JP7441152B2 - System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product - Google Patents

System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product Download PDF

Info

Publication number
JP7441152B2
JP7441152B2 JP2020162991A JP2020162991A JP7441152B2 JP 7441152 B2 JP7441152 B2 JP 7441152B2 JP 2020162991 A JP2020162991 A JP 2020162991A JP 2020162991 A JP2020162991 A JP 2020162991A JP 7441152 B2 JP7441152 B2 JP 7441152B2
Authority
JP
Japan
Prior art keywords
tag
water
cement
reader
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020162991A
Other languages
Japanese (ja)
Other versions
JP2022055523A (en
Inventor
玲 江里口
博 中西
幸俊 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020162991A priority Critical patent/JP7441152B2/en
Publication of JP2022055523A publication Critical patent/JP2022055523A/en
Application granted granted Critical
Publication of JP7441152B2 publication Critical patent/JP7441152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

本発明は、セメント水混練体に含まれる水分量を推定するためのシステム及び方法に関する。また、本発明は、このような推定処理に利用可能なセンサに関する。 The present invention relates to a system and method for estimating the amount of water contained in a cement water kneaded body. The present invention also relates to a sensor that can be used for such estimation processing.

コンクリートやモルタル中の水分量を把握することは、耐久性の効率的な管理の観点から、高い重要性を有している。 Understanding the amount of moisture in concrete and mortar is highly important from the perspective of efficient management of durability.

従来、硬化後のコンクリート(以下、「硬化コンクリート」と称する。)中の水分量把握の方法としては、電気抵抗法による方法や湿度センサを用いる方法が知られている。また、別の方法として、下記特許文献1のように、中性子を用いた水分量の推定方法が知られている。 Conventionally, methods using an electrical resistance method and methods using a humidity sensor are known as methods for determining the amount of moisture in concrete after hardening (hereinafter referred to as "hardened concrete"). Furthermore, as another method, a method of estimating the amount of water using neutrons is known, as disclosed in Patent Document 1 below.

コンクリート構造体の供用段階では、硬化コンクリートは水分によって劣化が促進されることが知られている。水の浸透は二酸化炭素や塩化物イオンを運ぶ役割を果たし、二酸化炭素による中性化後は塩化物イオンによる鉄筋腐食が生じやすくなる。そのため、硬化コンクリート中の水分量を把握し、鉄筋腐食の発生リスクを把握することは、耐久性確保の観点から重要である。 It is known that moisture accelerates the deterioration of hardened concrete when a concrete structure is in service. Penetration of water plays a role in transporting carbon dioxide and chloride ions, and after carbon dioxide neutralization, reinforcing steel is more likely to be corroded by chloride ions. Therefore, it is important to understand the moisture content in hardened concrete and the risk of reinforcing steel corrosion from the perspective of ensuring durability.

特開2017-9371号公報JP2017-9371A

しかしながら、従来の電気抵抗法による計測の場合には、硬化コンクリートの表面からごくわずかな浅い領域における水分量しか測定することができない。また、湿度センサによる計測の場合には、測定している値が湿度に関する情報であるため、硬化コンクリートの広い範囲にわたる、含有水分量を高精度に測定することは難しい。 However, in the case of measurement using the conventional electrical resistance method, it is possible to measure the moisture content only in a very small shallow area from the surface of hardened concrete. Further, in the case of measurement using a humidity sensor, since the measured value is information regarding humidity, it is difficult to accurately measure the moisture content over a wide range of hardened concrete.

また、特許文献1に記載の方法の場合には、中性子発生源などの専用の装置が必要となり、各作業現場において汎用的に利用するには現実的な方法とはいえない。 Further, in the case of the method described in Patent Document 1, a dedicated device such as a neutron generation source is required, and it cannot be said to be a realistic method for general use at each work site.

更に、上述した従来の水分量測定の方法は、いずれも硬化コンクリートに対して行うことができるが、フレッシュコンクリートやフレッシュモルタルといったまだ固まっていないセメント水混練体に含まれる水分量を測定する方法としては利用できない。 Furthermore, although all of the conventional methods for measuring moisture content described above can be performed on hardened concrete, this method can be used to measure the amount of moisture contained in a cement-water mixture that has not yet hardened, such as fresh concrete or fresh mortar. is not available.

床コンクリートの施工段階では、フレッシュコンクリートを打設した後、一定時間が経過し、凝結が進行した後に仕上げ作業が行われる。しかし、例えば、フレッシュコンクリートの硬化表面の仕上げ時期の判断は、施工者の感覚によるところが大きく、施工者の習熟度によって判断の時期にバラつきが生じるという課題があった。そのため、施工者の習熟度に依存せずに作業時期の判断を適切に行い、コンクリートの耐久性を効率的に管理できる技術が求められている。 In the floor concrete construction stage, finishing work is carried out after a certain period of time has elapsed after fresh concrete has been poured and solidification has progressed. However, for example, determining when to finish the hardened surface of fresh concrete depends largely on the builder's intuition, and there is a problem in that the timing of the decision varies depending on the skill level of the builder. Therefore, there is a need for technology that can appropriately judge the timing of work without depending on the skill level of the builder and efficiently manage the durability of concrete.

本発明は、上記の課題に鑑み、硬化前及び硬化後のいずれの状態のセメント水混練体に対しても利用可能であり、且つ、簡易な方法でセメント水混練体に含まれる水分量を推定できるシステム及び方法を提供することを目的とする。また、本発明は、このような方法の実施に利用可能な、セメント水混練体に含まれる水分量の推定用センサを提供することを別の目的とする。 In view of the above-mentioned problems, the present invention can be used for cement-water kneaded bodies in any state before hardening or after hardening, and can estimate the amount of water contained in cement-water kneaded bodies by a simple method. The purpose is to provide a system and method that can. Another object of the present invention is to provide a sensor for estimating the amount of water contained in a cement water kneaded body, which can be used to implement such a method.

本発明は、打設後のフレッシュコンクリート、硬化コンクリート、打設後のフレッシュモルタル、又は硬化モルタルのいずれか1種に属するセメント水混練体に含まれる水分量の推定システムであって、
前記セメント水混練体に埋設されたRFタグと、
前記RFタグとの間で電波信号の送受信が可能なリーダ又はリーダライタと、
前記リーダ又はリーダライタで受信した前記電波信号の強度値、若しくは前記電波信号の受信が検知できる前記リーダ又はリーダライタと前記セメント水混練体との離間距離の上限閾値の少なくとも一方の指標値に基づいて、前記セメント水混練体に含まれる水分量を推定する推定装置とを備えたことを特徴とする、セメント水混練体に含まれる水分量の推定システム。
The present invention is a system for estimating the amount of water contained in a cement water mixture belonging to any one of fresh concrete after placement, hardened concrete, fresh mortar after placement, or hardened mortar, comprising:
an RF tag embedded in the cement water kneaded body;
a reader or reader/writer capable of transmitting and receiving radio signals to and from the RF tag;
Based on an index value of at least one of the intensity value of the radio wave signal received by the reader or reader/writer, or the upper limit threshold of the separation distance between the reader/reader/writer and the cement water kneaded body that can detect reception of the radio signal. and an estimation device for estimating the amount of water contained in the cement water kneaded body.

本明細書において、「セメント水混練体」とは、セメントと水を少なくとも含む混練混合物を指し、その硬化の程度は問わない。すなわち、セメント水混練体には、例えば、フレッシュコンクリート、硬化コンクリート、フレッシュモルタル、又は硬化モルタルが含まれる。 As used herein, the term "cement water kneaded product" refers to a kneaded mixture containing at least cement and water, and the degree of hardening thereof does not matter. That is, the cement water kneaded body includes, for example, fresh concrete, hardened concrete, fresh mortar, or hardened mortar.

本明細書において、「リーダ」とは、RFタグから送信される電波信号を読み取る機能を備え、RFタグに対して情報の書き込み機能を備えない機器を指し、「リーダライタ」とは、RFタグから送信される電波信号を読み取る機能と共に、RFタグに対して情報の書き込み機能を備える機器を指す。以下では、煩雑さを避けるために、リーダ又はリーダライタという記載を、「リーダライタ等」と略記することがある。 In this specification, a "reader" refers to a device that has the function of reading radio wave signals transmitted from an RF tag, but does not have a function of writing information to the RF tag. Refers to a device that has the function of reading radio wave signals transmitted from an RF tag and the function of writing information to an RF tag. Hereinafter, to avoid complexity, the term "reader" or "reader/writer" may be abbreviated as "reader/writer, etc.".

水は導電性であるため、電波を吸収する性質を示す。このため、セメント水混練体に埋設されたRFタグとセメント水混練体の表面との間に水分が存在すると、リーダライタ等とRFタグとの間における通信を妨害する。この妨害の程度は、水分量が多いほど、高くなる。言い換えれば、セメント水混練体に含まれる水分量が多いほど、リーダライタ等で受信できる電波強度は小さくなる傾向を示す。また、リーダライタ等がRFタグからの電波信号が受信できるようになるまで、リーダライタ等とセメント水混練体の表面との間の離間距離を縮めていく場合には、セメント水混練体に含まれる水分量が多いほどその離間距離は狭くなる。 Since water is conductive, it exhibits the property of absorbing radio waves. Therefore, if moisture exists between the RF tag embedded in the cement-water mixture and the surface of the cement-water mixture, communication between the reader/writer and the like and the RF tag will be interfered with. The degree of this interference increases as the amount of water increases. In other words, the greater the amount of water contained in the cement water kneaded body, the lower the radio wave intensity that can be received by a reader/writer or the like tends to be. In addition, if the distance between the reader/writer, etc. and the surface of the cement water mixture is reduced until the reader/writer, etc. can receive the radio wave signal from the RF tag, it is necessary to The larger the amount of water that is absorbed, the narrower the separation distance becomes.

よって、上記システムによれば、リーダライタ等で受信された電波信号の強度値、又は、電波信号の受信が検知できるリーダライタ等とセメント水混練体との離間距離の上限閾値に基づいて、セメント水混練体に含まれる水分量を推定できる。特に、予めフレッシュコンクリート又はフレッシュモルタルにRFタグを埋設しておけば、リーダライタ等をセメント水混練体に近づけて電波信号を受信することのみでセメント水混練体に含まれる水分量を推定できるため、極めて簡易な方法で水分量の推定が行える。 Therefore, according to the above system, based on the intensity value of the radio signal received by the reader/writer, etc., or the upper limit threshold of the separation distance between the reader/writer, etc., which can detect the reception of the radio wave signal, and the cement water kneaded body, The amount of water contained in the water kneaded body can be estimated. In particular, if you embed an RF tag in fresh concrete or fresh mortar in advance, you can estimate the amount of water contained in the cement-water mixture by simply bringing a reader/writer close to the cement-water mixture and receiving radio signals. , moisture content can be estimated using an extremely simple method.

また、上記システムは、埋設されたRFタグとセメント水混練体の外側に設置されたリーダライタ等との間における電波信号の受信に基づいてセメント水混練体に含まれる水分量を推定する態様である。このため、従来のようにセメント水混練体の表面近傍にのみ含まれる水分量を測定するものではなく、原理的に、深さ方向に関してセメント水混練体の表面からRFタグの埋設位置までの広い領域についてセメント水混練体に含まれる水分量を推定できる。 Furthermore, the above system is configured to estimate the amount of water contained in the cement water mixture based on reception of radio wave signals between the buried RF tag and a reader/writer installed outside the cement water mixture. be. For this reason, unlike conventional methods, the amount of water contained only in the vicinity of the surface of the cement-water mixture is not measured, but, in principle, a wide area can be measured in the depth direction from the surface of the cement-water mixture to the embedding position of the RF tag. The amount of water contained in the cement water mixture can be estimated for the area.

例えば、セメント水混練体が硬化前のフレッシュコンクリート又はフレッシュモルタルである場合、水和反応に伴って硬化が進行していくに連れて自由水が減少する。このため、リーダライタ等で受信された電波強度の大きさが上昇してきたことを確認することで、セメント組成物に対する水和反応の進行の程度が認識でき、フレッシュコンクリート又はフレッシュモルタルの硬化の程度が確認できる。水和反応は、フレッシュコンクリート又はフレッシュモルタルの全体にわたってほぼ均一的に生じるため、リーダライタ等で受信された電波信号の強度値、若しくはリーダライタ等とセメント水混練体との離間距離の前記上限閾値によって、フレッシュコンクリート又はフレッシュモルタルに含まれる水分量を推定することが可能である。 For example, when the cement water kneaded body is fresh concrete or fresh mortar before hardening, free water decreases as hardening progresses due to a hydration reaction. Therefore, by confirming that the intensity of radio waves received by a reader/writer etc. has increased, the degree of progress of the hydration reaction in the cement composition can be recognized, and the degree of hardening of fresh concrete or fresh mortar can be recognized. can be confirmed. Since the hydration reaction occurs almost uniformly throughout the fresh concrete or fresh mortar, the intensity value of the radio wave signal received by the reader/writer, etc., or the upper limit threshold value of the separation distance between the reader/writer, etc. and the cement water mixture It is possible to estimate the amount of water contained in fresh concrete or fresh mortar.

また、例えば、セメント水混練体が硬化コンクリート又は硬化モルタルである場合、雨水や結露などに起因する水分が内部に浸透して、含有水分量が増加することが考えられる。特に、セメント水混練体がコンクリート構造物である場合には、内部に鉄筋を含むことが一般的であり、この鉄筋が浸透してきた水によって腐食するおそれがある。また、硬化モルタルであっても、外部からの水の侵入により内部の可溶性物質と反応・結合し、表面にエフロレッセンスが発生するという課題が生じるおそれがある。 Further, for example, when the cement water kneaded body is hardened concrete or hardened mortar, it is conceivable that moisture due to rainwater, dew condensation, etc. permeates inside and increases the water content. In particular, when the cement-water mixture is a concrete structure, it generally contains reinforcing bars, and there is a risk that the reinforcing bars may be corroded by the water that has penetrated. Furthermore, even with hardened mortar, water entering from the outside may react and bond with soluble substances inside, causing efflorescence on the surface.

セメント水混練体が、このような硬化コンクリート又は硬化モルタルである場合には、リーダライタ等で受信された電波強度の大きさが低下してきたことを確認することで、セメント水混練体の内側に浸透した水分量が増加傾向にあることを認識できる。硬化コンクリート又は硬化モルタルに対して外部から水分が浸透する現象は、硬化コンクリート又は硬化モルタルの全体にわたってほぼ均一的に生じるため、リーダライタ等で受信された電波信号の強度値、若しくは前記のリーダライタ等とセメント水混練体との離間距離の上限閾値によって、フレッシュコンクリート又はフレッシュモルタルに含まれる水分量を推定することが可能である。 If the cement water mixture is such hardened concrete or hardened mortar, by confirming that the strength of the radio waves received by a reader/writer etc. has decreased, the inside of the cement water mixture can be detected. It can be recognized that the amount of water that has penetrated is increasing. The phenomenon in which moisture penetrates into hardened concrete or hardened mortar from the outside occurs almost uniformly throughout the hardened concrete or hardened mortar, so the intensity value of the radio wave signal received by a reader/writer, etc., or the above-mentioned reader/writer It is possible to estimate the amount of water contained in fresh concrete or fresh mortar based on the upper limit threshold of the separation distance between the water and the cement-water kneaded body.

この推定装置は、リーダライタ等に搭載されているものとしても構わないし、リーダライタ等とは別体の装置として構成されていても構わない。前者の場合、推定装置は、入力された前記指標値に基づいて所定の演算処理を行うことで、セメント水混練体に含まれる水分量の推定を行うソフトウェア手段とすることができる。後者の場合には、リーダライタ等との間で通信可能であって、前記演算処理を行う機能を搭載したコンピュータや専用のハードウェア装置とすることができる。 This estimation device may be installed in a reader/writer or the like, or may be configured as a separate device from the reader/writer and the like. In the former case, the estimating device may be a software means that estimates the amount of water contained in the cement water kneaded body by performing predetermined arithmetic processing based on the inputted index value. In the latter case, it may be a computer or a dedicated hardware device that can communicate with a reader/writer or the like and is equipped with a function to perform the arithmetic processing.

前記システムは、前記指標値と前記セメント水混練体に含まれる水分量との相関関係に関する情報が記録された記憶部を備え、
前記推定装置は、前記記憶部から前記相関関係に関する情報を読み出して、測定された前記指標値に対応する前記セメント水混練体に含まれる水分量を推定するものとしても構わない。
The system includes a storage unit in which information regarding a correlation between the index value and the amount of water contained in the cement water kneaded body is recorded,
The estimating device may read information regarding the correlation from the storage unit and estimate the amount of water contained in the cement water kneaded body corresponding to the measured index value.

この記憶部は、例えば、リーダライタ等又はリーダライタ等と別体の装置内に搭載されたメモリによって構成できる。また、前記相関関係に関する情報としては、データテーブルの形式で記載されたものであっても構わないし、関数の形式で記載されたものであっても構わない。 This storage unit can be configured by, for example, a memory installed in a reader/writer or a device separate from the reader/writer. Furthermore, the information regarding the correlation may be written in the form of a data table or in the form of a function.

前記RFタグは、前記セメント水混練体内における埋設深さの異なる第一RFタグ及び第二RFタグを含み、
前記推定装置は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定するものとしても構わない。
The RF tag includes a first RF tag and a second RF tag embedded at different depths in the cement water kneading body,
The estimation device has a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. The amount of water contained in the cement water kneaded body may be estimated based on the comparison result with a certain second index value.

リーダライタ等で受信した電波信号の強度値によってセメント水混練体に含まれる水分量を推定する場合、推定精度を高めるためには、リーダライタ等とセメント水混練体の表面との離間距離を所定の値に設定するのが好ましい。しかしながら、現実的には推定処理の実行時にリーダライタ等の位置が変動することも予想される。 When estimating the amount of water contained in the cement water mixture based on the intensity value of the radio wave signal received by a reader/writer, etc., in order to increase the estimation accuracy, it is necessary to set a predetermined distance between the reader/writer, etc. and the surface of the cement water mixture. It is preferable to set the value to . However, in reality, it is expected that the position of the reader/writer etc. will change when the estimation process is executed.

これに対し、上記構成によれば、予めセメント水混練体内における埋設深さの異なる位置に、第一RFタグと第二RFタグとが埋設されている。このため、リーダライタ等とセメント水混練体の表面との離間距離が仮に変動したとしても、リーダライタ等と第一RFタグとの離間距離(第一離間距離)と、リーダライタ等と第二RFタグとの離間距離(第二離間距離)との差は、埋設深さ位置の差で固定される。よって、第一RFタグからの電波信号の強度値に基づく第一指標値と、第二RFタグからの電波信号の強度値に基づく第二指標値との比較結果、より詳細には差分値に基づいて、セメント水混練体内における、第一RFタグの埋設位置と第二RFタグの埋設位置の間の領域に存在する水分量を精度良く推定でき、この推定値に基づいて、セメント水混練体の全体に存在する水分量を精度良く推定できる。 On the other hand, according to the above configuration, the first RF tag and the second RF tag are buried in advance at different buried depths in the cement water kneaded body. Therefore, even if the distance between the reader/writer, etc. and the surface of the cement water mixture changes, the distance between the reader/writer, etc. and the first RF tag (first separation distance) and the distance between the reader/writer, etc. and the second RF tag change. The difference between the separation distance from the RF tag (second separation distance) is fixed by the difference in the buried depth position. Therefore, the comparison result between the first index value based on the strength value of the radio wave signal from the first RF tag and the second index value based on the strength value of the radio wave signal from the second RF tag, more specifically, the difference value. Based on this, it is possible to accurately estimate the amount of water present in the area between the buried position of the first RF tag and the buried position of the second RF tag in the cement water kneaded body, and based on this estimated value, the amount of water present in the cement water mixed body The amount of water present throughout can be estimated with high accuracy.

前記システムは、前記セメント水混練体内に埋設され、前記セメント水混練体よりも吸水率が低い材料からなるタグ保護体を有し、
前記RFタグは、前記タグ保護体内に埋設された第一RFタグと、前記タグ保護体の外側の位置において前記セメント水混練体内に埋設された第二RFタグとを含み、
前記推定装置は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定するものとしても構わない。
The system has a tag protector embedded in the cement water kneaded body and made of a material having a lower water absorption rate than the cement water kneaded body,
The RF tag includes a first RF tag embedded within the tag protector and a second RF tag embedded within the cement water mixer at a location outside the tag protector;
The estimation device has a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. The amount of water contained in the cement water kneaded body may be estimated based on the comparison result with a certain second index value.

このような構成によれば、前述したように、リーダライタ等で受信した電波信号の強度値によってセメント水混練体に含まれる水分量を推定する場合において、推定処理の実行時にリーダライタ等の位置が変動することは予想されるところ、予めセメント水混練体内において、吸水率が低い材料からなるタグ保護体内に埋設された第一RFタグと、その外側の領域に配置された第二RFタグとが埋設されている。 According to such a configuration, as described above, when estimating the amount of water contained in the cement water mixture based on the intensity value of the radio signal received by the reader/writer, etc., the position of the reader/writer, etc. is determined when the estimation process is executed. Although it is expected that the value will vary, the first RF tag embedded in the tag protector made of a material with low water absorption rate and the second RF tag placed in the area outside the cement water kneading body are is buried.

このため、深さ方向に関して、セメント水混練体内において、第一RFタグとセメント水混練体の表面との間の領域に含まれる水分量と、第二RFタグとセメント水混練体の表面との間の領域に含まれる水分量には、タグ保護体の吸水率とセメント水混練体の吸水率の相違に基づく差が生じる。この結果、第一RFタグからの電波信号の強度値に基づく第一指標値と、第二RFタグからの電波信号の強度値に基づく第二指標値との比較結果に基づいて、セメント水混練体内における、第二RFタグの埋設位置とセメント水混練体の表面との間の領域に含まれる水分量を推定できる。特に、第一RFタグと第二RFタグの両者を、ほぼ同じ埋設深さの位置に埋設しておくことで、第一指標値と第二指標値の比率と、タグ保護体の吸水率とセメント水混練体の吸水率の比率とに基づいて、第二RFタグの埋設位置の間の領域に存在する水分量を精度良く推定でき、この推定値に基づいて、セメント水混練体の全体に存在する水分量を精度良く推定できる。 Therefore, in the depth direction, the amount of water contained in the area between the first RF tag and the surface of the cement water kneaded body in the cement water kneaded body and the amount of water contained in the area between the second RF tag and the surface of the cement water kneaded body are There is a difference in the amount of water contained in the area between the two, which is based on the difference between the water absorption rate of the tag protector and the water absorption rate of the cement water kneaded body. As a result, based on the comparison result between the first index value based on the intensity value of the radio wave signal from the first RF tag and the second index value based on the intensity value of the radio wave signal from the second RF tag, cement water kneading is performed. It is possible to estimate the amount of water contained in the region between the buried position of the second RF tag and the surface of the cement water mixture in the body. In particular, by burying both the first RF tag and the second RF tag at approximately the same depth, the ratio of the first index value to the second index value and the water absorption rate of the tag protector can be adjusted. Based on the water absorption ratio of the cement water mixture, the amount of water existing in the area between the buried positions of the second RF tag can be estimated with high accuracy, and based on this estimate, the water content in the entire cement water mixture can be estimated. The amount of water present can be estimated with high accuracy.

第一RFタグと第二RFタグの両者の埋設深さを同じにするためには、例えば、第二RFタグを予めセメント水混練体と同一の材料からなる硬化コンクリート又は硬化モルタル内に埋設してなるタグ埋設物を準備しておくと共に、第一RFタグが埋設されたタグ保護体と、第二RFタグが埋設されたタグ埋設物とを、共にセメント水混練体内に埋設する方法が採用できる。 In order to make the embedding depth of both the first RF tag and the second RF tag the same, for example, the second RF tag can be buried in advance in hardened concrete or hardened mortar made of the same material as the cement water mixture. In addition to preparing a buried tag object, a method is adopted in which the tag protector in which the first RF tag is buried and the buried tag object in which the second RF tag is buried are both buried in the cement water mixture. can.

タグ保護体の材料としては、吸水率が5%未満であるのが好ましく、3%未満であるのがより好ましく、1%未満であるのが特に好ましい。また、タグ保護体の材料としては、誘電率がセメント水混練体と同程度であるのが好ましい。かかる観点から、タグ保護体は、超高強度コンクリート、セラミックス、ABS、ポリエチレンやポリプロピレン等の樹脂を好適に用いることができる。 The material for the tag protector preferably has a water absorption rate of less than 5%, more preferably less than 3%, and particularly preferably less than 1%. Furthermore, the material for the tag protector preferably has a dielectric constant comparable to that of the cement water kneaded material. From this point of view, the tag protector can suitably be made of ultra-high strength concrete, ceramics, ABS, or resin such as polyethylene or polypropylene.

前記システムは、前記セメント水混練体内に埋設され、前記RFタグが固定されたスペーサを有し、
前記RFタグは、前記セメント水混練体の表面からの埋設深さに関する深さ情報が記録されており、
前記リーダ又はリーダライタは、前記RFタグからの前記電波信号の強度値と共に前記深さ情報を受信し、
前記推定装置は、前記リーダ又はリーダライタによって受信された前記電波信号の強度値と前記深さ情報、及び前記リーダ又はリーダライタと前記セメント水混練体との離間距離に基づいて、前記セメント水混練体に含まれる水分量を推定するものとしても構わない。
The system includes a spacer embedded in the cement water mixer and having the RF tag fixed thereto;
The RF tag records depth information regarding the burial depth from the surface of the cement water kneaded body,
The reader or reader/writer receives the depth information together with the intensity value of the radio signal from the RF tag,
The estimating device calculates the cement water kneading body based on the intensity value of the radio signal received by the reader or reader/writer, the depth information, and the separation distance between the reader or reader/writer and the cement water kneading body. It may also be used to estimate the amount of water contained in the body.

前述したように、リーダライタ等で受信した電波信号の強度値によってセメント水混練体に含まれる水分量を推定する場合において、推定処理の実行時にリーダライタ等の位置が変動することは予想される。上記構成によれば、RFタグ側において予め埋設深さについての情報が記録されており、リーダライタ等で電波信号の強度値と深さ情報とが受信可能な構成である。また、推定処理の実行時における、リーダライタ等とセメント水混練体の表面との離間距離は実測可能である。よって、受信した電波強度値と、RFタグの埋設深さに関する深さ情報、及びリーダライタ等とセメント水混練体との離間距離に基づいて、演算処理によって、RFタグとセメント水混練体の表面との間におけるセメント水混練体内の水分量を推定できる。 As mentioned above, when estimating the amount of water contained in a cement water mixture based on the intensity value of the radio signal received by a reader/writer, etc., it is expected that the position of the reader/writer, etc. will change when the estimation process is executed. . According to the above configuration, information about the burial depth is recorded in advance on the RF tag side, and the intensity value and depth information of the radio wave signal can be received by a reader/writer or the like. Furthermore, the distance between the reader/writer, etc. and the surface of the cement water kneaded body during execution of the estimation process can be actually measured. Therefore, the surface of the RF tag and the cement water kneaded body is determined by arithmetic processing based on the received radio wave intensity value, depth information regarding the buried depth of the RF tag, and the distance between the reader/writer, etc. and the cement water kneaded body. It is possible to estimate the amount of water in the cement-water mixture between the

本発明は、打設後のフレッシュコンクリート、硬化コンクリート、打設後のフレッシュモルタル、又は硬化モルタルのいずれか1種に属するセメント水混練体に含まれる水分量の推定方法であって、
前記セメント水混練体にRFタグを埋設する工程(a)と、
前記セメント水混練体の外側の所定の位置に、前記RFタグとの間で電波信号の送受信が可能なリーダ又はリーダライタを配置する工程(b)と、
前記リーダ又はリーダライタで受信した前記電波信号の強度値、又は前記電波信号の受信が検知できる前記リーダ又はリーダライタと前記セメント水混練体との離間距離の上限閾値の少なくとも一方の指標値を測定する工程(c)と、
前記指標値に基づいて、前記セメント水混練体に含まれる水分量を推定する工程(d)とを有することを特徴とする。
The present invention is a method for estimating the amount of water contained in a cement water mixture belonging to any one of fresh concrete after placement, hardened concrete, fresh mortar after placement, or hardened mortar, comprising:
a step (a) of embedding an RF tag in the cement water kneaded body;
a step (b) of arranging a reader or reader/writer capable of transmitting and receiving radio signals to and from the RF tag at a predetermined position outside the cement water kneaded body;
Measure an index value of at least one of the intensity value of the radio wave signal received by the reader or reader/writer, or the upper limit threshold of the separation distance between the reader/reader/writer and the cement water kneaded body that can detect the reception of the radio signal. step (c) of
The method is characterized by comprising a step (d) of estimating the amount of water contained in the cement water kneaded body based on the index value.

上記方法によれば、硬化前又は硬化後のいずれのコンクリート又はモルタルであっても、内部に含有される水分量を簡易な方法で推定することができる。 According to the above method, the amount of water contained in concrete or mortar, whether before or after hardening, can be estimated by a simple method.

また、本発明は、打設後のフレッシュコンクリート、硬化コンクリート、打設後のフレッシュモルタル、又は硬化モルタルのいずれか1種に属するセメント水混練体に含まれる水分量の推定用センサであって、
リーダ又はリーダライタとの間で通信可能なRFタグと、
前記RFタグが内側に固定され、前記セメント水混練体内における前記RFタグの埋設深さを調整するスペーサとを備えたことを特徴とする。
The present invention also provides a sensor for estimating the amount of water contained in a cement water mixture belonging to any one of fresh concrete after placement, hardened concrete, fresh mortar after placement, or hardened mortar,
an RF tag that can communicate with a reader or reader/writer;
The RF tag is fixed to the inside, and a spacer is provided for adjusting the embedding depth of the RF tag in the cement water kneading body.

かかるセンサによれば、フレッシュな状態の前記セメント水混練体にスペーサを埋設することのみで、容易に、セメント水混練体に埋設されるRFタグの深さ位置を所定値に設定することができる。これにより、推定処理の実行時にリーダライタ等の位置が変動した場合であっても、当該RFタグから反射された電波信号をリーダライタ等で受信することによって精度よくセメント水混練体に含まれる水分量を推定することが可能となる。 According to this sensor, the depth position of the RF tag embedded in the cement water mixture can be easily set to a predetermined value by simply embedding a spacer in the cement water mixture in a fresh state. . As a result, even if the position of the reader/writer etc. changes during the execution of estimation processing, the moisture contained in the cement water mixture can be accurately detected by receiving the radio wave signal reflected from the RF tag with the reader/writer etc. It becomes possible to estimate the amount.

なお、この場合において、前記RFタグには埋設深さに関する情報が書き込まれているものとしても構わない。 In this case, information regarding the embedding depth may be written in the RF tag.

本発明によれば、硬化前及び硬化後のいずれの状態のセメント水混練体に対しても、簡易な方法で含有水分量を推定することができる。 According to the present invention, it is possible to estimate the water content of a cement water kneaded body in any state before hardening or after hardening by a simple method.

セメント水混練体に含まれる水分量の推定システムの第一実施形態の態様を模式的に示す図面である。1 is a drawing schematically showing an aspect of a first embodiment of a system for estimating the amount of water contained in a cement water kneaded body. リーダライタの機能ブロック図の一例である。It is an example of the functional block diagram of a reader/writer. セメント水混練体に含まれる水分量が少ない場合において、前記推定方法が実行された場合を説明するための図面である。It is a drawing for explaining the case where the estimation method is executed when the amount of water contained in the cement water kneaded body is small. セメント水混練体に含まれる水分量が多い場合において、前記推定方法が実行された場合を説明するための図面である。It is a drawing for explaining the case where the estimation method is executed when the water content contained in the cement water kneaded body is large. セメント水混練体に含まれる水分量とリーダライタで受信された反射電波強度との関係を模式的に示すグラフである。2 is a graph schematically showing the relationship between the amount of water contained in a cement water kneaded body and the intensity of reflected radio waves received by a reader/writer. 打設後のフレッシュコンクリート又はフレッシュモルタルにおける含有水分量及び反射電波強度の経時的な変化を模式的に示すグラフである。2 is a graph schematically showing changes over time in water content and reflected radio wave intensity in fresh concrete or fresh mortar after pouring. 供用段階の硬化コンクリート又は硬化モルタルにおける含有水分量及び反射電波強度の経時的な変化を模式的に示すグラフである。1 is a graph schematically showing changes over time in water content and reflected radio wave intensity in hardened concrete or hardened mortar in the in-use stage. セメント水混練体に含まれる水分量と通信距離との関係を図4にならって模式的に示すグラフである。5 is a graph schematically showing the relationship between the amount of water contained in the cement water kneaded body and the communication distance, similar to FIG. 4. セメント水混練体に含まれる水分量の推定システムの第二実施形態の態様を模式的に示す図面である。It is a drawing which shows typically the aspect of the second embodiment of the estimation system of the water content contained in a cement water kneaded body. 第一反射電波強度及び第二反射電波強度と、セメント水混練体内の含有水分量との関係を図4にならって模式的に示すグラフである。5 is a graph schematically showing the relationship between the first reflected radio wave intensity, the second reflected radio wave intensity, and the amount of water contained in the cement water kneaded product, similar to FIG. 4. セメント水混練体に含まれる水分量の推定システムの第三実施形態の態様を模式的に示す図面である。It is a drawing which shows typically the aspect of 3rd embodiment of the estimation system of the water content contained in a cement water kneaded body. セメント水混練体に含まれる水分量の推定システムの第三実施形態の別の態様を模式的に示す図面である。It is a drawing which shows typically another aspect of the third embodiment of the estimation system for the amount of water contained in a cement water kneaded body. セメント水混練体に含まれる水分量の推定システムの第四実施形態の別の態様を模式的に示す図面である。It is a drawing which shows typically another aspect of the fourth embodiment of the estimation system for the amount of water contained in a cement water kneaded body. リーダライタの機能ブロック図の別の一例である。It is another example of the functional block diagram of a reader/writer. セメント水混練体に含まれる水分量の推定システムの別実施形態の態様を模式的に示す図面である。It is a drawing which shows typically the aspect of another embodiment of the estimation system of the water content contained in a cement water kneaded body. セメント水混練体に含まれる水分量の推定システムの別実施形態の態様を模式的に示す図面である。It is a drawing which shows typically the aspect of another embodiment of the estimation system of the water content contained in a cement water kneaded body. 試験用モルタルの打設後の経過時間と貫入抵抗値の関係を測定した結果である。These are the results of measuring the relationship between the elapsed time after placing the test mortar and the penetration resistance value. RFタグが埋設された試験用モルタルの打設開始からの経過時間と、測定された反射電波強度との関係を示すグラフである。It is a graph showing the relationship between the elapsed time from the start of placing a test mortar in which an RF tag is embedded and the measured reflected radio wave intensity. 図16Aの一部領域を拡大したグラフである。16A is a graph showing an enlarged partial area of FIG. 16A. 打設後の試験用コンクリートに対するブリーディング水の測定結果を示すグラフである。It is a graph which shows the measurement result of the bleeding water with respect to the concrete for a test after pouring.

本発明に係る、セメント水混練体に含まれる水分量の推定システム、セメント水混練体に含まれる水分量の推定方法、及びセメント水混練体に含まれる水分量の推定用センサの実施形態につき、適宜図面を参照して説明する。なお、以下の図面において、説明の都合上、一部が誇張して図示されている場合があり、実際の寸法比と図面上の寸法比とは必ずしも一致しない。 Regarding the embodiments of the system for estimating the amount of water contained in a cement water kneaded body, the method for estimating the amount of water contained in the cement water kneaded body, and the sensor for estimating the amount of water contained in the cement water kneaded body according to the present invention, The description will be given with reference to the drawings as appropriate. In the following drawings, some parts may be exaggerated for convenience of explanation, and the actual dimensional ratio and the dimensional ratio in the drawings do not necessarily match.

[第一実施形態]
図1に示すように、セメント水混練体に含まれる水分量の推定システム(以下、「推定システム1」と略記する。)は、セメント水混練体3内に埋設されたRFタグ5と、リーダライタ10を含む。
[First embodiment]
As shown in FIG. 1, the system for estimating the amount of water contained in the cement water mixture (hereinafter abbreviated as "estimation system 1") uses an RF tag 5 embedded in the cement water mixture 3 and a reader. It includes a writer 10.

セメント水混練体3は、硬化前又は硬化後のいずれかの状態における、コンクリート又はモルタルである。 The cement water kneaded body 3 is concrete or mortar in either a pre-cured or post-cured state.

RFタグ5は、誘導アンテナ(不図示)を内蔵し、所定の周波数帯の無線周波数で通信を行う。一例として、RFタグ5は、共振周波数が13.56MHz、寸法が54mm×86mm、厚みが2mmの板状型のRFタグである。RFタグ5は、金属非対応型であっても金属対応型であっても構わない。本発明において、RFタグ5の通信周波数帯、寸法、及び形状は任意である。このようなRFタグ5が、セメント水混練体3内に埋設されている。 The RF tag 5 has a built-in induction antenna (not shown) and communicates using a radio frequency in a predetermined frequency band. As an example, the RF tag 5 is a plate-shaped RF tag with a resonance frequency of 13.56 MHz, dimensions of 54 mm x 86 mm, and a thickness of 2 mm. The RF tag 5 may be of a non-metal type or a metal-compatible type. In the present invention, the communication frequency band, size, and shape of the RF tag 5 are arbitrary. Such an RF tag 5 is embedded in the cement water kneaded body 3.

セメント水混練体3が硬化後のコンクリート又はモルタルで構成されている場合、このセメント水混練体3は、硬化前のフレッシュな状態においてRFタグ5が埋設された後、硬化処理が行われたものである。また、セメント水混練体3が硬化前のフレッシュなコンクリート又はモルタルで構成されている場合には、このセメント水混練体3内にRFタグ5が埋設される。この埋設工程が、工程(a)に対応する。 When the cement water kneaded body 3 is composed of hardened concrete or mortar, the cement water kneaded body 3 is one in which the RF tag 5 is buried in a fresh state before hardening, and then hardening treatment is performed. It is. Further, when the cement water kneaded body 3 is made of fresh concrete or mortar before hardening, the RF tag 5 is embedded in the cement water kneaded body 3. This embedding step corresponds to step (a).

作業員は、セメント水混練体3に含まれる水分量を推定する際、セメント水混練体3に埋設されたRFタグ5との間で無線通信が可能なリーダライタ10を当該セメント水混練体3が設置された現場に持参する。そして、リーダライタ10を、RFタグ5が埋め込まれている領域の近傍に配置又は把持し(工程(b)に対応)、リーダライタ10から所定周波数の電波信号W1をRFタグ5に向けて放射して、RFタグ5から送信される反射電波信号W2を受信する(工程(c)に対応)。なお、この工程(c)の詳細な説明は後述される。 When estimating the amount of water contained in the cement water kneaded body 3, the worker attaches the reader/writer 10 capable of wireless communication with the RF tag 5 embedded in the cement water kneaded body 3 to the cement water kneaded body 3. Bring it to the site where it is installed. Then, the reader/writer 10 is placed or held near the area where the RF tag 5 is embedded (corresponding to step (b)), and the reader/writer 10 emits a radio signal W1 of a predetermined frequency toward the RF tag 5. Then, the reflected radio wave signal W2 transmitted from the RF tag 5 is received (corresponding to step (c)). Note that a detailed explanation of this step (c) will be given later.

リーダライタ10は、専用機器であっても構わないし、電波信号W1の送信や反射電波信号W2の受信が可能な専用アプリケーションプログラムがインストールされた、スマートフォンやタブレットPCなどの汎用機器であっても構わない。なお、本実施形態では、「リーダライタ10」を用いる場合を例として説明するが、少なくともRFタグ5との間で通信可能な機器であればよく、すなわち、RFタグ5に対する情報の書き込み機能を有しない、いわゆる「リーダ」であっても構わない。 The reader/writer 10 may be a dedicated device, or may be a general-purpose device such as a smartphone or a tablet PC in which a dedicated application program capable of transmitting the radio signal W1 and receiving the reflected radio signal W2 is installed. do not have. In this embodiment, the case where the "reader/writer 10" is used will be explained as an example, but any device that can communicate with at least the RF tag 5 is sufficient. It does not matter if it is a so-called "leader" that does not have one.

図2は、本実施形態におけるリーダライタ10の機能ブロック図の一例である。リーダライタ10は、通信部11、表示出力部12、及び推定装置20を備える。なお、図13を参照して後述されるように、推定装置20は、リーダライタ10に内蔵されずに、リーダライタ10とは別体の装置として構成されていても構わない。 FIG. 2 is an example of a functional block diagram of the reader/writer 10 in this embodiment. The reader/writer 10 includes a communication section 11, a display output section 12, and an estimation device 20. Note that, as will be described later with reference to FIG. 13, the estimation device 20 may be configured as a separate device from the reader/writer 10 without being built into the reader/writer 10.

通信部11は、RFタグ5との間で無線通信を行うためのインタフェースである。表示出力部12は、所定の表示用の演算処理を行うと共に、不図示のモニタに処理後の内容を表示する機能的手段である。推定装置20は、通信部11においてRFタグ5から送信された反射電波信号W2に基づいて、セメント水混練体3内に含まれる水分量を演算処理によって推定する処理装置であり、推定処理部21と記憶部22を備える。記憶部22は、フラッシュメモリ、ハードディスクなどの記憶媒体で構成され、後述される所定の情報が予め記録されている。推定処理部21は、RFタグ5から送信された反射電波信号W2と記憶部22に記録された情報とに基づいて演算処理を行う処理部であり、専用のハードウェア又はソフトウェアで構成される。 The communication unit 11 is an interface for performing wireless communication with the RF tag 5. The display output unit 12 is a functional means that performs predetermined display arithmetic processing and displays the processed content on a monitor (not shown). The estimation device 20 is a processing device that estimates the amount of water contained in the cement water kneaded body 3 through arithmetic processing based on the reflected radio wave signal W2 transmitted from the RF tag 5 in the communication section 11. and a storage section 22. The storage unit 22 is composed of a storage medium such as a flash memory or a hard disk, and has predetermined information, which will be described later, recorded therein. The estimation processing section 21 is a processing section that performs arithmetic processing based on the reflected radio wave signal W2 transmitted from the RF tag 5 and the information recorded in the storage section 22, and is composed of dedicated hardware or software.

セメント水混練体3内に含まれる水分量の多寡によって、反射電波信号W2の強度が変化する点につき、図3A及び図3Bを参照して説明する。図3Aは、セメント水混練体3内に含まれる水分量が比較的少ない場合に対応し、図3Bは、図3Aの状況と比べてセメント水混練体3内に含まれる水分量が多い場合に対応している。図3A及び図3Bでは、セメント水混練体3内に含まれる水分量の多寡の相違が、セメント水混練体3に付されたハッチングの密度によって模式的に表現されている。 How the intensity of the reflected radio signal W2 changes depending on the amount of water contained in the cement water kneaded body 3 will be explained with reference to FIGS. 3A and 3B. 3A corresponds to a case where the amount of water contained in the cement water kneaded body 3 is relatively small, and FIG. 3B corresponds to a case where the amount of water contained in the cement water kneaded body 3 is large compared to the situation in FIG. 3A. Compatible. In FIGS. 3A and 3B, the difference in the amount of water contained in the cement water kneaded body 3 is schematically expressed by the density of hatching attached to the cement water kneaded body 3.

上述したように、リーダライタ10からRFタグ5に向かって電波信号W1が送信されると、セメント水混練体3の表面3a(以下、適宜「セメント水混練体表面3a」と称する。)とリーダライタ10との間の離間距離h10が離れ過ぎていない限り、RFタグ5側で電波信号W1が受信され、反射電波信号W2がリーダライタ10に向かって送信される。ところが、水は導電性を示すことから、反射電波信号W2の伝播経路内に存在する水の量に応じて、この反射電波信号W2の強度が低下する。 As described above, when the radio signal W1 is transmitted from the reader/writer 10 toward the RF tag 5, the surface 3a of the cement water kneaded body 3 (hereinafter appropriately referred to as the "cement water kneaded body surface 3a") and the reader As long as the separation distance h10 from the writer 10 is not too far, the radio wave signal W1 is received on the RF tag 5 side, and the reflected radio wave signal W2 is transmitted toward the reader/writer 10. However, since water exhibits conductivity, the intensity of the reflected radio wave signal W2 decreases depending on the amount of water present in the propagation path of the reflected radio wave signal W2.

上述したように、図3Bは、図3Aよりもセメント水混練体3に含まれる水分量が多い状況が模擬されている。このことは、図3Bの状態では、RFタグ5とセメント水混練体表面3aとの間の領域3b内に含まれる水分量、言い換えれば反射電波信号W2の伝播経路内に存在する水分量が、図3Aの状態よりも多いことを意味する。つまり、図3Aの状態においてリーダライタ10で受信される反射電波信号W2の強度がE2xである場合、図3Aよりも含有水分量の多い図3Bの状態においては、リーダライタ10で受信される反射電波信号W2の強度はE2xよりも低いE2yとなる。 As described above, FIG. 3B simulates a situation where the amount of water contained in the cement water kneaded body 3 is greater than that in FIG. 3A. This means that in the state shown in FIG. 3B, the amount of water contained in the region 3b between the RF tag 5 and the cement water kneaded body surface 3a, in other words, the amount of water present in the propagation path of the reflected radio wave signal W2, This means that there are more cases than the state shown in FIG. 3A. That is, if the intensity of the reflected radio wave signal W2 received by the reader/writer 10 in the state of FIG. 3A is E2x, the reflected radio wave signal W2 received by the reader/writer 10 in the state of FIG. The strength of the radio signal W2 is E2y, which is lower than E2x.

以上により、セメント水混練体3内に含まれる水分量(含有水分量V3)を横軸に取り、反射電波信号W2の強度E2(以下、適宜「反射電波強度E2」と称する。)を縦軸に取ってグラフ化すると、図4に示すように両者は負の相関を示す。より詳細には、反射電波強度E2は、含有水分量V3に対して実質的に反比例の関係を示す。なお、図4は、あくまで模式的に示したグラフであり、反射電波強度E2がセメント水混練体3内の含有水分量V3に対して、厳密な意味で反比例の関係であることに限定する意図はない。 As described above, the amount of water contained in the cement water kneaded body 3 (the amount of water contained V3) is taken on the horizontal axis, and the intensity E2 of the reflected radio wave signal W2 (hereinafter appropriately referred to as "reflected radio wave intensity E2") is taken on the vertical axis. When plotted in a graph, the two show a negative correlation as shown in FIG. More specifically, the reflected radio wave intensity E2 is substantially inversely proportional to the water content V3. In addition, FIG. 4 is a graph shown schematically to the last, and the intention is to limit the reflected radio wave intensity E2 to be inversely proportional to the water content V3 in the cement water kneaded body 3 in a strict sense. There isn't.

セメント水混練体3がフレッシュコンクリート又はフレッシュモルタルである場合には、時間の経過と共に水和反応が進行して自由水が減少する。このような現象は、セメント水混練体3の内部の特定の箇所で生じるものではなく、セメント水混練体3の全体にわたって生じる。これにより、RFタグ5とセメント水混練体表面3aとの間の領域3b内における水分量の多寡に依存する、反射電波強度E2(E2x,E2y)の値によって、セメント水混練体3全体にわたる含有水分量V3の推定が可能であることが分かる。 When the cement water kneaded body 3 is fresh concrete or fresh mortar, a hydration reaction progresses over time and free water decreases. Such a phenomenon does not occur at a specific location inside the cement water kneaded body 3, but occurs throughout the cement water kneaded body 3. As a result, the content throughout the cement water kneaded body 3 is determined by the value of the reflected radio wave intensity E2 (E2x, E2y), which depends on the amount of water in the region 3b between the RF tag 5 and the cement water kneaded body surface 3a. It can be seen that the water content V3 can be estimated.

図5Aは、打設後のフレッシュコンクリート又はフレッシュモルタルにおける含有水分量V3及び反射電波強度E2の経時的な変化を模式的に示すグラフである。図5Aに示すように、打設後の時間経過と共に水和反応が進展する結果、含有水分量V3が低下するため、リーダライタ10で受信される反射電波強度E2は経時的に増加傾向を示す。 FIG. 5A is a graph schematically showing changes over time in water content V3 and reflected radio wave intensity E2 in fresh concrete or fresh mortar after pouring. As shown in FIG. 5A, as a result of the hydration reaction progressing over time after pouring, the water content V3 decreases, so the reflected radio wave intensity E2 received by the reader/writer 10 shows an increasing tendency over time. .

一方、セメント水混練体3が硬化コンクリート又は硬化モルタルである場合、すなわち、セメント水混練体3が供用段階にある場合には、水和反応に伴う水分量の変化は実質的に生じない。このようなセメント水混練体3内の含有水分量が変化する原因としては、雨水や結露に由来するものが一般的である。雨水や結露に由来する水分は、セメント水混練体表面3a側からセメント水混練体3内に深さ方向に浸透し、且つ、この浸透現象がセメント水混練体表面3aの面方向に関して全体的に生じる。つまり、この場合であっても、RFタグ5とセメント水混練体表面3aとの間の領域3b内における水分量の多寡に依存する、反射電波強度E2(E2x,E2y)の値によって、セメント水混練体3の全体にわたる含有水分量V3の推定が可能である。 On the other hand, when the cement-water kneaded body 3 is hardened concrete or hardened mortar, that is, when the cement-water kneaded body 3 is in the in-service stage, the water content does not substantially change due to the hydration reaction. The cause of such a change in the amount of water contained in the cement water kneaded body 3 is generally caused by rainwater or dew condensation. Moisture derived from rainwater and condensation permeates into the cement water kneaded body 3 from the surface 3a side of the cement water kneaded body in the depth direction, and this permeation phenomenon occurs throughout the surface direction of the cement water kneaded body 3a. arise. In other words, even in this case, the cement water It is possible to estimate the water content V3 throughout the kneaded body 3.

図5Bは、供用段階の硬化コンクリート又は硬化モルタルにおける含有水分量V3及び反射電波強度E2の経時的な変化を模式的に示すグラフである。図5Bに示すように、セメント水混練体3が供用段階にある場合には、基本的には時間経過と共に含有水分量V3は変化せずほとんど一定である。そして、あるタイミング(時間帯t1,t2)で、雨水や結露などの原因により、水分がセメント水混練体3内に浸透すると、水分量が一時的に増加し、リーダライタ10で受信される反射電波強度E2が一時的に低下する。 FIG. 5B is a graph schematically showing changes over time in the water content V3 and the reflected radio wave intensity E2 in hardened concrete or hardened mortar in the in-use stage. As shown in FIG. 5B, when the cement water kneaded body 3 is in the service stage, the water content V3 basically does not change over time and remains almost constant. Then, at a certain timing (time periods t1 and t2), when moisture permeates into the cement water mixture 3 due to rainwater, dew condensation, etc., the moisture content temporarily increases, and the reflection received by the reader/writer 10 Radio field intensity E2 temporarily decreases.

以上のように、本実施形態の推定システム1によれば、セメント水混練体3を構成するコンクリートやモルタルがまだ十分に硬化していない施工段階から、硬化後の供用段階までの幅広い状況において、セメント水混練体3に含まれる水分量V3を推定することが可能となる。 As described above, according to the estimation system 1 of the present embodiment, in a wide range of situations from the construction stage where the concrete and mortar constituting the cement water mixture 3 have not yet sufficiently hardened to the service stage after hardening, It becomes possible to estimate the water content V3 contained in the cement water kneaded body 3.

具体的には、図4に示したように、セメント水混練体3内における含有水分量V3と反射電波強度E2とは一定の相関関係を示すことから、この相関関係が規定された情報(以下、「相関情報」と称する。)を予め記憶部22に記録しておくものとして構わない。これにより、推定処理部21は、通信部11で受信された反射電波強度E2に関する情報を、記憶部22に記録された相関情報と照合することで、セメント水混練体3内の含有水分量V3の推定値を算定できる。つまり、リーダライタ10によって、反射電波強度E2が測定され(工程(c)に対応)、この反射電波強度E2と前記相関情報とに基づいて含有水分量V3が推定される(工程(d)に対応)。 Specifically, as shown in FIG. 4, since the water content V3 in the cement water kneaded body 3 and the reflected radio wave intensity E2 show a certain correlation, information that defines this correlation (hereinafter referred to as , referred to as "correlation information") may be recorded in advance in the storage unit 22. As a result, the estimation processing unit 21 collates the information regarding the reflected radio wave intensity E2 received by the communication unit 11 with the correlation information recorded in the storage unit 22, thereby determining the water content V3 in the cement water kneaded body 3. The estimated value of can be calculated. That is, the reader/writer 10 measures the reflected radio wave intensity E2 (corresponding to step (c)), and estimates the water content V3 based on this reflected radio wave intensity E2 and the correlation information (step (d)). correspondence).

この相関情報は、含有水分量V3と反射電波強度E2との関係が表記されていればよく、その表記方法には限定されない。すなわち、相関情報は、データテーブルの形式で記載されていても構わないし、関数の形式で記載されていても構わない。 This correlation information only needs to describe the relationship between the water content V3 and the reflected radio wave intensity E2, and is not limited to the manner in which it is described. That is, the correlation information may be written in the form of a data table or in the form of a function.

また、記憶部22に記録される相関情報としては、事前にセメント水混練体3と同種の材料・配合からなる供試体を用いて測定されたデータを利用することができる。この場合、含有水分量V3の値としては、例えば、以下の方法を用いて測定された値を採用することができる。 Further, as the correlation information recorded in the storage unit 22, data measured in advance using a specimen made of the same type of material and composition as the cement water kneaded body 3 can be used. In this case, as the value of the water content V3, for example, a value measured using the following method can be adopted.

供試体が硬化後のセメント水混練体(硬化コンクリート、硬化モルタル等)の場合には、供試体の湿潤状態から乾燥状態への変化、又はその逆の湿潤状態から乾燥状態への変化に伴って変化する質量の測定値をもって含有水分量V3とすることができる。そして、この質量の測定データV3と反射電波強度の測定データE2との関係から相関情報を求めることができる。 If the specimen is a cement-water mixture after hardening (hardened concrete, hardened mortar, etc.), as the specimen changes from a wet state to a dry state, or vice versa, from a wet state to a dry state. The measured value of the changing mass can be used as the water content V3. Then, correlation information can be obtained from the relationship between the mass measurement data V3 and the reflected radio wave intensity measurement data E2.

供試体が硬化前のセメント水混練体(フレッシュコンクリート、フレッシュモルタル等)の場合には、供試体の硬化過程の経時的な水分の変化に対応する測定指標の測定値から推定した値をもって含有水分量V3とすることができる。例えば、ブリーディング水の量を測定指標とすることができ、試験方法(例えばJIS A 1123に準拠した方法)を用いて、ブリーディング水の量を経時的に測定すると共に、この測定値から含有水分量V3の値を推定する。そして、この推定値と反射電波強度の測定データとの関係から相関情報を求めることができる。 If the specimen is a cement water mix before hardening (fresh concrete, fresh mortar, etc.), the water content is estimated from the measured value of the measurement index that corresponds to the change in moisture over time during the hardening process of the specimen. The amount may be V3. For example, the amount of bleeding water can be used as a measurement index, and the amount of bleeding water can be measured over time using a test method (for example, a method based on JIS A 1123), and the water content can be determined from this measurement value. Estimate the value of V3. Correlation information can then be obtained from the relationship between this estimated value and the measured data of reflected radio wave intensity.

ブリーディング水は、フレッシュコンクリートの打設後、コンクリート表面に浮き上がってくる水であり、このブリーディング水の量と、試料中の全水量に対するブリーディング水の量を百分率で表したブリーディング率などから、含有水分量V3の値を推定することができるため、ブリーディング水の量を測定指標とすることができる。なお、含有水分量V3の推定値は、単位面積あたりの含有水分量の推定値としてもよいし、配合した水の量に対する比率の推定値などとしてもよい。フレッシュコンクリートの打設後に生じるブリーディング水の量の変化の態様については、実施例を参照して後述される。 Bleeding water is the water that rises to the surface of concrete after fresh concrete is placed. Based on the amount of this bleeding water and the bleeding rate, which is the amount of bleeding water expressed as a percentage of the total water amount in the sample, the water content is Since the value of the amount V3 can be estimated, the amount of bleeding water can be used as a measurement index. Note that the estimated value of the water content V3 may be an estimated value of the water content per unit area, or may be an estimated value of the ratio to the amount of water mixed. The manner in which the amount of bleeding water changes after fresh concrete is placed will be described later with reference to Examples.

なお、この供試体はあくまで記憶部22に記録するための情報を得る際に用いられるものであって、推定処理の実行時に用いられるものではないことを確認のために付言しておく。 It should be noted for confirmation that this specimen is only used to obtain information to be recorded in the storage unit 22, and is not used when performing estimation processing.

(別態様)
ところで、上述した方法は、反射電波信号W2の強度(反射電波強度E2)の値に基づいて含有水分量V3を推定するものであり、言い換えれば、含有水分量V3を推定するための基礎となる指標値が反射電波強度E2であった。しかし、リーダライタ10によっては、反射電波信号W2を受信する機能を有していても、その強度値については計測できないものも存在する。
(Another aspect)
By the way, the method described above estimates the water content V3 based on the value of the intensity of the reflected radio wave signal W2 (reflected radio wave intensity E2), and in other words, it serves as the basis for estimating the water content V3. The index value was the reflected radio wave intensity E2. However, some reader/writers 10 cannot measure the intensity value even if they have the function of receiving the reflected radio wave signal W2.

かかる場合には、リーダライタ10とセメント水混練体表面3aとの離間距離h10(図3A参照)を変えながら、リーダライタ10が反射電波信号W2を検知できる離間距離h10の最大値(以下、「離間距離上限閾値h10max」と称する。)を、含有水分量V3を推定するための基礎となる指標値としても構わない。 In such a case, while changing the distance h10 (see FIG. 3A) between the reader/writer 10 and the cement water kneaded body surface 3a, the maximum value of the distance h10 (hereinafter referred to as " (referred to as "separation distance upper limit threshold h10max") may be used as an index value that is the basis for estimating the water content V3.

図6は、含有水分量V3と通信距離d2との関係を図4にならって模式的に示すグラフである。なお、ここでいう通信距離d2とは、リーダライタ10側で反射電波信号W2を検知できる、リーダライタ10とRFタグ5との離間距離の上限閾値を指す。 FIG. 6 is a graph schematically showing the relationship between the water content V3 and the communication distance d2, similar to FIG. 4. Note that the communication distance d2 here refers to the upper limit threshold of the separation distance between the reader/writer 10 and the RF tag 5 that allows the reader/writer 10 to detect the reflected radio wave signal W2.

RFタグ5から送信される反射電波信号W2がセメント水混練体3内を通過した後に当該反射電波信号W2が示す強度E2(反射電波強度E2)が比較的高い場合には、リーダライタ10をRFタグ5から比較的遠ざけたとしてもリーダライタ10が反射電波信号W2を検知できる。一方、反射電波強度E2が比較的低い場合には、リーダライタ10をRFタグ5に近づけなければリーダライタ10が反射電波信号W2を検知できない。 If the intensity E2 (reflected radio wave intensity E2) of the reflected radio wave signal W2 transmitted from the RF tag 5 after passing through the cement water kneaded body 3 is relatively high, the reader/writer 10 is The reader/writer 10 can detect the reflected radio wave signal W2 even if it is relatively far away from the tag 5. On the other hand, when the reflected radio wave intensity E2 is relatively low, the reader/writer 10 cannot detect the reflected radio wave signal W2 unless the reader/writer 10 is brought close to the RF tag 5.

つまり、反射電波強度E2と通信距離d2とは正の相関にあり、より詳細には実質的に比例関係にあるといえる。図6と図4とを比較すると、縦軸が反射電波強度E2であるか通信距離d2であるかが相違するのみで、含有水分量V3との比較関係は近似している。 In other words, the reflected radio wave intensity E2 and the communication distance d2 have a positive correlation, and more specifically, they can be said to have a substantially proportional relationship. Comparing FIG. 6 and FIG. 4, the only difference is whether the vertical axis is the reflected radio wave intensity E2 or the communication distance d2, and the comparative relationship with the water content V3 is similar.

通信距離d2は、前述した離間距離上限閾値h10maxと、セメント水混練体3内におけるRFタグ5の埋設深さとの合計値に対応する。セメント水混練体3内におけるRFタグ5の埋設深さは、同一の現場においては変化するものではない。従って、実質的に離間距離上限閾値h10maxによって、含有水分量V3を推定することが可能である。 The communication distance d2 corresponds to the sum of the separation distance upper limit threshold value h10max mentioned above and the burial depth of the RF tag 5 in the cement water kneaded body 3. The depth of embedding the RF tag 5 in the cement water kneaded body 3 does not change at the same site. Therefore, it is possible to estimate the water content V3 substantially based on the separation distance upper limit threshold h10max.

この方法による場合には、含有水分量V3と離間距離上限閾値h10maxとの相関関係が規定された情報(上述した「相関情報」に対応する。)が記憶部22に記録されているものとしても構わない。この場合の相関情報としては、例えば、含有水分量V3と反射電波強度E2の相関情報を得る場合と同様の手法により得られたものを利用できる。 In the case of this method, even if information defining the correlation between the water content V3 and the separation distance upper limit threshold h10max (corresponding to the above-mentioned "correlation information") is recorded in the storage unit 22, I do not care. As the correlation information in this case, for example, information obtained by the same method as in the case of obtaining the correlation information between the water content V3 and the reflected radio wave intensity E2 can be used.

また、含有水分量V3と通信距離d2との相関情報が記憶部22に記録されているものとしても構わない。この場合には、記憶部22に予めセメント水混練体3内におけるRFタグ5の埋設深さについての情報が記録されており、この埋設深さと離間距離上限閾値h10maxの情報とに基づいて、対象となるセメント水混練体3の通信距離d2を算定した上で、前記相関情報から含有水分量V3が推定できる。なお、図11を参照して後述するように、RFタグ5側に埋設深さについての情報が予め記憶されている場合には、埋設深さに関する情報を記憶部22に記録しておく必要はなく、リーダライタ10側で反射電波信号W2を受信する際に併せて埋設深さについての情報を受信すればよい。 Further, correlation information between the water content V3 and the communication distance d2 may be recorded in the storage unit 22. In this case, information about the burial depth of the RF tag 5 in the cement water kneaded body 3 is recorded in advance in the storage unit 22, and the target After calculating the communication distance d2 of the cement water kneaded body 3, the water content V3 can be estimated from the correlation information. Note that, as will be described later with reference to FIG. 11, if information regarding the embedding depth is stored in advance on the RF tag 5 side, it is not necessary to record the information regarding the embedding depth in the storage unit 22. Instead, the reader/writer 10 side only needs to receive information about the burial depth when receiving the reflected radio wave signal W2.

なお、リーダライタ10が反射電波強度E2を検知できる構成であっても、推定装置20が離間距離上限閾値h10maxに基づいて含有水分量V3を推定するものとしても構わない。 Note that even if the reader/writer 10 is configured to be able to detect the reflected radio wave intensity E2, the estimating device 20 may estimate the water content V3 based on the separation distance upper limit threshold h10max.

[第二実施形態]
推定システム1の第二実施形態について、図7及び図8を参照して説明する。なお、図7では、図示の都合上、電波信号(E1,E2)のうち、電波信号W1の図示が省略され、反射電波信号W2のみが図示されている。以下の図面においても、電波信号W1の図示が省略されることがある。
[Second embodiment]
A second embodiment of the estimation system 1 will be described with reference to FIGS. 7 and 8. In addition, in FIG. 7, for convenience of illustration, the illustration of the radio wave signal W1 among the radio wave signals (E1, E2) is omitted, and only the reflected radio wave signal W2 is illustrated. Also in the following drawings, illustration of the radio signal W1 may be omitted.

第一実施形態で上述した推定システム1において、反射電波強度E2に基づいて含有水分量V3を推定する場合には、リーダライタ10とセメント水混練体表面3aとの離間距離h10(図3A、図3B参照)を、可能な限り所定の値に保持する必要がある。なぜなら、離間距離h10が変化してしまうと、反射電波強度E2が変化し、含有水分量V3を正しく推定できなくなるおそれがあるためである。 In the estimation system 1 described above in the first embodiment, when estimating the water content V3 based on the reflected radio wave intensity E2, the distance h10 between the reader/writer 10 and the cement water kneaded body surface 3a (FIG. 3A, 3B) must be kept at a predetermined value as much as possible. This is because if the separation distance h10 changes, the reflected radio wave intensity E2 changes, and there is a possibility that the water content V3 cannot be estimated correctly.

しかし、測定対象となるセメント水混練体3の周辺環境等の事情によっては、離間距離h10を所定の値に保持しながらリーダライタ10を配置することが困難な場合がある。 However, depending on circumstances such as the surrounding environment of the cement water kneaded body 3 to be measured, it may be difficult to arrange the reader/writer 10 while maintaining the separation distance h10 at a predetermined value.

本実施形態の推定システム1は、リーダライタ10の位置が固定できない場合であっても、精度よくセメント水混練体3の含有水分量V3を推定できる構成であって、セメント水混練体3内において埋設深さの異なる第一RFタグ5aと第二RFタグ5bとを含む。より詳細には、図7に示すように、セメント水混練体3内には、埋設深さh5aの位置に第一RFタグ5aが埋設されており、埋設深さh5aよりも深い埋設深さh5bの位置に第二RFタグ5bが埋設されている。 The estimation system 1 of the present embodiment is configured to be able to accurately estimate the water content V3 of the cement water kneaded body 3 even if the position of the reader/writer 10 cannot be fixed, and It includes a first RF tag 5a and a second RF tag 5b that are buried at different depths. More specifically, as shown in FIG. 7, the first RF tag 5a is buried in the cement water kneaded body 3 at a buried depth h5a, and the first RF tag 5a is buried at a buried depth h5b which is deeper than the buried depth h5a. A second RF tag 5b is embedded at the position.

セメント水混練体3が硬化後のコンクリート又はモルタルで構成されている場合、このセメント水混練体3は、硬化前のフレッシュな状態において、埋設深さの異なる位置に第一RFタグ5aと第二RFタグ5bとが埋設された後、硬化処理が行われたものである。また、セメント水混練体3が硬化前のフレッシュなコンクリート又はモルタルで構成されている場合には、このセメント水混練体3内の埋設深さの異なる位置に第一RFタグ5aと第二RFタグ5bが埋設される(工程(a)に対応)。 When the cement water kneaded body 3 is composed of hardened concrete or mortar, the first RF tag 5a and the second RF tag 5a are placed at different buried depths in the fresh state before hardening. After the RF tag 5b was embedded, a curing process was performed. In addition, when the cement water kneaded body 3 is composed of fresh concrete or mortar before hardening, a first RF tag 5a and a second RF tag are placed at different buried depths in the cement water kneaded body 3. 5b is buried (corresponding to step (a)).

リーダライタ10は、RFタグ(5a,5b)からそれぞれ反射電波信号(W2a,W2b)を受信する(工程(c)に対応)。第一RFタグ5aは、第二RFタグ5bよりもセメント水混練体3の表面3aに近い位置に埋設されているため、第一RFタグ5aからの反射電波信号W2aの強度E2aは、第二RFタグ5bからの反射電波信号W2bの強度E2bよりも高くなる。以下では、第一RFタグ5aからの反射電波信号W2aの強度E2aを「第一反射電波強度E2a」と記載し、第二RFタグ5bからの反射電波信号W2bの強度E2bを「第二反射電波強度E2b」と記載する。 The reader/writer 10 receives reflected radio wave signals (W2a, W2b) from the RF tags (5a, 5b), respectively (corresponding to step (c)). Since the first RF tag 5a is buried in a position closer to the surface 3a of the cement water kneaded body 3 than the second RF tag 5b, the intensity E2a of the reflected radio wave signal W2a from the first RF tag 5a is different from that of the second RF tag 5b. The intensity is higher than the intensity E2b of the reflected radio wave signal W2b from the RF tag 5b. In the following, the intensity E2a of the reflected radio wave signal W2a from the first RF tag 5a will be referred to as "first reflected radio wave intensity E2a", and the intensity E2b of the reflected radio wave signal W2b from the second RF tag 5b will be referred to as "second reflected radio wave intensity E2a". Strength E2b".

図8は、第一反射電波強度E2a及び第二反射電波強度E2bと、セメント水混練体3内の含有水分量V3との関係を、図4にならって模式的に示すグラフである。 FIG. 8 is a graph schematically showing the relationship between the first reflected radio wave intensity E2a, the second reflected radio wave intensity E2b, and the water content V3 in the cement water kneaded body 3, similar to FIG. 4.

セメント水混練体3内の含有水分量が多くなるほど、第一反射電波強度E2aと第二反射電波強度E2bとの差分値dE2は小さくなる傾向を示す。これは、セメント水混練体3内の含有水分量が多くなるに連れて、第一RFタグ5aとセメント水混練体表面3aとの間の領域内に存在する水分量と、第二RFタグ5bとセメント水混練体表面3aとの間の領域内に存在する水分量との差が小さくなるためである。 The difference value dE2 between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b tends to become smaller as the water content in the cement water kneaded body 3 increases. As the water content in the cement water kneaded body 3 increases, the amount of water present in the area between the first RF tag 5a and the cement water kneaded body surface 3a and the second RF tag 5b increase. This is because the difference in the amount of water existing in the area between the water and the surface 3a of the cement water kneaded body becomes smaller.

従って、第一反射電波強度E2aと第二反射電波強度E2bとの差分値dE2は、含有水分量V3の値に対して負の相関を示す。そして、この差分値dE2は、リーダライタ10とセメント水混練体表面3aとの離間距離h10が変化しても、殆ど又は全く変化しない。よって、推定装置20の記憶部22に差分値dE2と含有水分量V3との相関関係を記録しておき、推定処理部21が、通信部11で受信した各反射電波強度(E2a,E2b)の差を算出すると共に記憶部22から読み出した前記相関関係と照合することで、セメント水混練体3内の含有水分量V3を推定できる(工程(d)に対応)。 Therefore, the difference value dE2 between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b shows a negative correlation with the value of the water content V3. This difference value dE2 hardly or not changes at all even if the distance h10 between the reader/writer 10 and the cement water kneaded body surface 3a changes. Therefore, the correlation between the difference value dE2 and the water content V3 is recorded in the storage unit 22 of the estimation device 20, and the estimation processing unit 21 calculates the intensity of each reflected radio wave (E2a, E2b) received by the communication unit 11. By calculating the difference and comparing it with the correlation read from the storage unit 22, the water content V3 in the cement water kneaded body 3 can be estimated (corresponding to step (d)).

(別態様)
本実施形態の推定システムの別態様について説明する。
(Another aspect)
Another aspect of the estimation system of this embodiment will be explained.

〈1〉 本実施形態では、第一反射電波強度E2aと第二反射電波強度E2bとの差分値dE2に基づいてセメント水混練体3内の含有水分量V3を推定するものとしたが、前記差分値dE2の値に対して所定の演算を行って得られる参照値に基づいて、セメント水混練体3内の含有水分量V3を推定するものとしても構わない。つまり、本実施形態では、第一RFタグ5aからの第一反射電波強度E2aを「第一指標値」とし、第二RFタグ5bからの第二反射電波強度E2bを「第二指標値」として、これらの指標値の差分値又は当該差分値に基づいて一意に決定される値、又は第一反射電波強度E2aと第二反射電波強度E2bとの比によって、含有水分量V3が推定される。 <1> In this embodiment, the water content V3 in the cement water kneaded body 3 is estimated based on the difference value dE2 between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b. The water content V3 in the cement water kneaded body 3 may be estimated based on a reference value obtained by performing a predetermined calculation on the value dE2. That is, in this embodiment, the first reflected radio wave intensity E2a from the first RF tag 5a is defined as the "first index value", and the second reflected radio wave intensity E2b from the second RF tag 5b is defined as the "second index value". The water content V3 is estimated based on the difference value between these index values or a value uniquely determined based on the difference value, or the ratio between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b.

〈2〉 本実施形態の推定システム1において、セメント水混練体3内の3種類以上の埋設深さの箇所にそれぞれRFタグ5が埋設されていても構わない。 <2> In the estimation system 1 of this embodiment, the RF tags 5 may be buried in three or more different buried depths in the cement water kneaded body 3.

〈3〉 セメント水混練体3内に埋設されていない状態において、リーダライタ10側で受信される第一反射電波強度E2aと第二反射電波強度E2bとが相違するように、第一RFタグ5aと第二RFタグ5bとが選択されるものとしても構わない。かかる構成によれば、図8に模式的に示したように、含有水分量V3に対する第一反射電波強度E2aの変位傾向と、含有水分量V3に対する第二反射電波強度E2bの変位傾向とに差をつけやすくなるため、差分値dE2に基づく含有水分量V3の推定精度が高められる。 <3> The first RF tag 5a is set so that the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b received on the reader/writer 10 side are different when the first RF tag 5a is not embedded in the cement water kneaded body 3. and the second RF tag 5b may be selected. According to this configuration, as schematically shown in FIG. 8, there is a difference between the displacement tendency of the first reflected radio wave intensity E2a with respect to the water content V3 and the displacement tendency of the second reflected radio wave intensity E2b with respect to the water content V3. Since it becomes easier to determine the amount of water contained in the water content V3 based on the difference value dE2, the accuracy of estimating the water content V3 based on the difference value dE2 is improved.

[第三実施形態]
推定システム1の第三実施形態について、図9を参照して説明する。本実施形態の推定システム1も、第二実施形態と同様に、リーダライタ10の位置が固定できない場合であっても精度よくセメント水混練体3の含有水分量V3を推定できる構成である。本実施形態の推定システム1は、第二実施形態と同様に、セメント水混練体3内に埋設された複数のRFタグ(5a,5b)を含む。ただし、第一RFタグ5aと第二RFタグ5bとは、設置されている領域の吸水率が異なっている。
[Third embodiment]
A third embodiment of the estimation system 1 will be described with reference to FIG. 9. Similarly to the second embodiment, the estimation system 1 of this embodiment is also configured to be able to accurately estimate the water content V3 of the cement water kneaded body 3 even when the position of the reader/writer 10 cannot be fixed. The estimation system 1 of this embodiment includes a plurality of RF tags (5a, 5b) embedded in the cement water kneaded body 3 similarly to the second embodiment. However, the first RF tag 5a and the second RF tag 5b have different water absorption rates in their installed areas.

図9に示す例では、複数のRFタグ(5a,5b)は、一体のスペーサ30内に設置されている。このスペーサ30は、セメント水混練体3よりも吸水率の低い材料からなる第一領域31と、セメント水混練体3と同等の吸水率を示す材料からなる第二領域32とを有して構成されている。一例として、第一領域31は、UFC(超高強度繊維補強コンクリート)、セラミックス、ポリエチレンやポリプロピレン等の樹脂で構成される。また、第二領域32は、セメント水混練体3と同様に、モルタルやコンクリートで構成される。図9に示す例では、スペーサ30の第一領域31が「タグ保護体」に対応する。 In the example shown in FIG. 9, a plurality of RF tags (5a, 5b) are installed within an integrated spacer 30. This spacer 30 has a first region 31 made of a material with a water absorption rate lower than that of the cement water kneaded body 3 and a second region 32 made of a material showing a water absorption rate equivalent to that of the cement water kneaded body 3. has been done. As an example, the first region 31 is made of UFC (Ultra High Strength Fiber Reinforced Concrete), ceramics, or resin such as polyethylene or polypropylene. Further, the second region 32 is made of mortar or concrete, similar to the cement water kneaded body 3. In the example shown in FIG. 9, the first region 31 of the spacer 30 corresponds to the "tag protector".

第一RFタグ5aと第二RFタグ5bとは、ほぼ同じ埋設深さになるように設置される。なお、「ほぼ同じ」とは、第一RFタグ5aからの反射電波信号W2aの強度E2a(第一反射電波強度E2a)と、第二RFタグ5bからの反射電波信号W2bの強度E2b(第二反射電波強度E2b)との相違が、実質的に吸水率の相違にのみ依存すると近似可能な範囲で相違する場合を含む。具体的には、第一RFタグ5aと第二RFタグ5bの埋設深さの差が、埋設深さの10%以内の範囲内である場合を許容する。 The first RF tag 5a and the second RF tag 5b are installed at approximately the same buried depth. Note that "almost the same" means that the intensity E2a of the reflected radio wave signal W2a from the first RF tag 5a (first reflected radio wave intensity E2a) and the intensity E2b of the reflected radio wave signal W2b from the second RF tag 5b (second This includes the case where the difference from the reflected radio wave intensity E2b) is within a range that can be approximated by depending substantially only on the difference in water absorption. Specifically, the difference in the buried depth between the first RF tag 5a and the second RF tag 5b is allowed to be within 10% of the buried depth.

セメント水混練体3が硬化後のコンクリート又はモルタルで構成されている場合、このセメント水混練体3は、硬化前のフレッシュな状態において、第一領域31内に第一RFタグ5aが設置されると共に第二領域32内に第二RFタグ5bが設置されてなるスペーサ30が埋設された後、硬化処理が行われたものである。また、セメント水混練体3が硬化前のフレッシュなコンクリート又はモルタルで構成されている場合には、このセメント水混練体3内に第一RFタグ5aと第二RFタグ5bが設置されたスペーサ30が埋設される(工程(a)に対応)。 When the cement water kneaded body 3 is composed of hardened concrete or mortar, the first RF tag 5a is installed in the first region 31 of the cement water kneaded body 3 in a fresh state before hardening. At the same time, after a spacer 30 having a second RF tag 5b installed therein was buried in the second region 32, a curing process was performed. In addition, when the cement water kneaded body 3 is composed of fresh concrete or mortar before hardening, a spacer 30 in which the first RF tag 5a and the second RF tag 5b are installed inside the cement water kneaded body 3 is buried (corresponding to step (a)).

リーダライタ10は、RFタグ(5a,5b)からそれぞれ反射電波信号(W2a,W2b)を受信する(工程(c)に対応)。セメント水混練体3に水分が含まれている場合であっても、第一RFタグ5aはセメント水混練体3の材料よりも吸水率の低い第一領域31内に設置されているため、第一RFタグ5aとセメント水混練体表面3aとの間の水分量は比較的少ない。これに対し、第二RFタグ5bは、セメント水混練体3と同等の吸水率を示す材料からなる第二領域32内に設置されているため、第二RFタグ5bとセメント水混練体表面3aとの間の水分量は、第一RFタグ5aとセメント水混練体表面3aとの間の水分量と比べて多くなる。 The reader/writer 10 receives reflected radio wave signals (W2a, W2b) from the RF tags (5a, 5b), respectively (corresponding to step (c)). Even if the cement water kneaded body 3 contains water, the first RF tag 5a is installed in the first region 31 which has a lower water absorption rate than the material of the cement water kneaded body 3. - The amount of water between the RF tag 5a and the surface 3a of the cement water kneaded body is relatively small. On the other hand, since the second RF tag 5b is installed in the second region 32 made of a material having the same water absorption rate as the cement water kneaded body 3, the second RF tag 5b and the cement water kneaded body surface 3a The amount of moisture between the first RF tag 5a and the surface 3a of the cement water kneaded body is larger than that between the first RF tag 5a and the surface 3a of the cement water kneaded body.

この結果、第一RFタグ5aからの反射電波信号W2aの強度E2a(第一反射電波強度E2a)は、第二RFタグ5bからの反射電波信号W2bの強度E2b(第二反射電波強度E2b)よりも高くなる。そして、第一反射電波強度E2aと第二反射電波強度E2bの相違は、第一領域31の吸水率ε1と第二領域32の吸水率ε2との相違に由来する。つまり、第一反射電波強度E2aと第二反射電波強度E2bの相違は、第一領域31の吸水率ε1と第二領域32の吸水率ε2との比率と、セメント水混練体3内に含まれる含有水分量V3とで決定される。 As a result, the intensity E2a of the reflected radio wave signal W2a from the first RF tag 5a (first reflected radio wave intensity E2a) is greater than the intensity E2b of the reflected radio wave signal W2b from the second RF tag 5b (second reflected radio wave intensity E2b). It also becomes more expensive. The difference between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b originates from the difference between the water absorption rate ε1 of the first region 31 and the water absorption rate ε2 of the second region 32. In other words, the difference between the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b is the ratio between the water absorption rate ε1 of the first region 31 and the water absorption rate ε2 of the second region 32, and the difference between the water absorption rate ε1 of the first region 31 and the water absorption rate ε2 of the second region 32, and It is determined by the water content V3.

例えば、第一領域31の吸水率ε1をほぼ0とみなすことができる場合には、第一反射電波強度E2aと第二反射電波強度E2bの比率jE2によって、セメント水混練体3内に含まれる含有水分量V3の推定を行うことができる。この場合には、推定装置20の記憶部22に、比率jE2と含有水分量V3との相関関係を記録しておき、推定処理部21が、通信部11で受信した各反射電波強度(E2a,E2b)の比率を算出すると共に記憶部22から読み出した前記相関関係と照合することで、セメント水混練体3内の含有水分量V3を推定できる(工程(d)に対応)。 For example, when the water absorption rate ε1 of the first region 31 can be considered to be approximately 0, the content contained in the cement water kneaded body 3 is determined by the ratio jE2 of the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b. The water content V3 can be estimated. In this case, the correlation between the ratio jE2 and the water content V3 is recorded in the storage unit 22 of the estimation device 20, and the estimation processing unit 21 calculates each reflected radio wave intensity (E2a, E2a, By calculating the ratio of E2b) and comparing it with the correlation read from the storage unit 22, the water content V3 in the cement water kneaded body 3 can be estimated (corresponding to step (d)).

また、第一領域31の吸水率ε1が0と近似できない場合であっても、各吸水率(ε1、ε2)は既知であるため、第一領域31と第二領域32の吸水率の相違に伴って、含有水分量V3を、第一反射電波強度E2aと第二反射電波強度E2bとの関数で規定することが可能である。この場合には、当該関数を推定装置20の記憶部22に記録しておき、推定処理部21が、通信部11で受信した各反射電波強度(E2a,E2b)の値を記憶部22から読み出した前記関数に当てはめて演算することで、セメント水混練体3内の含有水分量V3を推定できる(工程(d)に対応)。 Furthermore, even if the water absorption rate ε1 of the first region 31 cannot be approximated to 0, since each water absorption rate (ε1, ε2) is known, the difference in water absorption rate between the first region 31 and the second region 32 Accordingly, it is possible to define the water content V3 as a function of the first reflected radio wave intensity E2a and the second reflected radio wave intensity E2b. In this case, the function is recorded in the storage unit 22 of the estimation device 20, and the estimation processing unit 21 reads out the values of each reflected radio wave intensity (E2a, E2b) received by the communication unit 11 from the storage unit 22. The water content V3 in the cement water kneaded body 3 can be estimated by applying the above function to the calculation (corresponding to step (d)).

第二RFタグ5bは、必ずしもスペーサ30に設置される必要はない。すなわち、図10に示すように、第一RFタグ5aのみを、上述したセメント水混練体3よりも吸水率の低い材料からなるスペーサ30内に設置した上で、このスペーサ30をセメント水混練体3内に埋設するものとしても構わない。この場合、第二RFタグ5bは、スペーサ30の外側であって、第一RFタグ5aとほぼ同じ埋設深さの位置において、セメント水混練体3内に埋設される。図10に示す構成の場合には、スペーサ30自体が「タグ保護体」に対応する。 The second RF tag 5b does not necessarily need to be installed on the spacer 30. That is, as shown in FIG. 10, only the first RF tag 5a is installed in a spacer 30 made of a material with a lower water absorption than the cement water kneaded body 3, and then this spacer 30 is placed inside the cement water kneaded body 3. It may be buried within 3. In this case, the second RF tag 5b is buried in the cement water mixture 3 at a position outside the spacer 30 and at approximately the same buried depth as the first RF tag 5a. In the case of the configuration shown in FIG. 10, the spacer 30 itself corresponds to the "tag protector".

なお、図9に示す第一RFタグ5a及び第二RFタグ5bを備えたスペーサ30、又は、図10に示す第一RFタグ5aを備えたスペーサ30が、本発明に係る「セメント水混練体に含まれる水分量の推定用センサ」の一例に対応する。 Note that the spacer 30 equipped with the first RF tag 5a and the second RF tag 5b shown in FIG. 9 or the spacer 30 equipped with the first RF tag 5a shown in FIG. This corresponds to an example of "sensor for estimating the amount of moisture contained in water".

[第四実施形態]
推定システム1の第四実施形態について、図11~図12を参照して説明する。本実施形態の推定システム1も、第二実施形態と同様に、リーダライタ10の位置が固定できない場合であっても、精度よくセメント水混練体3の含有水分量V3を推定できる構成である。
[Fourth embodiment]
A fourth embodiment of the estimation system 1 will be described with reference to FIGS. 11 and 12. Similarly to the second embodiment, the estimation system 1 of this embodiment is also configured to be able to accurately estimate the water content V3 of the cement water kneaded body 3 even if the position of the reader/writer 10 cannot be fixed.

本実施形態の推定システム1は、第三実施形態と同様に、セメント水混練体3内に埋設されたスペーサ30を含む。ただし、スペーサ30の吸水率は限定されない。また、本実施形態の推定システム1では、スペーサ30内に設置されるRFタグ5は単独であっても構わない。 The estimation system 1 of this embodiment includes a spacer 30 buried in the cement water kneaded body 3 similarly to the third embodiment. However, the water absorption rate of the spacer 30 is not limited. Moreover, in the estimation system 1 of this embodiment, the RF tag 5 installed in the spacer 30 may be alone.

スペーサ30は、コンクリートやモルタルのかぶり厚を調整するために設けられる。よって、スペーサ30内の所定の位置にRFタグ5を設置しておけば、セメント水混練体表面3aとRFタグ5との離間距離、すなわちRFタグ5の埋設深さh5を施工前の段階から認識できる。すなわち、RFタグ5側において、埋設深さh5の情報(深さ情報)を書き込むことが可能である。 The spacer 30 is provided to adjust the cover thickness of concrete or mortar. Therefore, if the RF tag 5 is installed at a predetermined position within the spacer 30, the distance between the cement water kneaded body surface 3a and the RF tag 5, that is, the burial depth h5 of the RF tag 5 can be adjusted from the stage before construction. Recognizable. That is, on the RF tag 5 side, it is possible to write information on the buried depth h5 (depth information).

つまり、セメント水混練体3が硬化後のコンクリート又はモルタルで構成されている場合、このセメント水混練体3は、硬化前のフレッシュな状態において、埋設深さh5の情報が書き込まれたRFタグ5が設置されてなるスペーサ30が埋設された後、硬化処理が行われたものである。また、セメント水混練体3が硬化前のフレッシュなコンクリート又はモルタルで構成されている場合には、埋設深さh5の情報が書き込まれたRFタグ5が設置されてなるスペーサ30が埋設される(工程(a)に対応)。 In other words, when the cement water kneaded body 3 is made of hardened concrete or mortar, the cement water kneaded body 3 is in a fresh state before hardening, and the RF tag 5 on which information about the burial depth h5 is written is attached. After the spacer 30 with the spacer 30 installed therein was buried, a curing process was performed. In addition, when the cement water mixture 3 is made of fresh concrete or mortar before hardening, a spacer 30 is buried with an RF tag 5 on which information about the burial depth h5 is written ( Corresponding to step (a)).

リーダライタ10は、RFタグ5から反射電波信号W2を受信する(工程(c)に対応)。この際、リーダライタ10は、RFタグ5に記録された埋設深さh5の情報についても併せて読み出す。 The reader/writer 10 receives the reflected radio wave signal W2 from the RF tag 5 (corresponding to step (c)). At this time, the reader/writer 10 also reads information about the burial depth h5 recorded on the RF tag 5.

本実施形態のリーダライタ10は、図12に示すように測距センサ23を備えており、セメント水混練体表面3aで反射したセンシング信号i23によって、リーダライタ10とセメント水混練体表面3aとの離間距離h10を測定することができる。 The reader/writer 10 of this embodiment is equipped with a distance measuring sensor 23 as shown in FIG. The separation distance h10 can be measured.

ここで、反射電波信号W2の空気中の通信距離(離間距離h10)によって変動する係数をα、反射電波信号W2の乾燥状態のセメント水混練体3中の通信距離(埋設深さh5)によって変動する係数をβ、反射電波信号W2のセメント水混練体3中の水分量V3によって変動する係数をγとすると、反射電波強度E2は以下の(1)式で評価できる。
E2 = α・h10+(β・h5)・γ …(1)
Here, α is a coefficient that varies depending on the communication distance of the reflected radio wave signal W2 in the air (separation distance h10), and coefficient α varies depending on the communication distance of the reflected radio wave signal W2 in the dry cement water mixture 3 (burying depth h5). The reflected radio wave intensity E2 can be evaluated by the following equation (1), where β is a coefficient that changes the reflected radio wave signal W2 and γ is a coefficient that varies depending on the water content V3 in the cement water kneaded body 3.
E2 = α・h10+(β・h5)・γ…(1)

つまり、以下の(2)式によって、セメント水混練体3中の水分量の関数で規定されるγの値が算定される。
γ = (E2 - α・h10)/(β・h5) …(2)
That is, the value of γ defined by the function of the water content in the cement water kneaded body 3 is calculated by the following equation (2).
γ = (E2 - α・h10)/(β・h5) …(2)

記憶部22には、予め、離間距離h10と係数αの関係、埋設深さh5と係数βの関係、及びセメント水混練体3の含有水分量V3と係数γの関係、及び上記(2)式に対応する評価式に関する情報がそれぞれ記録されている。上述したように、推定装置20側では、離間距離h10及び埋設深さh5についての情報を検知できる。よって、推定処理部21は、離間距離h10及び埋設深さh5に関する情報から、係数α及び係数βの値を演算で導出できる。そして、推定処理部21は、反射電波強度E2、係数α、及び係数βの値を(2)式に代入して係数γを算定した上で、記憶部22に記録された含有水分量V3と係数γの関係から、算定されたγの値に対応する含有水分量V3を導出できる。 The storage unit 22 stores in advance the relationship between the separation distance h10 and the coefficient α, the relationship between the burial depth h5 and the coefficient β, the relationship between the water content V3 of the cement water kneaded body 3 and the coefficient γ, and the above formula (2). Information regarding the evaluation formula corresponding to each is recorded. As described above, the estimation device 20 side can detect information about the separation distance h10 and the burial depth h5. Therefore, the estimation processing unit 21 can calculate the values of the coefficient α and the coefficient β from the information regarding the separation distance h10 and the burial depth h5. Then, the estimation processing unit 21 calculates the coefficient γ by substituting the values of the reflected radio wave intensity E2, the coefficient α, and the coefficient β into equation (2), and then calculates the coefficient γ and calculates the coefficient γ. From the relationship of the coefficient γ, the water content V3 corresponding to the calculated value of γ can be derived.

上記(2)式はあくまで説明のために一例として記載したものであり、演算に際しては、必ずしもこの式に基づかなくてはならないものではない。本実施形態の推定システム1は、RFタグ5から読み出された埋設深さh5に関する情報と、反射電波強度E2と、リーダライタ10とセメント水混練体表面3aとの離間距離h10に関する情報とを用いて、セメント水混練体3の含有水分量V3の推定値を算定する方法を包含する。 The above formula (2) is described as an example for explanation purposes only, and calculations do not necessarily have to be based on this formula. The estimation system 1 of this embodiment uses information regarding the burial depth h5 read from the RF tag 5, reflected radio wave intensity E2, and information regarding the separation distance h10 between the reader/writer 10 and the cement water kneaded body surface 3a. This includes a method of calculating an estimated value of the water content V3 of the cement water kneaded body 3 using the above method.

また、リーダライタ10とセメント水混練体表面3aとの離間距離h10を測定する方法は任意である。つまり、リーダライタ10側に、前記離間距離h10を測定する機能が搭載されていなくても構わない。 Moreover, the method of measuring the separation distance h10 between the reader/writer 10 and the cement water kneaded body surface 3a is arbitrary. In other words, the reader/writer 10 does not need to be equipped with a function to measure the separation distance h10.

なお、図11に示す第一RFタグを備えたスペーサ30が、本発明に係る「セメント水混練体に含まれる水分量の推定用センサ」の一例に対応する。 Note that the spacer 30 equipped with the first RF tag shown in FIG. 11 corresponds to an example of the "sensor for estimating the amount of water contained in the cement water kneaded body" according to the present invention.

[別実施形態]
以下、別実施形態について説明する。
[Another embodiment]
Another embodiment will be described below.

〈1〉 図13に示すように、推定装置20は、リーダライタ10とは別体の装置で構成されていても構わない。この場合、リーダライタ10で受信した反射電波信号W2の強度に関する情報は、推定装置20に対して有線又は無線を介して送信され、推定装置20側において、受信した情報に基づいて演算処理が行われて含有水分量V3が推定される。図13に示す例では、推定装置20が推定処理部21による演算結果を出力するための情報出力部24を備えている。情報出力部24は、通信用インタフェースであっても構わないし、不図示のモニタに表示するための表示処理用の処理手段であっても構わない。 <1> As shown in FIG. 13, the estimation device 20 may be configured as a separate device from the reader/writer 10. In this case, information regarding the strength of the reflected radio wave signal W2 received by the reader/writer 10 is transmitted to the estimation device 20 via wire or wirelessly, and calculation processing is performed on the estimation device 20 side based on the received information. Then, the water content V3 is estimated. In the example shown in FIG. 13, the estimation device 20 includes an information output section 24 for outputting the calculation result by the estimation processing section 21. The information output unit 24 may be a communication interface, or may be a processing means for display processing for displaying on a monitor (not shown).

〈2〉 上記実施形態では、RFタグ5(5a,5b)が金属非対応のRFタグであるものとしたが、例えばスペーサ30を鉄筋に固定する場合など、裏面側の近傍に金属材料が存在する場合には、RFタグ5(5a,5b)を金属対応のRFタグ(メタルタグ)としても構わない。 <2> In the above embodiment, the RF tags 5 (5a, 5b) are non-metal compatible RF tags, but when a metal material is present near the back side, for example, when fixing the spacer 30 to a reinforcing bar, etc. In this case, the RF tags 5 (5a, 5b) may be RF tags compatible with metal (metal tags).

〈3〉 上述の各実施形態において、推定システム1は、推定した水分量をユーザに報知する機能を更に備えていても構わない。一例として、リーダライタ10に搭載された表示出力部12が、推定処理部21において推定された水分量を表示するものとしても構わない。また、不図示の通信手段を通じて、推定した水分量に関する情報がサーバやスマートフォンに送信されるものとしても構わない。更に、不図示の音声出力手段(スピーカ等)を通じて、報知用の音声信号が出力されるものとしても構わない。ユーザは、報知された水分量に関する情報や報知用の音声信号に基づいて、例えば、上述の床コンクリートの施工段階における仕上げ時期や、コンクリート構造体の共用段階における鉄筋腐食の発生リスクを把握することができる。 <3> In each of the embodiments described above, the estimation system 1 may further include a function of notifying the user of the estimated moisture content. As an example, the display output section 12 mounted on the reader/writer 10 may display the moisture content estimated by the estimation processing section 21. Further, information regarding the estimated moisture content may be transmitted to a server or a smartphone through a communication means (not shown). Furthermore, an audio signal for notification may be outputted through an audio output means (speaker, etc.) not shown. Based on the information regarding the moisture content and the notification audio signal, the user can, for example, grasp the finishing timing of the above-mentioned floor concrete at the construction stage and the risk of occurrence of reinforcing steel corrosion during the common use stage of the concrete structure. I can do it.

なお、この場合において、報知される情報としては、推定した水分量の値そのものには限られない。一例として、推定装置20が、床コンクリートの施工段階における仕上げ時期に達したか否かを、推定した水分量に基づいて判定すると共に、この判定結果が報知される構成としてもよい。別の一例として、推定装置20が、コンクリート構造体の共用段階における鉄筋腐食の発生リスクの程度を、推定した水分量に基づいて判定し、この判定結果が報知される構成としてもよい。この判定手法としては、例えば、仕上げ時期に達したと判定する水分量の閾値を記憶部22に予め記憶しておき、実際に推定した水分量がこの閾値に達した場合には、推定処理部21が仕上げ時期に達したと判定する手法を採用することができるが、この方法に限られない。 Note that in this case, the information to be notified is not limited to the estimated moisture content value itself. As an example, the estimating device 20 may be configured to determine whether or not the finishing time in the floor concrete construction stage has been reached based on the estimated moisture content, and to notify the result of this determination. As another example, the estimating device 20 may determine the degree of risk of occurrence of reinforcing steel corrosion in the shared stage of the concrete structure based on the estimated moisture content, and the determination result may be notified. As this determination method, for example, a threshold value of moisture content for determining that the finishing time has been reached is stored in advance in the storage unit 22, and when the actually estimated moisture content reaches this threshold value, the estimation processing unit Although it is possible to adopt a method of determining that 21 has reached the finishing time, the method is not limited to this method.

〈4〉 上述した第二実施形態では、埋設深さの異なる2種類のRFタグ(5a,5b)を用いると共に、これらのRFタグ(5a,5b)のそれぞれから送信された反射電波信号(W2a,W2b)の差分値や比率に基づく値に基づいて、含有水分量V3を推定する構成であった。これに対し、リーダライタ10側において、異なる位置に複数の通信部11を設けることで、それぞれの通信部11とRFタグ5との離間距離の複数種類にするものとしても構わない(例えば図14参照)。 <4> In the second embodiment described above, two types of RF tags (5a, 5b) with different buried depths are used, and the reflected radio wave signal (W2a) transmitted from each of these RF tags (5a, 5b) is used. , W2b) and a value based on the ratio, the water content V3 is estimated. On the other hand, by providing a plurality of communication units 11 at different positions on the reader/writer 10 side, it is also possible to provide multiple types of separation distances between each communication unit 11 and the RF tag 5 (for example, FIG. reference).

図14は、この別実施形態の推定システム1の構成を模式的に示す図面である。リーダライタ10は、複数の通信部(11a,11b)を搭載している。この通信部(11a,11b)は例えばアンテナであり、このうちの少なくとも1つのアンテナが外付けであっても構わない。これらの通信部(11a,11b)は、相互に、セメント水混練体表面3aとの離間距離を異ならせることができるような位置に設置されている。より詳細には、これらの通信部(11a,11b)は、リーダライタ10の面のうち、測定対象となるセメント水混練体3に対向する面10aからの距離(h11a,h11b)がそれぞれ異なる位置に設置される。図A09の例によれば、通信部11aとセメント水混練体表面3aとの離間距離は、h10とh11aの合計値に対応し、通信部11bとセメント水混練体表面3aとの離間距離は、h10とh11bの合計値に対応する。 FIG. 14 is a drawing schematically showing the configuration of the estimation system 1 of this other embodiment. The reader/writer 10 is equipped with a plurality of communication units (11a, 11b). The communication units (11a, 11b) are, for example, antennas, and at least one of these antennas may be externally attached. These communication units (11a, 11b) are installed at positions where the distances from the cement water kneaded body surface 3a can be made different from each other. More specifically, these communication units (11a, 11b) are located at different distances (h11a, h11b) from the surface 10a facing the cement water kneaded body 3 to be measured on the surface of the reader/writer 10. will be installed in According to the example in FIG. A09, the distance between the communication section 11a and the surface 3a of the cement water kneaded body corresponds to the sum of h10 and h11a, and the distance between the communication section 11b and the surface 3a of the cement water kneaded body is: It corresponds to the total value of h10 and h11b.

この構成の場合、リーダライタ10は、搭載した2つの通信部(11a,11b)において、RFタグ5からそれぞれ反射電波信号(W2a,W2b)を受信する。これらの反射電波信号の強度(E2a,E2b)の差分値又は比率は、リーダライタ10の表面とセメント水混練体表面3aとの離間距離h10が変動しても、セメント水混練体3内の含有水分量に依存した値となる。この結果、測定時に前記離間距離h10を所定の値に保持できない事情がある場合であっても、上記実施形態と同様に、セメント水混練体3内の含有水分量V3を推定できる In the case of this configuration, the reader/writer 10 receives reflected radio wave signals (W2a, W2b) from the RF tag 5 in two installed communication units (11a, 11b), respectively. The difference value or ratio of the intensities (E2a, E2b) of these reflected radio wave signals is such that even if the distance h10 between the surface of the reader/writer 10 and the cement water kneaded body surface 3a changes, the content in the cement water kneaded body 3 The value depends on the moisture content. As a result, even if there are circumstances in which the separation distance h10 cannot be maintained at a predetermined value during measurement, the water content V3 in the cement water kneaded body 3 can be estimated as in the above embodiment.

以下、実施例を参照して説明する。 The following description will be made with reference to examples.

[試験1]
下記表1及び表2に示す材料からなる試験用モルタルを打設し、JIS A 1147に準拠する方法で、所定時間の経過と共に貫入抵抗値を測定しながら、硬化時間を計測した。この評価結果を図15に示す。なお、図15において、貫入抵抗値が3.5N/mm2に達した時点を「始発」と記載し、28.0N/mm2に達した時点を「終結」と記載している。なお、表1において、W/Cは水セメント比を指し、S/Cは砂セメント比を指す。
[Test 1]
Test mortars made of the materials shown in Tables 1 and 2 below were poured, and the hardening time was measured while measuring the penetration resistance value over a predetermined period of time using a method based on JIS A 1147. The results of this evaluation are shown in FIG. In addition, in FIG. 15, the time point when the penetration resistance value reached 3.5 N/mm 2 is described as "beginning", and the time point when it reached 28.0 N/mm 2 is described as "end". In Table 1, W/C refers to the water-cement ratio, and S/C refers to the sand-cement ratio.

Figure 0007441152000001
Figure 0007441152000001

Figure 0007441152000002
Figure 0007441152000002

次に、埋設深さ4cmの位置に、横25mm×縦9mm×厚み3mmの寸法のRFタグ5を埋設した状態で上記表1の材料からなるモルタルを打設し、所定時間経過ごとに、リーダライタ10によって反射電波信号W2を受信して強度E2(反射電波強度E2)を計測した。リーダライタ10は、対応する信号の周波数が920MHz帯で、出力が250mWのものが用いられた。この計測結果を、図16A及び図16Bに示す。 Next, mortar made of the material shown in Table 1 above is placed at a position with a buried depth of 4 cm, with the RF tag 5 having dimensions of 25 mm wide x 9 mm long x 3 mm thick buried, and the reader is The reflected radio wave signal W2 was received by the writer 10, and the intensity E2 (reflected radio wave intensity E2) was measured. The reader/writer 10 used had a corresponding signal frequency of 920 MHz band and an output of 250 mW. The measurement results are shown in FIGS. 16A and 16B.

つまり、本実施例では、含有水分量の測定対象となるセメント水混練体3が、フレッシュモルタルによって模擬されている。 That is, in this example, the cement water kneaded body 3 whose water content is to be measured is simulated by fresh mortar.

なお、計測に際しては、リーダライタ10を、モルタルの表面からの離間距離h10が90mm、120mm、150mmと異ならせた3種類の位置に設置した状態で、反射電波強度E2の計測が行われた。また、図16Bは、図16Aの一部時間帯を拡大した図面である。 Note that during the measurement, the reflected radio wave intensity E2 was measured with the reader/writer 10 installed at three different positions with different distances h10 from the mortar surface: 90 mm, 120 mm, and 150 mm. Further, FIG. 16B is an enlarged view of a part of the time period in FIG. 16A.

図16Bによれば、打設してから終結するタイミングまでの間において、離間距離h10に関わらず、反射電波強度E2が徐々に上昇していることが確認される。このことは、セメントの水和反応が進行して硬化が進むに連れて自由水が減少するに連れ、反射電波強度E2が上昇していることを示すものである。この結果より、反射電波強度E2に基づいてセメント水混練体3内の含有水分量V3が推定できることが分かる。 According to FIG. 16B, it is confirmed that the reflected radio wave intensity E2 gradually increases regardless of the separation distance h10 from the time when the concrete is placed until the time when it is finished. This indicates that as the hydration reaction of the cement progresses and hardening progresses, the free water decreases, and the reflected radio wave intensity E2 increases. This result shows that the water content V3 in the cement water kneaded body 3 can be estimated based on the reflected radio wave intensity E2.

また、図16Aによれば、終結の後、更に反射電波強度E2が更に上昇していることが確認される。このことは、水和反応が更に進行してセメント水混練体3(ここではモルタル)内の含有水分量V3が減少傾向にあることを示すものである。 Moreover, according to FIG. 16A, it is confirmed that the reflected radio wave intensity E2 further increases after the termination. This indicates that the hydration reaction further progresses and the water content V3 in the cement water kneaded body 3 (here mortar) tends to decrease.

以上の結果から、反射電波強度E2に基づいてセメント水混練体3内の含有水分量V3が推定できることが確認される。 From the above results, it is confirmed that the water content V3 in the cement water kneaded body 3 can be estimated based on the reflected radio wave intensity E2.

[試験2]
下記表3及び表4に示す材料からなる試験用コンクリートを打設し、JIS A 1123に準拠する方法で、ブリーディング水の量を計測した。この評価結果を図17及び表5に示す。図17は、ブリーディング水の累積水量と経過時間との関係をグラフ化したものである。表4において、s/aとは、全体の質量に対する細骨材の質量の比率(細骨材率)を指し、混和剤(Ad1,Ad2)の混入量は、セメントの質量に対する百分率で表記されている。
[Test 2]
Test concrete made of the materials shown in Tables 3 and 4 below was poured, and the amount of bleeding water was measured by a method based on JIS A 1123. The evaluation results are shown in FIG. 17 and Table 5. FIG. 17 is a graph showing the relationship between the cumulative amount of bleeding water and the elapsed time. In Table 4, s/a refers to the ratio of the mass of fine aggregate to the total mass (fine aggregate ratio), and the amount of admixtures (Ad1, Ad2) is expressed as a percentage of the mass of cement. ing.

Figure 0007441152000003
Figure 0007441152000003

Figure 0007441152000004
Figure 0007441152000004

Figure 0007441152000005
Figure 0007441152000005

図17によれば、打設してから終結するタイミングまでの間において、ブリーディング水の水量が経時的に増加傾向を示すことが確認される。このことは、時間経過に伴い、自由水の一部がコンクリート表面に浮き出ていることを示すものである。上述の通り、自由水が減少するに連れて、反射電波強度E2は上昇する。よって、経過時間毎に測定されたブリーディング水量と反射電波強度の情報を、上述した相関情報として利用し、この相関情報と実際に測定した反射電波強度E2とに基づいてセメント水混練体3内の含有水分量V3が推定できることが分かる。 According to FIG. 17, it is confirmed that the amount of bleeding water tends to increase over time from the time of pouring to the time of completion. This indicates that some of the free water is floating on the concrete surface as time passes. As described above, as free water decreases, the reflected radio wave intensity E2 increases. Therefore, information on the amount of bleeding water and reflected radio wave intensity measured at each elapsed time is used as the above-mentioned correlation information, and based on this correlation information and the actually measured reflected radio wave intensity E2, the amount of bleeding water in the cement water kneaded body 3 is calculated. It can be seen that the water content V3 can be estimated.

1 :推定システム
3 :セメント水混練体
3a :セメント水混練体表面
3b :領域
5 :RFタグ
5a :第一RFタグ
5b :第二RFタグ
10 :リーダライタ
10a :リーダライタ表面
11 :通信部
12 :表示出力部
20 :推定装置
21 :推定処理部
22 :記憶部
23 :測距センサ
24 :情報出力部
30 :スペーサ
31 :第一領域
32 :第二領域
W1 :電波信号
W2,W2a,W2b:反射電波信号
E2,E2a,E2b:反射電波強度
1: Estimation system 3: Cement water kneaded body 3a: Cement water kneaded body surface 3b: Region 5: RF tag 5a: First RF tag 5b: Second RF tag 10: Reader/writer 10a: Reader/writer surface 11: Communication section 12 :Display output section 20:Estimation device 21:Estimation processing section 22:Storage section 23:Distance sensor 24:Information output section 30:Spacer 31:First area 32:Second area W1:Radio signal W2, W2a, W2b: Reflected radio wave signals E2, E2a, E2b: Reflected radio wave intensity

Claims (9)

打設後のフレッシュコンクリート、硬化コンクリート、打設後のフレッシュモルタル、又は硬化モルタルのいずれか1種に属するセメント水混練体に含まれる水分量の推定システムであって、
前記セメント水混練体に埋設されたRFタグと、
前記RFタグとの間で電波信号の送受信が可能なリーダ又はリーダライタと、
前記リーダ又はリーダライタで受信した前記電波信号の強度値、若しくは前記電波信号の受信が検知できる前記リーダ又はリーダライタと前記セメント水混練体との離間距離の上限閾値の少なくとも一方の指標値に基づいて、前記セメント水混練体に含まれる水分量を推定する推定装置とを備え
前記推定装置は、前記指標値と前記セメント水混練体に含まれる水分量との相関関係に関する情報が記録された記憶部を備え、前記記憶部から前記相関関係に関する情報を読み出して、測定された前記指標値に対応する前記セメント水混練体に含まれる水分量を推定することを特徴とする、セメント水混練体に含まれる水分量の推定システム。
A system for estimating the amount of water contained in a cement water mixture belonging to any one of fresh concrete after placement, hardened concrete, fresh mortar after placement, or hardened mortar, the system comprising:
an RF tag embedded in the cement water kneaded body;
a reader or reader/writer capable of transmitting and receiving radio signals to and from the RF tag;
Based on an index value of at least one of the intensity value of the radio wave signal received by the reader or reader/writer, or the upper limit threshold of the separation distance between the reader/reader/writer and the cement water kneaded body that can detect reception of the radio signal. and an estimating device for estimating the amount of water contained in the cement water kneaded body ,
The estimating device includes a storage section in which information regarding the correlation between the index value and the amount of water contained in the cement water kneaded body is recorded, and reads out the information regarding the correlation from the storage section and calculates the amount of water contained in the cement water kneaded body. A system for estimating the amount of water contained in the cement water kneaded material, characterized in that the amount of water contained in the cement water kneaded material is estimated in accordance with the index value .
前記RFタグは、前記セメント水混練体内における埋設深さの異なる第一RFタグ及び第二RFタグを含み、
前記推定装置は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定することを特徴とする、請求項1に記載の、セメント水混練体に含まれる水分量の推定システム。
The RF tag includes a first RF tag and a second RF tag embedded at different depths in the cement water kneading body,
The estimation device has a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. Estimating the amount of water contained in the cement water kneaded body according to claim 1 , characterized in that the amount of water contained in the cement water kneaded body is estimated based on a comparison result with a certain second index value. system.
前記セメント水混練体内に埋設され、前記セメント水混練体よりも吸水率が低い材料からなるタグ保護体を有し、
前記RFタグは、前記タグ保護体内に埋設された第一RFタグと、前記タグ保護体の外側の位置において前記セメント水混練体内に埋設された第二RFタグとを含み、
前記推定装置は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定することを特徴とする、請求項1に記載の、セメント水混練体に含まれる水分量の推定システム。
A tag protector is embedded in the cement water kneaded body and is made of a material having a lower water absorption rate than the cement water kneaded body,
The RF tag includes a first RF tag embedded within the tag protector and a second RF tag embedded within the cement water mixer at a location outside the tag protector;
The estimation device has a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. Estimating the amount of water contained in the cement water kneaded body according to claim 1 , characterized in that the amount of water contained in the cement water kneaded body is estimated based on a comparison result with a certain second index value. system.
前記セメント水混練体内に埋設され、前記RFタグが固定されたスペーサを有し、
前記RFタグは、前記セメント水混練体の表面からの埋設深さに関する深さ情報が記録されており、
前記リーダ又はリーダライタは、前記RFタグからの前記電波信号の強度値と共に前記深さ情報を受信し、
前記推定装置は、前記リーダ又はリーダライタによって受信された前記電波信号の強度値と前記深さ情報、及び前記リーダ又はリーダライタと前記セメント水混練体との離間距離に基づいて、前記セメント水混練体に含まれる水分量を推定することを特徴とする、請求項1に記載の、セメント水混練体に含まれる水分量の推定システム。
a spacer embedded in the cement water kneading body and having the RF tag fixed thereto;
The RF tag records depth information regarding the burial depth from the surface of the cement water kneaded body,
The reader or reader/writer receives the depth information together with the intensity value of the radio signal from the RF tag,
The estimating device calculates the cement water kneading body based on the intensity value of the radio signal received by the reader or reader/writer, the depth information, and the separation distance between the reader or reader/writer and the cement water kneading body. The system for estimating the amount of water contained in a cement water kneaded body according to claim 1 , characterized in that the amount of water contained in the cement water kneaded body is estimated.
前記推定装置は、前記リーダ又はリーダライタ内に搭載されていることを特徴とする、請求項1~のいずれか1項に記載の、セメント水混練体に含まれる水分量の推定システム。 The system for estimating the amount of water contained in a cement water kneaded body according to any one of claims 1 to 4 , wherein the estimating device is installed in the reader or reader/writer. 打設後のフレッシュコンクリート、硬化コンクリート、打設後のフレッシュモルタル、又は硬化モルタルのいずれか1種に属するセメント水混練体に含まれる水分量の推定方法であって、
前記セメント水混練体にRFタグを埋設する工程(a)と、
前記セメント水混練体の外側の所定の位置に、前記RFタグとの間で電波信号の送受信が可能なリーダ又はリーダライタを配置する工程(b)と、
前記リーダ又はリーダライタで受信した前記電波信号の強度値、又は前記電波信号の受信が検知できる前記リーダ又はリーダライタと前記セメント水混練体との離間距離の上限閾値の少なくとも一方の指標値を測定する工程(c)と、
前記指標値に基づいて、前記セメント水混練体に含まれる水分量を推定する工程(d)とを有し、
前記工程(d)は、記憶された前記指標値と前記セメント水混練体に含まれる水分量との相関関係に関する情報を読み出して、前記工程(c)で測定された前記指標値に対応する前記セメント水混練体に含まれる水分量を推定する工程であることを特徴とする、セメント水混練体に含まれる水分量の推定方法。
A method for estimating the amount of water contained in a cement water mixture belonging to any one of fresh concrete after placement, hardened concrete, fresh mortar after placement, or hardened mortar, the method comprising:
a step (a) of embedding an RF tag in the cement water kneaded body;
a step (b) of arranging a reader or reader/writer capable of transmitting and receiving radio signals to and from the RF tag at a predetermined position outside the cement water kneaded body;
Measure an index value of at least one of the intensity value of the radio wave signal received by the reader or reader/writer, or the upper limit threshold of the separation distance between the reader/reader/writer and the cement water kneaded body that can detect the reception of the radio signal. step (c) of
a step (d) of estimating the amount of water contained in the cement water kneaded body based on the index value ,
The step (d) reads out information regarding the correlation between the stored index value and the amount of water contained in the cement water kneaded body, and reads the information corresponding to the index value measured in the step (c). 1. A method for estimating the amount of water contained in a cement-water kneaded material, the method comprising: estimating the amount of water contained in the cement-water kneaded material.
前記工程(a)は、フレッシュな状態の前記セメント水混練体内において、埋設深さの異なる位置に第一RFタグ及び第二RFタグを埋設する工程を含み、
前記工程(c)は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値とを測定する工程を含み、
前記工程(d)は、前記第一指標値と前記第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定する工程を含むことを特徴とする、請求項6に記載の、セメント水混練体に含まれる水分量の推定方法。
The step (a) includes a step of embedding a first RF tag and a second RF tag at different burial depths in the cement water kneaded body in a fresh state,
The step (c) includes a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. and a second index value that is a value,
The step (d) includes a step of estimating the amount of water contained in the cement water kneaded body based on a comparison result between the first index value and the second index value. 6. The method for estimating the amount of water contained in a cement water kneaded body, as described in 6 .
前記工程(a)は、前記セメント水混練体よりも吸水率が低い特定材料からなるタグ保護体内に埋設された第一RFタグと、前記タグ保護体の外側の位置に配置された第二RFタグとを、前記タグ保護体ごとフレッシュな状態の前記セメント水混練体内に埋設する工程を含み、
前記工程(c)は、前記第一RFタグからの前記電波信号の強度値に基づく前記指標値である第一指標値と、前記第二RFタグからの前記電波信号の強度値に基づく前記指標値である第二指標値とを測定する工程を含み、
前記工程(d)は、前記第一指標値と前記第二指標値との比較結果に基づいて、前記セメント水混練体に含まれる水分量を推定する工程を含むことを特徴とする、請求項6に記載の、セメント水混練体に含まれる水分量の推定方法。
The step (a) includes a first RF tag embedded in a tag protector made of a specific material having a lower water absorption rate than the cement water kneaded body, and a second RF tag disposed outside the tag protector. embedding the tag together with the tag protector in the cement water kneading body in a fresh state,
The step (c) includes a first index value that is the index value based on the intensity value of the radio signal from the first RF tag, and a first index value that is the index value based on the intensity value of the radio signal from the second RF tag. and a second index value that is a value,
The step (d) includes a step of estimating the amount of water contained in the cement water kneaded body based on a comparison result between the first index value and the second index value. 6. The method for estimating the amount of water contained in a cement water kneaded body, as described in 6 .
前記RFタグは、前記セメント水混練体の表面からの埋設深さに関する深さ情報が記録されており、
前記工程(a)は、前記深さ情報が記憶された前記RFタグが固定されたスペーサごとフレッシュな状態の前記セメント水混練体内に埋設する工程を含み、
前記工程(c)は、前記リーダ又はリーダライタによって受信された前記電波信号の強度値と前記深さ情報を読み出す工程を含み、
前記工程(d)は、前記リーダ又はリーダライタと前記セメント水混練体との離間距離を検知する工程を含むと共に、当該離間距離に関する情報と、前記工程(c)で読み出された前記電波信号の強度値及び前記深さ情報とに基づいて、前記セメント水混練体に含まれる水分量を推定することを特徴とする、請求項6に記載の、セメント水混練体に含まれる水分量の推定方法。
The RF tag records depth information regarding the burial depth from the surface of the cement water kneaded body,
The step (a) includes a step of embedding the RF tag in which the depth information is stored together with a fixed spacer in the cement water mixture in a fresh state,
The step (c) includes a step of reading the intensity value of the radio signal and the depth information received by the reader or reader/writer,
The step (d) includes a step of detecting the separation distance between the reader or reader/writer and the cement water kneaded body, and also includes the step of detecting the separation distance between the reader or the reader/writer and the cement water kneaded body, and the information regarding the separation distance and the radio signal read out in the step (c). The estimation of the amount of water contained in the cement water kneaded body according to claim 6 , characterized in that the amount of water contained in the cement water kneaded body is estimated based on the strength value of and the depth information. Method.
JP2020162991A 2020-09-29 2020-09-29 System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product Active JP7441152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020162991A JP7441152B2 (en) 2020-09-29 2020-09-29 System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020162991A JP7441152B2 (en) 2020-09-29 2020-09-29 System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product

Publications (2)

Publication Number Publication Date
JP2022055523A JP2022055523A (en) 2022-04-08
JP7441152B2 true JP7441152B2 (en) 2024-02-29

Family

ID=80998587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020162991A Active JP7441152B2 (en) 2020-09-29 2020-09-29 System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product

Country Status (1)

Country Link
JP (1) JP7441152B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049499A (en) 2006-08-22 2008-03-06 Taiheiyo Cement Corp Agitator vehicle and ready-mixed concrete manufacturing control device
JP2008145403A (en) 2006-12-13 2008-06-26 Taisei Corp Strain measuring system and ic tag
JP2014198992A (en) 2013-03-15 2014-10-23 太平洋セメント株式会社 Reinforcement cover spacer, and covering thickness inspection method and reinforcement covering thickness inspection system using the same
JP2020008308A (en) 2018-07-03 2020-01-16 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049499A (en) 2006-08-22 2008-03-06 Taiheiyo Cement Corp Agitator vehicle and ready-mixed concrete manufacturing control device
JP2008145403A (en) 2006-12-13 2008-06-26 Taisei Corp Strain measuring system and ic tag
JP2014198992A (en) 2013-03-15 2014-10-23 太平洋セメント株式会社 Reinforcement cover spacer, and covering thickness inspection method and reinforcement covering thickness inspection system using the same
JP2020008308A (en) 2018-07-03 2020-01-16 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Also Published As

Publication number Publication date
JP2022055523A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
US20230393115A1 (en) Embedded wireless monitoring sensors
Papakonstantinou et al. Probabilistic model for steel corrosion in reinforced concrete structures of large dimensions considering crack effects
US6772091B1 (en) Determining the depth of reinforcing bars in a concrete structure using electromagnetic signals
CN112819781B (en) Concrete scouring quality assessment method, device and system
Di Benedetti et al. Acoustic emission historic index and frequency spectrum of reinforced concrete under accelerated corrosion
KR101132249B1 (en) Apparatus for curing concrete sample under the same conditions of actual construction concrete and concrete curing method using the same
JP7441152B2 (en) System for estimating the amount of water contained in a cement water kneaded product, method for estimating the amount of water contained in a cement water kneaded product, and sensor for estimating the amount of water contained in a cement water kneaded product
Goueygou et al. Assessment of porosity of mortar using ultrasonic Rayleigh waves
Chrisp et al. Depth-related variation in conductivity to study cover-zone concrete during wetting and drying
Van Belleghem et al. Evaluation and comparison of traditional methods and Electron Probe Micro Analysis (EPMA) to determine the chloride ingress perpendicular to cracks in self-healing concrete
Lacroix et al. Nondestructive condition assessment of concrete slabs with artificial defects using wireless impact echo
WO2019084694A1 (en) System, electrode and method for evaluating a condition of steel reinforcements in concrete
Billeh Ishak Medfouni et al. Assessment of corroded rock bolts with pulse echo tests
JP2022055488A (en) System for estimating strength development amount of cement water kneaded body, method for estimating strength development amount of cement water kneaded body, and sensor for estimating strength development amount of cement water kneaded body
JP4073283B2 (en) Method and apparatus for inspecting salinity in reinforced concrete structures by electromagnetic waves
JP2007093533A (en) Buried material measuring device, and buried material measuring method
JP2022080719A (en) Prediction method of construction timing, prediction device and concrete construction method
Darmawan et al. Case study of remaining service life assessment of a cooling water intake concrete structure in Indonesia
JP6933930B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
Razak et al. Detection of sizes and locations air voids in reinforced concrete slab using ground penetrating radar and Impact-Echo methods
KR20230155137A (en) Method for monitoring initial strength of concrete using internal relative humidity hysteresis and diagnosis system
Pease et al. Assessing the portion of the crack length contributing to water sorption in concrete using X-ray absorption
JP7221128B2 (en) Concrete slump identification method and slump identification device
CN113779487B (en) Method, device, terminal and storage medium for detecting chloride ion content in mortar
CN117371204A (en) Precast pile bottom karst cave detection method and related device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240216

R150 Certificate of patent or registration of utility model

Ref document number: 7441152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150