JP2014198987A - Reinforcement cover spacer - Google Patents

Reinforcement cover spacer Download PDF

Info

Publication number
JP2014198987A
JP2014198987A JP2013153496A JP2013153496A JP2014198987A JP 2014198987 A JP2014198987 A JP 2014198987A JP 2013153496 A JP2013153496 A JP 2013153496A JP 2013153496 A JP2013153496 A JP 2013153496A JP 2014198987 A JP2014198987 A JP 2014198987A
Authority
JP
Japan
Prior art keywords
spacer
tag
reinforcing bar
cover
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013153496A
Other languages
Japanese (ja)
Other versions
JP6173090B2 (en
Inventor
玲 江里口
Rei Eriguchi
玲 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013153496A priority Critical patent/JP6173090B2/en
Publication of JP2014198987A publication Critical patent/JP2014198987A/en
Application granted granted Critical
Publication of JP6173090B2 publication Critical patent/JP6173090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcement cover spacer which enables normal communication with an IC tag embedded in the spacer from the outside of a construction without being influenced by a reinforcement and its arrangement, can secure a covering thickness when used as the spacer, is easy in attachment, has no necessity for separately attaching the IC tag, and does not cause a fault of the construction by installation.SOLUTION: A reinforcement cover spacer has a support part for attachment to a reinforcement and a spacer main body, and the spacer main body is embedded with an IC tag. The IC tag is embedded by d=0.2 L to 0.6 L (in the formula, d indicates a distance between a plane including an antenna of the embedded IC tag and a virtual plane at which the spacer abuts on a mold form, and L indicates a distance between the virtual plane at which the spacer abuts on the mold form and a surface of the reinforcement).

Description

本発明は、鉄筋コンクリートに使用する鉄筋かぶりスペーサに関する。   The present invention relates to a rebar cover spacer used for reinforced concrete.

鉄筋コンクリート構造物の鉄筋のかぶりは、構造物の耐久性を維持するために重要な部位である。耐久性の確保のためには、かぶり部のコンクリートの品質が、ひび割れ等がなく良好であることが必要であり、必要とされる耐久性を確保するために設計された厚みが確実に確保されていることが重要である。通常、かぶり厚の確保は、鉄筋の配筋作業と型枠の設置により、設計されたとおりのかぶりを確保して施工されるが、型枠のずれ等の施工時の誤差や設計ミス等が発生する可能性も否めない。従って、かぶり厚は最終的に完成したコンクリート構造物の状態で確認することが望まれている。そのため、現状の確認手法として、コンクリート構造物の表面よりレーダー法や電磁誘導法による非破壊検査がおこなわれている(特許文献1等)。このとき、測定機器が比較的高価であることや、建物全体に亘る計測を実施するために多大な労力が必要となっている。   The reinforcement cover of a reinforced concrete structure is an important part for maintaining the durability of the structure. In order to ensure durability, it is necessary that the concrete quality of the cover is good without cracks, etc., and the thickness designed to ensure the required durability is ensured. It is important that Usually, the cover thickness is secured by rebar reinforcement work and the installation of the formwork, ensuring the cover as designed, but there are errors during construction such as displacement of the formwork and design errors. There is no denying the possibility of it occurring. Therefore, it is desired to confirm the cover thickness in the state of the finally completed concrete structure. Therefore, as a current confirmation method, nondestructive inspection is performed from the surface of a concrete structure by a radar method or an electromagnetic induction method (Patent Document 1, etc.). At this time, the measurement equipment is relatively expensive, and a great deal of labor is required to perform measurement over the entire building.

さらに、かぶりスペーサの有無にかかわらず、コンクリート構造物内の鉄筋にICタグを設置し、施工後、コンクリート構造物表面からICタグの位置を測定して、かぶり厚みを推定する方法(特許文献2)も考えられる。 Furthermore, regardless of the presence or absence of the cover spacer, a method of estimating the cover thickness by installing an IC tag on a reinforcing bar in a concrete structure and measuring the position of the IC tag from the surface of the concrete structure after construction (Patent Document 2) ) Is also possible.

しかし、構造物内部のICタグの信号は、検出しにくい、あるいは信号が検出できてもその感度がばらつく等の不具合が生じることや、ICタグ自身が設置された位置を特定することが難しいという問題点がある。信号を検出しても、ICタグの埋め込まれた位置は、ICタグから返される電波の強度、および外部の数箇所にて検知する電波の方向等により決定するという比較的手の込んだ作業が想定される。   However, the signal of the IC tag inside the structure is difficult to detect, or even if the signal can be detected, the sensitivity varies, and it is difficult to specify the position where the IC tag itself is installed. There is a problem. Even if a signal is detected, the position where the IC tag is embedded is determined by the strength of the radio wave returned from the IC tag and the direction of the radio wave detected at several external locations. is assumed.

更に、特許文献3では、鉄筋にアンテナの一部を接続することで、鉄筋がアンテナの役割を果たすが、一般に鉄筋の配筋は、建設する構造物の構造設計によって、本数、配置、太さ等が大きく異なることから、ICタグのアンテナの一部を鉄筋に接続するだけで、ICタグと通信を確立するための共振周波数もマッチングするとは限らない。また、アンテナへのスリット加工のみでインピーダンスの整合性を調整することは困難である。   Further, in Patent Document 3, a part of the antenna is connected to the reinforcing bar so that the reinforcing bar plays the role of an antenna. Generally, the reinforcing bar is arranged according to the structure design of the structure to be constructed. Therefore, simply connecting a part of the antenna of the IC tag to the reinforcing bar does not always match the resonance frequency for establishing communication with the IC tag. In addition, it is difficult to adjust impedance matching only by slitting the antenna.

更には、鉄筋の配筋は、通常、導電性を有する金属紐で結束されるため、鉄筋同士の導電性が、果てしなく大きく変動する可能性があり、設計時に予め把握することも困難である。また、仮に広い面積から接続したICタグを読取るが可能であっても、複数のICタグが配置された場合、アンチコリジョン等の高度な技術を用いなければ読み取るICタグの分別が困難であった。 Furthermore, since the reinforcing bars are usually bound by a conductive metal string, the conductivity between the reinforcing bars may endlessly vary greatly, and it is difficult to grasp in advance at the time of design. Moreover, even if it is possible to read IC tags connected from a wide area, if multiple IC tags are arranged, it is difficult to separate IC tags to be read unless advanced technology such as anti-collision is used. .

特開2010−14472号公報JP 2010-14472 A 特開2004−294288号公報JP 2004-294288 A 特開2009−282874号公報JP 2009-282874 A

本発明は、上記の課題を解決するためになされたものであって、鉄筋及びその配置の影響を受けずに構造物外部からスペーサに埋設したICタグと正常な通信が可能で、スペーサとして用いると、かぶり厚も確保でき、取り付けが容易で、さらに、別途ICタグのとりつけが不要で、設置による構造物の欠陥が生じない、鉄筋かぶりスペーサを、提供することを課題とした。   The present invention has been made to solve the above-described problem, and can normally communicate with an IC tag embedded in a spacer from the outside of the structure without being affected by the reinforcing bars and the arrangement thereof, and is used as a spacer. Another object is to provide a rebar cover spacer that can secure the cover thickness, is easy to mount, does not require separate IC tag mounting, and does not cause structural defects due to installation.

上記の目的を達成するために、鉄筋への取付け支持部と、スペーサ本体部を有し、スペーサ本体部は、ICタグを内蔵することを特徴とする鉄筋かぶりスペーサ、を提供する。 In order to achieve the above-mentioned object, there is provided a reinforcing bar covering spacer characterized by having an attachment support part to a reinforcing bar and a spacer main body part, and the spacer main body part contains an IC tag.

前記ICタグは、d=0.2L〜0.6Lに内蔵することを特徴とする請求項1に記載の鉄筋かぶりスペーサ、を提供する。(式中dは、内蔵されたICタグのアンテナを含む平面とスペーサが型枠と当接する仮想面との距離を表し、Lは、スペーサが型枠と当接する仮想平面から鉄筋の表面までの距離を表す。) The rebar cover spacer according to claim 1, wherein the IC tag is built in d = 0.2L to 0.6L. (Where d represents the distance between the plane including the antenna of the built-in IC tag and the virtual plane where the spacer contacts the mold, and L represents the distance from the virtual plane where the spacer contacts the mold to the surface of the reinforcing bar. Represents distance.)

ICタグのアンテナを含んで形成する面が、型枠と当接する面と平行になるように、ICタグを内蔵させたことを特徴とする前記鉄筋かぶりスペーサ、を提供する。 The reinforcing bar covering spacer is characterized in that the IC tag is incorporated so that the surface formed including the antenna of the IC tag is parallel to the surface in contact with the mold.

さらに、前記ICタグがパッシブ型であることを特徴とする前記のいずれかの鉄筋スペーサ、を提供する。 Further, the present invention provides any one of the above reinforcing bar spacers, wherein the IC tag is a passive type.

前記取付け支持部が、鉄筋に摺動回転可能であることを特徴とする前記のいずれかの鉄筋スペーサ、を提供する。 The reinforcing bar spacer according to any one of the above-mentioned features is provided, wherein the attachment support part is slidably rotatable on the reinforcing bar.

さらに、型枠と当接する仮想平面とスペーサ本体部との間にコンクリートが流れ込む隙間があることを特徴とする前記鉄筋かぶりスペーサ、を提供する。 Furthermore, the reinforcing bar covering spacer is characterized in that there is a gap into which concrete flows between a virtual plane that comes into contact with the mold and the spacer main body.

スペーサ本体部が、水硬性組成物又はセラミックスである前記鉄筋かぶりスペーサ、を提供する。 The reinforcing bar covering spacer is provided in which the spacer main body is a hydraulic composition or ceramics.

鉄筋への取付け支持部と、スペーサ本体部を有し、スペーサ本体部は、型枠面からのかぶり厚情報を記憶するメモリを含むICタグを内蔵することを特徴とする鉄筋かぶりスペーサ、を提供する。 Reinforcing bar cover spacer, which has a mounting support part to the reinforcing bar and a spacer main body part, and the spacer main body part contains an IC tag including a memory for storing the cover thickness information from the mold surface. To do.

前記のいずれかに記載のスペーサのかぶり厚保証値L又はかぶり厚の測定値、若しくは、規定のかぶり厚を確保できる長さを有していることの合格証明情報を、ICタグ11の内部メモリへ書込みをするか、又は、ICタグのIDに紐付けしてサーバー内のデータベースへ書き込みをおこない、構造物の施工にあたって、鉄筋の配筋後、前記スペーサを鉄筋に装着し、型枠を設置し、コンクリート打込、養生して、完成後の構造物表面からリーダで前記スペーサの情報を確認して、所定かぶり厚を保証する鉄筋かぶり厚の検査方法、を提供する。 The above-mentioned spacer cover thickness guarantee value L or the measured value of the cover thickness, or pass certification information indicating that the spacer has a length capable of securing a specified cover thickness is stored in the internal memory of the IC tag 11. Or write to the database in the server linked to the ID of the IC tag, and when constructing the structure, after placing the reinforcing bar, attach the spacer to the reinforcing bar and install the formwork Then, a method for inspecting the reinforcing bar cover thickness is provided, in which concrete is placed and cured, and the information on the spacer is confirmed with a reader from the surface of the completed structure to guarantee a predetermined cover thickness.

前記いずれかに記載のスペーサと、
完成後の構造物表面から、前記スペーサの有無を確認して、かぶり厚情報を取得するリーダと、
前記合格証明情報を、スペーサに内蔵されたICタグの内部メモリへ書込みをするライター、又は、ICタグのIDに紐付けしてサーバー内のデータベースへの書き込み装置と、
をすくなくとも有することを特徴とする鉄筋かぶり厚検査システム、を提供する。
The spacer according to any one of the above,
From the structure surface after completion, confirm the presence of the spacer, and obtain the cover thickness information;
A writer that writes the certification information to the internal memory of the IC tag built in the spacer, or a writing device to the database in the server linked to the ID of the IC tag,
There is provided a reinforcing bar cover thickness inspection system characterized by having at least.

前記システムにおいて、さらに、管理情報を、前記スペーサに内蔵されたICタグの内部メモリ、又は、前記ICタグのIDに紐付けしてサーバー内のデータベースに書き込むことを特徴とする鉄筋かぶり厚検査システム、を提供する。 In the system, further, the management information is written in the internal memory of the IC tag built in the spacer or in the database in the server in association with the ID of the IC tag. ,I will provide a.

前記スペーサのかぶり厚保証値L、若しくは、規定のかぶり厚を確保できる長さを有していることの証明情報を、ICタグ11の内部メモリへ書込みをするか、又は、ICタグのIDに紐付けしてサーバー内のデータベースへ書き込みをおこない、構造物の施工にあたって、鉄筋の配筋後、前記スペーサを鉄筋に装着し、型枠を設置し、コンクリート打込、養生して、完成後の構造物表面からリーダで前記スペーサの有無を確認して、所定かぶり厚を保証するかぶり厚の検査方法、を提供する。ここで、かぶり厚保証値Lとは、「スペーサが型枠と当接する仮想平面から鉄骨の表面までの距離」である。また、アンテナ距離dとは、「ICタグ中のアンテナを含む平面とスペーサが型枠と当接する仮想面との間隔」である。 Write the guaranteed cover thickness value L of the spacer or the proof information that the specified cover thickness is secured to the internal memory of the IC tag 11, or the ID of the IC tag After linking and writing to the database in the server and constructing the structure, after placing the reinforcing bar, attach the spacer to the reinforcing bar, install the formwork, place the concrete, cure, Provided is a method for inspecting a cover thickness by checking the presence / absence of the spacer with a reader from the surface of a structure to guarantee a predetermined cover thickness. Here, the cover thickness guarantee value L is “the distance from the virtual plane where the spacer abuts the mold to the surface of the steel frame”. The antenna distance d is “the distance between the plane including the antenna in the IC tag and the virtual plane where the spacer abuts the mold”.

本発明の鉄筋かぶりスペーサによると、取り付けが容易で、さらに、設置による構造物の欠陥が生じずにかぶり厚も確保でき、別途RFIDタグのとりつけ不要で、鉄筋及びその配置の影響を受けずに構造物外部からスペーサに埋設したICタグと正常な通信が可能となる。 According to the reinforcing bar cover spacer of the present invention, it is easy to install, and it is possible to secure the cover thickness without causing defects in the structure by installation, and it is not necessary to attach an RFID tag separately, and it is not affected by the reinforcing bar and its arrangement. Normal communication with IC tags embedded in spacers from outside the structure is possible.

更には、スペーサに内蔵されたICタグに鉄筋かぶり厚さの情報を収納することで、迅速にかぶり厚が所定値以上であることを、確実に検査することが可能となる。   Furthermore, by storing information on the reinforcing bar cover thickness in an IC tag built in the spacer, it is possible to quickly inspect whether the cover thickness is equal to or greater than a predetermined value.

本発明の実施例の投影図及び斜視図を例示する図である。It is a figure which illustrates the projection view and perspective view of the Example of this invention. 本発明の別の実施例の鉄筋かぶりスペーサ本体部と、鉄筋との位置関係を示す図である。It is a figure which shows the positional relationship of the reinforcing bar cover spacer main-body part of another Example of this invention, and a reinforcing bar. ICタグを鉄筋かぶりスペーサ本体部に埋め込む工程を例示した図である。It is the figure which illustrated the process of embedding an IC tag in a reinforcing bar cover spacer main-body part. 鉄筋かぶりスペーサ本体部を鉄筋に装着する取付け支持部の一例を示した図である。It is the figure which showed an example of the attachment support part which mounts a reinforcing bar cover spacer main-body part to a reinforcing bar. 本発明の鉄筋かぶりスペーサを鉄筋に装着し、型枠を組んで、コンクリート打設する際の模式図(a)、及び型枠取付け打設前後で、型枠の位置が変動したときの模式図(b)である。Schematic diagram (a) when placing the reinforcing bar cover spacer of the present invention on the reinforcing bar, assembling the mold, and placing the concrete, and schematic diagram when the position of the mold fluctuates before and after placing the mold (B). 本発明の検査方法を実施するステップを例示するフロー図である。It is a flowchart which illustrates the step which implements the test | inspection method of this invention.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(スペーサ本体部)
モルタル、セラミックス、プラスチックを成型して、矩形状、円柱状、円錐状等の形状とすることができる。高強度モルタルが好ましく、AlやZrOに代表されるセラミックス製でもよい。スペーサ形状は、矩形状を基本とする。三角柱状でも、円柱状でも良いが、型枠と当接するとき、スペーサ機能が損なわれず、所定位置と型枠との所定間隔が保持される必要がある。スペーサの寸法は、鉄筋と型枠との距離に応じて、20〜250mm程度である。
(Spacer body)
Mortar, ceramics, and plastic can be molded into a rectangular shape, a cylindrical shape, a conical shape, or the like. High-strength mortar is preferable, and it may be made of ceramics typified by Al 2 O 3 or ZrO 2 . The spacer shape is basically rectangular. A triangular prism shape or a cylindrical shape may be used, but when contacting with the mold, the spacer function is not impaired and a predetermined distance between the predetermined position and the mold must be maintained. The dimension of the spacer is about 20 to 250 mm depending on the distance between the reinforcing bar and the formwork.

図2はかぶりスペーサ本体部10と、鉄筋30との位置関係を図示する。かぶりスペーサ本体部10の形状は限定するものではないが、鉄筋30の長さ方向の手前を正面とすると、正面図、背面図が内側にくびれた四辺で囲まれる矩形である。右側面と左側面が同形で、また、平面図と底面図が同形で、これら四面が、共に、鉄筋の長さ方向の中心線(側面には破線で示す、正面と背面上の破線はくびれていない、平面には破線がないが、くびれている)を谷底とするV字もしくはU字谷状くびれ面とすることが好ましい。鉄筋は、底面の中心線のくびれに沿って位置する。平面図上の線Aと線Bを含む平面が、型枠との当接仮想面である。 FIG. 2 illustrates the positional relationship between the cover spacer main body 10 and the reinforcing bar 30. The shape of the cover spacer main body 10 is not limited, but when the front side in the length direction of the reinforcing bar 30 is the front, the front view and the rear view are rectangles surrounded by four sides constricted inward. The right and left sides have the same shape, and the plan view and the bottom view have the same shape. These four surfaces are both center lines in the longitudinal direction of the reinforcing bars (shown with broken lines on the side, the broken lines on the front and back are constricted. It is preferable to use a V-shaped or U-shaped valley-shaped constricted surface with a valley bottom). The reinforcing bar is located along the constriction of the center line of the bottom surface. A plane including line A and line B on the plan view is a virtual contact surface with the mold.

型枠に当接する面にくびれをもうけたのは、打設時に、コンクリートがくびれの隙間に流れ込み、コンクリートの充填を妨げることがないこと、当接する部分の接触が少ないほうが、型枠の施工が容易で、コンクリート表面が平滑性に優れた仕上がりとなるからである。鉄筋に当接する面にくびれをもうけたのは、鉄筋に配置する際の位置が設計上の位置に確実に配置するためと、本体部を、アンテナを含む面に対して面対称形として、可逆性をもたせ、本体部の製造を容易にするためである。 The constriction on the surface that abuts the formwork is because the concrete does not flow into the constriction gap during placement and does not interfere with the filling of the concrete. This is because the concrete surface has a smooth finish with excellent smoothness. The constriction was made on the surface that contacts the rebar because the position when placing it on the rebar is surely placed at the design position, and the main body is reversible with respect to the plane including the antenna. This is to make the main body easier to manufacture.

鉄筋コンクリートと構造物におけるかぶり厚とは、施工後、構造物内の最も表面に近い内部鉄筋から構造物表面までの距離であり、かぶり厚保証値Lは、「スペーサが型枠と当接する仮想平面から鉄骨の表面までの距離」であり、個々のスペーサの形状で決定するものである。スペーサは最も表面に近い鉄筋に取付け、コンクリートを打ち込む前の型枠との距離を一定以上に保つために設置される。つまり、スペーサの設置によって、かぶり厚は、かぶり厚保証値Lと同等以上となる。所定のかぶり厚保証値L等を記憶可能なメモリを含むICチップと、アンテナとを有するICタグを内蔵する。ICタグに適用されるアンテナは、型枠面と当接する仮想平面と平行な面上に配置させることが好ましい。 Cover thickness in reinforced concrete and structures is the distance from the internal rebar closest to the surface of the structure to the surface of the structure after construction, and the cover thickness guarantee value L is `` a virtual plane where the spacer contacts the formwork Is the distance from the surface of the steel frame to the surface of the steel frame, and is determined by the shape of the individual spacers. The spacer is attached to the rebar closest to the surface, and is installed in order to keep the distance from the formwork before pouring the concrete above a certain level. In other words, the cover thickness is equal to or greater than the cover thickness guarantee value L by installing the spacer. An IC tag having an IC chip including a memory capable of storing a predetermined cover thickness guarantee value L and the like and an antenna is incorporated. The antenna applied to the IC tag is preferably arranged on a plane parallel to a virtual plane that is in contact with the formwork surface.

このとき、スペーサが型枠と当接する面とICタグのアンテナが平行になるように、水硬性組成物又はセラミックスへICタグをあらかじめ埋め込み硬化させることが好ましい。 At this time, it is preferable to embed and harden the IC tag in advance in the hydraulic composition or ceramic so that the surface of the spacer contacting the mold and the antenna of the IC tag are parallel.

ICタグ11は、メモリを有するICチップ、アンテナを含み、かぶりスペーサに内蔵する。ICチップのメモリは、建設現場或いは工場等において、若しくは、構造物の施工時、補修時等において、管理すべき情報を、書き込むことができる。管理情報は、本スペーサの有無の情報にとどまらず、建設物自身の設計情報や建設過程の施工時の情報等、トレーサビリティを確保できる情報が含まれる。更には、かぶり厚保証値L、スペーサ設置により確保される施工後の鉄筋コンクリート構造物中の鉄筋からのかぶり厚、もしくは、ICタグのIDに紐つけられたかぶり厚保証値Lを確認した情報を記憶できる。このとき、ICタグの形状については、スペーサ内に埋設することが可能であれば形状を限定するものではなく、円筒状、円盤状、プレート状、球状他、様々な形状のものが利用できる。円盤状、プレート状のようにアンテナを含む面が平面の場合は、施工面(型枠の面)に平行となるようにすると、アンテナの指向性が良くなる。従って、最も多く流通している薄板状のICタグを使用することも容易である。その場合は、例えば、図2の右側面と左側面及び、正面図と背面図の4本の中心線で囲む平面上に位置することが好ましい。こうして、アンテナを含む平面を、この平面と一致させることができる。 The IC tag 11 includes an IC chip having a memory and an antenna, and is built in the cover spacer. Information to be managed can be written in the IC chip memory at a construction site or factory, or at the time of construction or repair of a structure. The management information is not limited to the presence / absence information of the spacer, but includes information that can ensure traceability, such as design information of the construction itself and information at the time of construction in the construction process. Furthermore, the cover thickness guarantee value L, the cover thickness from the reinforcing bar in the reinforced concrete structure after construction secured by the spacer installation, or the information confirming the cover thickness guarantee value L tied to the ID of the IC tag is stored. it can. At this time, the shape of the IC tag is not limited as long as it can be embedded in the spacer, and various shapes such as a cylindrical shape, a disk shape, a plate shape, and a spherical shape can be used. When the surface including the antenna is a flat surface such as a disk shape or a plate shape, directivity of the antenna is improved by making it parallel to the construction surface (surface of the formwork). Therefore, it is easy to use the thin-plate IC tag that is most widely distributed. In that case, for example, it is preferable to be positioned on a plane surrounded by four center lines of the right side surface and the left side surface of FIG. 2 and the front view and the rear view. Thus, the plane including the antenna can be made coincident with this plane.

ICタグは公知のものを利用でき、リーダーライタで、電源供給と同時に情報のメモリへの書込みと読取りができる。周波数帯は、数百KHz〜3GHzまでの一般的に使用される規格のICタグを利用できる。また、ロジック回路はリーダーライタからの電波にアンテナが共振することにより発生する電流の供給により作動し、リーダーライタからの指示に応じてメモリに格納された情報をアンテナ20から送信し、或いは、リーダーライタから送信された情報をメモリ11に格納することも可能である。リーダーライタはアンテナを備え、アンテナを介してリーダ/ライターがICタグと無線通信を行うことになる。
アンテナを含む平面と型枠と当接する仮想面との間隔が、アンテナ距離dである。アンテナ距離dは、前記仮想面から、d=0.2L〜0.6Lに設定するのが好ましい。0.2Lより小さいと、スペーサ自体の強度が小さくなる虞があり、0.6Lより大きいと、アンテナが鉄筋に近くて通信が阻害される虞が否定できない。
A known IC tag can be used, and a reader / writer can write and read information in a memory simultaneously with power supply. As a frequency band, generally used IC tags of several hundred KHz to 3 GHz can be used. Further, the logic circuit operates by supplying current generated by resonance of the antenna with radio waves from the reader / writer, and transmits information stored in the memory from the antenna 20 in response to an instruction from the reader / writer, or the reader / writer It is also possible to store information transmitted from the writer in the memory 11. The reader / writer is equipped with an antenna, and the reader / writer performs wireless communication with the IC tag via the antenna.
The distance between the plane including the antenna and the virtual plane in contact with the formwork is the antenna distance d. The antenna distance d is preferably set to d = 0.2L to 0.6L from the virtual plane. If it is smaller than 0.2L, the strength of the spacer itself may be reduced. If it is larger than 0.6L, there is an undeniable possibility that the antenna is close to a reinforcing bar and communication is hindered.

スペーサに埋設するICタグはパッシブ型が望ましい。スペーサは構造物内部に設置されるため、電池等の電源交換や充電が困難であり、電池を有しないパッシブ型であれば長期間の利用が可能となる。また、電池等を搭載しないため、本スペーサをコンパクトに設計できる。 The IC tag embedded in the spacer is preferably a passive type. Since the spacer is installed inside the structure, it is difficult to exchange power or charge the battery or the like, and a passive type that does not have a battery can be used for a long time. Further, since no battery or the like is mounted, the spacer can be designed compactly.

また、ICチップ、アンテナを保護するICタグの外装材は電波を通す性質のあるもの、或いは、磁界を遮断しないもの、で包み込んでも良い。保護材の例として、例えば、プラスチック、セラミックスやコンクリート、モルタルといった無機材料、梱包材として用いられる緩衝シート材や不織布も望ましい。 In addition, an IC chip and an IC tag exterior material that protects an antenna may be wrapped with a material that transmits radio waves or a material that does not block a magnetic field. As examples of the protective material, for example, an inorganic material such as plastic, ceramics, concrete, and mortar, and a buffer sheet material and a nonwoven fabric used as a packaging material are also desirable.

図3はICタグ11をかぶりスペーサ本体部に埋め込む工程(S11)を例示した図である。即ち、図1における、右側面と左側面及び、平面図と底面図の4本の中心線で囲む平面で、本体部を同形状の上部10b、下部10aに2分割して、その間に、ICタグ11を挟んでモルタルで接着する。ICタグ装着部分はその形状にICタグの厚み分の窪みをつけて、上部10b、下部10aで挟みこむことができる。また、流し込み成型では、下部10a部分を先に成型して、ICタグ11を装着後、上部10bに対応するモルタル等を流し込んで成型することもできる。また、プレス成型では下部10aの部分を先に成型し、モルタルが硬化する前に、上部10bの部分をプレス成型し、一体化させた後、硬化させることもできる。半硬化状態で埋め込みも可能である。 FIG. 3 is a diagram illustrating a step (S11) of embedding the IC tag 11 in the cover spacer main body. That is, in FIG. 1, the main body is divided into an upper part 10b and a lower part 10a of the same shape on the right side and the left side, and the plane surrounded by the four center lines of the plan view and the bottom view, and the IC Adhere with mortar with tag 11 in between. The IC tag mounting portion can be sandwiched between the upper part 10b and the lower part 10a by adding a depression corresponding to the thickness of the IC tag to the shape. In casting molding, the lower portion 10a can be molded first, and after mounting the IC tag 11, mortar or the like corresponding to the upper portion 10b can be poured. In press molding, the lower portion 10a can be molded first, and before the mortar is cured, the upper portion 10b can be press molded, integrated, and then cured. It can be embedded in a semi-cured state.

(水硬性組成物を用いた本体部の製造)
水硬性組成物による製造方法を以下に例示する。
水、セメント、砂、砂利を主成分とし、適時、高炉スラグ微粉末やフライアッシュ、炭カル粉末、石灰石微粉末を適切な量にて調合し、水を混合した後に、型枠に流し込む。
型枠の一部の容積を占めた状態で、ICタグを設置し、残りの空容積に前記モルタル(コンクリート)を流し込み、常温もしくは、高温蒸気環境下において養生し、硬化させる製造方法を用いることができる。こうして1回目と2回目の流し込み量を調整することで、d=0.2L〜0.6Lにあわせることができる。
(Manufacture of main body using hydraulic composition)
The manufacturing method by a hydraulic composition is illustrated below.
Mainly water, cement, sand, and gravel. When appropriate, blast furnace slag fine powder, fly ash, charcoal cal powder, and limestone fine powder are mixed in appropriate amounts, mixed with water, and poured into a mold.
Use a manufacturing method in which an IC tag is installed in a state that occupies a part of the formwork, the mortar (concrete) is poured into the remaining empty volume, and cured and cured in a normal temperature or high temperature steam environment. Can do. Thus, d = 0.2L-0.6L can be adjusted by adjusting the first and second pouring amounts.

ここで、各材料の比や粒度を変更し、流動性を硬くすることで、流し込みだけではなくプレス成型(即時脱型)による製造も可能となる。プレス成型の場合、型枠に一部の容積までのまだ固まらないコンクリートをプレス成型し、ICタグを所定の位置に設置し、残りの容積を占めるコンクリートを被せ、再度プレス成型を行う。成型後は脱型を行い、常温もしくは、高温蒸気環境下において養生し、硬化させる製造方法を用いることができる。 Here, by changing the ratio and particle size of each material to make the fluidity hard, it is possible to produce not only by casting but also by press molding (immediate demolding). In the case of press molding, concrete that has not yet solidified up to a certain volume is press-molded in a mold, an IC tag is placed at a predetermined position, the concrete that occupies the remaining volume is covered, and press molding is performed again. After molding, it is possible to use a production method in which the mold is removed and cured and cured in a normal temperature or high temperature steam environment.

また、水硬性組成物には、ポリプロピレン繊維やポリビニルアルコール繊維に代表される有機繊維を用いることで、硬化時のひび割れを抑制する効果や、落下時の衝撃でおこる脆性的破壊を抑制する効果が得られる。また、設置による構造物の欠陥を生じさせず、構造物外部から正常な通信を確保する観点から、水セメント比10〜70%が好ましく、製造面の作業性から20〜65%がさらに好ましい。 In addition, by using organic fibers typified by polypropylene fibers and polyvinyl alcohol fibers, the hydraulic composition has the effect of suppressing cracking during curing and the effect of suppressing brittle fracture caused by impact during dropping. can get. Further, from the viewpoint of ensuring normal communication from the outside of the structure without causing defects in the structure due to installation, the water-cement ratio is preferably 10 to 70%, and more preferably 20 to 65% from the viewpoint of workability.

以下の材料を使用した製造方法で例示する。
1)セメント;普通ポルトランドセメント(太平洋セメント社製)
2)ポゾラン質微粉末;シリカフューム(BET比表面積20m2/g)
3)無機粉末;石英粉末(平均粒径7μm)
4)骨材;珪砂4号と5号の質量比2:1の混合砂
5)減水剤;ポリカルボン酸系高性能AE減水剤
6)水;水道水
It illustrates by the manufacturing method using the following materials.
1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
2) Pozzolanic fine powder; silica fume (BET specific surface area 20 m2 / g)
3) Inorganic powder; quartz powder (average particle size 7 μm)
4) Aggregate: Silica sand No. 4 and No. 5 mixed sand with a mass ratio of 2: 1 5) Water reducing agent; Polycarboxylic acid-based high-performance AE water reducing agent 6) Water; Tap water

普通ポルトランドセメント100質量部、シリカフューム30質量部、骨材100質量部、水16質量部、高性能AE減水剤0.8質量部(固形分換算)を二軸練りミキサに投入し、混練する。1回目と2回目の流し込み量は、d=0.5Lにあわせたスペーサ成型をおこない、前置き(20℃)24時間後脱型し、28日間20℃気中養生を行う。   100 parts by mass of normal Portland cement, 30 parts by mass of silica fume, 100 parts by mass of aggregate, 16 parts by mass of water, and 0.8 parts by mass of high-performance AE water reducing agent (in terms of solid content) are charged into a biaxial kneader and kneaded. For the first and second injections, spacer molding is performed in accordance with d = 0.5 L, the mold is removed after 24 hours in advance (20 ° C.), and then air-cured at 20 ° C. for 28 days.

別の配合として、普通ポルトランドセメント100質量部、シリカフューム30質量部、石英粉末30質量部、骨材100質量部、水16質量部、高性能AE減水剤0.8質量部(固形分換算)を二軸練りミキサに投入し、混練する。成型は、1回目と2回目の流し込み量を、d=0.4Lにあわせた。前置き(20℃)24時間後脱型し、28日間20℃気中養生を行う。また、各配合にはひび割れの抑制や靭性の付与のため、ポリビニルアルコール繊維を混練物の体積の0.5〜3%程度混合することも好ましい。 As another blending, normal Portland cement 100 parts by weight, silica fume 30 parts by weight, quartz powder 30 parts by weight, aggregate 100 parts by weight, water 16 parts by weight, high performance AE water reducing agent 0.8 parts by weight (solid content conversion) Put into a biaxial kneader and knead. In the molding, the first and second pouring amounts were adjusted to d = 0.4L. After 24 hours in advance (20 ° C.), the mold is removed, and then air-cured at 20 ° C. for 28 days. Moreover, it is also preferable to mix about 0.5 to 3% of the volume of a kneaded material with polyvinyl alcohol fiber in order to suppress cracking and impart toughness to each formulation.

(セラミックスを用いた本体部の製造)
モルタル、コンクリート等の水硬性組成物を用いる以外に、Al、ZrO、SiC、Siのようにセラミックスによることも好ましい。また、埋設するICタグの全ての面が、水硬性組成物もしくは、セラミックスにより覆われるスペーサとする。
(Manufacture of main body using ceramics)
In addition to using a hydraulic composition such as mortar or concrete, it is also preferable to use ceramics such as Al 2 O 3 , ZrO 2 , SiC, and Si 3 N 4 . In addition, all the surfaces of the IC tag to be embedded are spacers covered with a hydraulic composition or ceramics.

セラミックスによる製造方法を以下に例示する。
AlおよびZrO、SiC、Siに代表される無機組成物で、凹凸状の硬化体を作製する。凹部材にICタグを設置し、凸部材を被せるように取り付ける。その際に、熱硬化性接着剤や、紫外線硬化型接着剤等を用いて接着し硬化させる。ICタグの埋設は、例えばコイン状、プレート状のような平板状のものであれば、その平板面が、コンクリート表面側に向くように埋設する。円筒状、球状の場合は内蔵するアンテナ形状、アンテナ特性、アンテナ配置によって、その指向性が変わるので、指向性が最も高い向きがコンクリート表面側に向くように設置する。
The production method using ceramics is exemplified below.
A concavo-convex cured body is produced with an inorganic composition typified by Al 2 O 3 and ZrO 2 , SiC, Si 3 N 4 . Install the IC tag on the concave material and cover it with the convex member. In that case, it adheres and hardens | cures using a thermosetting adhesive, an ultraviolet curable adhesive, etc. If the IC tag is embedded in a flat shape such as a coin shape or a plate shape, the IC tag is embedded so that the flat surface faces the concrete surface side. In the case of a cylindrical shape or a spherical shape, the directivity changes depending on the shape of the built-in antenna, antenna characteristics, and antenna arrangement, so that the direction with the highest directivity is directed to the concrete surface side.

こうして、スペーサ本体部にICタグを予め内包させるので、コンクリート構造物中に設置する場合、コンクリートの打設時に、ICタグが傷つくこともない。   Thus, since the IC tag is preliminarily included in the spacer main body, the IC tag is not damaged when placing the concrete in the concrete structure.

(取付け支持部)
所定間隔でスペーサ本体を取付け支持できる、金属性
であることが好ましい。
(Mounting support)
It is preferably metallic so that the spacer body can be mounted and supported at a predetermined interval.

図1は、矩形状の本件発明の概要を例示するものである。(d)に、本かぶりスペーサの本体部の斜視図を、鉄筋30との位置関係とともに示した。本斜視図の上方に型枠が設置される。本かぶりスペーサは、鉄筋30への取付け支持部20と、スペーサ本体部10を有する。(a)は、鉄筋長さ方向からの正面図であり、上方の破線が型枠の内面となる。従って、(a)の破線より下方がコンクリートで充填される。取付け支持部20は、例えば、一枚の金属性板ばね加工したクリップを例示した。取付け支持部は、一方で、鉄筋を囲み、他方で、本体部と接続する。(b)は、右側面図で、左側面は、これと同じであり、(c)は、平面図である。スペーサ本体部は、型枠と当接する仮想平面からのかぶり厚保証値Lを記憶するメモリを有するICチップと、アンテナとを有するICタグ11を内蔵する。アンテナは、指向性を考慮して、型枠と当接する仮想平面と平行な平面上に位置させる。 FIG. 1 exemplifies the outline of the present invention having a rectangular shape. In (d), the perspective view of the main-body part of this cover spacer was shown with the positional relationship with the reinforcing bar 30. FIG. A formwork is installed above the perspective view. The cover spacer has an attachment support portion 20 to the reinforcing bar 30 and a spacer main body portion 10. (A) is a front view from a reinforcing bar length direction, and an upper broken line becomes an inner surface of a formwork. Therefore, the part below the broken line in (a) is filled with concrete. The attachment support part 20 illustrated the clip which processed the metal leaf | plate spring, for example. The mounting support part encloses the reinforcing bar on the one hand and connects to the main body part on the other hand. (B) is a right side view, the left side is the same as this, and (c) is a plan view. The spacer main body includes an IC tag 11 having an IC chip having a memory for storing a cover thickness guarantee value L from a virtual plane in contact with the mold and an antenna. In consideration of directivity, the antenna is positioned on a plane parallel to a virtual plane in contact with the mold.

こうして、ICタグのアンテナの通信指向性がコンクリート表面側に強く向くように埋設されることとなる。 In this way, the IC tag antenna is embedded so that the communication directivity of the antenna is strongly directed toward the concrete surface.

取付け支持部を、鉄筋に「摺動回転可能」とすると、なんらかの理由で、型枠が施工後にずれても、スペーサと密着する限り、スペーサと前記仮想平面とアンテナを含む平面との距離d、及び、かぶり厚保証値Lを一定に保持することができ、これらの数値は、施工後の変動に影響されないスペーサ固有の数値となる。 Assuming that the mounting support portion is `` slidable and rotatable '' on the reinforcing bar, for some reason, even if the formwork is displaced after construction, the distance d between the spacer, the virtual plane, and the plane including the antenna, as long as it closely contacts the spacer, Further, the cover thickness guarantee value L can be kept constant, and these numerical values are specific values of the spacer which are not affected by the variation after the construction.

図4は、かぶりスペーサ本体部を鉄筋に装着する取付け支持部20を金属性のクリップとした一例を示した図である。取付け支持部の製造は(S12)、ばね性のある金属板から、加工して、かぶり本体部のくびれをグリップして固定する部分と、摺動の余地を残して、鉄筋30を囲む部分を合成して成型したものである。取付け支持部はスペーサとは別に予め製造しておいてもよい。取付け支持部20を用いると、長細い円柱状の鉄筋30を包み込みながら、鉄筋を中心軸として回転が可能な状態でスペーサ本体部を装着できる。 FIG. 4 is a view showing an example in which the attachment support portion 20 for attaching the cover spacer main body portion to the reinforcing bar is a metallic clip. The mounting support part is manufactured (S12) by processing from a metal plate having a spring property to grip and fix the constriction of the cover body part, and the part surrounding the rebar 30 leaving room for sliding. It is synthesized and molded. The attachment support portion may be manufactured in advance separately from the spacer. When the attachment support portion 20 is used, the spacer main body portion can be mounted in a state where the rebar can be rotated around the central axis while wrapping the long and thin cylindrical rebar 30.

表1及び図6に、かぶり厚検査方法を実施する場合のステップを示す表とそのフロー図を示した。上記の通り本体部及び支持部を製造したスペーサの本体部のかぶり厚を測定して(S13)、(又は、規定のかぶりを確保できる長さを有していることの合格票を)、ICタグ11の内部メモリへ書込みをするか、或いは、計測したサイズ値又は合格票をICタグのIDに紐付けしてサーバー内のデータベースへ書き込みをおこなう(S14)。このとき、かぶり厚保証値L自体、または、これに対応させた型番を書き込み、製品の識別子とすることもできる。
具体的には例えば下記のようなパターンのいずれか、あるいは複数で実施することができる。
1.工場又は施工現場で、かぶり厚保証値Lを測定し、ライターで入力。
2.施工現場で、かぶり厚保証値Lを測定し、その部位に適するスペーサであることを確認し、合格標をライターで入力。
3.現場で、かぶり厚保証値Lの存在(あるいは刻印された形式を読み取って)、又は、これに替わるICタグのIDをリーダで読み取って、確認標をライターで入力する。サーバーでかぶり厚保証値Lや合格標の情報を保存する場合は、前記した方法で、ライターで情報を入力する際に埋設されているICタグのIDを読取った上で、そのIDとかぶり厚保証値Lや合格標の情報を紐付けられるようにデータベースに保存する。かぶり厚保証値、かぶり厚測定値、合格票、確認票をかぶり厚情報という。また、合格票、確認票を合格証明情報という。
Table 1 and FIG. 6 show a table showing steps when the cover thickness inspection method is carried out and a flowchart thereof. Measure the cover thickness of the main body part of the spacer that manufactured the main body part and the support part as described above (S13), or (or pass the certificate of having a length that can secure the specified cover), IC Write to the internal memory of the tag 11 or link the measured size value or pass slip to the ID of the IC tag and write to the database in the server (S14). At this time, the cover thickness guarantee value L itself or a model number corresponding to the cover thickness guarantee value L can be written and used as a product identifier.
Specifically, for example, it can be carried out by any one or a plurality of patterns as described below.
1. At the factory or construction site, measure the cover thickness guarantee value L and enter it with a lighter.
2. Measure the cover thickness guarantee value L at the construction site, confirm that the spacer is suitable for the part, and enter the acceptance mark with a lighter.
3. At the site, the cover thickness guarantee value L is present (or the stamped format is read), or the ID of the IC tag that replaces this is read with a reader, and a confirmation mark is input with a writer. When storing the cover thickness guarantee value L and acceptance mark information on the server, read the ID of the IC tag embedded when inputting the information with the writer using the method described above, and then check the ID and cover thickness. Save the guaranteed value L and acceptance mark information in the database so that they can be linked. The cover thickness guarantee value, the cover thickness measurement value, the pass sheet, and the confirmation sheet are referred to as cover thickness information. Moreover, the pass slip and the confirmation slip are referred to as pass proof information.

構造物の施工にあたって、鉄筋の配筋後(S20)、本スペーサを鉄筋に装着し(S21)、型枠を設置し、コンクリート打込、養生を通常の構造物施工手順でおこなう(S22〜S25)。こうして、かぶり厚を確保できるとともに、かぶり厚の検査の準備が整う。 In the construction of the structure, after the reinforcing bars are placed (S20), this spacer is attached to the reinforcing bars (S21), the formwork is installed, and the concrete is placed and cured in the normal structure construction procedure (S22 to S25). ). In this way, the cover thickness can be secured and the cover thickness is ready for inspection.

図5は、本発明の鉄筋かぶりスペーサを鉄筋に装着(S21)し、型枠40を組んで(S22)、コンクリート打設する(S23)際の模式図を示す。図2における、鉄筋の長さ方向の手前側から投影した正面図に対応する。スペーサ本体は、支持部を鉄筋に対して回転可能としたとき、(a)、(b)の通り、型枠40と鉄筋の位置関係が変化しても、接する辺A及び辺Bで接することとなる。このとき、鉄筋中心軸のC軸とで形成する三角形ABC(三角柱の底面)は、いつも一定形状であり、鉄筋かぶりスペーサに固有で、型枠によらない。図示するかぶり厚保証値L、及び、型枠40からのアンテナまでの距離dも一定値に保持される。鉄筋かぶりスペーサが、鉄筋に対して、直角方向から外れて装着されていても、その位置が矯正される効果がある。 FIG. 5 shows a schematic diagram when the reinforcing bar cover spacer of the present invention is mounted on a reinforcing bar (S21), a formwork 40 is assembled (S22), and concrete is placed (S23). It corresponds to the front view projected from the near side in the length direction of the reinforcing bar in FIG. When the support body is rotatable with respect to the reinforcing bar, the spacer main body is in contact with the side A and the side B that are in contact with each other even if the positional relationship between the formwork 40 and the reinforcing bar changes as shown in (a) and (b). It becomes. At this time, the triangle ABC (the bottom surface of the triangular prism) formed by the C axis of the reinforcing bar central axis is always a constant shape, is unique to the reinforcing bar cover spacer, and does not depend on the formwork. The guaranteed cover thickness value L and the distance d from the mold 40 to the antenna are also held at a constant value. Even if the reinforcing bar cover spacer is attached to the reinforcing bar so as to deviate from the perpendicular direction, the position is corrected.

こうして、型枠内側で形成される打設コンクリート表面からアンテナ距離d及びかぶり厚保証値Lは、本発明のかぶりスペーサに固有の数値となるので、これらの値をIDとするか、別のIDとともに、メモリに書き込むと、コンクリート表面から所定距離dで、これに平行なアンテナと、かぶり厚保証値Lを有する鉄筋かぶりスペーサとすることができる。 Thus, the antenna distance d and the cover thickness guarantee value L from the surface of the cast concrete formed on the inside of the formwork are values inherent to the cover spacer of the present invention. At the same time, when the data is written in the memory, it is possible to obtain a reinforcing bar cover spacer having a predetermined distance d from the concrete surface and an antenna parallel to the distance d and a cover thickness guarantee value L.

鉄筋かぶりスペーサを装着した後、型枠を設置し、コンクリート打込、養生を通常の構造物施工手順でおこなう(S22〜S25)。 After installing the rebar cover spacers, formwork is installed, and concrete is placed and cured in the normal structure construction procedure (S22 to S25).

所定かぶり厚を有するかの検査(S26)においては、施工後の構造物表面からリーダで本スペーサの有無を確認する。本スペーサが検知できれば、所定のかぶり厚が確保されていることが証明できる。その検査結果は、ICタグ11の内部メモリへ直接の書込みをするか、或いは、ICタグのIDに紐付けしてサーバー内のデータベースへ書き込みをおこなう(S27)こともできる。このシステムは電池等の電源を有しないパッシブ型ICタグを用いると、任意の時期に何度でも検査を実施することができる。 In the inspection (S26) of whether it has a predetermined cover thickness, the presence or absence of this spacer is confirmed with a reader from the surface of the structure after construction. If this spacer can be detected, it can be proved that a predetermined cover thickness is secured. The inspection result can be directly written in the internal memory of the IC tag 11 or can be written in the database in the server in association with the ID of the IC tag (S27). If a passive IC tag having no power source such as a battery is used in this system, the inspection can be performed any number of times at any time.

そこで、コンクリート検査(S26)にあたって、このIDが読取ることができれば、本発明のかぶりスペーサ本体部が、コンクリート構造物の表面に現れていないのであるから、信号が読取れたということだけで、かぶり厚みが所定かぶり厚保証値L以上備わっていることが判明するという効果を得ることができる。アンテナまでの距離dは、コンクリート中であっても、必ず読取れる距離に設計してあるので、これが読取れないと、かぶりスペーサ自体が埋め込まれていないあるいは脱落した、大きく傾いたこととなる。その場合は従来の検査手法で詳細の検査を行えばよい。 Therefore, if the ID can be read in the concrete inspection (S26), the cover spacer main body of the present invention does not appear on the surface of the concrete structure. It is possible to obtain an effect that it is found that the thickness is equal to or greater than the predetermined cover thickness guarantee value L. The distance d to the antenna is designed to be a distance that can be read even in concrete. If this distance cannot be read, the cover spacer itself is not embedded or has fallen off, and it is greatly inclined. In that case, a detailed inspection may be performed by a conventional inspection method.

10:スペーサ本体
10a:スペーサ本体下部
10b:スペーサ本体上部
11:ICタグ
111:アンテナ
20:取付け支持部
30:鉄筋
40:コンクリート打設型枠
A:型枠と接する線
B:型枠と接する線
C:鉄筋の中心軸
L:かぶり厚保証値
d:アンテナまでの距離
10: Spacer body 10a: Spacer body lower part 10b: Spacer body upper part 11: IC tag 111: Antenna 20: Mounting support part 30: Reinforcing bar 40: Concrete placement formwork A: Line in contact with formwork B: Line in contact with formwork C: Rebar central axis L: Cover thickness guarantee value d: Distance to antenna

Claims (7)

鉄筋への取付け支持部と、スペーサ本体部を有し、スペーサ本体部は、ICタグを内蔵することを特徴とする鉄筋かぶりスペーサ。 Reinforcement cover spacer, characterized in that it has an attachment support part to the reinforcing bar and a spacer main part, and the spacer main part contains an IC tag. 前記ICタグは、d=0.2L〜0.6Lに内蔵することを特徴とする請求項1に記載の鉄筋かぶりスペーサ。
(式中dは、内蔵されたICタグのアンテナを含む平面とスペーサが型枠と当接する仮想面との距離を表し、Lは、スペーサが型枠と当接する仮想平面から鉄筋の表面までの距離を表す。)
The reinforcing bar cover spacer according to claim 1, wherein the IC tag is built in d = 0.2L to 0.6L.
(Where d represents the distance between the plane including the antenna of the built-in IC tag and the virtual plane where the spacer contacts the mold, and L represents the distance from the virtual plane where the spacer contacts the mold to the surface of the reinforcing bar. Represents distance.)
ICタグのアンテナを含んで形成する面が、型枠と当接する面と平行になるように、ICタグを内蔵させたことを特徴とする請求項1又は請求項2記載の鉄筋かぶりスペーサ。 The reinforcing bar covering spacer according to claim 1 or 2, wherein the IC tag is incorporated so that a surface formed including the antenna of the IC tag is parallel to a surface in contact with the mold. さらに、前記ICタグがパッシブ型であることを特徴とする請求項1乃至3のいずれかに記載の鉄筋かぶりスペーサ。 The reinforcing bar covering spacer according to any one of claims 1 to 3, wherein the IC tag is a passive type. 前記取付け支持部が、鉄筋に摺動回転可能であることを特徴とする請求項1乃至4のいずれかに記載の鉄筋かぶりスペーサ。 The reinforcing bar covering spacer according to any one of claims 1 to 4, wherein the mounting support part is slidably rotatable on the reinforcing bar. さらに、型枠と当接する仮想平面とスペーサ本体部との間にコンクリートが流れ込む隙間があることを特徴とする請求項1乃至5の鉄筋かぶりスペーサ。 6. The reinforcing bar covering spacer according to claim 1, further comprising a gap through which concrete flows between a virtual plane that comes into contact with the mold and the spacer main body. スペーサ本体部が、水硬性組成物又はセラミックスであることを特徴とする請求項1乃至6の鉄筋かぶりスペーサ。
The reinforcing bar covering spacer according to claim 1, wherein the spacer main body is a hydraulic composition or ceramics.
JP2013153496A 2013-03-15 2013-07-24 Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system Active JP6173090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153496A JP6173090B2 (en) 2013-03-15 2013-07-24 Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013052591 2013-03-15
JP2013052591 2013-03-15
JP2013153496A JP6173090B2 (en) 2013-03-15 2013-07-24 Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system

Publications (2)

Publication Number Publication Date
JP2014198987A true JP2014198987A (en) 2014-10-23
JP6173090B2 JP6173090B2 (en) 2017-08-02

Family

ID=52356049

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013153496A Active JP6173090B2 (en) 2013-03-15 2013-07-24 Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system
JP2014046037A Active JP6399638B2 (en) 2013-03-15 2014-03-10 Rebar cover thickness inspection method using rebar cover spacer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014046037A Active JP6399638B2 (en) 2013-03-15 2014-03-10 Rebar cover thickness inspection method using rebar cover spacer

Country Status (1)

Country Link
JP (2) JP6173090B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198992A (en) * 2013-03-15 2014-10-23 太平洋セメント株式会社 Reinforcement cover spacer, and covering thickness inspection method and reinforcement covering thickness inspection system using the same
CN107976163A (en) * 2018-01-06 2018-05-01 云南省建筑科学研究院 Deformed bar concrete structure reinforcing bars protective layer detection device and its detection method
JP2019173400A (en) * 2018-03-28 2019-10-10 太平洋セメント株式会社 Fixing jig and fixing method using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132009B2 (en) * 2018-07-20 2022-09-06 大成建設株式会社 Mounting structure of wireless communication module, installation method of wireless communication module, and state quantity measurement system
JP7441152B2 (en) 2020-09-29 2024-02-29 太平洋セメント株式会社 System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product
EP4074920A1 (en) * 2021-04-16 2022-10-19 Schöck Bauteile GmbH Method and system for producing a concrete component or construction section according to planning data and use
WO2024043102A1 (en) * 2022-08-26 2024-02-29 三井住友建設株式会社 Rf tag member and concrete member including same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337169A (en) * 2005-06-01 2006-12-14 Taiheiyo Cement Corp Corrosion sensor, sheath tube, sheath tube jointing member, and corrosion sensor unit
JP2006348538A (en) * 2005-06-14 2006-12-28 Taiheiyo Cement Corp Rfid tag installing tool, rfid tag unit and frid tag installing method
JP2008138452A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Concrete structure, its manufacturing method and its management method
US20090072978A1 (en) * 2007-09-14 2009-03-19 Tilson Jr Thomas M Radio frequency identification system and method for use in cast concrete components
JP2009282874A (en) * 2008-05-26 2009-12-03 Hitachi Ltd Rfid tag for structure
JP2014065145A (en) * 2012-09-24 2014-04-17 Kyowa Co Ltd Production method of concrete structure in which ic tag is embedded and ic tag

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294288A (en) * 2003-03-27 2004-10-21 Nishimatsu Constr Co Ltd Measuring system of covering depth and measuring method of covering depth
JP4311550B2 (en) * 2004-02-10 2009-08-12 鹿島建設株式会社 Concrete wall inspection and inspection support system
JP4319581B2 (en) * 2004-05-12 2009-08-26 株式会社スペーサー工業 Reinforced concrete construction spacer and catcher for the spacer
JP4824427B2 (en) * 2006-02-24 2011-11-30 独立行政法人土木研究所 Wireless IC tag concrete burying structure and method, and concrete information management system
JP4784886B2 (en) * 2006-04-06 2011-10-05 戸田建設株式会社 Construction management method for structures using precast members
JP5089968B2 (en) * 2006-12-01 2012-12-05 住友大阪セメント株式会社 Identification method of concrete specimen
WO2008066177A1 (en) * 2006-12-01 2008-06-05 Sumitomo Osaka Cement Co., Ltd. Concrete structure, method for manufacturing the concrete structure, and method for managing the structure and method
JP2008221774A (en) * 2007-03-15 2008-09-25 Mitsubishi Materials Corp Concrete member and its manufacturing method
JP6031261B2 (en) * 2012-06-01 2016-11-24 株式会社フジタ segment
JP6173090B2 (en) * 2013-03-15 2017-08-02 太平洋セメント株式会社 Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337169A (en) * 2005-06-01 2006-12-14 Taiheiyo Cement Corp Corrosion sensor, sheath tube, sheath tube jointing member, and corrosion sensor unit
JP2006348538A (en) * 2005-06-14 2006-12-28 Taiheiyo Cement Corp Rfid tag installing tool, rfid tag unit and frid tag installing method
JP2008138452A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Concrete structure, its manufacturing method and its management method
US20090072978A1 (en) * 2007-09-14 2009-03-19 Tilson Jr Thomas M Radio frequency identification system and method for use in cast concrete components
JP2009282874A (en) * 2008-05-26 2009-12-03 Hitachi Ltd Rfid tag for structure
JP2014065145A (en) * 2012-09-24 2014-04-17 Kyowa Co Ltd Production method of concrete structure in which ic tag is embedded and ic tag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198992A (en) * 2013-03-15 2014-10-23 太平洋セメント株式会社 Reinforcement cover spacer, and covering thickness inspection method and reinforcement covering thickness inspection system using the same
CN107976163A (en) * 2018-01-06 2018-05-01 云南省建筑科学研究院 Deformed bar concrete structure reinforcing bars protective layer detection device and its detection method
CN107976163B (en) * 2018-01-06 2023-08-01 云南省建筑科学研究院 Special-shaped reinforced concrete structure reinforcement protection layer detection device and detection method thereof
JP2019173400A (en) * 2018-03-28 2019-10-10 太平洋セメント株式会社 Fixing jig and fixing method using the same
JP7079056B2 (en) 2018-03-28 2022-06-01 太平洋セメント株式会社 Fixing jig and fixing method using this

Also Published As

Publication number Publication date
JP6173090B2 (en) 2017-08-02
JP2014198992A (en) 2014-10-23
JP6399638B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6173090B2 (en) Reinforcement cover spacer, construction method using the same, and reinforcement cover thickness inspection system
Meng et al. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients
Hajimohammadi et al. Effect of alumina release rate on the mechanism of geopolymer gel formation
JP5008201B2 (en) Wireless IC tag
KR101738246B1 (en) Manufacturing method of structure with reinforced concrete construction using 3d printer
Ahmad et al. Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand
ATE488482T1 (en) METHOD FOR PRODUCING CERAMIC MATERIAL PLATES
US20170238073A1 (en) Concrete Maturity System
JP4078595B2 (en) RFID tag, concrete test piece including the tag, and manufacturing method thereof
JP2008137284A (en) Concrete product, its manufacturing and management method
Ahmad et al. Waste foundry sand in concrete production instead of natural river sand: A review
Saeed et al. Influence of steel and polypropylene fibers on cracking due to heat of hydration in mass concrete structures
JP2001324302A (en) Concrete embedded type strain gage and method for measuring strain of concrete
Ali et al. Behavior of axially loaded plain and fiber‐reinforced geopolymer concrete columns with glass fiber‐reinforced polymer cages
JP2008138452A (en) Concrete structure, its manufacturing method and its management method
JP2011186839A (en) Ic tag for embedding and method for detecting ic tag signal for embedding
JP2020051812A (en) Measuring method of heat expansion coefficient of concrete
Lesovik et al. Improving the performances of a mortar for 3D printing by mineral modifiers
JP5260388B2 (en) Corrosion sensor and installation method of corrosion sensor
Saha A comparative study between ASTM C1567 and ASTM C227 to mitigate alkali‐silica reaction
CN217670226U (en) Quantitative material injection device for concrete production
CN109841266A (en) A kind of high hydroscopic resin is interior to conserve the early age pore-size distribution model building method of compensation shrinkage cement sill and application
KR20210103478A (en) Method for producing hydraulic composition and mold for additive manufacturing equipment
JP2014065145A (en) Production method of concrete structure in which ic tag is embedded and ic tag
Wang et al. Mechanical and electrical properties of rapid-strength reactive powder concrete with assembly unit of sulphoaluminate cement and ordinary portland cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250