously variable transmission
JP6130282B2 (en) Bearing and vehicle power transmission device
JP2015021558A (en) Continuously variable transmission
JP6132689B2 (en) Continuously variable transmission
JP2015001287A (en) Lubrication oil supply structure
JP5807040B2 (en) Continuously variable transmission
JP6033170B2 (en) Continuously variable transmission
JP6002608B2 (en) Continuously variable transmission
JP2014228103A (en) Continuously variable transmission
JP5982262B2 (en) Continuously variable transmission
JP2014228102A (en) Continuously variable transmission
JP6073821B2 (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees